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Abstract In this paper, we study spontaneous scalariza-
tion of asymptotically anti-de Sitter charged black holes in
an Einstein–Maxwell-scalar model with a non-minimal cou-
pling between the scalar and Maxwell fields. In this model,
Reissner–Nordström-AdS (RNAdS) black holes are scalar-
free black hole solutions, and may induce scalarized black
holes due to the presence of a tachyonic instability of the
scalar field near the event horizon. For RNAdS and scalar-
ized black hole solutions, we investigate the domain of exis-
tence, perturbative stability against spherical perturbations
and phase structure. In a micro-canonical ensemble, scalar-
ized solutions are always thermodynamically preferred over
RNAdS black holes. However, the system has much richer
phase structure and phase transitions in a canonical ensemble.
In particular, we report a RNAdS BH/scalarized BH/RNAdS
BH reentrant phase transition, which is composed of a zeroth-
order phase transition and a second-order one.
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1 Introduction

The no-hair theorem states that a black hole can be uniquely
determined via three parameters, its mass, electric charge and
angular momentum [1–3]. Although this theorem holds true
in the Einstein–Maxwell field theory, it suffers from chal-
lenges due to the existence of hairy black holes possessing
extra macroscopic degrees of freedom in other theories. In
fact, various black hole solutions, e.g., hairy black holes in the
Einstein–Yang–Mills theory [4–6], black holes with Skyrme
hairs [7,8] and black holes with dilaton hairs [9], have been
discovered as counter-examples to the no-hair theorem. For
a review, see [10].

Spontaneous scalarization typically occurs in models with
non-minimal coupling terms of scalar fields, which can
source the scalar fields to destabilize scalar-free black hole
solutions and form scalarized hairy black holes. This phe-
nomenon was first studied for neutron stars in scalar-tensor
models by coupling scalar fields to the Ricci curvature [11].
It was demonstrated that there is a coexistence region for
scalar-free and scalarized neutron star solutions, where the
scalarized ones can be energetically preferred. Later, it was
found that there also exists spontaneous scalarization of black
holes in scalar-tensor models, provided that black holes are
coupled to non-linear electrodynamics [12,13] or surrounded
by non-conformally invariant matter [14,15].

Recently, the phenomenon of spontaneous scalarization
has been studied in the extended scalar-tensor-Gauss–Bonnet
(eSTGB) gravity [16–22]. In particular, asymptotically anti-
de Sitter (AdS) scalarized black holes, as well as their appli-
cations to holographic phase transitions, have been studied in
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a scalar-tensor model with non-minimally coupling the scaler
field to the Ricci scalar and the Gauss–Bonnet term [23]. In
eSTGB models, the scalar field is non-minimally coupled to
the Gauss-Bonnet curvature correction of the gravitational
sector, which leads to numerical challenges for solving the
evolution equations due to non-linear curvature terms. To bet-
ter understand the dynamical evolution into scalarized black
holes, a similar, but technically simpler, class of models, i.e.,
Einstein–Maxwell-scalar (EMS) models with non-minimal
couplings between the scalar and Maxwell fields, has been
put forward in [24], where fully non-linear numerical evo-
lutions of spontaneous scalarization were presented. Subse-
quently, further studies of spontaneous scalarization in the
EMS models were discussed in the context of various non-
minimal coupling functions [25,26], dyons including mag-
netic charges [27], axionic-type couplings [28], massive and
self-interacting scalar fields [29,30], horizonless reflecting
stars [31], stability analysis of scalarized black holes [32–
36], higher dimensional scalar-tensor models [37], quasinor-
mal modes of scalarized black holes [38,39], two U(1) fields
[40], quasi-topological electromagnetism [41], topology and
spacetime structure influences [42] and the Einstein–Born–
Infeld-scalar theory [43]. Besides the above asymptotically
flat scalarized black holes, spontaneous scalarization was
also discussed in the EMS model with a positive cosmologi-
cal constant [44]. Additionally, spontaneous vectorization of
electrically charged black holes was also proposed [45], ana-
lytic treatments were applied to study spontaneous scalar-
ization in the EMS models [46–49], and an infinite family
of exact topological charged hairy black hole solutions was
constructed in the EMS gravity system [50].

Studying thermodynamics of the EMS models not only
provides evidence for endpoints of the dynamical evolution
of unstable scalar-free black holes, but also is interesting per
se. Understanding the statistical mechanics of black holes has
been a subject of intensive study for several decades. In the
pioneering work [51–53], Hawking and Bekenstein found
that black holes possess the temperature and the entropy.
However, asymptotically flat black holes are often thermally
unstable since they have negative specific heats. To make
black holes thermally stable, appropriate boundary condi-
tions need to be imposed, e.g., putting the black holes in
AdS space. Asymptotically AdS black holes become ther-
mally stable since the AdS boundary acts as a reflecting
wall. The thermodynamic properties of AdS black holes were
first studied by Hawking and Page [54], who discovered
the Hawking–Page phase transition between Schwarzschild
AdS black holes and thermal AdS space. Later, motivated
by AdS/CFT correspondence [55–57], there has been much
interest in studying phase structure and transitions of AdS
black holes [58–67]. In light of this, it is of great interest to
study spontaneous scalarization of asymptotically AdS black
holes and associated thermodynamic properties in the EMS

models with non-minimal couplings of the scalar and elec-
tromagnetic fields.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the EMS model with a negative cos-
mological constant and derive the free energy in a canonical
ensemble. Section 3 is devoted to discussing linear pertur-
bations in scalar-free and scalarized black hole solutions. In
Sect. 4, we present our main numerical results, including the
domain of existence, entropic preference, effective potentials
for radial perturbations, and phase structure and transitions
in a canonical ensemble. We summarize our results with a
brief discussion in Sect. 5.

2 EMS Model in AdS space

In this section, we derive the equations of motion, asymptotic
behavior, the Smarr relation and the Helmholtz free energy
for asymptotically AdS scalarized black hole solutions in the
EMS model. The action of the EMS model with a negative
cosmological constant is

Sbulk = − 1

16π

∫
d4x

√−g

×
[
R − 2� − 2 (∂φ)2 − f (φ) FμνF

μν
]
, (1)

where we take G = 1 for simplicity throughout this paper.
In the action (1) , the scalar field φ is minimally coupled
to the metric gμν and non-minimally coupled to the gauge
field Aμ, Fμν = ∂μAν − ∂ν Aμ is the electromagnetic field
strength tensor, � = −3/L2 is the cosmological constant
with the AdS radius L , and f (φ) is the non-minimal coupling
function of the scalar and gauge fields.

2.1 Equations of motion

Varying the action (1) with respect to the metric gμν , the
scalar field φ and the gauge field Aμ, one obtains the equa-
tions of motion,

Rμν − 1

2
Rgμν − 3gμν

L2 = 2Tμν,

�φ − 1

4
ḟ (φ) FμνF

μν = 0,

∂μ

(√−g f (φ) Fμν
) = 0, (2)

where ḟ (φ) ≡ d f (φ) /dφ. The energy-momentum tensor
Tμν in Eq. (2) is given by

Tμν = ∂μφ∂νφ − 1

2
gμν (∂φ)2

+ f (φ)

(
FμρF

ρ
ν − 1

4
gμνFρσ F

ρσ

)
. (3)
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In the following, we focus on the spherically symmetric
ansatz for the metric, the electromagnetic field and the scalar
field,

ds2 = −N (r) e−2δ(r)dt2 + 1

N (r)
dr2

+ r2
(
dθ2 + sin2 θdϕ2

)
,

Aμdx
μ = V (r) dt and φ = φ (r) . (4)

Plugging the above ansatz into the equations of motion (2)
yields

N ′ (r) = 1 − N (r)

r
− Q2

r3 f (φ (r))

− r N (r) φ′2 (r) + 3r

L2 ,

(
r2N (r) φ′ (r)

)′ = − ḟ (φ (r)) Q2

2 f 2 (φ) r2 − r3N (r) φ′3 (r) ,

δ′ (r) = −rφ′2 (r) ,

V ′ (r) = − Q

r2 f (φ (r))
e−δ(r), (5)

where primes denote the derivatives with respect to the radial
coordinate r , and the integration constant Q can be inter-
preted as the electric charge of the black hole solution. For
later use, we introduce the Misner-Sharp mass functionm (r)
by N (r) = 1 − 2m (r) /r + r2/L2.

2.2 Asymptotic behavior

To obtain non-trivial hairy black hole solutions of the non-
linear ordinary differential equations (5) , one should impose
appropriate boundary conditions at the event horizon and the
spatial infinity. Accordingly, in the vicinity of the event hori-
zon at r = r+, we find that the solutions can be approximated
as power series expansions in terms of (r − r+),

m (r) = r+
2

(
1 + r2+

L2

)
+ m1 (r − r+) + · · · ,

δ (r) = δ0 + δ1 (r − r+) + · · · ,

φ (r) = φ0 + φ1 (r − r+) + · · · ,

V (r) = v1 (r − r+) + · · · , (6)

where

m1 = Q2

2r2+ f (φ0)
,

φ1 = − ḟ (φ0) Q2

2
[
f 2 (φ0) r3+ − f (φ0) r+Q2 + 3 f 2 (φ0) r5+/L2

] ,

δ1 = −r+φ2
1 , v1 = − Q

r2+ f (φ0)
e−δ0 . (7)

The two essential parameters, φ0 and δ0, can be determined
after matching the asymptotic expansions of the solutions at
the spatial infinity,

m (r) = M − Q2

2r
+ · · · , φ (r) = φ+

r3 + · · · ,

δ (r) = 3φ2+
2r6 + · · · , V (r) = � + Q

r
+ · · · , (8)

where f (0) = 1 is assumed, M is identified as the
ADM mass, and � is the electrostatic potential with � =∫ ∞
r+ dre−δ(r)Q/

(
r2 f (φ (r))

)
. Note that the scalar field falls

off as φ (r → ∞) ∼ Qs/r in the asymptotically flat case,
where Qs is the scalar charge [24]. On the other hand, the
interpretation of the asymptotic expansion of the scalar field
is quite different for asymptotically AdS black holes. In
general, the asymptotic scalar field solution of Eq. (5) is
φ (r) ∼ φ− + φ+

r3 , where, according to the gauge/gravity
duality, φ+ can be interpreted as the expectation value of the
dual operator of the scalar field on the conformal boundary
in the presence of the external source φ−. In this paper, the
non-normalizable mode of the scalar field is set to vanish,
i.e., φ− = 0, corresponding to the absence of the external
source in the conformal boundary theory [23,68]. Interest-
ingly, this type of boundary condition has important holo-
graphic applications in systems with spontaneous symmetry
breaking, e.g., holographic superconductors [69] and holo-
graphic superfluids [70]. Consequently, we can use the shoot-
ing method to solve the non-linear differential equations
(5) for solutions satisfying the asymptotic expansions at the
boundaries. It is also noteworthy that there is a scaling sym-
metry among the physical quantities,

r → λr, M → λM, Q → λQ, L → λL , (9)

which allows us to solve Eq. (5) numerically in terms of
redefined dimensionless quantities.

2.3 Smarr relation

The Smarr relation [71] can be used to test the accuracy of
numerical scalarized black hole solutions, since it associates
the black hole mass with other physical quantities. The Smarr
relation can be derived from computing the Komar integral
for a time-like Killing vector Kμ = (1, 0, 0, 0) in a manifold
M . Integrating the identity ∇μ (∇νKμ) = KμRμν over the
time constant hypersurface �, whose boundary ∂� consists
of the event horizon r = r+ and the spatial infinity r = +∞,
one can use Gauss’s law to obtain
∫

∂�

dSμν∇μK ν

=
∫

�

dSμKν

(
2Tμν − Tgμν − 3gμν

L2

)
, (10)
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where dSμν is the surface element on ∂�, and dSμ is the
volume element on �, accordingly. Making use of eqns. (3)
and (5), we find that the Smarr relation is given by

M = AHT

2
+ Q� − e−δ0

r3+
L2

+
∫ ∞

r+
dre−δ(r)δ′ (r)

r3

L2 , (11)

where AH = 4πr2+ is the horizon area, and T =
N ′ (r+) e−δ(r+)/4π is the Hawking temperature. For a
RNAdS black hole with δ (r) = 0, the Smarr relation (11)
reduces to

M = AHT

2
+ Q� − r3+

L2 , (12)

where the last term is the PV term in the extended phase
space of AdS black holes [72].

2.4 Free energy

Given a family of scalarized black holes, it is of interest
to compute the Helmholtz free energy, which can be used
to investigate phase structure and transitions in a canonical
ensemble with fixed charge Q and temperature T . The free
energy, which is identified as the thermal partition function
of black holes, can be derived via constructing the Euclidean
path integral. In the semiclassical approximation, the par-
tition function is evaluated by exponentiating the on-shell
Euclidean action SEon-shell,

Z ∼ e−SEon-shell , (13)

where the on-shell action SEon-shell is obtained by substi-
tuting the classical solution into the action. However, the
on-shell action SEon-shell normally diverges in asymptotically
AdS spacetime.One then needs holographic renormalization
to remove divergences appearing in the asymptotic region
[73,74]. There are several methods to regularize SEon-shell,
such as the background-subtraction method [60] and the
Kounterterms method [75–77]. Here, we adopt the countert-
erm subtraction method to regularize the action by adding a
series of boundary terms to the bulk action [78–80].

Specifically for the aforementioned bulk action Sbulk in
Eq. (1) , the regularized action SR is supplied with three
boundary terms

SR = Sbulk + SGH + Sct + Ssurf, (14)

where SGH is the Gibbon–Hawking boundary term to ren-
der the variational problem well-defined, Sct includes coun-
terterms to eliminate divergences on asymptotic boundaries,
and Ssurf is used to fix the charge rather than the electro-
static potential when the action is varied [65,81]. The three

boundary terms are given by

SGH = − 1

8π

∫
d3x

√−γ�,

Sct = 1

8π

∫
d3x

√−γ

(
2

L
+ L

2
R3

)
,

Ssurf = − 1

4π

∫
d3x

√−γ f (φ) FμνnμAν, (15)

where the integrals are performed on the hypersurface at the
spatial infinity, γ is the determinant of the induced metric on
the hypersurface, � is the trace of the extrinsic curvature, R3

is the scalar curvature of the induced metric γ , and nμ is the
unit vector normal to the hypersurface. Using the equations
of motion (2) and the asymptotic expansions (8), we obtain
the on-shell Euclidean version of Sbulk, SGH, Sct and Ssurf,

SEbulk, on-shell = 1

T

(
e−δ(r)r2N ′ (r) − 2e−δ(r)r2N (r) δ′ (r)

4

∣∣∣∣
r=+∞

−T S − Q�

)
,

SEGH, on-shell = − 1

T

[
e−δ(r)r2N ′ (r) − 2e−δ(r)r2δ′ (r) N (r)

4

+e−δ(r)
(
r − 2M + r3

L2

)]∣∣∣∣
r=+∞

,

SEct, on-shell = e−δ(r)

T

(
r3

L2 + r − M

)∣∣∣∣
r=+∞

,

SEsurf, on-shell = Q�

T
, (16)

where S = πr2+ is the entropy of the black hole. Conse-
quently, the regularized on-shell Euclidean action for the
black hole solution (4) is

SEon-shell = SEbulk, on-shell + SEGH, on-shell + SEct, on-shell

+SEsurf, on-shell

= M − T S

T
. (17)

The Helmholtz free energy F is related to the Euclidean
action SEon-shell via

F = −T ln Z = T SEon-shell, (18)

which gives

F = M − T S. (19)

3 Perturbations around Black hole solution

In this section, we investigate linear perturbations around
black hole solutions, which can help us understand the sta-
bility of the solutions.
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3.1 Scalar perturbation around RNAdS black holes

We first examine a scalar perturbation δφ in a RNAdS black
hole background. Note that if ḟ (0) = 0 is imposed, a RNAdS
black hole, which is described by

N (r) = 1 − 2M

r
+ Q2

r2 + r2

L2 ,

A = Q

r
dt, δ (r) = 0, φ (r) = 0, (20)

is manifestly a solution of the equations of motion (2). In this
scalar-free solution background, we can linearize the scalar
equation in Eq. (2) with a scalar perturbation δφ,(

� − μ2
e f f

)
δφ = 0, (21)

where μ2
e f f = − f̈ (0) Q2/

(
2r4

)
. In a (3 + 1)-dimensional

asymptotically AdS spacetime of AdS radius L , a scalar field
can cause a tachyonic instability only if its mass-squared is
less than the so-called Breitenlohner–Freedman (BF) bound
μ2
BF = −9/

(
4L2

)
[82]. For the scalar perturbation δφ, one

always has μ2
e f f > μ2

BF for large enough r , and hence,
asymptotically, the RNAdS black hole is stable against the
formation of the scalar field, which guarantees that scalarized
black holes induced by the tachyonic instability of the scalar
field are asymptotically AdS. However, if μ2

e f f < μ2
BF in

some region (e.g., near the event horizon), a RNAdS black
hole may evolve to a scalarized black hole under a scalar
perturbation. Note that if f̈ (0) < 0, one always has μ2

e f f >

μ2
BF , and hence a tachyonic instability can not occur.
To study how a scalarized black hole solution bifurcates

from a scalar-free black hole solution, we calculate zero
modes of the scalar perturbation in the scalar-free black hole
background. For simplicity, the scalar perturbation δφ is writ-
ten as the decomposition with spherical harmonics functions,

δφ =
∑
l,m

Ylm (θ, φ)Ul (r) . (22)

With this decomposition, the scalar equation (21) then
reduces to

1

r2

d

dr

(
r2N (r)

dUl (r)

dr

)
−

[
l (l + 1)

r2 + μ2
e f f

]
Ul (r) = 0.

(23)

Given the fixed values of l and f̈ (0), a family of discrete
black hole solutions is selected by requiring that the radial
field Ul (r) is regular at the event horizon and vanishes at
the spatial infinity. The black hole solutions can be labelled
by a non-negative integer node number n. In this paper, we
focus on the l = 0 = n fundamental mode since it gives the
smallest q of the black hole solutions [24]. Due to the tachy-
onic instability, scalarized RNAdS black holes may emerge

from these zero modes, which compose bifurcation lines in
the domain of existence for the scalarized black holes.

3.2 Time-dependent perturbation around scalarized black
holes

To investigate the perturbative stability of the scalarized black
hole solution (4), we then consider spherically symmetric and
time-dependent linear perturbations. Specifically including
the perturbations, the metric ansatz is written as [25]

ds2 = −Ñ (r, t) e−2δ̃(r,t)dt2 + dr2

Ñ (r, t)

+ r2
(
dθ2 + sin2 θdϕ2

)
,

Ñ (r, t) = N (r) + ε Ñ1 (r) e−i�t ,

δ̃ (r, t) = δ (r) + εδ̃1 (r) e−i�t , (24)

where the time dependence of the perturbations is assumed to
be Fourier modes with frequency �. Similarly, the ansatzes
of the scalar and electromagnetic fields are given by

φ̃ (r, t) = φ (r) + εφ1 (r) e−i�t and

Ṽ (r, t) = V (r) + εV1 (r) e−i�t , (25)

respectively. Solving Eq. (2) with the ansatzes (24) and (25),
we can extract a Schrodinger-like equation for the perturba-
tive scalar field φ1 (r),

− d2� (r)

dr∗2 +U�� (r) = �2� (r) , (26)

where � (r) ≡ rφ1 (r), and the tortoise coordinate r∗ is
defined by dr∗/dr ≡ eδ(r)N−1 (r). Here, the effective poten-
tial U� is given by

U� = e−2δN

r2

{
1 − N − 2r2φ′2 − Q2

r2 f (φ)

(
1 − 2r2φ′2

+ f̈ (φ)

2 f (φ)
+ 2rφ′ ḟ (φ)

f (φ)
− ḟ 2 (φ)

f 2 (φ)

)

+3r2
(
1 − 2r2φ′2)
L2

}
. (27)

One can show that the effective potential U� vanishes at
the event horizon, whereas approaches positive infinity at
the spatial infinity. From quantum mechanics, the existence
of an unstable mode with �2 < 0 requires the presence of
U� < 0 in some regions. Nevertheless, a positive definiteU�

ensures that scalarized black hole solutions are stable against
the spherically symmetric perturbations. It is noteworthy that
the appearance of a negative region inU� cannot sufficiently
guarantee the presence of an instability [29]. One can uti-
lize other techniques, like the S-deformation method [83], to
further discuss the stability of these solutions.
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Alternatively, computing quasinormal modes of time-
dependent perturbations can be used to check whether
black hole solutions are stable against perturbations [13,84].
Specifically for the radial perturbations (24) and (25), quasi-
normal frequencies of unstable modes have a positive imag-
inary part, while the absence of positive imaginary modes
suggests that black holes are radially stable. Focusing on the
scalar field perturbation � (r), Eq. (26) can be solved for
quasinormal modes with appropriate boundary conditions
imposed at the event horizon and spatial infinity. In particu-
lar, we require that the solutions are purely incoming waves
at the event horizon and vanish at the spatial infinity,

� (r → r+) ∼ ei�r∗
and � (r → ∞) ∼ 1

r2 , (28)

which selects a discrete set of quasinormal modes. Moreover,
it can show that unstable quasinormal modes of Eq. (26) are
purely imaginary. In fact, multiplying Eq. (26) by �∗(r) and
integrating it from the event horizon to the infinity gives

�2
∫ r=∞

r+
dr∗��∗ = −i� |�|2 |r=r+

+
∫ r=∞

r+
dr∗

(∣∣∣∣ d�

dr∗

∣∣∣∣
2

+U� |�|2
)

,

(29)

where the boundary conditions (28) are used. Denoting � =
�R + i�I , the imaginary part of the above identity can be
written as

�R

(
|�|2 |r=r+ + 2�I

∫ r=∞

r+
dr∗ |�|2

)
= 0, (30)

which leads to �R = 0 for unstable modes with �I > 0.

4 Numerical results

In this section, we first study various properties of scalarized
RNAdS black hole solutions and then investigate their phase
structure and transitions in a canonical ensemble. After the
non-linear differential equations (5) are expressed in terms
of a new dimensionless coordinate

x = 1 − r+
r

with 0 ≤ x ≤ 1, (31)

they are numerically solved for scalarized black hole solu-
tions using the NDSolve function in Wolfram Mathematica.
In the remainder of this paper, we focus on the coupling func-
tion f (φ) = eαφ2

with α > 0. For this coupling function,
one has f (0) = 1 and ḟ (0) = 0, which ensures that RNAdS
black holes are solutions of the EMS model, and f̈ (0) > 0,
which may trigger a tachyonic instability of the scalar field
to induce scalarized black hole solutions. For later use, we

define reduced quantities,

q = Q

M
, aH = AH

16πM2 , T̃ = T L , F̃ = F

L
,

r̃+ = r+
L

, Q̃ = Q

L
, M̃ = M

L
, (32)

which are dimensionless and invariant under the scaling sym-
metry (9). To test the accuracy of our numerical method, we
use the Smarr relation (11) and find that the numerical error
can be maintained around the order of 10−6.

4.1 Scalarized black holes

Here, we present the numerical results, e.g., the domain
of existence, entropic preference and effective potentials,
for scalarized black hole solutions, which are dynamically
induced from RNAdS black holes. Without loss of general-
ity, we focus on Q̃ = Q/L = 0.1 in this subsection. For a
RNAdS black hole, a tachyonic instability of the scalar field
occurs if μ2

e f f < μ2
BF somewhere in the spacetime. Since the

minimum value of μ2
e f f occurs at the event horizon r = r+,

we only need to check μ2
e f f < μ2

BF at r = r+. The region
in the (α, q) parameter space of RNAdS black holes where
μ2
e f f < μ2

BF at r = r+ is plotted in the upper left panel of

Fig. 1. The distribution of values of (μ2
e f f − μ2

BF )Q2|r=r+
is also displayed, which shows that the tachyonic instabil-
ity region becomes larger as α increases, and the scalar field
suffers from a strong tachyonic instability when black holes
are near-extremal. The bifurcation line is composed of the
l = 0 = n zero modes of Eq. (23) for the scalar perturbation
in RNAdS black holes, and represented by blue dashed lines
in Fig. 1. When the tachyonic instability is strong enough,
the scalar perturbation can lead to scalarized black holes
with non-trivial scalar fields above the bifurcation line. In
the upper right panel of Fig. 1, we display the domain of
existence for scalarized black holes, which is exhibited by
a light blue region. The domain of existence is bounded by
the bifurcation and critical lines, and resembles that of RN
scalarized black holes [24] . On the critical line, the mass
and the charge of scalarized solutions remain finite, whereas
its horizon radius vanishes. On the other hand, the mass-to-
charge ratio q of RNAdS black holes reaches the maximum
value in the extremal limit, which is shown by a horizontal
dashed gray line. Moreover, there is a certain region bounded
by the extremal and bifurcation lines, where scalarized and
RNAdS black holes coexist.

The reduced area aH as a function of reduced charge q is
plotted for RNAdS and scalarized black holes in the lower
left panel of Fig. 1, which demonstrates that scalarized black
holes emerge from RNAdS black holes at the bifurcation
points, marked by B, and eventually terminate on the criti-
cal line with zero aH . For a multiphase system in a micro-
canonical ensemble with conserved energy, the phase of max-
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Fig. 1 Plots of tachyonically unstable region for RNAdS black holes,
and the domain of existence, entropic preference and effective potentials
for scalarized black holes. Here, we take Q/L = 0.1. Upper left: den-

sity plot of
(
μ2
e f f − μ2

BF

)
Q2 evaluated at the event horizon r = r+ as

a function of q and α for the scalar perturbation in RNAdS black holes.
We only display the tachyonically unstable region, where μ2

e f f < μ2
BF ,

in the α-q plane. The closer RNAdS black holes are to the extremal
limit, the more unstable the scalar field becomes. The blue dashed line
represents the bifurcation line, where tachyonic instabilities are strong
enough to induce scalarized black holes. Upper right: domain of exis-
tence for scalarized RNAdS black holes in the α-q plane, which is
highlighted by the light blue region and bounded by the critical and

bifurcation lines. The critical line is depicted by a red solid line, on
which the reduced horizon area aH vanishes. The horizontal dashed
gray line denotes extremal RNAdS black holes, above which RNAdS
black hole solutions do not exist. Lower left: reduced horizon area aH
against q for RNAdS and scalarized black holes. The scalarized black
hole solutions are always entropically preferred, which means that they
are globally stable in a micro-canonical ensemble. Lower right: effec-
tive potentials of scalarized black holes with α = 5 for several values of
q. Solid red lines denote positive definite effective potentials between
the event horizon and the spatial infinity, while dashed red lines rep-
resent those possessing negative regions. When q is large enough, the
scalarized black hole solutions are stable against radial perturbations

imum entropy is globally stable and will be present at equi-
librium. Therefore, in the scalarized and RNAdS black holes
coexisting region, our numerical results show that scalar-
ized solutions are entropically preferred over RNAdS black
hole solutions, and hence are the globally stable phase in the
micro-canonical ensemble.

To study the stability of scalarized solutions, the effective
potentials U� of scalarized solutions with α = 5 are plotted
for several values of q in the lower right panel of Fig. 1, where
solid and dashed colored lines correspond to potentials with
and without negative regions, respectively. The scalarized
solutions have positive effective potentials for a large enough
value ofq, and thus are free of radial instabilities. However, as

q decreases towards the bifurcation line, there appear neg-
ative regions in the effective potentials, which means that
radial instabilities cannot be excluded near the bifurcation
line.

To further explore the stability of scalarized black holes,
we numerically solve Eq. (26) with the boundary conditions
(28) to find quasinormal modes of the scalar field perturba-
tion. Specially, we consider two cases, one with fixed α = 5
and the other with q = 0.8745. In this paper, we focus
on scalarized black holes without nodes of the scalar field
(n = 0). It is found that, for this fundamental branch of
black hole solutions, the scalar field perturbation does not
possess quasinormal modes with positive imaginary parts in
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Fig. 2 Imaginary parts of the lowest-lying quasinormal modes of fun-
damental scalarized black holes (green) and unstable modes of RNAdS
black holes (blue), and the first (orange) and second (red) excited scalar-
ized black holes as functions of reduced charge q for α = 5 (left) and
functions of α for q = 0.8745 (right). Solid lines correspond to black
holes with strictly positive potentials, dotted lines to black holes with-
out unstable radial modes although the potential is not strictly positive,

and dashed lines to black holes possessing at least one unstable radial
mode. Different branches of scalarized black hole solutions start from
RNAdS black holes at the corresponding bifurcation points. The cusp
on the dotted green line in the left panel corresponds to the transition
between purely imaginary modes and complex ones. The green lines
are negative, suggesting radial stability of the fundamental branch of
scalarized black hole solutions

the two cases. Instead, we obtain a discrete set of complex
frequencies with negative imaginary parts. Fig. 2 displays the
imaginary parts of the lowest-lying quasinormal modes (i.e.,
with the largest imaginary part), which are denoted by green
lines, for the n = 0 scalarized black holes of α = 5 (left
panel) and q = 0.8745 (right panel). The dotted/solid green
lines correspond to black hole solutions with/without effec-
tive potentials possessing negative regions. In particular, our
result shows that the quasinormal modes of the fundamental
branch always have negative imaginary parts. It is notewor-
thy that the stable modes of fundamental scalarized black
holes may not be purely imaginary with �R �= 0. In short,
fundamental scalarized black holes seem free of unstable
modes despite negative regions appearing in some effective
potentials.

In addition, quasinormal modes of RNAdS black holes
and excited scalarized black holes with one and two nodes
of the scalar field (n = 1 and 2) are also calculated. Unlike
fundamental scalarized black holes, these black holes are
found to have unstable quasinormal modes, which are purely
imaginary with positive imaginary parts. In Fig. 2, we present
the imaginary parts of unstable modes of RNAdS black holes
(dashed blue lines), and n = 1 (dashed orange lines) and
2 (dashed red lines) scalarized black holes in the α = 5
(left panel) and q = 0.8745 (right panel) cases. Therefore,
RNAdS and excited scalarized black holes are demonstrated
to be unstable against radial perturbations, which may justify
the neglection of the excited branches in our paper.

It is noteworthy that purely imaginary quasinormal modes
are observed for the perturbative scalar field in scalarized
black holes. The purely imaginary quasinormal modes cor-

respond to a special set of purely damped modes, which are
distinguished from regular complex ones with non-vanishing
real part. Although purely imaginary quasinormal modes
have not often been reported in the literature, their existence
was found for various black holes [85–91]. Specifically, it
was demonstrated that the type of purely imaginary modes
can be used to characterize electromagnetic and axial pertur-
bations of large asymptotically AdS black holes [85]. In the
context of Kerr geometry, there is a set of quasinormal modes
precisely existing on the negative imaginary axis [87]. Inter-
estingly, purely imaginary quasinormal modes were found
to play an important role in violating the strong cosmic cen-
sorship conjecture for near-extremal dS black holes [88,90].
Similar to the cusp presented in Fig. 2, the transition between
purely imaginary modes and complex ones was also observed
in [90].

The authors of [86] argued that the presence of purely
imaginary quasinormal modes can be related to the pro-
file of the corresponding effective potential by considering a
massless scalar perturbation on the 3D charged-dilaton black
holes. It was found that a potential-step appearing outside
the event horizon, which is similar to the case of the elec-
tromagnetic perturbations in the large Schwarzschild AdS
black holes, can lead to a type of purely imaginary quasi-
normal modes. For a massless scalar field propagating in 4D
Einstein–Gauss–Bonnet black holes, it showed that purely
imaginary quasinormal modes dominate when the corre-
sponding effective potential is a monotonically increasing
function of the radius coordinate, whereas complex quasi-
normal modes dominate when the potential have a barrier
near the outside horizon [92]. Motivated by these observa-
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Fig. 3 Effective potentials r2+U� of fundamental scalarized black
holes with α = 5 as functions of x for different values of q (left) and
the corresponding dominant and subdominant quasinormal frequencies

�L (right). The solid/dashed lines represent the potentials with a bar-
rier/dip near the event horizon, for which the complex/purely imaginary
stable quasinormal modes dominate

tions, we explore the relation between the purely imaginary
modes of the scalar field perturbation around fundamental
scalarized black holes and the profiles of the corresponding
effective potentials. In the left and right panels of Fig. 3, we
present the effective potentials and the dominant and sub-
dominant quasinormal modes of the scalar field perturbation
in fundamental scalarized black holes with α = 5 for several
values of q, respectively. When q = 0.8862 and 0.8966, the
effective potentials are shown to possess a barrier near the
event horizon. As exhibited in the table of Fig. 3, the domi-
nant and subdominant quasinormal modes of this barrier-type
potential are complex. However as q decreases, the barrier
of the effective potential disappears, and instead a potential
dip appears near the event horizon, e.g., the q = 0.8631
and 0.8734 cases in Fig. 3. In these two cases, the table of
Fig. 3 displays that the dominant quasinormal modes are
purely imaginary, while the subdominant ones are complex.
Our numerical results suggest that the presence of a potential
dip near the event horizon may induce a family of dominant
purely imaginary modes.

4.2 Phase structure in a canonical ensemble

In this subsection, we consider phase structure and transitions
of scalarized and RNAdS black holes in a canonical ensem-
ble maintained at a given temperature of T and a given charge
of Q. In a canonical ensemble, the globally stable phase of a
multiphase system, which exists at equilibrium, has the low-
est possible Helmholtz free energy F , which can be computed
via Eq. (19). The rich phase structure of black holes usually
comes from expressing the horizon radius r+ as a function
of temperature T . If the function r+ (T ) is multivalued, there
will be more than one black hole phase, corresponding to
different branches of r+ (T ).

To illustrate phase structure and transitions, we plot the
reduced horizon radius r̃+ and the free energy F̃ as func-
tions of reduced temperature T̃ for scalarized and RNAdS
black holes with three representative values of Q̃ in Fig. 4,
where we have α = 5. In the left column of Fig. 4 with a
small Q̃, the upper panel shows that three branches of the
RNAdS black hole solution coexist in some range of T̃ , and
are dubbed as large, intermediate and small RNAdS BHs,
respectively, based on their values of horizon radius. At a high
(low) enough temperature, only the large (small) RNAdS BH
phase exists. On the other hand, there is only one phase for
the scalarized black hole solution, which bifurcates from the
RNAdS black hole solution at the bifurcation point B, and
does not exist at a low temperature. The reduced free energy
F̃ is plotted against T̃ for these four phases in the lower
panel, which shows that the scalarized black hole can not
be the globally stable phase since there always exists some
RNAdS black hole phase of a lower free energy at a given T̃ .
In the coexisting region of the RNAdS black hole phases, a
first-order phase transition between large and small RNAdS
BHs occurs at some point, where their free energies intersect
each other.

The coexisting region of the RNAdS black hole phases
shrinks as Q̃ increases until reaching a critical point, where a
second-order phase transition occurs between large and small
RNAdS BHs. Beyond the critical point, large RNAdS BH
is indistinguishable from small RNAdS BH, hence RNAdS
black hole solutions have a single phase. In the center column
of Fig. 4, we depict r̃+(T̃ ) and F̃(T̃ ) for the case with a
value of Q̃ greater than the critical value. The upper panel
shows that both RNAdS and scalarized black holes have a
single phase. Moreover, as displayed in the lower panel, the
RNAdS black hole always has a smaller free energy than the
scalarized black hole, and hence is the globally stable phase.
Consequently, there is no phase transition in this case.
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Fig. 4 Plots of the reduced horizon radius r̃+ (the upper row) and the
reduced free energy F̃ (the lower row) versus the reduced temperature
T̃ for RNAdS (blue lines) and scalarized (green lines) black holes with
several fixed values of the reduced charge Q̃. Here, we focus on α = 5.
Bifurcation points are labeled by B. When r̃+(T̃ ) is multivalued, black
hole solutions have more than one branch of different horizon radii
in a canonical ensemble with fixed T̃ and Q̃. Left column: there is a
band of temperatures where three branches of RNAdS black hole solu-
tions coexist, and a first-order phase transition occurs between the large
RNAdS BH phase (i.e., the branch with the largest horizon radius) and
the small RNAdS BH phase (i.e., the branch with the smallest hori-
zon radius). Scalarized black holes emerge from the bifurcation point.

Nevertheless, they are not globally preferred since they always have a
higher free energy than RNAdS black holes. Center column: RNAdS
black hole solutions have only one branch, whose free energy is smaller
than that of scalarized black holes. There is no phase transition. Right
column: RNAdS black hole solutions have only one branch, whereas
scalarized black hole solutions have two branches of different sizes. As
T̃ increases, the globally stable phase jumps from RNAdS black holes
to scalarized black holes (the branch with a larger horizon radius), cor-
responding to a zeroth-order phase transition at T̃min. Further increasing
T̃ , there would be a second-order phase transition returning to RNAdS
black holes at the bifurcation point B. Here, we observe a RNAdS
BH/scalarized BH/RNAdS BH reentrant phase transition

However when Q̃ is large enough, phase structure of
scalarized and RNAdS black holes becomes much richer.
For example, r̃+(T̃ ) and F̃(T̃ ) are plotted for scalarized and
RNAdS black holes with a large enough Q̃ in the right col-
umn of Fig. 4. It shows in the upper panel that the RNAdS
black hole solution possesses a single phase, whereas the
scalarized solution can have two phases at some given T̃ ,
namely large scalarized BH (i.e., the one with a larger horizon
radius) and small scalarized BH (i.e., the one with a smaller
horizon radius). In fact, the scalarized black hole solution
has a minimum temperature T̃min, and large scalarized BH
coexists with small scalarized BH between T̃ = T̃min and
the bifurcation point B, where large scalarized BH and the
RNAdS black hole merge. The lower panel exhibits the free
energy as a function of T̃ for the three phases. If we start
increasing the temperature from T̃ = 0, the system follows
the blue line of the RNAdS black hole until T̃ = T̃min, where
the free energy has a discontinuity at its global minimum.
Further increasing T̃ , the inset shows that the system jumps
to the lower green line of large scalarized BH, which corre-
sponds to a zeroth-order phase transition between scalarized

and RNAdS black holes. As T̃ continues to increase, the sys-
tem follows the lower green line until it joins the blue line
at the bifurcation point B, which corresponds to a second-
order phase transition between scalarized and RNAdS black
holes. Note that since scalarized and RNAdS black holes
have the same entropy at the bifurcation point, a phase tran-
sition between them at the bifurcation point is second-order.
In short, a RNAdS BH/scalarized BH/RNAdS BH reentrant
phase transition is observed as T̃ increases.

In addition, it is interesting to consider the local thermo-
dynamic stability of black hole phases against thermal fluc-
tuations. In a canonical ensemble, the quantity of particular
interest is the specific heat at constant charge,

CQ = T

(
∂S

∂T

)
Q

= 2L2π r̃+T̃
∂ r̃+
∂ T̃

. (33)

Since the entropy is proportional to the size of the black hole,
a positive specific heat means that black holes radiate less
when they are smaller. Thus, the thermal stability of a phase
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Fig. 5 Phase diagram of RNAdS and scalarized black holes in a canon-
ical ensemble with fixed temperature T and charge Q. Here, we take
α = 5. The phase diagram exhibits the globally stable phases, which
have the lowest free energy, and the phase transitions between them.
The light yellow and blue regions correspond to RNAdS and scalarized
black holes, respectively. A first-order phase transition line (the purple
line) separates the large RNAdS BH phase, which is above the line, and
the small RNAdS BH phase, which is below the line. The first-order
phase transition line terminates at the critical point, labelled by C . The
scalarized black hole phase is delimited by a zeroth-order phase tran-
sition line (the red line) and a second-order one (the blue dashed line),
which coincides with the bifurcation line

follows from CQ > 0 (or equivalently, ∂ r̃+/∂ T̃ > 0). From
the upper row of Fig. 4, we notice that large and small RNAdS
BHs in the left column, RNAdS black hole in the center
column, and large scalarized BH and RNAdS black hole in
the right column all have ∂ r̃+/∂ T̃ > 0. In consequence, the
globally stable phases of scalarized and RNAdS black holes
possess a positive CQ , and are thermally stable.

To better illustrate the globally stable phases of lowest
free energy and the associated phase transitions, we display
the phase diagram of scalarized and RNAdS black holes in
the Q̃–T̃ plane in Fig. 5, where α = 5. There is a first-
order phase transition line (the purple line) separating large
and small RNAdS BHs for small Q̃, which terminates at the
critical point. This first-order phase transition is quite similar
to the liquid/gas phase transition. When Q̃ is large enough,
large scalarized BH (the light blue region) appears, and is
bounded by zeroth-order (the red line) and second-order (the
blue dashed line) phase transition lines.

5 Discussions and conclusions

In this paper, we investigated spontaneous scalarization of
asymptotically AdS charged black holes in an EMS model,
and studied phase structure of scalarized and RNAdS black
holes in a canonical ensemble. We focused on a non-minimal
coupling function f (φ) = eαφ2

, which leads to spontaneous
scalarization due to the tachyonic instability of the scalar field

near the event horizon. In practice, scalarized black holes can
be induced from RNAdS black holes on the bifurcation line,
which consists of zero modes of the scalar perturbation in
RNAdS black holes. In the α-q plane with a fixed Q̃, the
domain of existence for scalarized RNAdS black holes is
bounded by the bifurcation and critical lines, which resem-
bles that of scalarized RN black holes very closely [24]. In
a micro-canonical ensemble, we found that scalarized black
hole solutions are always entropically preferred over RNAdS
black holes, and hence the globally stable phase.

On the other hand, the system has much richer phase struc-
ture in a canonical ensemble. After the Helmholtz free energy
of the EMS model was computed, we obtained the phase
structure of scalarized and RNAdS black holes. In the small
Q regime, scalarized black holes never globally minimize
the free energy, and the corresponding phase diagram resem-
bles that of the liquid/gas system closely. Nevertheless in
the large Q regime, scalarized black holes can be the glob-
ally stable phase in some parameter region. As the temper-
ature increases at a given charge, the system undergoes a
RNAdS BH/scalarized BH/RNAdS BH reentrant phase tran-
sition, which consists of zeroth-order and second-order phase
transitions.

The phenomenon of reentrant phase transition was first
observed in a nicotine/water mixture, and later discovered in
the context of black hole thermodynamics, e.g., Born–Infeld-
AdS black holes [65,93], higher dimensional singly spin-
ning Kerr-AdS black holes [94], AdS black holes in Love-
lock gravity [95], AdS black holes in dRGT massive gravity
[96], hairy AdS black holes [97]. For these black holes, reen-
trant phase transitions were found to include zeroth-order
and first-order phase transitions. In this paper, we present
an example of a reentrant phase transition for black holes,
which is composed of zeroth-order and second-order phase
transitions. Furthermore, the second-order phase transition
between scalarized and RNAdS black holes is of great inter-
est since this implies that our results may provide an inter-
esting model of holographic superconductors. We leave this
for future work.

AdS black holes can also be studied in the context of
extended phase space thermodynamics, where the cosmo-
logical constant is interpreted as a thermodynamic pressure
P ≡ 6/L2 [63,98]. In terms of P , the reduced quantities are
expressed as

T̃ = T
√

6/P, F̃ = F
√
P/6, r̃+ = r+

√
P/6,

Q̃ = Q
√
P/6, M̃ = M

√
P/6. (34)

Note that M and F are identified as the enthalpy and the Gibbs
free energy, respectively, in extended phase space. With Eq.
(34), our results can be generalized to extended phase space
thermodynamics.
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