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Abstract In this paper, we studied the evolutions of the
innermost stable circular orbits (ISCOs) in dynamical space-
times. At first, we reviewed the method to obtain the ISCO
in Schwarzschild spacetime by varying its conserved orbital
angular momentum. Then, we demonstrated this method
is equivalent to the effective potential method in general
static and stationary spacetimes. Unlike the effective poten-
tial method, which depends on the presence of the conserved
orbital energy, this method requires the existence of con-
served orbital angular momentum in spacetime. So it can be
easily generalized to the dynamical spacetimes where there
exists conserved orbital angular momentum. From this gen-
eralization, we studied the evolutions of the ISCOs in Vaidya
spacetime, Vaidya-AdS spacetime and the slow rotation limit
of Kerr–Vaidya spacetime. The results given by these exam-
ples are all reasonable and can be compared with the evolu-
tions of the photon spheres in dynamical spacetimes.

1 Introduction

Accretion disks are ubiquitous in astronomy, and there are
usually accretion phenomena around black holes. Through
the study of accretion disks, one can obtain a lot of informa-
tion about black holes. In 2019, the Event Horizon Telescope
took the first image of a black hole at the center of the M87
galaxy [1]. In the image, one can see a shadow region which
is called the black hole shadow, and the black hole lies in
the shadow. One can also see a ring-like structure that corre-
sponds to the accretion disk, and the ISCO plays a vital role
in analyzing this image [2,3].

Up to date, there are many studies based on the effective
potential to study ISCO in spacetime. On the one hand, ISCO
has many important properties. For example, it is the inner
edge of an accretion disk [4], it is the boundary between the
stable orbits and the unstable orbits [5,6], and the accretion
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flow changes dramatically across the ISCO in a thin disk [7–
10]. On the other hand, ISCO has many applications. Such as,
for a rotating black hole, the radius of ISCO is a key fit param-
eter to measure the spin of the black hole [11,12], and there
are many other studies about the ISCOs in Kerr-like space-
times [13–23]. In the modified gravitational theories, ISCOs
may also exist [24]. Also, ISCO may have some applications
in AdS/CFT. In recent years, some studies suggest that ISCO
should describe field theory long-lived excitations that do not
thermalize like typical excitations [25].

Through the effective potential method, one can efficiently
study the ISCOs in static and stationary spacetimes. But,
this method is not suitable for dynamical spacetimes because
the effective potential cannot be defined in dynamical space-
times.

However, many studies involve dynamical spacetimes.
Such as the formation of a black hole [26–29], the specific
angular momentum of ISCO is vital to the formation of the
disk around the black hole. Because ISCO is the edge of the
accretion disk, knowing the evolution of ISCO helps simu-
late the formation of the disk. To get the evolution equations
of the ISCOs in dynamical spacetimes, we ask the following
question: Is there a method equivalent to the effective poten-
tial method in static and stationary spacetimes and can be
easily generalized to the dynamical spacetimes?

In this paper, we reviewed the method to obtain the ISCO
in Schwarzschild spacetime by varying its conserved orbital
angular momentum. We then demonstrated this method is
equivalent to the effective potential method in general static
and stationary spacetimes. To illustrate this equivalence fur-
ther, We studied the ISCOs in general static spherically
symmetric spacetimes and Kerr spacetime. The results of
ISCOs in these spacetimes are all consistent with the previous
results. We then generalized this method into the dynamical
spacetimes where there exists the conserved orbital angu-
lar momentum. From the generalization, we studied the
ISCOs in Vaidya spacetime, Vaidya-AdS spacetime and the
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slow rotation limit of Kerr–Vaidya spacetime. The results
given by these examples are reasonable and can be com-
pared with the evolutions of the photon spheres in dynami-
cal spacetimes [30]. So, we believe that this generalization
is reliable. This method only requires the conserved orbital
angular momentum in spacetime, so it may have a more
widespread application than the effective potential method
which depends on the conserved orbital energy in spacetime.
As long as there is conserved orbital angular momentum in
spacetime, ISCO can be obtained by using this method.

This paper is organized as follows: In Sect. 2, we will study
the ISCO in Schwarzschild spacetime and obtain two impor-
tant properties of ISCO. In Sect. 3, We will demonstrate that
there is a method equivalent to the effective potential method
to study ISCOs in static and stationary spacetimes and use
some examples to verify this equivalence. In Sect. 4, We
will generalize this method to dynamical spacetimes and use
some examples to illustrate the reliability of this generaliza-
tion. Section 5 is devoted to the conclusion and discussion.

Convention of this paper: We choose the system of
geometrized unit, i.e., set G = c = 1. Also, we set the mass
of the free point particle m = 1 and use M to denote the
mass of a black hole. The abstract index formalism has been
used to clarify some formulas or calculations [31]. A quan-
tity with a lower script “o” represents the quantity associated
with a circular orbit and a lower script “isco” represents the
quantity associated with an ISCO.

2 ISCO in Schwarzschild spacetime

In this section, we will review the two methods to get
the ISCO in Schwarzschild spacetime. From the second
method, we will obtain two crucial properties of ISCO in
Schwarzschild spacetime, and these two properties are essen-
tial to generalize the second method to dynamical spacetimes.

The metric in {t, r, θ, φ} coordinates of the 4-dimensional
Schwarzschild spacetime can be written as

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2
(
dθ2 + sin2 θdφ2

)
. (2.1)

At first, we review the method to find the ISCO by using the
effective potential method. In Schwarzschild spacetime, the
spherical symmetry allows us to choose the equatorial plane,
i.e., θ = π

2 . For a timelike geodesic, the effective potential
in the equatorial plane can be defined as [31]

Vl(r) = 1

2
− M

r
+ l2

2r2 − Ml2

r3 , (2.2)

where l is the conserved orbital angular momentum. For a
circular orbit, one have V ′

lo
(ro) ≡ ∂Vl(r)/∂r |ro,lo = 0. Then,

we get the following equation

V ′
lo (ro) = M

r2
o

− l2o
r3
o

+ 3
Ml2o
r4
o

= 0. (2.3)

Solving the above equation, we get the orbital angular
momentum of a circular orbit as follows

lo =
√

Mr2
o

ro − 3M
. (2.4)

To get the ISCO, one can require that V ′′
lisco

(risco) = 0 [25],
i.e.,

V ′′
lisco (risco) = −2

M

r3
isco

+ 3
l2isco
r4
isco

− 12Ml2isco
r5
isco

= M (risco − 6M)

(risco − 3M) r2
isco

= 0,

(2.5)

where we have restricted Eq. (2.4) in an ISCO. Then we can
get the location and the orbital angular momentum of the
ISCO in Schwarzschild spacetime as

risco = 6M, lisco = 3
√

2M. (2.6)

Below, we will use the second method by analyzing the
geodesic equations and varying the conserved orbital angu-
lar momentum of the spacetime to obtain the above results.
Consider a timelike geodesic in the equatorial plane, its nor-
malized 4-velocity can be expressed as

ua = dxμ(τ)

dτ

(
∂

∂xμ

)a

= dt (τ )

dτ

(
∂

∂t

)a

+dr(τ )

dτ

(
∂

∂r

)a

+ dφ(τ)

dτ

(
∂

∂φ

)a

, (2.7)

where τ is its proper time. From the normalized condition of
the 4-velocity, i.e., uaua = −1, we have

−
(

1 − 2M

r

) (
dt

dτ

)2

+
(

1 − 2M

r

)−1 (
dr

dτ

)2

+ r2
(
dφ

dτ

)2

= −1. (2.8)

The geodesic equation relates to the r coordinate of Eq. (2.1)
can be expressed as

d2r

dτ 2 + M(r − 2M)

r3

(
dt

dτ

)2

− M

r(r − 2M)

(
dr

dτ

)2

− (r − 2M)

(
dφ

dτ

)2

= 0. (2.9)

Considering the trajectory of the timelike geodesic is circular,
we can set r = ro = constant, i.e., dro/dτ = 0, d2ro/dτ 2 =
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0. Then Eqs. (2.8) and (2.9) can be simplified to

−
(

1 − 2M

ro

) (
dt

dτ

)2

+ r2
o

(
dφ

dτ

)2

= −1, (2.10)

M

r3
o

(
dt

dτ

)2

−
(
dφ

dτ

)2

= 0. (2.11)

Combining the above two equations, we get the following
results(

dt

dτ

)2

= ro
ro − 3M

, (2.12)

(
dφ

dτ

)2

= M

r2
o (ro − 3M)

. (2.13)

Notice that the conserved orbital angular momentum of a
circular orbit in Schwarzschild spacetime can be defined as

lo ≡
(
r2
o
dφ

dτ

)
=

√
Mr2

o

ro − 3M
. (2.14)

Using the well-known result that ISCO has a minimal angu-
lar momentum among all circular orbits in Schwarzschild
spacetime [32], i.e., it satisfies

δlo
δro

= 0. (2.15)

Then, combining Eqs. (2.14) and (2.15), we get the equation
of the ISCO as follows

−
√
M (risco − 6M)

2 (risco − 3M)3/2 = 0. (2.16)

From Eqs. (2.14) and (2.16), we obtain the location and
the conserved orbital angular momentum of the ISCO in
Schwarzschild spacetime as

risco = 6M, lisco = 3
√

2M, (2.17)

which are consistent with the previous results. From the
above analysis, we get two critical properties of the ISCO
in Schwarzschild spacetime:

1. For a general circular orbit, it does not evolve in time,
i.e.,

dro/dτ = d2ro/dτ 2 = 0. (2.18)

2. For a family of circular orbits, ISCO has a minimal orbital
angular momentum, i.e.,

δlo/δro = δl2o/δro = 0, (2.19)

where lo should be regarded as a function of ro.1

1 For a circular orbit, lo �= 0. Sometimes, it is more convenient to use the
expression of l2o to get the equation of ISCO. If the solution of Eq. (2.19)

From the above analysis, we realize that these two meth-
ods may have some connection. In the next section, we
will demonstrate that these two methods actually equivalent
under certain conditions. We will then generalize the second
method to study the evolutions of the ISCOs in dynamical
spacetimes.

3 ISCOs in static and stationary spacetimes

In the general static and stationary spacetimes, Eq. (2.18) is
obviously valid. Below we will demonstrate that Eq. (2.19)
is also valid in some conditions.

In the general static and stationary spacetimes, suppose
one can define the effective potential as Vl(r), where l is the
conserved orbital angular momentum. Consider a free point
particle, and for a given circular orbit, one always has the
following relation

V ′
lo(ro) = 0, (3.1)

and for this circular orbit, lo is a constant. Considering a
family of circular orbits and varying Eq. (3.1), one can get
the following equation,

0 = δV ′
lo

(ro)

δro
= V ′′

lo (ro) + ∂V ′
lo

(ro)

∂lo

δlo
δro

. (3.2)

Here, lo should regard as a function of ro. Then, one have the
following relation

V ′′
lo (ro) = −∂V ′

lo
(ro)

∂lo

δlo
δro

, (3.3)

where we have assumed that ∂V ′
lo
(ro)/∂lo

∣∣∣
risco,lisco

�= 0. In

general, this assumption can be satisfied. So, for an ISCO,
the condition V ′′

lisco
(risco) = 0 is equivalent to δlo/δro = 0,2

Footenote 1 continued
is single-valued, it is an ISCO. If the solution of Eq. (2.19) is double-
valued, such as Schwarzschild-dS spacetime, Kerr-dS spacetime and so
on [21,23,33,34], the one with δ2lo/δr2

o > 0 is ISCO, and the one with
δ2lo/δr2

o < 0 is OSCO (outermost stable circular orbit) [35,36], and one
can easily check that this is correct in Schwarzschild-dS spacetime [33].
On the other hand, the ISCO also has minimal orbital energy among the
circular orbits, and it is a standard way to identify the location of the
ISCO by finding the minimum of the orbital energy [18,37–39].
2 Similar arguments have been made in [36]. On the other hand, it
is equivalent to identifying the ISCO by finding the minimum of the
orbital energy and finding the minimum of the orbital angular momen-
tum in static or stationary spacetime [40]. Suppose there exist conserved
orbital angular momentum and conserved orbital energy in the static or
stationary spacetime. Considering a free point particle, for a circular
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and the stable circular orbits should satisfy the condition that
δlo/δro ≥ 0 [41].

Below, we will study the ISCOs in general static spheri-
cally symmetric spacetimes and Kerr spacetime to illustrate
this equivalence, and one can easily check that Eq. (3.3) holds
in Schwarzschild spacetime.

3.1 ISCOs in general static spherically symmetric
spacetimes

The metric of the (d+1)-dimensional static spherically sym-
metric spacetimes in general can be written as

ds2 = − f (r)dt2 + g(r)dr2 + r2d�2
d−1, (3.6)

where d�2
d−1 is the line element of the unit Sd−1. Similarly,

considering a timelike geodesic on the equatorial plane, and
from the normalized condition of the 4-velocity, we have

− f

(
dt

dτ

)2

+ g

(
dr

dτ

)2

+ r2
(
dφ

dτ

)2

= −1. (3.7)

The geodesic equation relates to the r coordinate of
Eq. (3.6) can be written as follows

d2r

dτ 2 + f ′

2g

(
dt

dτ

)2

+ g′

2g

(
dr

dτ

)2

− r

g

(
dφ

dτ

)2

= 0. (3.8)

where a prime denotes a derivative with respect to areal radius
r . Considering Eq. (2.18), then Eqs. (3.7) and (3.8) become
to

− f (ro)

(
dt

dτ

)2

+ r2
o

(
dφ

dτ

)2

= −1, (3.9)

f ′ (ro)
2g (ro)

(
dt

dτ

)2

− ro
g (ro)

(
dφ

dτ

)2

= 0. (3.10)

Footenote 2 continued
orbit, one can always define

eo ≡ Vlo (ro) . (3.4)

where eo is the orbital energy of the circular orbit. For a family of
circular orbits, we consider the variation of Eq. (3.4), i.e.,

δeo
δro

= ∂Vlo (ro)

∂ro
+ ∂Vlo (ro)

∂lo

δlo
δro

. (3.5)

Notice that ∂Vlo (ro)/∂ro = 0 for a circular orbit, and ∂Vlo (ro)/∂lo �= 0
in general, so the equation δeo/δro = 0 is equivalent to δlo/δro = 0.

Combining the above two equations, we get the following
equations

(
dt

dτ

)2

= 2

2 f (ro) − ro f ′ (ro)
, (3.11)

(
dφ

dτ

)2

= f ′ (ro)
2ro f (ro) − r2

o f ′ (ro)
. (3.12)

The conserved orbital angular momentum in a circular
orbit of the general static spherically symmetric spacetimes
can be defined as

lo ≡ r2
o
dφ

dτ
=

√
r3
o f ′ (ro)

2 f (ro) − f ′ (ro) ro
, (3.13)

and from Eq. (2.19), i.e.,

δlo
δro

= 0, (3.14)

we get the equation of the location of the ISCO as follows

2
√
risco

[
risco f (risco) f ′′ (risco) + 3 f (risco) f ′ (risco) − 2risco f ′2 (risco)

]
f ′ (ro) [2 f (risco) − risoc f ′ (risco)]3/2 = 0, (3.15)

and the nontrivial part of the above equation is consistent
with the nontrivial part of [5].

Let us check whether the above result and the result given
by the effective potential method satisfy Eq. (3.3). The effec-
tive potential in our case should be defined as

Vl(r) = f (r)

(
1 + l2

r2

)
. (3.16)

For a circular orbit

V ′
lo (ro) = f ′ (ro)

(
1 + l2o

r2
o

)
− 2 f (ro)

l2o
r3
o
, (3.17)

and we can get

V ′′
lisco (risco) = 2risco f (risco) f ′′ (risco) + 6 f (risco) f ′ (risco) − 4risco f ′2 (risco)

2risco f (risco) − r2
isoc f

′ (risco)
. (3.18)

Then, one can easily check that the difference of Eqs. (3.15)
and (3.18) is exactly −∂V ′

lo
(ro)/∂lo.

As an example, we consider the (d + 1)-dimensional
Schwarzschild-AdS spacetime. The metric of the (d + 1)-
dimensional SAdS in global coordinate can be expressed as

ds2 = −
(

1 + r2

L2 − 2M

rd−2

)
dt2

+
(

1 + r2

L2 − 2M

rd−2

)−1

dr2 + r2d�2
d−1, (3.19)
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where L is the AdS radius. From Eq. (3.13), we get the con-
served orbital angular momentum in SAdS spacetime as

l2o = r4
o

L2

rdo + (d − 2)ML2

rdo − dMr2
o

. (3.20)

In order to get the ISCO and for simplification, we use the
following condition

δl2o
δro

= 0. (3.21)

From Eq. (3.21), we get the equation of ISCO as

−2(d − 2)dL2M2r5
isco + 4r3+2d

isco − Mr3+d
isco

[
(d − 4)(d − 2)L2 + d(d + 2)r2

isco

]
L2

(
dMr2

isco − rdisco
)2 = 0, (3.22)

and the nontrivial part is consistent with the eq. (21) in [25]
after aligned the equation of l2.

3.2 ISCO in Kerr spacetime

Because of the complexity of the calculations in general sta-
tionary spacetimes, in this subsection, we will use Kerr space-
time as an example to illustrate the validity of the equivalence
in stationary spacetimes.

The metric of 4-dimensional Kerr spacetime in Boyer–
Lindquist coordinates can be written as

ds2 = −(1 − 2Mr/	)dt2 − (4Mar sin2 θ/	)dtdφ

+(	/
)dr2 + 	dθ2

+
(
r2 + a2 + 2Ma2r sin2 θ/	

)
sin2 θdφ2, (3.23)

where a is the angular momentum per unit mass of the black
hole (0 ≤ a ≤ M), and the functions 
,	 are defined as


 ≡ r2 − 2Mr + a2, (3.24)

	 ≡ r2 + a2 cos2 θ. (3.25)

At first, we consider the situation on the equatorial plane, and
Eq. (3.23) can be simplified as

ds2 = −
(

1 − 2M

r

)
dt2

−4Ma

r
dtdφ + r2

r2 − 2Mr + a2 dr
2

+
(
r2 + a2 + 2Ma2

r

)
dφ2. (3.26)

The condition of the normalization 4-velocity can be
expressed as

−
(

1 − 2M

r

) (
dt

dτ

)2

− 4Ma

r

dt

dτ

dφ

dτ

+ r2

r2 − 2Mr + a2

(
dr

dτ

)2

+
(
r2 + a2 + 2Ma2

r

) (
dφ

dτ

)2

= −1. (3.27)

The Lagrangian of a particle motion can be written as

L = −1

2

(
1 − 2M

r

)(
dt

dτ

)2

− 2Ma

r

dt

dτ

dφ

dτ

+1

2

r2

r2 − 2Mr + a2

(
dr

dτ

)2

+1

2

(
r2 + a2 + 2Ma2

r

) (
dφ

dτ

)2

. (3.28)

From the Euler–Lagrange equation

d

dτ

(
∂L

∂ (dxμ/dτ)

)
= ∂L

∂xμ
, (3.29)

we get the equation of motion in r direction as

r2

r2 − 2Mr + a2

d2r

dτ 2 + r
(
r2 − 2Mr + a2

) − r2(r − M)(
r2 − 2Mr + a2

)2

×
(
dr

dτ

)2

= −M

r2

(
dt

dτ

)2

+ 2Ma

r2

dt

dτ

dφ

dτ
+

(
r − Ma2

r2

)(
dφ

dτ

)2

.

(3.30)

Considering Eq. (2.18), then Eqs. (3.27) and (3.30) can be
simplified as

−
(

1 − 2M

ro

) (
dt

dτ

)2

− 4Ma

ro

dt

dτ

dφ

dτ

+
(
r2
o + a2 + 2Ma2

ro

) (
dφ

dτ

)2

= −1, (3.31)

−M

r2
o

(
dt

dτ

)2

+ 2Ma

r2
o

dt

dτ

dφ

dτ
+

(
ro − Ma2

r2
o

)

×
(
dφ

dτ

)2

= 0. (3.32)

Solving the above equations, we get

dt

dτ
= ± r3/2

o − aM1/2

[
−2aM1/2r3/2

o + r2
o (ro − 3M)

]1/2 , (3.33)

dφ

dτ
= ∓ M1/2

[
−2aM1/2r3/2

o + r2
o (ro − 3M)

]1/2 , (3.34)
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or

dt

dτ
= ± r3/2

o + aM1/2

[
−2aM1/2r3/2

o + r2
o (ro − 3M)

]1/2 , (3.35)

dφ

dτ
= ± M1/2

[
2aM1/2r3/2

o + r2
o (ro − 3M)

]1/2 . (3.36)

The conserved orbital angular momentum in Kerr spacetime
on the equatorial plane can be defined as

lo ≡ pφ = ∂L
∂(dφ/dτ)

= −2Ma

ro

(
dt

dτ

)
+

(
r2
o + a2 + 2Ma2

ro

) (
dφ

dτ

)

=
±M1/2

(
r2
o ∓ 2aM1/2r1/2

o + a2
)

r3/4
o

(
r3/2
o − 3Mr1/2

o ± 2aM1/2
)1/2 . (3.37)

From Eq. (2.19), i.e.,

δlo
δro

= 0, (3.38)

we get the position of the ISCO as

risco = 3M +
√
a2 + 3M2 + A

±
√√√√2

(
a2 + 3M2

) − A + 16a2M(
a2 + 3M2 + A

)1/2

(3.39)

where

A = (M + a)2/3(M − a)1/3(3M − a)

+(M − a)2/3(a + M)1/3(a + 3M), (3.40)

where “−” corresponds to the “direct” and “+” corresponds
to the “retrograde”. This result is the same as

rms = M{3 + Z2 ∓ [(3 − Z1) (3 + Z1 + 2Z2)]1/2}, (3.41)

Z1 ≡ 1 +
(

1 − a2/M2
)1/3 [

(1 + a/M)1/3 + (1 − a/M)1/3
]
,

(3.42)

Z2 ≡
(

3a2/M2 + Z2
1

)1/2
, (3.43)

in [44] after some calculations, and rms has the same meaning
of risco.

For the case of a circular orbit, which is not confined to
the equatorial plane [14,15], the conserved orbital angular
momentum can be expressed as

lo = −
2Mar3

o + (
r2
o + a2

) (
aQ ∓ √

�
)

r2
o

√
r3
o (ro − 3M) − 2a

(
aQ ∓ √

�
) , (3.44)

where Q is the Carter’s constant and

� ≡ Mr5
o − Q (ro − 3M) r3

o + a2Q2. (3.45)

By using the following condition

δl2o
δro

= 0, (3.46)

we get the equation of the ISCO as

Qisco = Mr3
isco

(
a2M + 3a2risco − 6M2risco + 3Mr2

isco − r3
isco

) + 3M3/2r5/2
isco


3/2
isco

4a2risco
(
3M2 − 3Mrisco + r2

isco

) − 4a4M
(3.47)

where 
isco = r2
isco − 2Mrisco + a2 and Qisco is the

Carter’s constant in ISCO. Equation (3.47) is the same as the
result in [14] which is expressed as

Qms = −
Mr5/2

[(√

 − 2

√
Mr

)2 − 4a2
]

4a2
(
r3/2 − M

√
r − √

M

) (3.48)

after some calculations. Here Qisco and Qms have the same
meaning.

4 The evolutions of the ISCOs in dynamical spacetimes

In general dynamical spacetimes, Eq. (2.18) does not hold
anymore. Enlightened by [30], we assume

dro(t) = ∂ro(t)

∂t
dt = ṙo(t)dt, (4.1)

where t is the coordinate time and a dot stands for the deriva-
tive with respect to this coordinate time. As for Eq. (2.19),
we generalize it to the following equation

δlo
δro(t)

= δl2o
δro(t)

= 0. (4.2)

Here, lo should regard as a function of ro(t). Because of the
conservation of the orbital angular momentum, the above
equation means that the evolved ISCO has a minimal orbital
angular momentum among the evolved circular orbits.3

3 Because the orbital angular momentum of the spacetime is conserved,
so it may easy to know whether the orbital angular momentum exists a
minimal value or not. For example, the general spherically symmetric
spacetime can be written as Eq. (4.4). Let the parameter t = t0 =
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4.1 General spherically symmetric spacetime

The metric of the general spherically symmetric spacetime
in (d + 1)-dimensional spacetime can be written as

ds2 = − f (t, r)dt2 + g(t, r)dr2 + r2d�2
d−1. (4.4)

where f and g are functions of {t, r} coordinates. As before,
because of the spherical symmetry of the system, we can
consider a timelike geodesic with normalized 4-velocity in
the equatorial plane. From the normalized condition of the
4-velocity, we have the following equation

− f

(
dt

dτ

)2

+ g

(
dr

dτ

)2

+ r2
(
dφ

dτ

)2

= −1, (4.5)

where τ is the proper time of the timelike geodesic. The
geodesic equations of Eq. (4.4) are

d2t

dτ 2 + ḟ

2 f

(
dt

dτ

)2

+ f ′

f

dt

dτ

dr

dτ
+ ġ

2 f

(
dr

dτ

)2

= 0, (4.6)

d2r

dτ 2 + f ′

2g

(
dt

dτ

)2

+ ġ

g

dt

dτ

dr

dτ
+ g′

2g

(
dr

dτ

)2

− r

g

(
dφ

dτ

)2

= 0. (4.7)

Now we set ro = ro(t) for the evolution of the radius of
the circular orbits. From Eq. (4.1), we can get the second

Footenote 3 continued
constant, i.e.,

ds2 = − f (t0, r) dt
2 + g (t0, r) dr

2 + r2d�2
d−1, (4.3)

and this spacetime is a static spherically symmetric spacetime. Suppos-
ing this spacetime has a minimal orbital angular momentum among the
circular orbits, then the corresponding general spherically symmetric
spacetime will have a minimal orbital angular momentum among the
evolved circular orbits.

derivative of ro with respect to τ as follows

dr2
o

dτ 2 = r̈o

(
dt

dτ

)2

+ ṙo
dt2

dτ 2 . (4.8)

Then put Eqs. (4.1) and (4.8) into Eqs. (4.5)–(4.7), we get
the following equations4

− f

(
dt

dτ

)2

+ gṙ2
o

(
dt

dτ

)2

+ r2
o

(
dφ

dτ

)2

= −1, (4.9)

d2t

dτ 2 + ḟ

2 f

(
dt

dτ

)2

+ f ′

f
ṙo

(
dt

dτ

)2

+ ġ

2 f
ṙ2
o

(
dt

dτ

)2

= 0,

(4.10)

r̈o

(
dt

dτ

)2

+ ṙo
d2t

dτ 2 + f ′

2g

(
dt

dτ

)2

+ ġ

g
ṙo

(
dt

dτ

)2

+ g′

2g
ṙ2
o

(
dt

dτ

)2

− ro
g

(
dφ

dτ

)2

= 0. (4.11)

Combining the above equations, we get

(
dt

dτ

)2

= 2 f

2 f
(
f − gṙ2

o

) + groṙo
(
ḟ + 2 f ′ṙo + ġṙ2

o

) − f ro
(
ḟ + 2ġṙo + g′ṙ2

o + 2gr̈o
) , (4.12)

(
dφ

dτ

)2

= 1

ro

f
(
f ′ + 2ġṙo + g′ṙ2

o + 2gr̈o
) − gṙo

(
ḟ + 2 f ′ṙo + ġṙ2

o

)
2 f

(
f − gṙ2

o

) + groṙo
(
ḟ + 2 f ′ṙo + ġṙ2

o

) − f ro
(
f ′ + 2ġṙo + g′ṙ2

o + 2gr̈o
) . (4.13)

By the way, the orbital angular frequency associated with
a circular orbit in general spherically symmetric spacetime
can be obtained as follows

�o ≡ dφ

dt
=

[
f
(
f ′ + 2ġṙo + g′ṙ2

o + 2gr̈o
) − gṙo

(
ḟ + 2 f ′ṙo + ġṙ2

o

)
2 f ro

]1/2

. (4.14)

Also, we can define the conserved orbital angular momen-
tum in general spherically symmetric spacetime as

l2o ≡
(
r2
o
dφ

dτ

)2

. (4.15)

From Eq. (4.13), we get the conserved orbital angular
momentum as

4 Here and after in this subsection, f represents f (ro(t), t), ḟ repre-
sents ∂ f (r, t)/∂t |ro(t),t and f ′ represents ∂ f (r, t)/∂r |ro(t),t .
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l2o = r3
o

[
f ( f ′ + 2ġṙo + g′ṙ2

o + 2gr̈o) − gṙo
(
ḟ + 2 f ′ṙo + ġṙ2

o

)]
2 f

(
f − gṙ2

o

) + groṙo
(
ḟ + 2 f ′ṙo + ġṙ2

o

) − f ro
(
f ′ + 2ġṙo + g′ṙ2

o + 2gr̈o
) . (4.16)

Then, we can obtain the evolution equation of the ISCO
from the assumption that the conserved orbital angular
momentum has a minimal value at ISCO, i.e., δl2o/δro = 0.
But this equation is very complicated, and we do not show it
here. In a word, we can use the above method to get the evolu-
tion equations of the ISCOs in general spherically symmetric
spacetimes.

Below, We will use two simple examples to demonstrate
the reliability of our method. In the Vaidya case, we get a
reasonable evolution curve which is similar to the evolution
curve of photon sphere in [30], and a similar curve is also
obtained in Vaidya-AdS4 spacetime.

Example 1 (Vaidya spacetimes:) As an example of the
method developed above, we consider a black hole spacetime
with accreting null fluid, i.e., the in-going Vaidya spacetime.
The metric of the 4-dimensional Vaidya spacetime in the in-
going null coordinate can be written as [42]

ds2 = −
(

1 − 2M(v)

r

)
dv2

+2dvdr + r2
(
dθ2 + sin2 θdφ2

)
. (4.17)

The above metric is a solution of Einstein gravity with the
following energy-momentum tensor,

Tab = Ṁ(v)

4πr2 δvaδvb, (4.18)

where “ · ” = ∂/∂v in the Vaidya spacetime. According to
the steps in the previous section to find the evolution equa-
tion of the ISCO in general spherically symmetric spacetime,
we can obtain the evolution equation of the ISCO in Vaidya
spacetime. At first, we can get the conserved orbital angular
momentum associated with a circular orbit in Vaidya space-
time as

l2o ≡
(
r2
o
dφ

dτ

)2

= 2M2(v)r2
o + M(v)r3

o (3ṙo − 1) − r4
o

[
Ṁ(v) + ror̈o

]
M(v)ro (5 − 9ṙo) − 6M2(v) + r2

o

(
ror̈o + 3ṙo − 2ṙ2

o + Ṁ(v) − 1
) , (4.19)

where ro represents ro(v). Then, the evolution equation of the
ISCO can be obtained by using the following condition

δl2o
δro

= 0. (4.20)

We do not show the result here because the result is very
complicated and can only be solved numerically.5 To solve
it, one must specify the expression of the mass function and
give appropriate boundary conditions. Here, we choose the
following mass function,

M(v) = M0

2
(1 + tanh(v)) . (4.22)

In the asymptotic future (i.e., v → ∞), Eq. (4.22) approaches
to a constant value M0. And we can impose the future bound-
ary conditions, i.e., risco(v → ∞) = 6M0 and ṙisco =
r̈isco = ...

r isco = 0, to obtain the evolution of the ISCO.
Below, we will set M0 = 1, and the evolution of the ISCO in
the Vaidya spacetime is shown in Fig. 1.

Example 2 (Vaidya-AdS spacetimes) The metric of the 4-
dimensional Vaidya-AdS spacetime can be written as [43]

ds2 = −
(
r2 + 1 − M(v)

r

)
dv2 + 2dvdr + r2d�2

2, (4.23)

where we have set the AdS radius L = 1. Following the above
procedure, we get the conserved orbital angular momentum
associated with a circular orbit in Vaidya-AdS spacetime as

l2o = r2
o

2r3
o

(
r̈o − 3roṙo + r3 + ro

) − ro
(
3ṙo + r2

o − 1
)
M(v) + r2

o Ṁ(v) − M(v)2

3M(v)2 + ro
(
9ṙo − 3r2

o − 5
)
M(v) − r2

o

(
2ror̈o − 4ṙ2

o + 6ṙo − 2r2
o + Ṁ(v) − 2

) . (4.24)

Also, the evolution equation of the ISCO can be obtained
by using the following assumption

δl2o
δro

= 0. (4.25)

We do not show the result here because the result is also very
complicated and can only be solved numerically. Similar to
the Vaidya case, to solve it, one must specify the expression
of the mass function and give appropriate boundary condi-
tions. We can get one of the boundary conditions by solving
Eq. (3.22) with d = 3 numerically, i.e.,

5 One can use Mathematica to get the evolution equation of the ISCO
by solving the second-order Euler–Lagrangian equation, i.e.,

∂l2o
∂ro

− d

dv

(
∂l2o
∂ ṙo

)
+ d2

dv2

(
∂l2o
∂ r̈o

)
= 0. (4.21)
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Fig. 1 The evolution of the ISCO in the Vaidya spacetime

risco ≈ 3.76 (4.26)

in SAdS spacetime, and we have set M = L = 1. Then,
we choose the following mass function (we have already set
M0 = 1),

M(v) = 1

2
(1 + tanh(v)) . (4.27)

Similarly, in the asymptotic future (i.e., v → ∞), we can
impose the future boundary conditions, i.e., risco(v → ∞) ≈
3.76 and ṙisco = r̈isco = ...

r isco = 0, to obtain the evolution
of the ISCO in Vaidya-AdS4 spacetime. The evolution of the
ISCO in the Vaidya-AdS4 spacetime is shown in Fig. 2.

4.2 ISCO of Kerr–Vaidya spacetime in the slow rotation
limit

In this subsection, we will use the radiating Kerr black hole
in the slow rotation limit as an example to show the validity
of our method in aspherically symmetric case.

In the slow rotation limit, the 4-dimensional Kerr–Vaidya
metric on the equatorial plane can be expressed as [30,45]

ds2 = −
(

1 − 2M(v)

r

)
dv2 + 2dvdr

−2adrdφ − 4M(v)a

r
dvdφ + r2dφ2. (4.28)

The Lagrangian of a particle motion in this spacetime is

L = −1

2

(
1 − 2M(v)

r

)(
dv

dτ

)2

+ dv

dτ

dr

dτ
− a

dr

dτ

dφ

dτ

−2M(v)a

r

dv

dτ

dφ

dτ
+ r2

2

(
dφ

dτ

)2

. (4.29)

Using the normalized condition of the 4-velocity and refer-
encing the formulas in [30], we can get the following equa-
tions for a circular orbit as

−
(

1 − 2M(v)

ro
− 2ṙo

)(
dv

dτ

)2

−
(

2aṙo + 4aM(v)

ro

)(
dv

dτ

) (
dφ

dτ

)

+r2
o

(
dφ

dτ

)2

= −1, (4.30)

[
r̈o + M(v)

r2
o

(
1 − 3ṙo − 2M(v)

ro

)
+ Ṁ(v)

ro

] (
dv

dτ

)2

+
[

2aM(v)

r2

(
2ṙo − 1 + 2M(v)

ro

)

+2aṙo
ro

(1 − ṙo)

] (
dv

dτ

) (
dφ

dτ

)

+ (roṙo − ro + 2M(v))

(
dφ

dτ

)2

= 0. (4.31)

Solving the above two equations, and defining the conserved
orbital angular momentum associated with a circular orbit
as6

l2o ≡
[
−

(
aṙo + 2aM(v)

ro

)
dv

dτ
+ r2

o
dφ

dτ

]2

, (4.32)

we get

l2o = 2M2(v)r2
o + M(v)r3

o (3ṙo − 1) − r4
o [Ṁ(v) + ror̈o]

M(v)ro(5 − 9ṙo) − 6M2(v) + r2
o

(
ror̈o + 3ṙo − 2ṙ2

o + Ṁ(v) − 1
)

±
6M(v) [2M(v) + ro (2ṙo − 1)]2 √

2M(v) + ro(ṙo − 1)

√
2M2(v)ro + M(v)r2

o (3ṙo − 1) − r3
o [Ṁ(v) + ror̈o][

M(v)ro (5 − 9ṙo) − 6M2(v) + r2
o

(
ror̈o + 3ṙo − 2ṙ2

o + Ṁ(v) − 1
)]2 a

+O(a2), (4.33)

6 Here we consider l2 instead of l to get a better form and right numerical
result, and they are a little different because the higher-order terms that
are dropped are different.
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Fig. 2 The evolution of the ISCO in the Vaidya-AdS4 spacetime

where “+” correspond to the orbital angular momentum
associated with “direct” circular orbit and “−” correspond to
the orbital angular momentum associated with “retrograde”
circular orbit. Then, by using the assumption

δl2o
δro

= 0, (4.34)

we can get the evolution of the ISCO in Kerr–Vaidya space-
time. The explicit form of this evolution equation is very
complicated and can only be solved numerically. Similar to
the examples of the dynamical Spherically symmetric space-
times, in order to solve the evolution equation, one must
specify the expression of the mass function and give appro-
priate boundary conditions. We can get one of the bound-
ary conditions by solving the square of Eq. (3.39) with
a = 0.01, M = 1, i.e.,

risco ≈
{

5.967 “direct”
6.032 “retrograde”,

(4.35)

where we have used the condition of the slow rotation limit in
Kerr spacetime. Then, we choose the following mass function

(we have already set M0 = 1),

M(v) = 1

2
(1 + tanh(v)) . (4.36)

Similarly, in the asymptotic future (i.e., v → ∞), we can
impose the future boundary conditions, i.e., risco(v → ∞) =
5.967 (direct) and 6.032 (retrograde), and ṙisco = r̈isco =
...
r isco = 0, to obtain the evolution of the ISCO in Kerr–
Vaidya spacetime. The evolution of the ISCO of Kerr–Vaidya
spacetime in the slow rotation limit is shown in Fig. 3.

Conclusion of this section: We have generalized the
method which is equivalent to the effective potential method
in static and stationary spacetimes to general dynamical
spacetimes, and use three examples to illustrate the relia-
bility of this generalization. Due to the reasonable results
of the evolutions of ISCOs in the examples, we believe this
generalization is reliable.

5 Discussion and conclusion

In this paper, we reviewed the two methods to get the ISCO
in Schwarzschild spacetime. We demonstrated the second
method is equivalent to the effective potential method in
static and stationary spacetimes. We verify this equivalence
in general spherically symmetric spacetimes and Kerr space-
time. We then generalized the second method into dynamical
spacetimes. From this generalization, we studied the evolu-
tions of the ISCOs in Vaidya spacetime, Vaidya-AdS space-
time, and Kerr-Vaidya spacetime under the limit of slow rota-
tion. These examples are all giving reasonable results.

The boundary conditions are essential needed to solve the
evolution equations of the ISCOs in dynamical spacetimes.
Because the evolution equations are fourth-order equations
(we do not show these equations in the paper), so they need

(a) (b)

Fig. 3 The evolution of the ISCO in the slow rotation limit of Kerr–Vaidya spacetime. We have chosen the rotation parameter a = 0.01
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four boundary conditions. In general, it is hard to get the
appropriate boundary conditions.

From this generalization, one may study the ISCO in more
complicated spacetimes as long as there exists a conserved
orbital angular momentum. However, the obvious limita-
tion of this method is that it is not suitable for the situation
where there is no conserved angular momentum but con-
served energy. In this case, the effective potential method
may be used to get the ISCO.
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