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Abstract In a recent work of Wu, Wang, Sun and Liu, a
second-order explicit symplectic integrator was proposed for
the integrable Kerr spacetime geometry. It is still suited for
simulating the nonintegrable dynamics of charged particles
moving around the Kerr black hole embedded in an external
magnetic field. Its successful construction is due to the con-
tribution of a time transformation. The algorithm exhibits a
good long-term numerical performance in stable Hamilto-
nian errors and computational efficiency. As its application,
the dynamics of order and chaos of charged particles is sur-
veyed. In some circumstances, an increase of the dragging
effects of the spacetime seems to weaken the extent of chaos
from the global phase-space structure on Poincaré sections.
However, an increase of the magnetic parameter strengthens
the chaotic properties. On the other hand, fast Lyapunov indi-
cators show that there is no universal rule for the dependence
of the transition between different dynamical regimes on the
black hole spin. The dragging effects of the spacetime do not
always weaken the extent of chaos from a local point of view.

1 Introduction

The Kerr spacetime [1] as well as the Schwarzschild space-
time is integrable because the Carter constant [2] appears
as a fourth constant of motion. However, a test charge
motion in a magnetic field around the Kerr black hole or the
Schwarzschild black hole is nonintegrable due to the absence
of the fourth constant of motion. In some cases, the electro-
magnetic perturbation induces the onset of chaos and islands
of regularity [3–10]. In particular, Takahashi and Koyama
[11] found the connection between chaoticness of the motion
and the black hole spin. That is, the chaotic properties are
weakened with an increase of the black hole spin.
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It is worth pointing out that the detection of the chaotical
behavior needs reliable results on the trajectories. Usually,
it needs long-time calculations, especially in the case of the
computation of Lyapunov exponents. Thus, the adopted com-
putational scheme is required to have good stability, high
precision and small cost of computational time. Because
these general relativistic curved spacetimes correspond to
Hamiltonian systems with the symplectic nature, a low order
symplectic integration scheme which respects the symplec-
tic nature of Hamiltonian dynamics [12–14] is naturally
regarded to as the most appropriate solver. The Hamiltonian
systems for these curved spacetimes are not separable to the
phase-space variables, therefore, no explicit symplectic inte-
grators but implicit (or implicit and explicit combined) sym-
plectic integrators [15–22] can be available in general. How-
ever, the implicit methods are more computationally demand-
ing than the explicit ones at same order. To solve this problem,
Wang et al. [23–25] split the Hamiltonians of Schwarzschild,
Reissner-Nordström and Reissner-Nordström -(anti)-de Sit-
ter spacetime geometries into four, five and six integrable
separable parts, whose analytical solutions are explicit func-
tions of proper time. In this way, explicit symplectic inte-
grators were designed for the spacetime geometries. Unfor-
tunately, the dragging effects of the spacetime by a rotating
black hole make the Hamiltonian of Kerr spacetime have no
desired splitting form similar to the Hamiltonian splitting
form of Schwarzschild spacetime, and then lead to the dif-
ficulty in the construction of explicit symplectic integrators.
This obstacle was successfully overcame by the introduction
of time transformations of Mikkola [26] to the Hamiltonian
of Kerr spacetime geometry. The obtained time-transformed
Hamiltonian exists a desired splitting, and explicit symplec-
tic integrators were established by Wu et al. [27]. At this
point, a note is worthwhile on such time-transformed explicit
symplectic integrators. They are constant time-steps in the
new coordinate time and the algorithmic symplecticity can
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be maintained. Although they are variant time-steps in the
proper coordinate time, the varying proper time-steps have
only small differences and are approximately constant when
the new integration time is not very long. In other words,
the time transformation plays a main role in obtaining sep-
arable time-transformed Hamiltonian for the use of explicit
symplectic integrators rather than adaptive time step control.

One of the main purposes in this paper is to explore
whether the proposed explicit symplectic integrators for the
Kerr spacetime geometry work well in the simulation of the
chaotic motion of charged particles near the Kerr black hole
immersed in a weak, asymptotically uniform external mag-
netic field. As another important purpose, we apply the estab-
lished second-order explicit symplectic method to check
the result of Takahashi and Koyama [11] on the dragging
effects weakening the chaotic properties, and to survey how
a small change of the magnetic parameter affects a dynami-
cal transition from order to chaos. Besides the Poincaré map
method, the methods of Lyapunov exponents [28,29] and
fast Lyapunov indicators [30–32] are employed to distin-
guish between regular and chaotic orbits and to quantify the
dependence of transition from regular to chaotic dynamics
on a certain parameter.

For the sake of our purposes, we introduce a Hamilto-
nian system for the description of charged particles mov-
ing around the Kerr black hole surrounded with an external
magnetic field in Sect. 2. A second-order time-transformed
explicit symplectic algorithm is constructed and used to
quantify the transition from regular to chaotic dynamics by
means of different methods finding chaos in Sect. 3. Finally,
the main results are concluded in Sect. 4.

2 Kerr black hole with external magnetic field

Let us consider a particle with charge q moving around the
Kerr black hole, surrounded by an external asymptotically
uniform magnetic field with strength B. The particle motion
is described by the following Hamiltonian formalism [33]

H = 1

2
gμν(pμ − q Aμ)(pν − q Aν). (1)

Contravariant Kerr metric gμν has nonzero components

gtt = − D

ΛΣ
, gtφ = − 2ar

ΛΣ
= gφt ,

grr = Λ

Σ
, gθθ = 1

Σ
,

gφφ = Σ − 2r

ΛΣ sin2 θ
;

Σ = r2 + a2 cos2 θ, Λ = r2 + a2 − 2r,

D = (r2 + a2)2 − Λa2 sin2 θ.

Aμ is an electromagnetic four-vector potential [33,34]

Aμ = aBξ
μ

(t) + B

2
ξ

μ

(φ), (2)

where ξ
μ

(t) = (1, 0, 0, 0) and ξ
μ

(φ) = (0, 0, 0, 1) are time-
like and spacelike axial Killing vectors. Obviously, the four-
vector potential has two nonzero covariant components

At = aBgtt + B

2
gtφ,

= −aB
[
1 + r

Σ
(sin2 θ − 2)

]
(3)

Aφ = aBgtφ + B

2
gφφ

= B sin2 θ

[
r2 + a2

2
+ a2r

Σ
(sin2 θ − 2)

]
. (4)

The above covariant metric’s components are

gtt = −
(

1 − 2r

Σ

)
, gtφ = −2ar sin2 θ

Σ
= gφt ,

gφφ =
(
r2 + a2 + 2ra2

Σ
sin2 θ

)
sin2 θ.

pμ represents a covariant generalized four-momentum,
determined by the relation

ẋμ = ∂H

∂pμ

= gμν(pν − q Aν). (5)

Note that ẋμ is a derivative of coordinate xμ = (t, r, θ, φ)

with respect to proper time τ , called as a 4-velocity. Equation
(5) is rewritten as

pμ = gμν ẋ
ν + q Aμ. (6)

Because ṗμ = −∂H/∂xμ, pt and pφ are constants of
motion. They are the particle’s energy and angular momen-
tum:

− E = pt = gtt ṫ + gtφφ̇ + q At , (7)

L = pφ = gtφ ṫ + gφφφ̇ + q Aφ. (8)

They have equivalent expressions

ṫ = − f1(E + q At ) − f2(L − q Aφ), (9)

φ̇ = f2(E + q At ) + f3(L − q Aφ), (10)

where

f1 = gφφ

gtt gφφ − g2
tφ

, (11)

f2 = gtφ
gtt gφφ − g2

tφ

, (12)

f3 = gtt
gtt gφφ − g2

tφ

. (13)
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Now, Eq. (1) is rewritten as

H = 1

2
gμν(pμ − q Aμ)(pν − q Aν)

= F + 1

2

Λ

Σ
p2
r + 1

2

p2
θ

Σ
, (14)

where F is a function of r and θ as follows:

F = 1

2
[gtt (E + q At )

2 + gφφ(L − q Aφ)2]
−gtφ(E + q At )(L − q Aφ)

= 1

2
[ f1(E + q At )

2 + f3(L − q Aφ)2]
+ f2(E + q At )(L − q Aφ)

= − D

2ΛΣ
(E + q At )

2 + Σ − 2r

2ΛΣ sin2 θ
(L − q Aφ)2

+ 2ar

ΛΣ
(E + q At )(L − q Aφ). (15)

In Eq. (14), we take the speed of light c and the gravi-
tational constant G as geometrized units, c = G = 1. The
black hole’s mass M is also one unit, M = 1. In practice,
dimensionless operations are given to the related quantities
via a series of scale transformations. That is, r → rM ,
t → tM , τ → τM , a → aM , E → Em, pr → mpr ,
L → mML , pθ → mMpθ , q → mq, B → B/M and
H → m2H , where m denotes the particle’s mass. Hereafter,
we take β = qB. For any rotating black hole in general rel-
ativity, its spin angular momentum always satisfies |a| ≤ 1.

Because the timelike 4-velocity (5) always satisfies the
relation ẋμ ẋμ = −1, the Hamiltonian (14) itself is identical
to a given constant

H = −1

2
. (16)

Besides this value and E and L , other constants do not exist
in the system. Thus, the Hamiltonian is non-integrable.

3 Numerical investigations

Following the work of Wu et al. [27], we establish a second-
order explicit symplectic integrator for a time-transformed
Hamiltonian of the system (14). For comparison, a second-
order implicit and explicit mixed symplectic method is
applied to solve the Hamiltonian (14) in Sect. 3.1. Then,
the explicit symplectic integrator is used to investigate the
dependence of the regular and chaotic dynamics of the time-
transformed Hamiltonian on a certain parameter by means
of several methods finding chaos in Sect. 3.2.

3.1 Numerical integration scheme

Clearly, the Hamiltonian (14) is inseparable to the variables.
Implicit symplectic methods can be applied to it without

doubt. The first term F in Eq. (14) is solved analytically, and
the sum of the second and third terms is solved numerically by
the second-order implicit midpoint symplectic method IM2
[15]. The explicit and implicit solutions compose a second-
order implicit and explicit mixed symplectic integrator for H ,
labeled as IE2. Such a mixed integrators was discussed by
several authors [17–22]. It can save labour compared with the
midpoint rule IM2 directly acting on the whole Hamiltonian
H .

On the other hand, Wu et al. [27] used a time transforma-
tion function

dτ = g(r, θ)dw, g(r, θ) = Σ

r2 (17)

to obtain a time-transformed Hamiltonian to the Kerr geom-
etry. The time-transformed Hamiltonian can be solved by
explicit symplectic integrators. In the present problem, the
time-transformed Hamiltonian is

K = g(H + p0) = Σ

r2 (F + p0) + Λ

2r2 p
2
r + 1

2r2 p
2
θ . (18)

p0 = −H = 1/2 is a momentum with respect to coordinate
q0 = τ . Thus, K is always identical to zero, K = 0. The
time-transformed Hamiltonian is split into five parts

K = K1 + K2 + K3 + K4 + K5, (19)

where the sub-Hamiltonians read

K1 = Σ

r2 (F + p0), (20)

K2 = 1

2
p2
r , (21)

K3 = −1

r
p2
r , (22)

K4 = a2

2r2 p
2
r , (23)

K5 = 1

2r2 p
2
θ . (24)

K1 seems to be the same as that of Wu et al. [27] from
the expressional form, but is unlike that of Wu et al. K2,
K3, K4 and K5 are the same as those of Wu et al. The five
sub-Hamiltonians have analytical solutions that are explicit
functions of the new coordinate time w. Their solutions cor-
respond to operators K̃1, K̃2, K̃3, K̃4 and K̃5. According to
the idea of Wu et al., these operators can compose second-
order explicit symplectic integrator for K :

S2(h) = K̃5

(
h

2

)
◦ K̃4

(
h

2

)
◦ K̃3

(
h

2

)
◦ K̃2

(
h

2

)
◦ K̃1(h)

◦K̃2

(
h

2

)
◦ K̃3

(
h

2

)
◦ K̃4

(
h

2

)
◦ K̃5

(
h

2

)
, (25)

where h represents a new coordinate time-step. The use of
fixed new coordinate time-step maintains the symplecticity
of the algorithms for the time-transformed Hamiltonian K .
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(a)
(b)

Fig. 1 a Hamiltonian errors Δ = K for the explicit symplectic
algorithm S2 and Δ = −H − 1/2 for the second-order implicit and
explicit mixed symplectic method IE2. The parameters are E = 0.995,
L = 4.6, a = 0.5 and β = 0.001. Orbits 1 and 2 have their initial
separations r0 = 11 and 75, respectively. The other initial conditions
are θ = π/2, pr = 0 and pθ > 0 given by Eqs. (14) and (16). h = 1 is

a proper time step for IE2 and a new coordinate time step for S2. Both
algorithms make the errors have no secular drift and remain of the same
order for Orbits 1 and 2. b Poincaré sections on the plane θ = π/2 and
pθ > 0, given by S2. It is clear that Orbit 1 is regular, whereas Orbit 2 is
chaotic

However, the proper time τ takes varying step-sizes. Such
symplectic integrators are adaptive time-steps [26,35,36].
However, the adaptive proper time step control is almost
absent in the present problem because the time transforma-
tion function 1 < g ≤ 1 + 1/r2 ≈ 1 for r � 1. This indi-
cates that the time transformation function mainly provides
the desirable separable time-transformed Hamiltonian.

Based on the numerical results of Wu et al., the second-
order explicit symplectic method S2 performs good compu-
tational efficiency and stabilizing error behavior, compared
with the fourth-order explicit symplectic method S4. Thus,
we focus on the application of S2 to the system (19). For com-
parison, the second-order implicit and explicit mixed sym-
plectic integrator IE2 is applied to H . Let us take the time-step
h = 1. Note that h = 1 denotes a proper time-step for IE2
and a new coordinate time-step for S2. The parameters are
given by E = 0.995, L = 4.6, a = 0.5 and β = 0.001. The
initial conditions are θ = π/2 and pr = 0. The initial sepa-
rations r0 = 11 and 75 are respectively given to Orbits 1 and
2. The initial value of pθ > 0 is determined by Eqs. (14) and
(16). It is shown in Fig. 1a that Hamiltonian errors Δ = K
for the explicit symplectic algorithm S2 and Δ = −H −1/2
for the second-order implicit and explicit mixed symplec-
tic method IE2 remain stable and bounded. Both algorithms
give no explicit error differences to the same orbit. The errors
have the same order for the two orbits. If IE2 is applied to K ,
the results are almost the same as those for the application
of IE2 to H . Although S2 is not explicitly better than IE2
in numerical accuracy, it is in computational efficiency, as
claimed in the work of Wu et al.

It is worth pointing out that IE2 and S2 work in different
time systems. The integration time for IE2 is the proper time

τ = 108. However, the integration time for S2 is the new
coordinate time w = 108. The new coordinate time w = 108

and its corresponding real proper time have no large dif-
ferences. This result is shown clearly in Table 1. In fact,
differences between the solutions of H and those of K are
negligible before the integration time arrives at 105. So are
the differences between the proper times of K and the coor-
dinate times of K . These facts confirm that the time transfor-
mation does not provide adaptive time-steps but a separable
time-transformed Hamiltonian. Of course, these differences
between the solutions of the two systems get slowly large as
the integration time spans 105 and increases. In this case, the
solutions of K at a given proper time are obtained with the
aid of some interpolation method.

In fact, the tested orbits have different dynamical behav-
iors, as shown on Poincaré sections at the plane θ = π/2 and
pθ > 0 in Fig. 1b. The phase-space structure of Orbit 1 is a
torus, regarded as the characteristic of an ordered orbit. How-
ever, the phase-space structure of Orbit 2 has many discrete
points that are randomly filled in an area, regarded as the
characteristic of a chaotic orbit. It can be seen from Fig. 1a
that the performance of S2 (with IE2) is independent of the
regularity and chaoticity of orbits. The phase-space struc-
tures in Fig. 1b are described by S2. They are also given by
IE2.

3.2 Dynamical transition with parameters varying

In what follows, we use the algorithm S2 to trace the orbital
dynamics of the system K . Meantime, methods of Poincaré
sections, Lyapunov exponents and fast Lyapunov indicators
are employed to find chaos.
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Table 1 Solutions for the methods S2 and IE2 solving Orbit 1 in Fig. 1a. The two systems H and K almost have the same solutions in an integration
time of τ = 10000 or w = 10000

w τ r θ pr pθ

H – 1 11.0031 1.5867 7.6213e−3 1.9255

K 1 1 11.0031 1.5867 7.6203e−3 1.9255

H – 10 11.3074 1.7235 7.3287e−2 1.7922

K 10 10.0002 11.3075 1.7235 7.3281e−2 1.7921

H – 102 26.2463 1.9136 0.2041 − 1.0078

K 102 100.0094 26.2473 1.9136 0.2041 − 1.0079

H – 103 126.4088 1.5798 6.3895e−2 − 1.8227

K 103 1000.0118 126.3912 1.5797 6.3868e−2 − 1.8226

H – 104 132.8861 1.5449 − 5.1566e−2 − 3.0532

K 104 10000.1079 132.7308 1.5441 − 5.1730e−2 − 3.0572

H – 105 37.3004 1.1427 − 0.1763 − 1.4168

K 105 100001.0807 33.7413 1.1251 − 0.1827 − 1.2180

H – 106 150.9389 1.6606 1.2518e−2 − 2.0503

K 106 1000011.0250 151.8362 1.6616 − 2.7765e−3 − 2.0940

H – 107 142.0132 1.5745 − 3.5099e−2 − 3.0676

K 107 10000110.1522 110.0560 1.6668 8.0709e−2 − 3.0845

3.2.1 Poincaré sections

It is worth pointing out that the chaoticity of Orbit 2 is due to
the charged particle suffered from the electromagnetic field
interaction. As claimed in the Introduction, the Kerr space-
time without the electromagnetic field interaction holds the
Carter constant as the fourth integral of motion and there-
fore is integrable and nonchaotic. If the electromagnetic field
is included in the Kerr spacetime, then the Carter constant
is no longer present and the dynamics of charged particles
becomes nonintegrable. This nonintegrability is an insuffi-
cient but necessary condition for the occurrence of chaos.
When the electromagnetic field interaction acts as a rela-
tively small perturbation, the gravitational force from the
black hole is a dominant force and the dynamical system
is nearly integrable. In this case, the Kerr spacetime with
the electromagnetic field interaction can exhibit the simi-
lar dynamical features of the Kerr spacetime without the
electromagnetic field interaction. That is to say, no chaos
occurs and all orbits are regular Kolmogorov–Arnold–Moser
(KAM) tori. This result is suitable for the magnetic parame-
ter β = 4 × 10−4 in Fig. 2a. The tori in the perturbed case
unlike those in the unperturbed case are twisted in the shapes;
e.g., Orbit 1 corresponds to a peculiar torus, and Orbit 4 with
initial separation r0 = 110 yields a triangle torus. When
β = 6 × 10−4 in Fig. 2b, the tori are still present, but are
to a large degree different from those for β = 4 × 10−4

in the shapes. There are typical differences of Orbits 1, 2
and 3 between Fig. 2a, b. In particular, Orbit 4 in Fig. 2a is
evolved to a twisted figure-eight orbit with a hyperbolic point

in Fig. 2b due to the electromagnetic field interaction. Such a
hyperbolic point has a stable direction and another unstable
direction, and easily induces chaos. As the electromagnetic
field interaction increases and can generally match with the
black hole’s gravitational force, chaos occurs. The hyperbolic
point causes Orbit 4 to be chaotic for β = 7×10−4 in Fig. 2c.
When the magnetic field strength is further enhanced, e.g.,
β = 8 × 10−4 in Fig. 2d, β = 1 × 10−3 in Fig. 1b and
β = 1.2 × 10−3 in Fig. 2e, chaos becomes stronger and
stronger. Particular for β = 3 × 10−3 in Fig. 2f, chaos is
existent almost everywhere in the whole phase space. In a
word, it can be concluded clearly from Figs. 1b and 2 that an
increase of the magnetic parameter is easier to induce chaos
and enhances the strength of chaos from the global phase-
space structure.

On the other hand, we are also interested in knowing what
the dynamical transition with an increase of the black hole’s
angular momentum a is. To answer this question, we con-
sider some values of a. For a = 0 corresponding to the
Schwarzschild case in Fig. 3a, chaos densely exists almost
everywhere in the whole phase space. This does not mean
that any regular orbits are ruled out. In fact, regular Orbit
2 and black orbit with initial separation r0 = 25 in Fig. 1b
are still ordered in Fig. 3a. Given a = 0.2, chaotic Orbits 1
and 3 in Fig. 3a become regular in Fig. 3b, whereas ordered
Orbit 2 in Fig. 3a becomes chaotic in Fig. 3b. As the spin
frequently increases [e.g., a = 0.5 in Fig. 1b, a = 0.8 in
Fig. 3c and a = 1 in Fig. 3d], the regular region seems to
gradually increase and the chaotic region seems to decrease.
In other words, an increase of a seems to weaken the extent
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Same as Fig. 1b, but for different values of the magnetic parameter β. An increase of β results in strengthening the extent of chaos. Orbit
3 with the initial separation r0 = 60 in panel (d) is weakly chaotic

of chaos from the global phase-space structure. This seems to
support the result of [11] about the black hole spin weaken-
ing the chaotic properties. However, this does not mean that
some individual orbits must be more chaotic as the dragging
effects of the spacetime by a rotating black hole decrease.
For example, Orbit 2 is regular for a = 0, 1 but chaotic for
a = 0.2, 0.5, 0.8.

3.2.2 Fast Lyapunov indicators

Apart from the Poincaré map method, the technique of Lya-
punov exponents is very efficient to detect the onset of chaos
and provides a quantitative measure to chaos. An average
exponential deviation of two nearby orbits in the system K
is measured by the largest Lyapunov exponent

λ = lim
w→∞

1

w
ln

d(w)

d(0)
, (26)

where d(0) and d(w) represent the separations between the
two nearby orbits at times 0 and w, respectively. Precisely
speaking, d(w) is written as

d(w) = [(r2 − r1)
2 + (θ2 − θ1)

2 + (pr2 − pr1)
2

+(pθ2 − pθ1)
2]1/2, (27)

where (r1, θ1, pr1, pθ1) is a set of phase-space variables of
one orbit at time w and (r2, θ2, pr2, pθ2) is a set of phase-
space variables of its nearby orbit. Three points should be
noted. (i) The initial distance d(0) had better be 10−8 in

the double-precision case. (ii) Appropriate renormalizations
to the distance d(w) are required from time to time. (iii)
Although the Lyapunov exponent depends on the choice of
spacetime coordinates, it is very approximate to an invari-
ant Lyapunov exponent because the new coordinate time
w and its corresponding proper time τ are approximately
equal, and the distance d(w) and its corresponding proper
distance are, too. More details about the invariant Lyapunov
exponent were given by Wu and Huang [29] and Wu et al.
[32]. A positive Lyapunov exponent indicates the chaoticity
of a bounded orbit, and zero Lyapunov exponent describes
the regularity of a bounded orbit. This allows us to detect
chaos from order. It is clearly seen from the Lyapunov expo-
nents in Fig. 4a that Orbits 1 and 2 in Fig. 1 are ordered and
chaotic, respectively. Orbit 3 in Fig. 2d seems to be regular
till w = 107 because its Lyapunov exponent like Orbit 1’s
Lyapunov exponent decreases and does not tend to a stabiliz-
ing value. However, the Lyapunov exponent of Orbit 3 unlike
that of Orbit 1 tends to a stabilizing positive value when the
integration time spans from 107 to 108; therefore, Orbit 3 is
chaotic. Because the Lyapunov exponent of Orbit 3 is smaller
than that of Orbit 2, the chaoticity of Orbit 3 is weaker than
that of Orbit 2. The result is consistent with that described
by the method of Poincaré sections in Figs. 1b and 2d.

In general, a long enough integration time is necessary to
obtain a stabilizing value of Lyapunov exponent. In particu-
lar, the chaoticity of Orbit 3 cannot be distinguished from the
regularity of Orbit 1 in terms of Lyapunov exponents until
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(a) (b)

(c) (d)

Fig. 3 Same as Fig. 1b, but for different values of the black hole’s angular momentum a. Here, the magnetic parameter β = 1×10−3. An increase
of a seems to weaken the extent of chaos from the global phase space structure

(a) (b)

Fig. 4 a Lyapunov exponents of three orbits including Orbits 1 and 2
in Fig. 1 and Orbit 3 in Fig. 2d. The Lyapunov exponent (colored red)
of Orbit 2 calculated in the new coordinate time w coincides with that
(colored black) of Orbit 2 computed in the proper time τ . Orbit 1 is
regular, whereas Orbits 2 and 3 show the onset of chaos. b Fast Lya-
punov indicators (FLIs) of the three orbits. The FLI of Orbit 2 reaches

12 when the integration time w = 6 × 105, but is larger than 200 for
the integration time w = 107. Thus, this orbit is strongly chaotic. Weak
chaos of Orbit 3 can be distinguished from regular Orbit 1 in terms of
the growth of FLIs of the two orbits during the integration time w = 107

w = 108. Compared with the method of Lyapunov expo-
nents, the fast Lyapunov indicator (FLI) of Froeschlé and
Lega [31] is based on computations of tangent vectors and

is regarded as a quicker technique to separate chaotic orbits
from regular ones. Wu et al. [32] modified the FLI with tan-
gent vectors as the FLI of two nearby orbits:
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(a) (b)

Fig. 5 Dependence of the values of FLIs on the magnetic parameter β.
The other parameters are E = 0.995, L = 4.6 and a = 0.5. The initial
conditions θ = π/2 and pr = 0 are the same in the two panels, but the

initial values r0 and pθ > 0 are different. For the strong chaotic case,
the integration ends when the FLI reaches 20, whereas the integration
time w = 107 for the two other cases

FL I = log10
d(w)

d(0)
. (28)

Here, d(0) = 10−9 is admissible in the double-precision
case, and a few but not many renormalizations to the distance
d(w) are still necessary to avoid the saturation of orbits. Reg-
ular and chaotic orbits can be identified according to com-
pletely different time rates of growth of FLIs. An exponential
increase of FLI of a bounded with time log10 w indicates the
chaoticity of the orbit; an algebraical increase of FLI of a
bounded with time log10 w indicates the regularity of the
orbit. In other words, if the FLI of a bounded orbit is much
larger than that of another bounded orbit for a given time,
the former orbit is chaotic, but the latter orbit is regular. On
the basis of this point, the properties of orbits in Fig. 4b
can be known easily. Without doubt, Orbit 2 is strongly
chaotic because its FLI arrives at 12 when the integration
time w = 6 × 105, and is larger than 200 when w = 107.
Unlike the Lyapunov exponents, the FLIs are easy to distin-
guish between the regularity of Orbit 1 and the chaoticity of
Orbit 3 when w = 107 because the FLI of Orbit 1 is smaller
than 6, but the FLI of Orbit 3 is 13.5.

As claimed in Ref. [32], the FLI is a good tool to allow us to
identify the transition between different dynamical regimes
with a variation of a certain dynamical parameter. Letting
a = 0.5 be fixed and β run from 0 to 1.5 × 10−3, we trace
the dependence of the dynamical transition on the magnetic
parameter. For a given value β, the integration lasts to the
time w = 107, but it ends if the FLI of some orbit is 20.
There are three areas: regular area with FLIs smaller than
6, weak chaos area with FLIs no less than 6 but no more
than 20 and strong chaos area with FLIs larger than 20.
When β < 0.7 × 10−3, no chaos occurs in Fig. 5a, b. This
is because the magnetic field force to charged particles is
smaller than the black hole gravity to charged particles, as is

mentioned above. β < 0.7 × 10−3 is a regular area of the
magnetic parameter. Chaos will get easier to a large degree as
β increases. When β > 0.8 × 10−3, many values of β corre-
spond to the onset of chaos and many other values indicate the
presence of order in Fig. 5a. In particular, chaos and order are
present in the neighbourhood of β = 1.5 × 10−3. Unlike in
Fig. 5a, all values of β > 1.1×10−3 can induce strong chaos
in Fig. 5b. Of course, few values of the magnetic parameter
correspond to weak chaos in the two panels. In short, the
technique of FLIs and the method of Poincaré sections con-
sistently show that an increase of the magnetic parameter
leads to a strong probability for inducing the occurrence of
chaos and strengthening the extent of chaos.

Figure 6a–d plot the dependence of FLIs on the black
hole spin a when β = 0.001 is fixed. Strong chaos occurs
as a → 0 but no chaos appears as a → 1 for the ini-
tial separation r0 = 40 in Fig. 6a. For the most values of
a ∈ [0.25, 0.65], chaos is absent, too. The transition has
some differences for the initial separation r0 = 60 in Fig. 6b.
Chaos exists when a → 1. However, there is no chaos at the
left end a = 0 and the right end a = 1 in Fig. 6c, d. These
facts show that different combinations of initial conditions
and other dynamical parameters affect the dependence of the
dynamical transition on the black hole spin. Thus, no univer-
sal rule can be given to the relation between the dynamical
transition and the black hole spin.

A notable point is that the aforementioned results are com-
pletely based on mathematical calculations. To justify the
mathematical correctness of the obtained results, we employ
an eighth- and ninth-order Runge–Kutta–Fehlberg integrator
(RKF89) with adaptive step sizes to integrate the system (14)
or (19). This algorithm can provide a machine precision to
the Hamiltonians if roundoff errors are ignored. Of course,
the higher-order method is more expensive in computations
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(a) (b)

(c) (d)

Fig. 6 Same as Fig. 5, but the dependence of the values of FLIs on the black hole spin a. Here, β = 0.001

than the second-order explicit scheme S2. Consequently, the
results obtained from RKF89 are consistent with those given
by S2. It is very perfect and idealized to make a comparison of
the obtained theoretical results with real observational results
in the relativistic astrophysics. However, the known obser-
vational results have not sufficiently supported the study of
chaotic behavior of black holes. There are two main reasons.
On one hand, it costs a long enough time span to distinguish
between the regular and chaotic two cases. The time for the
determination of chaos is 107M or 108M from the numerical
computations. Nevertheless, it is impossibly available from
the observations. On the other hand, it costs massive data to
detect chaos from order. This fact can be seen clearly from
the numerical simulations. However, only a small amount of
observational data are given. Because of these reasons, the
study of chaos and islands of regularity of black holes in all
the known publications such as [3–11,23–25,33] and [34]
is restricted to the theoretically numerical results rather than
the real observational results.

4 Conclusion

Because of the dragging effects of the spacetime by a rotating
black hole, the Kerr geometry is complicated. In spite of this,

it is integrable and nonchaotic. When an external magnetic
field is included, the dynamics of charged particles becomes
more complicated. In fact, it is nonintegrable and possibly
chaotic. We find that the second-order explicit symplectic
integrator for the integrable Kerr spacetime proposed in the
work of Wu et al. [27] is still suited for the present nonin-
tegrable problem. The successful application of the explicit
symplectic integrator is owing to the contribution of the time
transformation given in Eq. (17). The theoretical analysis and
numerical results show that such a time transformation does
not mainly bring adaptive proper time steps but a separable
time-transformed Hamiltonian, which satisfies a need for the
use of explicit symplectic integrator. The explicit symplectic
algorithm performs good performance in numerical accuracy,
stable error behaviour and computational cost regardless of
whether tested orbits are regular or chaotic.

The explicit symplectic integrator is very suitable for
studying the long-term qualitative evolution of orbits of
charged particles moving around the magnetized Kerr black
hole. The electromagnetic force interactions are mainly
responsible for the nonintegrability and chaoticity of charged
particle dynamics. In some circumstances, charged particle
motions can be chaotic. An increase of the dragging effects of
the spacetime seems to weaken the extent of chaos from the
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global phase-space structure on Poincaré sections. However,
an increase of the magnetic parameter results in strengthening
the chaotic properties. On the other hand, the fast Lyapunov
indicators by scanning the black hole spin parameter show
that no universal rule can be given to the dependence of the
transition between different dynamical regimes on the black
hole spin. This is because the transition is dependent on not
only the spin parameter but also different combinations of
initial conditions and other parameters. Unlike an increase
of the black hole spin, that of the magnetic parameter may
much easily induce chaos.
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