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Abstract In this article, we develop a theoretical frame-
work to study compact stars in Einstein gravity with the
Gauss–Bonnet (GB) combination of quadratic curvature
terms. We mainly analyzed the dependence of the physi-
cal properties of these compact stars on the Gauss–Bonnet
coupling strength. This work is motivated by the relations
that appear in the framework of the minimal geometric
deformation approach to gravitational decoupling (MGD-
decoupling), we establish an exact anisotropic version of the
interior solution in Einstein–Gauss–Bonnet gravity. In fact,
we specify a particular form for gravitational potentials in the
MGD approach that helps us to determine the decoupling
sector completely and ensure regularity in interior space-
time. The interior solutions have been (smoothly) joined with
the Boulware–Deser exterior solution for 5D space-time. In
particular, two different solutions have been reported which
comply with the physically acceptable criteria: one is the
mimic constraint for the pressure and the other approach is
the mimic constraint for density. We present our solution both
analytically and graphically in detail.

1 Introduction

The study of higher curvature corrections to the Einstein–
Hilbert action is motivated by the fact that they arise in the
quantization of fields in curved spacetime [1]. Thus, in recent
years we have witnessed an increased interest in higher order
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gravity, which involves higher derivative curvature terms, and
amongst the most accepted theories is the so-called Lovelock
gravity. Lovelock theories are an intriguing subset of higher
curvature gravity theories which were originally introduced
by Lanczos [2] and rediscovered by Lovelock [3,4] in the
1970s. The most intriguing feature of Lovelock gravity is
the field equations contain only up to second-order deriva-
tives of the metric. Besides, the theory shares a number of
additional nice properties including Bianchi identities which
ensure energy conservation i.e., ∇ i Ti j = 0 and the quan-
tization of the linearized theory are free of ghosts [5,6].
Thus, Lovelock gravity appears as a natural generalization
of Einstein gravity provides a natural testbed for exploring
the effects of higher curvature terms on gravitational physics.

However, it turns out that apart from the first two
terms corresponding to the Lovelock Lagrangian the third
term is a combination of the second-order curvature term,
namely Gauss–Bonnet (GB) [2]. This form generates a well-
known theory of Einstein–Gauss–Bonnet (EGB) gravity in
which the Einstein–Hilbert action is supplemented with the
quadratic curvature GB term. This type of action is derived
in the low energy effective action of heterotic string theory
[7,8]. However, to get a non-trivial contribution in 4D, one
can generally associate the GB term with the inclusion of a
scalar field [9]. In this context many results were reported
including the spherically symmetric static black hole solu-
tion [10]. Other aspects of black hole solutions have been
recently considered in [11–15]. In Refs. [16,17] authors have
been studying black hole solutions with a source as a cloud
of strings. Since then, a number of interesting solutions have
been found such as geodesic motion of a Boulware–Deser
black hole spacetime [18], radius of photon spheres [19],
gravitational collapse of an incoherent spherical dust cloud
[20–23], regular black hole solutions [24] and wormhole
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solution with or without a cosmological constant [25]. In
addition, compact star solutions in the context of EGB grav-
ity have been investigated in Refs. [26–28].

It is speculated that stars with initial mass above ∼ 8M�
end their lives as compact objects: white dwarf, neutron star
or black hole. Among them neutron stars (NSs), supported
by neutron-degeneracy pressure, are very compact remnants
of stellar evolution that ended their lives in supernova explo-
sions [29,30]. Thus, the physical properties and their inter-
nal structure are one of the most fascinating and far-reaching
implications of our current understanding of the compact
objects. But still a comprehensive picture of core-collapse
supernovae of evolved massive stars is a long-standing prob-
lem in computational astrophysics.

In most of the cases it is believed that self-gravitating
objects are made of an isotropic fluid source. This means
that the radial and tangential pressures are equal, in gen-
eral. However, recent theoretical advances predict the exis-
tence of anisotropic spherically symmetric static configura-
tion. Such an assumption was introduced in [31] for a rel-
ativistic anisotropic sphere and showed that one can relax
the upper limits imposed on the maximum value of the sur-
face gravitational potential. This, in turn, was extended by
Bowers and Liang [32], where authors developed a model
for pressure anisotropy on neutron stars. Besides mathemat-
ical plausibility, this interest has partly been stimulated by
the work of Ruderman [33] in the year 1972. According to
him nuclear matter tends to become anisotropic at very high
densities of order 1015 g/cm3, where the nuclear interactions
must be treated relativistically. Herrera and Santos [34] con-
jectured that anisotropic stars could exist in a strong gravity
region.

In spite of this reasoning many efforts have been done
to address challenges concerning anisotropic matter such
as boson stars [35], gravastars [36], neutron stars [37] and
so on. In relativistic context, two-fluid dark matter mod-
els have been studied for anisotropic stars [38]. Consider-
ing anisotropy within the framework of general relativity
polytropic stars have been presented in [39–41] and refer-
ences therein. Interestingly, authors have studied all static
spherically symmetric anisotropic solutions in [42]. Later,
an important development in the application of anisotropy
in superdense matter which may lead to significant changes
in the characteristics of relativistic stars, as demonstrated, in
Refs. [43–48]. Within the framework of extended modified
gravity theories, anisotropic stars have also been considered
in [49–51].

In an attempt to generate exact solutions, the Minimal
Geometric Deformation (MGD) was initially proposed in
[52,53] to study the exterior geometry around spherically

symmetric spacetime with a perfect fluid source in the
framework of Randall–Sundrum brane-world gravity. Sub-
sequently this method was utilized by many researchers
to generate and analyze physically viable models of astro-
physical objects [54–58]. It was shown in [59,60] that
MGD-decoupling constitutes a novel approach to extend
the deformed solutions of the Einstein equations associated
with the simplest gravitational source. Indeed, by using this
approach, several solutions (exact and physically acceptable)
have been found for interior stellar distributions, which is a
difficult task due to the existence of nonlinear terms in the
matter fields, see Refs. [61–83]. Moreover, the inverse prob-
lem was addressed in [84] and the extended case, i.e., a com-
pletely deformed spacetime, was developed in [85]. Besides,
the MGD approach was discussed to study extensions of GR
in a cosmological context [86]. Furthermore, some interest-
ing works have been published in the context of black hole
solutions in 2+1 and 3+1 dimensions [87–92], what is more,
recently new hairy black hole solutions have been found in
[93] and also an algorithm has been developed to convert any
non-rotating black hole spacetime into a rotating one [94,95].
Motivated by the preceding discussion, our goal in this article
is to apply the MGD approach to solve the EGB field equa-
tions for a gravitational source, and then find a physically
acceptable solution that represents the behavior of compact
objects.

The article is organized as follows: The EGB gravity the-
ory is briefly presented in Sect. 2. Here, we also review
the main aspects related to the MGD-decoupling method.
In Sect. 3 we assume the well-behaved interior spacetime
geometry to guarantee a well defined horizon free space-
time. The main aim is to find the decoupling function f (r).
Subsequently, we discuss two different avenues in order to
close the system of equations that coming from the source
term. In Sect. 4 we match of the interior solution governed
by the anisotropic fluid to an exterior Boulware–Deser vac-
uum solution at a junction interface. In Sect. 5 we study
the physical properties of compact stars that obtained from
the MGD approach to gravitational decoupling in order to
build an exact anisotropic solution. We discuss the differ-
ence of the EGB gravity from EGB solution through the
MGD approach. In Sect. 6 we discuss the properties of the
energy conditions imposed on the energy–momentum tensor,
and in Sect. 7 we carry out the detailed analysis of the self-
gravitating anisotropic matter configurations and its relation
with the sound speeds. Finally, we conclude our findings in
Sect. 8. Some relevant computations have been presented in
Appendix. Here, we adopt the signature (−,+,+,+), and
set G = c = 1.
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2 Basic equations of EGB gravity

We start from the action of the 5-dimensional EGB gravity
with matter field reads:

IG = 1

16π

∫
d5x

√−g [R − 2� + αLGB] + Smatter

+ β

∫
Sθ

√−g d5x, (1)

where R and � are 5-dimensional Ricci scalar and the
cosmological constant, respectively. Since, Smatter is the
Lagrangian of the matter field with Sθ is the Lagrangian
for extra field. The coupling constant α associates with the
inverse string tension and is supposed to be a positive value
in string theory [10] with dimension of [length]2, while β has
no dimension. But for generality may authors have consid-
ered both cases of α > 0 and α < 0 (for a few other problems
with positive and negative α, see the subsequent discussions
in [96,97]). In this work we restrict ourselves to the case
of positive α, see Refs. [26,98] for the recent progress and
references therein. The Gauss–Bonnet Lagrangian LGB is
the specific combination of Ricci scalar, Ricci tensor, and
Riemann curvatures, and it is given by

LGB = Ri jkl Ri jkl − 4Ri j Ri j + R2. (2)

The equation of motion can be directly achieved from the
variation of the action (1) with respect to gi j ,

Gi j + αHi j = 8πTi j , where Ti j = T̂i j + β θi j , (3)

with

T̂i j= − 2√−g

δ
(√−gSm

)
δgi j

, and θi j= 2√−g

δ
(√−gSθ

)
δgi j

,

(4)

where Gi j is the Einstein tensor and Hi j is the contribution
of the GB term with the following expression

Gi j = Ri j − 1

2
R gi j ,

Hi j = 2
(
RRi j − 2Rik R

k
j − 2Ri jkl R

kl − RiklδR
klδ
j

)

− 1

2
gi j LGB, (5)

where Ri jkl is the Riemann tensor, Ri j is the Ricci tensor,
and R is the Ricci scalar, respectively. It is to be noted that
the GB term has no effect on the gravitational dynamics in
4D spacetime.

Here, we will investigate the compact stars by adopting
the static and spherically symmetric metric solution in 5-
dimensional spacetime

ds2
5 = −e2ν(r)dt2 + e2λ(r)dr2 + r2d
2

3 , (6)

where the metric potentials ν(r) and λ(r) are functions of
radial coordinate r . In the above metric the term d
2

3 is the
line element of a three-dimensional hypersurface with con-
stant scalar curvature 6k. Without loss of generality, k can
be set to k = 1, 0,−1 and correspond to a sphere, plane
and a hyperboloid, respectively. The spherically symmetric
static black hole solution for the EGB theory was first found
by Boulware and Deser [10] with k = 1. Later, generaliz-
ing the black hole solutions with nontrivial horizon topology
were studied in [99] with cosmological constant. In partic-
ular, those black holes are asymptotically anti-de Sitter and
their event horizon can be a positive, zero or negative con-
stant curvature hypersurface. Similar solution has been found
without any need for a cosmological constant term, see [100].
In this paper, we shall restrict to k = 1 that corresponds to the
spherically symmetric solution.

Here, we assume that the compact star is filled with
anisotropic fluid which is characterized by the stress–energy
tensor T̂i j , as

T̂i j = (
ρ̂ + p̂t

)
uiu j + p̂t gi j + ( p̂r − p̂t )χi χ j , (7)

where p̂r (r) and p̂t (r) are the radial and tangential pressures,
and ρ̂(r) is the energy density of matter, respectively. More-
over, u j is the contravariant 5-velocity while χ i = √

1/grr δi1
is the unit space-like vector in the radial direction, satisfying
χ iχi = −u ju j = 1. Then we define the effective stress–
energy tensor Ti j ,

Ti j = (ε + P⊥) u ju j + P⊥ gi j + (P − P⊥)χi χ j , (8)

where P = p̂r − β θ1
1 and P⊥ = p̂t − β θ2

2 describe the
radial and tangential pressures with ε = ρ̂+β θ0

0 is the energy
density for the effective stress-energy tensor. The presence of
the θ -term adds anisotropic effects on T̂i j . From the fact that
the Einstein tensor Gi j as well as the Gauss–Bonnet tensor
Hi j are divergence-free (see e.g. Refs. [3,4]), the effective
energy–momentum tensor in Eq. (3) tells us that Ti j is also
divergence-free, which yield

∇ i Ti j = 0. (9)

which yields an equation,

ν′(ε + P) + P ′ + 3

r
(P − P⊥) = 0, (10)
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The above equation is known as a general hydrostatic equa-
tion for 5D Einstein–Gauss–Bonnet gravity under the space-
time (6). Now, using the Eqs. (6), (8) with (3) one could obtain
the non-vanishing components of the gravitational field equa-
tions:

8πε=8π(ρ̂+β θ0
0 )= −3

e4λr3

(
4αλ′+re2λ−re4λ−r2e2λλ′

− 4αe2λλ′), (11)

8π P=8π( p̂r−β θ1
1 )= 3

e4λr3

( − re4λ+
(
r2ν′+r+4αν′) e2λ

− 4αν′), (12)

8π P⊥ = 8π( p̂t − β θ2
2 ) = 1

e4λr2

( − e4λ−4αν′′+12αν′λ′

− 4αν′2) + 1

e2λr2

(
1 − r2ν′λ′ + 2rν′ − 2rλ′ + r2 ν′ 2)

+ 1

e2λr2

(
r2ν′′ − 4αν′λ′ + 4α ν′2 + 4αν′′) . (13)

where prime denotes the differentiation with respect to r ,
only. The hydrostatic equilibrium condition can be obtained
from the Eq. (9) for an anisotropic fluid as,

ν′(ε+P)+P ′+3

r
(P−P⊥) = 0 �⇒ ν′(ρ̂+ p̂r )+ p̂′

r

+ 3

r
( p̂r − p̂t ) + β

[
ν′(θ0

0 − θ1
1 ) − (θ1

1 )′ − 3

r
(θ1

1 − θ2
2 )

]
= 0.

(14)

The addition of the source θi j can be encoded in the geo-
metric deformation in the metric functions given by

ν(r) −→ ξ(r) + β h(r), (15)

e−2λ(r) −→ μ(r) + β f (r), (16)

where h and f are the geometric deformations undergone
by the radial and temporal metric components and β is a
free parameter that controls the deformation. A schematic
diagram has been shown in Fig. 1, where the EGB solution
is forced to be a solution in the new gravitational sector by
the MGD approach. Note that for the case of β = 0, one may
automatically recover the domain of EGB.

Here, we deform the components of the metric minimally.
Then we need to set h(r) = 0 with f (r) �= 0, or h(r) �= 0
with f (r) = 0. Since the first case keeps the deformation in
the radial component only, which implies that the temporal
deformation is unchanged. In this situation, the anisotropy
in the system is introduced by the radial deformation (16)
through the anisotropic tensor θi j .

Under the transformation of (16), the field equations (11)–
(13) are separated in two sets. First we consider the standard
EGB field equations that correspond to the anisotropic case
when β = 0, and depending on the gravitational potentials

μ and ν the system reduces to

8πρ̂ = 1

2r3

[
12αμ′(μ − 1) − 3r(μ′r + 2μ − 2)

]
, (17)

8π p̂r = 1

r3

[
12αν′μ(1 − μ) + 3 r(ν′μr + μ − 1)

]
, (18)

8π p̂t = 1

2r2

[ − 8αμ(μ − 1)(ν′′ + ν′2) + 4αμ′ν′(1 − 3μ)

+ 2μ(ν′′r2 + ν′2r2 + 2ν′r + 1) + μ′ν′r2 + 2μ′r − 2
]
,

(19)

with the following assumption the conservation quantity (14)
reduce to

ν′ (ρ̂ + p̂r ) + p̂′
r + 3

r
( p̂r − p̂t ) = 0. (20)

Thus, the interior spacetime is given by

ds2
5 = − e2ν(r)dt2 + dr2

μ(r)
+ r2(dθ2 + sin2 θdφ2

+ sin2 θ sin2 φ dψ2). (21)

In next, we consider the second set of solution that contains
the source θi j , and depending on three unknown functions μ,
ν and f the field equations read

8πθ0
0 = 1

2r3

[
12α( f ′( fβ+μ−1)+μ′ f ) − 3 r( f ′r + 2 f )

]
,

(22)

8πθ1
1 = −3 f

r3

[
ν′ (−4 α fβ − 8 α μ + 4 α + r2) + r

]
, (23)

8πθ2
2 = − 1

2r2

[ − 4α {2ν′′ f ( fβ + 2μ − 1) + f ′ν′(3 fβ

+ 3μ − 1) + ν′ f (3μ′ + 2ν′( fβ + 2μ − 1))} + 2 f ′ r
+ f ′ν′ r2 + 2 f (ν′′r2 + ν′2r2 + 2ν′r + 1)

]
. (24)

The conservation equation ∇ i θi j = 0 explicitly read

−ν′(θ0
0 − θ1

1 ) + (θ1
1 )′ + 3

r
(θ1

1 − θ2
2 ) = 0. (25)

We therefore conclude that the two sources Ti j and θi j can
be successfully decoupled by means of the MGD. Under
these circumstances, one can see that a decoupling without
exchange of energy between the sources (see Ref. [60] for
more).

3 Minimally deformed solution in 5D
Einstein–Gauss–Bonnet gravity

Since we have two system of equations (17)–(19) and (22)–
(24), which are highly non-linear differential equations in ν
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and μ. It is also noted that solution of the second system
is dependent on the first system. Here, we will see that it
is possible to build an exact and physically acceptable solu-
tion by using the minimal geometric deformation (MGD)
approach [60] in 5D Einstein–Gauss–Bonnet gravity. Since
there is no such known solution, the first obvious question is
to ask what restrictions we should impose in order to close
the seed Eqs. (17)–(19). To set the stage, we should retain as
much of standard physics as possible for stellar structure. In
the spirit of following discussion by Lake [101], the gravita-
tional potential ν(r) is set by the requirement that ν(0) is a
finite constant, and it follows that ν′(0) = 0 and ν′′(0) > 0
guarantees the regularity at the stellar interior. The energy
density and the pressure gradients are everywhere positive
and finite inside the star. Moreover, the pressure components
are maximum at the center and decreasing monotonically
towards the boundary. These features are the most important
features characterizing a stellar model.

As discussed by Delgaty and Lake [102] more than 130
solutions, only few solutions could be classified as phys-
ically relevant satisfying the physical conditions. Among
them some well known models are Tolman IV [103], Durga-
pal [104] and Finch–Skea [105] which were utilized by many
authors to generate and analyze physically viable models of
compact astrophysical objects. In order to accomplish the
above, let us start by considering a newly proposed exact inte-
rior solution which is from now onwards known as Tolman–
Finch–Skea (TFS) metric ansatz,

ν(r) = 2 ln[B(1 + A r2)] and μ(r) = 1/(1 + C r2), (26)

where A and C are positive constants with dimension of
[Length]−2 and B is a constant without dimension. The above
form of metric potentials are chosen in a systematic manner
that fit for our purpose and decoupling function f (r) should
be trackable. Subsequently, based on metric potentials, the
solution of Eqs. (17)–(19) become

8π ρ̂ = 3C(2 + 4αC + 3Cr2 + C2r4)

(1 + Cr2)3 , (27)

8π p̂r = 3
[
C(1 + Cr2) + A(4 + 16αC + 3Cr2 − C2r4)

]
(1 + Ar2)(1 + Cr2)2 ,

(28)

8π p̂t = G(r) + A2r2[H(r) + 16αC(5 + 2Cr2)]
(1 + Ar2)2(1 + Cr2)3 , (29)

where G(r) = −C(3 + 4Cr2 + C2r4) + 2A(6 + 24αC +
7Cr2 − C3r6) and H(r) = 20 + 33Cr2 + 12C2r4 − C3r6.
Here we consider two different procedures, namely, mimic
approaches for solving the second system of Eqs. (22)–(24).
The aim is to find the decoupling function f (r).

Fig. 1 Schematic picture of a Minimal Geometric Deformation
(MGD) approach

3.1 Solution A: mimicking of the pressure constraint i.e.
p̂r = θ1

1

By mimicking of seed radial pressure p̂r from Eq. (18) with
its θ -component from Eq. (23), we get the quadratic equation
in decoupling function f (r) as,

− 12 α β ν′ f 2 + [12 α ν′ − 24 α ν′ μ + 3r + 3ν′ r2] f

+ [12 α ν′ μ − 12 α ν′ μ2 − 3r + 3μr + 3ν′ μr2] = 0.

(30)

After solving the above quadratic equation, we get the decou-
pling function f in terms of gravitational potential function
ν and μ,

f = −1

8 α ν′ β

[√
[α ν′(4 − 8μ) + r(1 + ν′r)]2 − f1

− (4 α ν′ − 8 α ν′ μ + r + ν′r2)
]
, (31)

where, f1 = 16 αν′β [4α ν′(μ − 1) μ − r(μ + ν′ μ r − 1)].
Now by plugging the gravitational potentials form Eq. (26)
into Eq. (31), we get f (r) as

f (r) = 1

32 α β A (1 + Cr2)2

(
1−16αA+5Ar2+2Cr2

+ 10ACr4 + C2r4+16αAC2r4+5AC2r6−√
ψ

)
,

(32)

where,

ψ = (1 + Cr2)2
(
[16αA(Cr2 − 1) + (1 + 5Ar2)(1 + Cr2)]2

−64 α β Ar2 [C(1+Cr2)+A(C2r4−3Cr2−16αC − 4)]
)
.

Now we have the expression for all known functions ν, μ

and f , then the expressions for θ components are determined
from Eqs. (22)–(24) as,

8πθ0
0 = −3

256 α β Aψ r2 (1 + Cr2)3

[
8192α3C(β − 1)(Cr2 − 1)

123
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× (A + ACr2)2 − (1 + Cr2)[3ψ2 − 2ψ(−1 + 15Ar2)

× (1 + Cr2)2 + 5(1 + Cr2)4(15A2r4 − 1 − 2Ar2)] + 256

× α2A[2C{2(β − 1)(1 + Cr2)2 + ψ(1 − β + Cr2

+ Cβr2)} + A(1 + Cr2)2{5 + Cr2 − 21C2r4 − 5C3r6

+ 2β(−4 − 5Cr2 + 6C2r4 + C3r6)}] + 32α(1 + Cr2)

× [
C(−1 + β)(ψ − (1 + Cr2)2) − A2(r + Cr3)2{3β(4

− 2Cr2 − C2r4) + 5(1 + 8Cr2 + 4C2r4)} − A
{
(1 + Cr2)2

× (5 + 3Cr2 + β(−4 − Cr2 + C2r4)) − ψ(1 + 8Cr2

+ 4C2r4 + β(−4 + 2Cr2 + C2r4))
}]]

, (33)

8πθ1
1 = 3

[
C(1 + Cr2) + A(4 + 16αC + 3Cr2 − C2r4)

]
(1 + Ar2)(1 + Cr2)2 , (34)

8πθ2
2 = − 1

64α β ψ A r2 (1 + Cr2)4(1 + Ar2)2

[
− ψ3(1 + 3Ar2)

+ 3Aψ2(1 + Ar2)(r + Cr3)2 + Ar2(1 + Ar2)(16αA − 1

+ 3Ar2)(1 + Cr2)3[−512α2AC(−1 + β)(−1 + Cr2)

+ 5(1 + 5Ar2)(1 + Cr2)3 − 16α(1 + Cr2){2C(β − 1)

+ A(2β(2Cr2 + C2r4 − 4) − 5(2Cr2 + C2r4 − 1))}]
+ ψ(1 + Cr2)

[
(1 + Cr2)3(1 + 15Ar2 + 27A2r4 + 45

× A3r6) + 256α2A2(1 − 3C(1 + 2β)r2 + 3C2(2β − 1)

× r4 + C3r6 + Ar2(3 − C(5 + 6β)r2 + C2(−5 + 6β)r4

+ 3C3r6)) + 32αA(1 + Cr2)
{
C(1 + 3β)r2 − 1 + C2r4

+ A2r4(11C2r4 − 8Cr2 − 16 + 3β(2Cr2 + C2r4 − 4))

+ Ar2(4C2r4 − 7Cr2 − 9 + 3β(3Cr2 + C2r4 − 4))
}]]

. (35)

Now we move on second approach to find the decoupling
function f (r) as follows:

3.2 Solution B: mimicking of the density constraint i.e.
ρ̂ = θ0

0

In this approach, we mimic the energy density ρ̂ for seed
solution with its θ component θ0

0 from Eqs. (18) and (23),
then we get a nonlinear differential equation in decoupling
function f (r) of the form,

(12αμ − 12α + 12α β f − 3r2) f ′ + (12α μ′ − 6 r) f

+ (12α μ′ − 12α μ′ μ − 6 r + 6μr + 3 μ′ r2) = 0. (36)

After inserting the ν and μ and integrating, we get

f (r) = 1

4αβ (1 + Cr2)

[
r2 + 4αCr2 + Cr4 −

√
�(r)

C

]
,

(37)

where,

�(r) = Cr4(1 + Cr2)2 + 8α(1 + Cr2) (β + β Cr2 + C2r4

+βC2r4) + 16α2C[C2r4 − β (1 + 2Cr2) + F β2

×(1 + Cr2)2].
and F is an arbitrary constant of integration which will be
determined by following way: as we know that for any real-
istic model, e−2λ(r) should be 1 at the centre. Since the
deformed gravitational potential e−2λ can be given as,

e−2λ(r) = μ(r) + α f (r) = 1

1 + Cr2 + α f (r). (38)

Then Eq. (38) ensures that the decoupling function must van-
ish at the centre i.e. f (0) = 0 in order to have e−2λ(0) = 1.
Now from Eq. (37), we get

f (0) = − 1√
2 α β

√
α β [1 + 2α C (Fβ − 1)]

C
= 0

�⇒ F = 2 α C − 1

2 α β C
. (39)

Then the final form of the decoupling function can be written
as,

f (r) = 1

4 α β (1 + Cr2)

[
r2 [(1 + 4 α C) + C r2

−
√

16 α2C2(1 + β) + 8 α C(1 + β)(1 + Cr2) + (1 + Cr2)2
]
, (40)

and then the expressions for θ -components under this decou-
pling function (40) are determined from Eqs. (22)–(24) as,

8πθ0
0 = 3C(2 + 4αC + 3Cr2 + C2r4)

(1 + Cr2)3 , (41)

8πθ1
1 = −1

4 α β (1 + Ar2)(1 + Cr2)2

[
3(1 + 4 α C + Cr2 − �1)

× (1 − 16 α A + Ar2 + Cr2 + ACr4 + 4Ar2 �1)
]

(42)

8πθ2
2 = −1

4α β �1 (1 + Cr2)3 (1 + Ar2)2

[
512α3AC2(1 + β )

× (1 + Ar2)(1 + Cr2) − (−1 + �1 − Cr2)(1 + Cr2)

× [4 A�2
1 r2(1 + 3Ar2) − �1(1 + Cr2)(−1 + 2 A r2

+ 3 A2 r4) + 2(1 + Cr2)2(−1 + 2 A r2 + 3 A2 r4)]
+ 4α(1 + Cr2)

[
C{�1(3 + Cr2) − 2(1 + β )(2 + 3Cr2

+ C2r4)} + 2A(2(�1)2(1 + Cr2) − �1(2 + Cr2)(3

+ C(5 + 6 β ) r2) + 2(1 + Cr2)(2 + 2C (3 + β ) r2

+ C2 (3 + β ) r4)) + A2 r2 (12 (�1)2(1 + C r2) + 2

× (1 + Cr2)(4 + 2C (7 + 3 β ) r2 + C2 (7 + 3 β ) r4)

− �1 (20 + C(37 + 24 β ) r2 + C2 (11 + 12 β ) r4))
]

+ 32α2C
[ − C(1 + β )(1 + Cr2) + 2A{−3�1(1

+ C(1 + β )r2) + (1 + β )(4 + 11Cr2 + 9C2r4

+ 2C3r6)} + A2r2{ − 2�1(5 + C(5 + 3 β )r2)

+ (1 + β )(8 + 23Cr2 + 19C2r4 + 4C3r6)
}]]

, (43)
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where, �1=
√

16α2C2(1+β)+8α C(1+β)(1+Cr2)+(1+Cr2)2

4 Exterior space-time and Junctions conditions

The final step to set up the system is defining the boundary
conditions for the sought solutions. In the present case, we
match the internal manifoldM− described by Eq. (26) to the
exterior Boulware–Deser space-time [10], with metric given
by

ds2
5 = −F(r)dt2 + dr2

F(r)
+ r2(dθ2 + sin2 θdφ2

+ sin2 θ sin2 φ dψ2), (44)

where M is associated with the total gravitational mass with

F(r) = 1 + r2

4α

(
1 −

√
1 + 16αM

r4

)
. (45)

It is easy to check that in the limitα → 0 the above expression
reduces to the 5D Schwarzschild solution. By matching the
line elements (26) and (51) across the boundary, one can
suitably fix the model parameters. The resulting manifolds
have boundaries given by the time-like hyper-surfaces

ds2

 = −dτ 2 + R2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φ dψ2),

(46)

with the intrinsic coordinates of 
 being ξ i = (τ, θ, φ, ψ)

in 
, and τ is the proper time on the boundary. Now, con-
sider the field equations projected on the shell 
 (generalized
Darmois–Israel formalism for Einstein–Gauss–Bonnet the-
ory) are (see Refs. [106,107] for more)

2〈Ki j − Khi j 〉 + 4α〈3Ji j − Jhi j + 2Pikl j K
kl〉 = −κ2Si j ,

(47)

where the 〈·〉 is the jump of a given quantity across the hyper-
surface 
. Here hi j = gi j − nini is the induced metric on 


with the divergence free part of the Riemann tensor is defined
by

Pi jkl = Ri jkl + (R jkhli − R jlhki ) − (Rikhl j − Rilhk j )

+ 1

2
R(hikhl j − hilhk j ), (48)

and J is the trace of

Ji j = 1

3

[
2KKik K

k
j + Kkl K

kl Ki j − 2Kik K
kl Kl j − K 2Ki j

]
. (49)

Therefore, in the present case the extrinsic curvature has the
form

K±
i j = −n±

μ

(
∂2Xμ

∂ξ i∂ξ j
+ �

μ
αβ

∂Xα

∂ξ i

∂Xβ

∂ξ j

)
r=R

, (50)

where ξ i are the intrinsic coordinates of the surface and
the sign ± depends on the signature of the junction hyper-
surface.

Furthermore, the interior stellar geometry under grav-
itational decoupling via minimal geometric deformation
approach can be given by the following line element in the
present study as,

ds2
5 = − e2ν(r)dt2 + dr2

μ(r) + f (r)
+ r2(dθ2 + sin2 θdφ2

+ sin2 θ sin2 φ dψ2), (51)

where μ(r) and ν(r) are the solution for the seed spacetime
given by Eq. (26), while the deformation functions f (r) for
the Solution A and Solution B corresponding to θ -sector is
given by Eqs. (37) and (40), respectively. Now we analyze
the junction at the outer and inner surfaces. The continuity
of the first fundamental form at the boundary implies that
g−
t t = g+

t t and g−
rr = g+

rr , (where the symbols − and + denote
the inner and outer spacetime) which yield

e2λ−|r=R = e2λ+|r=R and e2ν−|r=R = e2ν+|r=R, (52)

which gives

e−2λ(R) = μ(R) + β f (R) =
[

1 + R2

4α

(
1 −

√
1 + 16 αM

R4

)]
,

and e2ν(R) =
[

1 + R2

4 α

(
1 −

√
1 + 16 αM

R4

)]
, (53)

where μ(R) = [
1+ R2

4 α

(
1−

√
1 + 16 α MEGB

R4

)]
with MEGB =

mEGB(R) is the total mass of the compact object for the met-
ric (21) i.e., for the non-deformed space-time. Then, using
(53), we have

M = MEGB + 1

2
β f (R)

[
2αβ f (R) −

√
R4 + 16αMEGB

]
.

(54)

On the other hand, it is necessary that the extrinsic curvature
or second fundamental be continuous, leading to the condi-
tion

[
(Gi j + α Hi j ) r

j ]



= 0, (55)
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where r j is a unit radial vector. Now, depending on the above
criterion one may quantify the Eq. (3) as

[
Ti j r

j ]



= 0 (56)

which gives,

[
P

]



= 0 �⇒ [
p̂r − β θ1

1

]



= 0, (57)

where the surface 
 defined by r = R. This condition
determines the object size. This is so because, the pressure
decreases as we approach to the surface and the pressure at
the exterior of the star must be null, then this will correspond
to the star boundary. In other words, second fundamental
form says that the matter distribution is confined in a finite
space-time region, in consequence the star does not expand
indefinitely beyond 
. Thus, this matching condition takes
the final form

p̂r (R) − β (θ1
1 )−(R) = −β (θ1

1 )+(R), (58)

where (θ1
1 )−(R) and (θ1

1 )+(R) are the θ -components for inte-
rior and exterior space-times, respectively. The condition in
Eq. (58) is the general expression for the second fundamental
form associated with the equation of motion for EGB gravity
given in Eq. (3).

Now, using the expression for θ1
1 form (23) and plugged

into the Eq. (58), we obtain the second fundamental form as

p̂r (R) − β (θ1
1 )−(R) = −β (θ1

1 )+(R), (59)

p̂r (R) + 3 β fR
(
ν′
R(−4 α β fR − 8 α μR + 4α + R2) + R

)
8 π R3

= −β (θ1
1 )+(R), (60)

where the notations are fR = f (R), μR = μ(R), and ν′
R =

∂rν
∣∣
r=R , respectively. Furthermore, using the Eq. (23) for

the outer geometry in Eq. (60), which yield

p̂r (R) + 3 β fR
(
ν′
R(−4 α β fR − 8 α μR + 4α + R2) + R

)
8 π R3

= 3 β f ∗
R

8 π R3

⎡
⎢⎢⎣

R

(√
1 + 16 αM

R4 − 1

)

√
1 + 16 αM

R4

[
4 α + R2

(
1 −

√
1 + 16 αM

R4

)]

×
{

−4 α β f ∗
R − 8 α

[
1 + R2

4 α

(
1 −

√
1 + 16 αM

R4

)]

+ 4 α + R2

}
+ R

⎤
⎥⎥⎦ , (61)

where f ∗
R is the decoupling function for the outer space-time

at r = R (i.e. f ∗
R = f ∗(R)) due to the source θi j , which is

given by the Boulware–Deser exterior solution for 5D space-
time [10], as

ds2
5 = −

[
1 + r2

4 α

(
1 −

√
1 + 16 αM

r4

)]
dt2 +

[
1 + r2

4 α

×
(

1 −
√

1 + 16 αM

r4

)
+ β f ∗(r)

]−1

dr2

+ r2
(
dθ2 + sin2 θdφ2 + sin2 θ sin2 φ dψ2

)
. (62)

All the conditions mention above are the necessary and suf-
ficient conditions for matching the interior MGD metric (6)
to the exterior “vacuum” static and spherically symmetric
space-times given in (62). The matching condition (62) has
an important outcome: if the exterior geometry is given by
the exact Boulware–Deser metric, one must have f ∗

R = 0 in
Eq. (62). Then, one finds the condition

P(R) = p̂r (R) + 1

8 π R3

[
3 β fR

(
ν′
R(−4 α β fR − 8 α μR

+ 4α + R2) + R
)] = 0, (63)

P(R) = p̂r (R) − β θ1
1 (R) = 0. (64)

Therefore, the star will be in equilibrium in a true (Boulware–
Deser) vacuum only if the total (in general anisotropic radial)
pressure vanishes at the surface of the star. Using the bound-
ary conditions (53) and (64) we find the constants A, B and
total mass M . For clarity we provide a detail discussion about
the bounds of the constant parameters in the Appendix.

5 Analysis of the solution

In the following sections we will analyze the physical prop-
erties of compact stars obtained from the MGD approach to
gravitational decoupling in order to build an exact anisotropic
solution. For this purpose we plot Fig. 2 for both the EGB
theory and the minimally deformed one EGB+MGD theory.
In order to have a better insight regarding the properties of
these compact stars, we shall discuss first the EGB theory
and then the EGB+MGD theory, consecutively by taking the
values of Gauss–Bonnet constant α = 5 and 10 to see the
clear impact of MGD on the EGB stellar structure.

EGB: The total radial P and transverse P⊥ pressures are
depicted in the upper row of Fig. 2 (left and right panel),
where the green and red curves correspond to the EGB grav-
ity i.e., β = 0. The results reported in Fig. 2 are obtained for
two different values of α = 5 and 10, respectively. In this
setting we see that pressure in radial direction is decreasing
towards the boundary with increasing the radius and van-
ishes at the surface of the star (see top of the left panel).
Whereas the tangential pressure is behaving odd, i.e., mono-
tonically increasing with increasing radius. This situation is
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not expected for a well-behaved stellar interior. However, it
is found that, the total density ε (left lower panel in Fig. 2)
and anisotropy factor (see Fig. 3 – left panel) are behav-
ing as expected for a stellar configuration. This seems to
indicate that without gravitational decoupling is not a very
good starting point to study static and spherically symmetric
anisotropic fluid solutions in EGB gravity.

5.1 Analysis for solution A: mimicking of the pressure
constraint i.e. p̂r = θ1

1

EGB+MGD: This situation is more reliable when the gov-
erning equations include gravitational decoupling realized
via the MGD approach. Following the space-time (26), we
now build an interesting solution and highlight the following
points1:

1. By setting h(r) = 0 in the Eq. (15), the temporal metric
potential remains unaltered whilst the full modification
relies on the radial metric potential through the so-called
deformation or decoupler function f (r). Therefore, not
only the main thermodynamic quantities are affected, that
is, the density, the radial and tangential pressures, but
also the mass of the object. This is because, as usual
the radial metric potential is related with the mass of the
object. In concerning the thermodynamic observables,
when the seed solution is minimally deformed, the prob-
lem reported above for the increasing tangential pressure
is overcome. Indeed, by choosing the EGB coupling con-
stant to be α = 5 the limit value for the coupling con-
stant β is −0.5 to have a decreasing transverse pressure
(see right panel in Fig. 2). As can be observed, by keep-
ing the same value of α and decreasing β, the central
value of both P and P⊥ increases. On the other hand,
by fixing β and varying α the mentioned quantities again
increase their central values. Then one can conclude that
by increasing both α and β in magnitude, the radial and
tangential pressures take greater values at the core of the
compact object. It is worth mentioning that the signa-
ture of β is quite involved in maximum value taken by
the mentioned quantities at the center of the structure,
especially in considering the radial pressure. This is so
because, when the seed radial pressure p̂r is mimicking
its simile in the θ -sector ı.e., the component θ1

1 , the total
pressure in the radial direction becomes P = (1 − β) p̂r .
Thus, it is clear that when β < 0, the total pressure is
increasing with respect to the seed pressure, what is more
as the spherical symmetry entails P = P⊥ at r = 0, the

1 Figures 2 and 3 for solution A: [The used notations in the figures
are as follows: ptot

r = 8π P , ptot
t = 8π P⊥, ρtot = 8πε, and �tot =

8π(P⊥ − P)].

transverse pressure also takes greater value than the seed
transverse pressure.

2. As mentioned above, the density is also altered by the
additional gravitational source of the θ -sector. In gen-
eral the total density acquires the following form: ε =
ρ̂ + βθ0

0 , thus a denser stellar structure with respect to
the seed solution strongly depends on both the value and
signature of the constant β, and the behavior of the θ0

0
component. However, the behavior of θ0

0 is completely
determined by the trend of the decoupling function f (r),
the metric potential μ(r) and their first derivative (see
Eq. (22)). However, in the present situation ( p̂r = θ1

1 )
the deformation function f (r) has an interesting behav-
ior. This can be seen from the right panel of Fig. 3, when
the seed radial pressure is proportional to the radial com-
ponent of the θ -sector, the function f (r) vanishes at the
center r = 0 and the surface r = R of the star. Hence, in
contrast with the pressures, the density behaves in a dif-
ferent way. As any well behaved compact star, the density
ρ attains its maximum value at the core, however a higher
value is reached if both α and β decrease in magnitude.
For instance, when the pair {α;β} is equal to {5;−0.5}
(black curve in the lower left panel of Fig. 2), but by keep-
ing the same value of α and moving β the central density
decreases. Finally, in moving both parameters to greater
values (in magnitude) the model gets less value and so on.
Nevertheless, in doing that, towards the boundary of the
star the surface density increases. Thus one can conclude
that there is a mass displacement from the center to the
surface when the coupling parameters α and β increase
in magnitude.

3. As the deformation is done over the radial metric potential
only, being this information can be obtained by a direct
integration of the field equation involving the density of
the structure. For the EGB theory the general expression
is obtained from the Eq. (17) leading to

8 π

3

∫ R

0
r3ρ̂(r)dr ≡ MEGB(R) = 1

2

(
R2 [1 − μ(R)]

+ 2 α [1 − μ(R)]2
)
. (65)

The first term in the brace correspond to the usual expres-
sion for the 5D Einstein gravity theory while the term
proportional to α is the Gauss–Bonnet contribution. Now,
the incorporation of the term β f (r) in the radial metric
potential, modifies the mass of the object, its contribution
can be obtained from the Eq. (22) where

8 π

3

∫ R

0
r3 θ1

1 (r)dr ≡ MMGD(R) = 1

2

(
2 α [β f 2(R)

+ 2 f (R) (μ(R) − 1)] − R2 f (R)
)
. (66)
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Now, as f (0) = f (R) = 0 (see right panel in Fig. 2)
in the right hand side of (66) the first term does not con-
tribute to the total mass, what is more as f (r) < 0 for all
r ∈ [0, R] the second term in the right hand side of (66)
contributes in a positive way, that is, “by increasing” the
mass of the object. This is because the total mass M of
the object is the sum of (65) and (66). Interestingly, the
fact f (R) = 0 is an inherent feature of the mimic con-
straint p̂r = θ1

1 while f (0) = 0 is for the consistency of
the radial metric potential behavior. Indeed, as the radial
metric potential already meets μ(0) = 1 then it is neces-
sary to assure f (0) = 0 (see left panel of Fig. 2). To prove
that f (R) = 0 is a general statement2 by evaluating the
field equation (18) at r = R, one gets

ν′(R) = 3R [1 − μ(R)]

12αμ(R) [1 − μ(R)] + 3R2μ(R)
, (67)

where the fact p̂r (R) = 0 has been used. Next, evaluating
the expression (31) at the boundary and plugging (67) into
it, after some algebraic calculation it is straightforward
to show that f (R) = 0. In summary, as the decoupling
function f (r) is null at the core and the surface of the
object, actually the mass of the object is not changing only
is redistributed inside the structure. This fact is shown
by the behavior of the density profile where the object
becomes denser towards the surface as said before.

4. We now proceed to study the anisotropy factor � ≡
P⊥ − P , see Fig. 3. It is notable that the anisotropy fac-
tor is much higher for the seed solution compared to the
deformed solution. This is because the tangential pres-
sure is increasing in nature for the seed spacetime, which
was pointed out earlier but this is not of physical inter-
est. Thus, concentrating only on the minimally deformed
inner solution, the local anisotropy induced by the θ -
sector, we obtain � > 0 within the stellar interior, see
Fig. 3 (see left panel). It is clear that � increases in mag-
nitude towards the surface of the star when α and β take
less value, otherwise it decreases when increasing the
magnitude value of them. As the seed solution is purely
anisotropic, the effect coming from the θ -sector just pro-
duces a moderate version of anisotropies in the stellar
interior. This is because an increasing transverse pres-
sure (like in this case) could potentially generate insta-
bilities or a hydrostatic imbalance. In this concern, as it
is well-known, having anisotropies in the matter distri-
bution helps to form more compact, stable and balanced
structures. Furthermore the anisotropic gradient, induced
by the local anisotropies inside the matter distribution,
helps to counteract the gravitational gradient avoiding
the gravitational collapse.

2 This fact is independent of the theory.

5.2 Analysis for solution B: mimicking of the density
constraint i.e. ρ̂ = θ0

0

Here, we will focus our discussion for the mimic constraint
ρ̂ = θ0

0 model. Figures 4, 5 and 6 have been plotted for total
pressures, energy density, anisotropy factor and mass–radius
curves of the compact star model corresponding to different
values of α and β, respectively. It is instructive to see some
implications of our results as follows3:

EGB+MGD:

1. Observing the Fig. 4 (upper panels and lower left panel)
we see that the θ -sector is more involved compared to the
previous solution when the radial pressure constraint is
employed (see Fig. 2). For instance, in comparing the cen-
tral radial P and tangential P⊥ pressures for the solution
A and solution B, In the former solution A these quan-
tities take lesser values in comparison with the solution
B when the density constraint is employed (see Figs. 2
and 4). This is so because, the θ1

1 component is not playing
any role in the solution A, since the total radial pressure
is P = (1 −β) p̂r . Thus the central value depends on the
β magnitude and its signature. Furthermore, as P > 0
everywhere then β is bounded from above ı.e., β < 1.
However, for the present solution B the situation is not
same since the radial and tangential pressures are given
by P = p̂r − βθ1

1 and P⊥ = p̂t − βθ2
2 , respectively but

total density is of the form ε = (1 + β)ρ̂. Then the cou-
pling β acquires the following lower bound −1 < β due
to ε > 0. The modifications introduced by the component
θ1

1 of the extra source in the present case come from the
junction condition process, in which the constant param-
eter that characterizes the model takes different values
in contrast with the first solution (since the values of the
constant parameters obtained in the solution A are exactly
the same of the non-deformed solution). Interestingly by
increasing both α and β in magnitude the central pressure
increases (see upper panel in Fig. 4). Besides, the object
has a denser core (see left lower in Fig. 4).

2. In contrast with the first solution, here the total mass
inside the fluid sphere does not remain unaltered. Of
course, when the seed density ρ̂ is mimicking the tem-
poral component of the θ -sector ı.e., θ0

0 , then the total
gravitational mass is given by

M(R) = 8 π

3
(1 + β)

∫ R

0
ρ̂(r) r3dr, (68)

3 Figures 3 and 4 for solution B: [The used notations in the figures
are as follows: ptot

r = 8π P , ptot
t = 8π P⊥, ρtot = 8πε, and �tot =

8π(P⊥ − P)].
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Fig. 2 Top panels: the left panel shows the total radial pressure (ptot
r )

and the right panel shows the total tangential pressure (ptot
t ) with respect

to the radial coordinate r/R. Bottom panels: The left panel represents
the total energy density (ρtot) and the right panel shows the total radial

and tangential pressures with respect to r/R. We set the numerical val-
ues C = 0.000341 km−2 and MEGB

R = 0.2516 for plotting when α = 5

which leads to

M(R) =
(
1 + β

)
2

(
R2 [1 − μ(R)] + 2 α [1 − μ(R)]2

)
.

(69)

Essentially, the Eq. (69) tells us that the mass of the object
is proportional to the original one MEGB(R), where
the proportionality factor (1 + β) is carrying out the
MGD information. Therefore, the object becomes denser
when the deformation parameter β is positive, then the
previous lower bound imposed the density mimic con-
straint, instead of being −1 < β should be β > 0. In
such a framework, the deformation function f (r) is non-
vanishing at the boundary of the structure (see right panel
in Fig. 5). As expected by increasing the values of α and
β lead to a higher value of mass–radius relation as shown

in Fig. 6 (left panel). The consequence of this is the exis-
tence of a more compact object as demonstrated in the
right panel of Fig. 6.

3. From the above discussion, it is clear that the mimic con-
straint for the density, the θ -sector plays an important
role in the physical behavior of the compact object. The
anisotropic factor, �tot = 8π(P⊥ − P), is shown in the
left panel of Fig. 5. We have seen that this value is much
higher compare to our previous solution ı.e., solution A
(see left panel in Fig. 3).

It is now relevant to discuss some other astrophysical con-
sequences, given by the mimic constraint as discussed in
solutions A and B, which are required to be satisfied at every
point of a star. Here we start by talking about the so-called
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0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pto
t r

[k
m

-2
]

r/R

EGB (α =5 and β = 0)
EGB (α =10 and β = 0)
EGB+MGD (α =5 and β = 0.5)
EGB+MGD (α =5 and β = 0.8)
EGB+MGD (α =10 and β =0.8)

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pto
t t

[k
m

-2
]

r/R

EGB (α = 5 and β = 0)
EGB (α = 10 and β = 0)
EGB+MGD (α = 5 and β = 0.5)
EGB+MGD (α = 5 and β = 0.8)
EGB+MGD (α =10 and β =0.8)

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

0.0034

0.0036

0.0038

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρto
t [

km
-2

]

r/R

EGB (α =5 and β = 0)
EGB (α =10 and β = 0.5)
EGB+MGD (α =5 and β = 0.5)
EGB+MGD (α =5 and β = 0.8)
EGB+MGD (α =10 and β =0.8)

0.000000

0.000020

0.000040

0.000060

0.000080

0.000100

0.000120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
es

su
re

s[
km

-2
]

r/R

EGB+MDG ( =5 =0.5)- Black
EGB+MDG ( =5 =0.8)- Green

EGB+MDG ( =30 =1)- Red

Pr
tot(solid)

Pr
tot(dashed)

Fig. 4 Top panels: the left panel shows the total radial pressure (ptot
r )

and the right panel shows the total tangential pressure (ptot
t ) with respect

to the radial coordinate r/R. Bottom panels: The left panel represents

the total energy density (ρtot) and the right panel shows the total radial
and tangential pressures with respect to r/R. Here, we use the same set
of parameters as of Fig. 2

123



Eur. Phys. J. C (2021) 81 :848 Page 13 of 19 848

0.000000

0.000004

0.000008

0.000012

0.000016

0.000020

0.000024

0.000028

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Δto
t
[k

m
-2

]

r/R

EGB (α = 5 and β = 0)
EGB (α=10 and β=0)
EGB+MGD (α = 5 and β = 0.5)
EGB+MGD (α =5 and β = 0.8)
EGB+MGD (α =10 and β =0.8)

-0.045

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f

r/R

EGB+MGD (α =5 and β = 0.5)

EGB+MGD (α =5 and β = 0.8)

EGB+MGD (α =30 and β =1)

Fig. 5 The variation of total anisotropy [�tot = 8π(P⊥ − P)] and deformation function ( f (r)) versus radial coordinate r/R. Here, we use the
same set of parameters as of Fig. 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
 [k

m
]

r/R

EGB (α = 5 and β = 0)
EGB+MGD (α =10 and β = 0)
EGB+MGD (α = 5 and β = 0.5)
EGB+MGD (α = 5 and β = 0.8)
EGB+MGD (α =10 and β =0.8)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
/r

r/R

EGB (α = 5 and β = 0)
EGB+MGD (α =10 and β = 0)
EGB+MGD (α = 5 and β = 0.5)
EGB+MGD (α = 5 and β = 0.8)
EGB+MGD (α =10 and β =0.8)

Fig. 6 The variation of mass function m(r) and mass-radius ratio (m/r ) versus radial coordinate r/R

redshift function zs . We know that this quantity depends on
the mass–radius ratio of the compact configuration.

For the solution A, the mass of the object is not chang-
ing, then it is not possible to distinguish the surface redshift
zs between the seed solution (non-deformed solution) and
the minimally deformed solution. This is because the mass–
radius ratio M/R is the same for both scenarios, and con-
sequently the redshift function also (i.e. non-deformed and
deformed solution when we consider pressure mimic con-
straint). Considering the other solution B ı.e., ρ̂ = θ0

0 , the
surface redshift is not necessarily similar for non-deformed
and deformed structure of compact objects. To clarify these
situations in both solutions, we resort to the total gravitational
mass obtained from the junction condition process (54). Note
that the mass obtained from the matching between the inner
and exterior spacetime should be the same that the mass

obtained by a direct integration of the energy density (see
Eqs. (65)–(66) for solution A and Eq. (69) for solution B).
So, after enforcing the mentioned condition, we shall analyze
the astrophysical effects introduced by MGD on the com-
pact object employing the total gravitational mass (54). More
specifically, the expression (54) is treated as a sum of two
terms, one coming from the EGB sector and the other term is
the product of β f (R) introduced by the MGD scheme. So, by
imposing the condition p̂r = θ1

1 , the deformation function
f (r) is vanishing at r = R (see right panel of Fig. 3), then
the second part at the right hand side of (54) is determined
only by the EGB contribution. Then the compactness factor
u remains unaltered. Indeed

u = M

R2 = MEGB

R2 . (70)
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Thus zs remains unchanged too. Moreover, the correspond-
ing Buchdahl limit [108]

uEGB ≡ 2MEGB

R2 ≤ 3

4
+ 9

8R2 α ∀ α > − R2

3
, (71)

is not suffering from any modification. But in the solution B
i.e. by imposing ρ̂ = θ0

0 , it is clear from Fig. 5 (right panel)
that the deformation function f (r) is non-vanishing at the
surface of the structure, and the function is negative in all its
domain (except at r = 0). Thus the possibility of having a
more compact object necessarily implies the positiveness of
the second term in the right side of Eq. (54).

On the other hand, the case 0 < β should be investigated
carefully. Since for 0 < β, the product β f (R) is always
negative, and hence one needs to assure the square bracket in
Eq. (54) is also negative in order to produce more compact
objects. However, one can find another lower bound for the
coupling constant β, which is given by

−
√
R4 + 16αMEGB

2α| f (R)| < β. (72)

These results show that β < 0 is not special among the family
of compact stellar solutions if we want a more compact and
dense structure. In this case β > 0 is more acceptable to
study the stellar structure. Besides that it is not difficult to
see the term in the square bracket in Eq. (54) is negative.
In view of the above discussion for β > 0 and f (r) < 0
for all r ∈ [0, R], the total mass will increase and modify
the surface redshift, compactness factor and the Buchdahl
limit as well. From this perspective, the MGD approach for
solution B is more effective than the solution A in the strong
field regime.

Next, we will discuss an important source of information
is the measurement of surface redshift (z) of the compact star.
In the context of EGB gravity, Zhou et al. [109] have pointed
out that GB terms will modify the upper bound of redshift
of spectral lines from the surface of stars of uniform density.
Interestingly, this upper bound is dependent on the value of
density rather than a constant in GR counterpart, and thus
it is not possible to found an upper bound for the redshift
[108,109]. The surface redshift is given by

z =
√
e−2ν(r) − 1. (73)

From here we get some information about the central zc and
surface zs redshift. Following the discussion in [109], the
central redshift is given by

zc = B−2 − 1, (74)

and the surface redshift reads

zs = [
B (1 + AR2)

]−2 − 1. (75)

As we can see from Tables 1 and 2, the central redshift zc
dominates the surface redshift zs as expected. It is noted
that the obtained values for zs are consistent with the bound
proposed in the GR scenario [110].

6 Energy conditions

We begin this section with a discussion about energy con-
ditions that play an important role in standard GR and are
a basis of singularity theorems [111] and entropy bounds
[112]. These conditions reflect the microscopic properties of
the medium sourcing the energy momentum tensor. Since,
the Raychaudhuri equation holds for any geometrical theory
of gravitation [113], here we extend our analysis in 5D EGB
gravity to check the viability of our proposed model. Thus in
this context the energy conditions are just simple constraints
on various linear combinations of the energy density and
pressure. Now, using the modified gravitational field equa-
tions, we discuss four energy conditions which are

NEC : ρtot + ptot
r,t ≥ 0, (76)

WEC : ρtot ≥ 0, and ρtot + ptot
r,t ≥ 0, (77)

SEC : ρtot + ptot
r + 2ptot

t ≥ 0, (78)

DEC : ρtot − ptot
r ≥ 0, and ρtot − ptot

t ≥ 0. (79)

All the above considerations are related to standard mat-
ter, and here we will focus only on dominant energy con-
ditions (DEC) only. Because, one can easily verify that the
null energy condition (NEC), weak energy condition (WEC)
and strong energy condition (SEC) are always satisfied for the
model as ρtot ≥ 0, ρtot + ptot

r,t ≥ 0 and ρtot + ptot
r +2ptot

t ≥ 0,
which is evident from Figs. 2 and 4, respectively. Now, for
DEC, we consider graphical discussion rather than exhaus-
tively analytical calculations. Considering Figs. 7 and 8 and
the above conditions, we observe DEC is satisfied. So, our
model is suitable for consideration.

7 Sound speeds and Herrera’s cracking condition

In order for the causality to be preserved, it is natural to
require that the sound speed does not exceed the speed of
light, i.e. in our units

V2
r = dptot

r

dρtot < 1 and V2
t = dptot

t

dρtot < 1. (80)
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Table 1 Physical parameters of the MGD solution for 0.000341 km−2, with different coupling parameters α and β corresponding solution A

α and β M/R zc zs

α = 5 and β = 0 0.251685 0.034177 0.022492

α = 10 and β = 0 0.252095 0.034101 0.022492

α = 5 and β = −0.5 0.251685 0.034177 0.022492

α = 5 and β = −0.8 0.252095 0.0341011 0.022492

α = 10 and β = −0.8 0.252095 0.0341011 0.022492

Table 2 Physical parameters of the MGD solution for 0.000341 km−2, with different coupling parameters α and β corresponding solution B

α and β M/R zc zs

α = 5 and β = 0 0.251685 0.034177 0.022492

α = 10 and β = 0 0.252095 0.034101 0.022492

α = 5 and β = 0.5 0.378143 0.052426 0.034264

α = 5 and β = 0.8 0.453771 0.063782 0.041507

α = 10 and β = 0.8 0.455246 0.063347 0.041395
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Fig. 7 The variation of dominant energy conditions versus radial coordinate r/R for solution A

We now proceed to compute V 2
r,t for the stellar solution we

have considered so far. Next, by using the Eqs. (11)–(13)
we are able to fix the diagrams in Figs. 9 and 10 for both
solutions. In both examples shown in Figs. 9 and 10 we see
that the causality condition is violated for EGB gravity i.e.,
when α = 5, 10 and β = 0. This means that the surface
pressure decreases as the surface energy density increases,
which indicates instability of the configuration for EGB grav-
ity. Whereas in the same figures we see that the causality
condition is satisfied for inclusion of β, which means com-
pact stars obtained from the MGD approach to gravitational
decoupling satisfying the physically acceptable conditions.
As we can see from Figs. 9 and 10, one can observe that
the radial speed of sound (V 2

r ) is greater than the tangential
speed of sound (V 2

t ) throughout the star, and then the quantity

V 2
r −V 2

t will not show any change in sign within the compact
objects i.e. no cracking will appear inside the model. Then
the our gravitational decoupling model is stable [114,115].

8 Concluding remarks

Besides their astrophysical interest, compact stars are very
promising laboratories to test the viability of alternative the-
ories of gravity. Our main goal in this paper was to develop
a formalism for a comprehensive study of stellar structure in
Einstein–Gauss–Bonnet (EGB) gravity which is known to be
free of ghosts while expanding about the flat space. The key
issue of such a model is the minimal geometric deformation
(MGD) approach to gravitational decoupling in order to build
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Fig. 8 The variation of dominant energy conditions versus radial coordinate r/R for solution B
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Fig. 9 The variation of sound speed versus radial coordinate r/R for solution A

an exact anisotropic solution of the Tolman–Finch–Skea inte-
rior space-time. Applying the MGD-decoupling approach,
we successfully decoupled the gravitational source into two
sectors, namely: the anisotropic sector corresponding to an
anisotropic fluid Ti j and the additional source θi j that propor-
tional to the constant β. These two sectors must interact only
gravitationally without exchange of energy between them.

The next ingredient in our discussion was the junction
conditions at the stellar surface. The surface of the star is
defined by the vanishing of the pressure radial i.e., P(R) = 0.
In particular, the junction conditions are employed to join
two different spherically symmetric spaces, where an interior
compact object is matched to an exterior Boulware–Deser
vacuum space-time. In particular, the continuity of the sec-
ond fundamental form in Eq. (64) at the boundary implies
that the total radial pressure P(R) must be zero at bound-

ary. The total radial pressure P = p̂r − β θ1
1 contains both

the non-deformed matter source ı.e., pressure anisotropic and
the inner geometric deformation f (r) induced by the energy–
momentum θi j .

Interestingly, the mimic constraint strategy adopted here
to close the θ -sector after gravitational decoupling, entails
some intriguing astrophysical consequences. As extensively
discussed above, when the seed radial pressure p̂r is mimick-
ing (solution A) its simile in the decoupler sector ı.e., θ1

1 , the
mass of the fluid sphere remains the same. This is so because
the deformation function f (r) is vanishing at the boundary
of the structure (see right panel in Fig. 3). Then the effec-
tive mass of the fluid sphere is just the original one given by
the pure EGB theory. Furthermore, as P should be positive
everywhere inside the compact object, the coupling constant
β acquires an upper bound, namely β < 1. This implies
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Fig. 10 The variation of sound speed versus radial coordinate r/R for solution B

that the radial pressure will be greater in magnitude than
the seed radial pressure. Consequently, the anisotropic fac-
tor will increase in magnitude too. On the other hand, when
the seed density ρ̂ is equal to θ0

0 (solution B) the situation
becomes more interesting. In this case, as the total density
is proportional to the seed one by a factor of (1 + β), the
system becomes denser and more compact when β > −1.
However, the situation of physical interest is when β > 0.
Moreover, in this case the radial and transverse pressures
increase in magnitude, thus the local anisotropies within the
compact object exert a stronger anisotropy gradient helping
to counteract the gravitational attraction. From the astrophys-
ical point of view, it is evident that the solution B entails a
more exciting situation. As the mass is changing the red-
shift and compactness parameters also do (see Fig. 6). Then
one differentiates (hypothetically speaking) between a non-
minimally deformed and minimally deformed spacetimes.
Notwithstanding, in the solution A as the total mass remains
exactly the same (the stage before of introducing the MGD), it
is not possible to distinguish between the seed and deformed
solution.

As can be seen, the gravitational decoupling by means of
MGD approach, seems to be a good technique to introduce
new ingredients and understand easily some effects incorpo-
rated by an anisotropic stellar matter distribution. Besides,
the methodology is capable of “convert” non-well behaved
seed solutions into a well-behaved one after applying the
deformation process. Although it cannot be guaranteed that
this will happen in all cases, other models of stellar interiors
in high dimensions have already been reported [69] where
the seed spacetime is not well behaved and after applying
MGD the structure satisfies all the necessary requirements
that any astrophysical system should meet. Then gravita-
tional decoupling by minimal geometric deformation could
be seen as a regulator process in making the transition from

undeformed non-well behaved stellar interior to a minimally
deformed well-behaved one. Of course, the warrant of the
above argument deserves a more in-depth and detailed inves-
tigation. So, in summary one can conclude that the MGD
after gravitational decoupling, constitutes a simple and pow-
erful tool to deal with a complicated set of equations, leading
to an anisotropic compact object, respecting all the physical
and mathematical requirements in order to represent realistic
celestial bodies (at least from a theoretical point of view).
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Appendix: Bounds on the constants

This appendix is devoted to put bounds on the constant
parameters. Since for any physical acceptable models, the
pressures and density must be positive and pressure-density
ratio should be less than unity at each point in the stellar
interior i.e.

P(0) > 0, P⊥(0) > 0 and ε(0) > 0,

P(0)

ε(0)
≤ 1 and

P⊥(0)

ε(0)
≤ 1.

We now move each solutions step by step:
For solutionA: Putting r = 0 in Eqs. (write the 3 equations),
one finds

P(0) = P⊥(0) = 3(1 − β)[4A(1 + 4 α C) − C]
8 π

> 0

�⇒ 0 < C <
4A

1 − 16 α A
, (81)

ε(0) = 6C(1 + 2αC)

8π
+ 1

8π(1 − 16αA)2

[
6{4A(1 + 4 α C) − C}

× {1 + 2α (4A − C)(β − 2) + 32α2 AC (β − 2)}β]
> 0

�⇒ C ≥ −4 β A

1 − 16 αA − β + 16 α β A
, (82)

P(0)

ε(0)
= P⊥(0)

ε(0)
= (1 − β) (1 − 16αA)2 [4A(1 + 4αC)

− C]/[2C (16 α A − 1)(1 + 16 α A(β − 1))(β − 1) + 2 α (1

− 16αA)2 C2 (β − 1)2 + 4A(1 + 8αA(β − 2)) β] ≤ 1,

�⇒ C ≥ (−3 + 64 α A − 256 α2 A2 − 32 α β A)

8 α (1 − β) (1 − 16 α A)

+ 1

8

√
(9 − 32 α A + 256 α2 A2)

α2 (1 − β)2 . (83)

Now, using the inequalities (81)–(83), we obtain

(−3 + 64 α A − 256 α2 A2 − 32 α β A)

8 α (1 − β) (1 − 16 α A)

+ 1

8

√
(9 − 32 α A + 256 α2 A2)

α2 (1 − β)2 ≤ C <
4A

1 − 16 α A
.

(84)

For solution B: Again putting r = 0 in Eqs. (write the 3
equations), we get

ε(0) = 6 (1 + β)C (1 + 2α C)

8 π
> 0 �⇒ C >

−1

2 α
, (85)

P(0) = P⊥(0) = 12A (1 + 4αC) − 3C

8π
+ 1

32 α π

[
3(1 − 16 α A)

× (1 + 4 α C −
√

1 + 8αC(1 + β) + 16α2C2(1 + β))
]

> 0,

�⇒ C <
−1

4 α
+ 1

4

√
(1 + β − 32αβA + 256α2βA2)

α2 (−1 + 16 α A)2(1 + β)
, (86)

P(0)

ε(0)
= P⊥(0)

ε(0)
≤ 1 �⇒ − C(1 + 2α C)(1 + β)[−3

+ (1 + β) (8 α C + 16 α2C2)] − 4A [1 + (1 + β)

× (8α C + 16α2C2)] + 32 α A2 [1 + (1 + β)(8 α C

+ 16α2C2)] > 0,

�⇒ C ≥
[ − 2 α (1 + β) + √

2
√

α2(1 + β)(5 + F1)
]

8α2(1 + β)
, (87)

where,

F1 = 256α2A2 −
√

9 − 32αA + 256α2A2 + 16αA

× (−2 +
√

9 − 32αA + 256α2A2) + 2β.

From the inequalities (85)–(87), which yield[ − 2 α (1 + β) + √
2
√

α2(1 + β)(5 + F1)
]

8α2(1 + β)
≤C< − 1

4 α

+ 1

4

√
(1 + β − 32αβA + 256α2βA2)

α2 (−1 + 16 α A)2(1 + β)
. (88)

The above inequalities (84) and (88) shows the lower and
upper bound for free constant C . From these constraints, we
can restrict value of positive constant C .
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