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Abstract We study numerical solutions corresponding to
spherically symmetric gravitating electroweak monopole and
magnetically charged black holes of the Einstein–Weinberg–
Salam theory. The gravitating electroweak monopole solu-
tions are quite identical to the gravitating monopole solu-
tion in SU(2) Einstein–Yang–Mills–Higgs theory, but with
distinctive characteristics. We also found solutions repre-
senting radially excited monopole, which has no counterpart
in flat space. Both of these solutions exist up to a maxi-
mal gravitational coupling before they cease to exist. Lastly
we also report on magnetically charged non-Abelian black
holes solutions that is closely related to the regular monopole
solutions, which represents counterexample to the ‘no-hair’
conjecture.

1 Introduction

Since the introduction of Dirac monopole by Dirac [1,2],
magnetic monopole has become a subject that attracts a lot
of interest, both theoretically and experimentally. Since then
the Dirac monopole has been generalized to non-Abelian
monopoles, most notably Wu-Yang monopole in SU(2)
Yang–Mills theory [3–5] and ’t Hooft–Polyakov monopole
in SU(2) Yang–Mills–Higgs (YMH) theory [6–8]. While
the Dirac monopole and Wu-Yang monopole possess infi-
nite energy due to the presence of point singularity in the
solutions, the ’t Hooft–Polyakov monopole possesses finite
energy with no singularity found anywhere. The mass of ’t
Hooft–Polyakov monopole was estimated to be of order 137
Mw, where Mw is the mass of intermediate vector boson.

The coupling of gravity to the SU(2) YMH theory, known
as the SU(2) Einstein–Yang–Mills–Higgs (EYMH) theory
has been shown to possess important solutions [9,10]. These
solutions include globally regular gravitating monopole solu-
tions, radial excitation and magnetically charged black hole
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solutions. For small gravitational coupling, the gravitating
monopole solution emerges smoothly from flat space ’t
Hooft–Polyakov monopole. The (normalized) mass of grav-
itating monopole solution decreases with increasing gravi-
tational coupling and the solution ceases to exist beyond a
maximal value of gravitational coupling. Besides the fun-
damental gravitating monopole there exists radially excited
monopole solution, where the gauge field function of the n-th
excited monopole possess n nodes, and this is different from
the gauge field function of fundamental monopole solution
that decreases monotonically to zero. Having no flat space
counterparts, these excited solutions are related to the glob-
ally regular Bartnik–Mckinnon solutions in SU(2) Einstein–
Yang–Millls (EYM) theory [11]. There also exist magneti-
cally charged EYMH black hole solutions which represent
counterexamples to the ‘no-hair’ conjecture. Distinct from
the embedded Reissner–Nordstrom (RN) black holes with
unit magnetic charge, these black hole solutions emerge from
the regular magnetic monopole solutions when a finite regu-
lar event horizon is imposed. Consequently, they have been
characterized as ‘black holes within magnetic monopoles’.

The SU(2) × U(1) Weinberg-Salam theory has been
shown to possess important topological magnetic mono-
pole solution, known as the electroweak monopole or sim-
ply Cho–Maison monopole [12,13]. As a hybrid between
Dirac monopole and ’t Hooft–Polyakov monopole, the Cho–
Maison monopole describes a real monopole dressed by
the physical W-boson and Higgs field. Although the Cho–
Maison monopole has a singularity at the origin which makes
the energy divergent, it has been shown there are ways to
regularize the energy and estimating the mass at 4–10 TeV
[14–16]. Recently, there is also reports on a more natural way
to regularize the energy, suggesting that the new BPS bound
for the Cho–Maison monopole may not be smaller than 2.98
TeV, more probably 3.75 TeV [17]. As mentioned also in
Ref. [17], the discovery of electroweak monopole should be
interpreted as an important topological test of the standard
model. This makes the experimental detection of electroweak
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monopole an urgent issue after the discovery of Higgs boson.
For this reason experimental detectors around the globe are
actively searching for magnetic monopole [18–24].

Recently gravitationally coupled electroweak mono-pole
solutions in Einstein–Weinberg–Salam (EWS) theory has
also been reported by Cho et al. [25]. Their results con-
firm the existence of globally regular gravitating electroweak
monopole solution, before changes to the magnetically
charged black hole as the Higgs vacuum value approaches to
the Planck scale.

In this paper, we study in more detail the gravitating
electroweak monopole in EWS theory, and report additional
radially excited electroweak monopole solution, as well as
the corresponding ‘black hole within electroweak monopole’
solutions of the EWS theory. Our results therefore confirm
that all solutions found in the SU(2) EYMH theory [9,10]
have their corresponding counterpart in the EWS theory,
but with distinctive functional behaviour. From the physical
point of view, these solutions are very important as Weinberg-
Salam theory itself is a realistic theory.

More recently, there is also report on spherically symmet-
ric magnetic and dyonic black holes with magnetic charge
Q = 2 in the Standard Model and general relativity [26]. The
results is a magnetically charged black hole with mass below
9.3×1035 GeV that possesses a ‘hairy’ cloud of electroweak
gauge and Higgs fields outside the event horizon with 1/Mw
in size. Considering also the dyonic part, it is shown that an
extremal magnetic black hole has a hair mass of 3.6 TeV,
while an extremal dyonic black hole has an additional mass
of q2 × 1.6 GeV for a small electric charge q << 2π/e2.
The hairy dyonic black hole with an integer charge, however
is not stable and can decay into a magnetic one plus charged
fermions. Their work also indicates that a hairy magnetic
black hole can evolve via Hawking radiation into a nearly
extremal one that is cosmologically stable. Our work of mag-
netic black hole in this paper has some differences as well as
similarities with the magnetic black hole in Ref. [26], which
will be discussed in Sect. 5.

2 Einstein–Weinberg–Salam theory

We consider the SU(2)× U(1) EWS action as

S = SG + SM =
∫

LG
√−g d4x +

∫
LM

√−g d4x, (1)

with

LG = R

16πG
, (2)

and

LM = −1

4
Fa

μνF
aμν − ε (φ)

4
fμν f

μν

−
(
D̂μφ

)† (
D̂μφ

)
− λ

2

(
φ†φ − μ2

λ

)2

, (3)

where

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + gεabc Ab

μA
c
ν,

fμν = ∂μBν − ∂νBμ,

D̂μφ =
(

∂μ − ig

2
σ a Aa

μ − ig′

2
Bμ

)
φ, (4)

here φ is the Higgs doublet, Fa
μν and fμν are the gauge field

strengths of SU(2) and U(1) with potentials Aa
μ and Bμ, and

g and g′ are the corresponding coupling constants. Also D̂μ

is the covariant derivative of the SU(2) × U(1) group.
The function ε (φ) in Eq. (3) is a positive dimensionless

function of the Higgs doublet which tends to unity asymptoti-
cally. In general, ε (φ) modifies the permeability of the hyper-
charge U(1) gauge field while retaining the SU(2) x U(1)
gauge symmetry. The term ε serves to regularize the point
singularity that arises from the U(1) part. This is because ε

effectively changes the U (1)Y gauge coupling g′ to the ‘run-
ning’ coupling ḡ′ = g′/

√
ε, and by making ḡ′ infinite at the

origin one can regularize the Cho–Maison monopole. For
more details in the regularization, Refs. [14–17] are referred.

To construct globally regular gravitating monopole and
magnetically charged black hole, we consider the spherically
symmetric Schwarzschild-like metric

ds2 = −N 2A dt2 + 1

A
dr2 + r2dθ2 + r2 sin2 θ dϕ2, (5)

with

A = 1 − 2Gm

r
, (6)

and the following electrically neutral ansatz for the matter
functions,

φ = H√
2

ξ, ξ = i

[
sin θ

2 e−iϕ

− cos θ
2

]
,

Aa
0 = 0, Aa

i = − (1 − K )

gr
ϕ̂a θ̂i + (1 − K )

gr
θ̂a ϕ̂i ,

B0 = 0, Bi = − 1

g′
(1 − cos θ)

r sin θ
ϕ̂i , (7)

where N , A, m, K and H are all functions of r . In magnetic
ansatz (7), the spatial spherical coordinate unit vectors are

r̂i = sin θ cos ϕ δi1 + sin θ sin ϕ δi2 + cos θ δi3,

θ̂i = cos θ cos ϕ δi1 + cos θ sin ϕ δi2 − sin θ δi3,

ϕ̂i = − sin ϕ δi1 + cos ϕ δi2, (8)
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whereas the isospin coordinate unit vectors with ϕ-winding
number n = 1, 2, 3, ... are

r̂ a = sin θ cos nϕ δa1 + sin θ sin nϕ δa2 + cos θ δa3 ,

θ̂a = cos θ cos nϕ δa1 + cos θ sin nϕ δa2 − sin θ δa3 ,

ϕ̂a = − sin nϕ δa1 + cos nϕ δa2 . (9)

The value of n is set to one in this paper.
The t t and rr components of the Einstein equations then

yield the equations for the metric functions

N ′

N
= 4πGr

(
2K ′2

g2r2 + H ′2
)

, (10)

and

m′ = 4πr2

{
A

(
K ′2

g2r2 + H ′2

2

)
+

(
K 2 − 1

)2

2g2r4

+ λ

8

(
H2 − 2μ2

λ

)2

+ ε

2g′2r4 + 1

4

H2K 2

r2

}
. (11)

The equations for the matter functions read

AK ′′ +
(
A′ + A

N ′

N

)
K ′ +

(
1 − K 2

)
K

r2 − 1

4
g2H2K = 0,

(12)

and

AH ′′ +
(
A′ + 2A

r
+ A

N ′

N

)
H ′ − HK 2

2r2

−λ

2

(
H2 − 2μ2

λ

)
H − 1

2g′2r4

dε (H)

dH
= 0. (13)

Prime denotes derivative with respect to r , and H0 =√
2μ/

√
λ is the Higgs vacuum expectation value.

To facilitate numerical calculation, we consider the fol-
lowing dimensionless coordinate x and dimensionless mass
function m̃,

x = Mwr, m̃ = GMwm, (14)

with Mw = 1
2gH0. The Higgs field is also rescaled as H →

H0H and the solutions then depend on coupling constant α

and β, where

α2 = 4πGH2
0 , β2 = λ

g2 , (15)

as well as the Weinberg angle θw.
With Eqs. (14)–(15), the full set of Eqs. (10)–(13) trans-

form into

1

N

dN

dx
= α2x

[
1

2x2

(
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dx

)2
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dx

)2
]

,
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dx
= α2x2

{
A

2

[
1

2x2

(
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)2

+
(
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dx

)2
]

+
(
K 2 − 1

)2

8x4 + β2

2

(
H2 − 1

)2 + ε

8ω2x4 + H2K 2

4x2

}
,

A
d2K

dx2 +
(
d A

dx
+ A

N

dN

dx

)
dK

dx

+
(
1 − K 2

)
K

x2 − H2K = 0,

A
d2H

dx2 +
(
d A

dx
+ 2A

x
+ A

N

dN

dx

)
dH

dx
− HK 2

2x2

−2β2 (
H2 − 1

)
H − 1

8ω2x4

dε

dH
= 0, (16)

where ω = g′/g = tan θw. Here we consider physical value
of ω = 0.53574546 by adopting sin2 θw = 0.22301323
[27]. Since MH = √

2μ and Mw = 1
2gH0, we may also put

Eq. (15) in the form of

α = √
4πGH0 = √

4π
H0

Mp
, β = 1

2

MH

Mw
, (17)

where by adopting physical values of MH = 125.10 GeV
and Mw = 80.379 GeV, the physical value of β used here is
0.77818833.

Notice that the first equation of Eq. (16) depends explicitly
on K and H . Hence substituting the first equation of Eq. (16)
into the third and fourth equation of Eq. (16), we need to solve
only three equations for K , H and A. Obviously solutions to
Eq. (16) depend on the permeability function ε. In the paper
by Cho et al. [25], the form of ε = (H/H0)

8 is considered.
In a recent paper [17], ε = (H/H0)

p is also possible. For
the sake of simplicity, we considered p = 8 in this paper.
However we would like to point out that all values of p =
1, 2, 3, ...8 seem to produce convergent numerical results.

As our solution is electrically neutral, following Ref. [28],
we consider a special solutions of Eq. (16), which is the
embedded RN solutions with mass m̃∞ and magnetic charge
near unity,

m̃(x) = m̃∞ − α2

8x

(
1 + ε

ω2

)
, N (x) = 1,

K (x) = 0, H(x) = 1, (18)

where we will consider ε = 1 as H = 1. The corresponding
extremal RN solutions then possess horizon xH, where

xH = m̃∞ = α

2

√
1 + 1

ω2 . (19)

From Eqs. (14) and (18), the ADM mass can be defined as

mADM = 4πH2
0

Mw

m̃∞
α2 , (20)

where one can readily read off the value for ADM mass from
the plot of m̃∞/α2 versus α.
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3 Gravitating monopole

We first consider globally regular gravitating monopole solu-
tions. Asymptotic flatness requires that the metric functions
N and A both approach a constant at spatial infinity. We here
adopt

N (∞) = 1, m̃(∞) = m̃∞. (21)

This means that m̃(∞) which determines the total mass of
the monopole is not constrained. The matter functions also
approach constant asymptotically as

K (∞) = 0, H(∞) = 1. (22)

On the other hand, regularity at the origin requires

K (0) = 1, H(0) = 0, m̃(0) = 0. (23)

In SU(2) EYMH theory [9,10], the gravitating monopole
solution emerges smoothly from the flat space ’t Hooft–
Polyakov monopole (α = 0) before becoming a limiting
solution at some critical value of gravitational coupling αc
and ceases to exist beyond αc. One generally expects that
αc should be the maximal value of gravitational coupling,
αmax. However, results shows that αmax does not correspond
to the zero of the metric function (in their notation μ) when
β = 0. The tabulated value is αmax = 1.403 corresponds to
μmin = 0.03. From αmax instead the branch of solution bends
backward, up to the critical coupling constant αc before the
zero for μmin is formed and the solution becomes limiting
solution (when αc = 1.386, μmin = 8.07 × 10−9). In gen-
eral, the (normalized) mass of gravitating monopole solu-
tion decreases with increasing gravitational coupling until
the maximal gravitational coupling αmax = 1.403.

Our results in EWS theory are plotted in Fig. 1. The
metric function A(x) starts to develop a pronounced min-
imal value (Amin) with increasing α from α = 0 up to a
maximal value αmax, indicating that gravitating Cho–Maison
monopole emerges smoothly from the flat space Cho–Maison
monopole. The value of Amin decreases from one to zero at
αmax where the branch of solution becomes a black hole
and ceases to exist. In our solutions, αmax always corre-
sponds to the lowest value of Amin (αmax = 1.814 for
Amin = 3.2992 × 10−6). In other words, αmax = αc in EWS
theory. We have tried to search for possible lower value of
Amin by considering the coupling constant α bending back-
wards but the results for Amin is always higher than the lowest
Amin at αmax = 1.814. These results are tabulated in Table 1
(the numerical method used in this paper is different to that
of [9,10]).

Of course the existence of αmax > αc in EYMH theory has
been observed for β up to 0.7 [9,10]. It is most profound when
β = 0, where αmax = 1.403 (for μmin = 0.035) and αc =
1.386 (for μmin = 8.07 × 10−9). When β = 0.7, αmax =
1.26027253 (for μmin = 0.035) and αc = 1.2602718 (for

Fig. 1 Functions of A(x), K (x) and H(x) versus x of the fundamen-
tal gravitating electroweak monopole with physical β and Weinberg
angle for α = 0.6 (blue), 1.0, 1.3, 1.5, 1.7 and 1.814 (red). Dashed line
indicates non-gravitating monopole

Table 1 Table of Amin for selected values of α near αmax for radial
excitation (r.e.) and gravitating monopole (g.m.)

α Amin(r.e.) Amin(g.m.)

1.53 2.5783 × 10−4 0.1849

1.54 1.8504 × 10−4 0.1771

1.55 1.2296 × 10−4 0.1694

1.56 7.2356 × 10−5 0.1617

1.57 1.2173 × 10−5 0.1540

1.58 6.7480 × 10−6 0.1464

1.584 5.4718 × 10−6 0.1434

1.76 – 0.0243

1.77 – 0.0188

1.78 – 0.0137

1.79 – 0.0089

1.80 – 0.0045

1.81 – 8.2190 × 10−4

1.814 – 3.2992 × 10−6

μmin = 8.07 × 10−9). In this case, if large β is considered
in EYMH theory, one should get αmax ≈ αc. This has been
further confirmed in Refs. [29,30]. Then question arises if
the non-existence of αmax > αc in EWS theory might due to
higher value of β considered (β = 0.77818833).
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For the above reason, we first compute the gravitating
monopole solutions when β = 0.77818833 in EYMH theory.
Our numerical results shows that even for β = 0.77818833,
the solutions possess phenomena of αmax > αc, where
αmax = 1.2203 for Amin = 1.6388 × 10−5 and αc = 1.2123
for Amin = 1.2211 × 10−5. For the sake of comparison,
we also compute gravitating Cho–Maison monopole solu-
tion when β → 0. Results again show that in EWS theory
αmax always correspond to lowest value of the metric func-
tion A(x). This confirms that the non-existence of αmax > αc
is a generic feature of EWS theory. However we are not inter-
ested for β → 0 in EWS theory since it is not physical.

In general, our results of gravitating Cho–Maison
monopole are quite identical to the gravitating ’t Hooft–
Polyakov monopole in SU(2) EYMH theory except for the
non-existence of ‘backward bending’ in α (or αmax > αc).
Hence our results can be viewed as having distinctive char-
acteristics compared to that in EYMH theory, though both
approach their respective limiting solutions at some specific
value of gravitational coupling. Moreover, contrary to grav-
itating monopole in EYMH theory, results in EWS theory
describes a genuine gravitating Cho–Maison monopole turn-
ing into a black hole.

4 Radially excited monopole

For EYMH theory, besides the branch of fundamental grav-
itating monopole solution, there exist branches of radially
excited monopole solutions. While the gauge field function
of the fundamental monopole solution decreases monotoni-
cally to zero, this is not the case for radially excited solutions.
In general, gauge field function of the n-th excited monopole
solutions develop n minimum node before tending to zero
at spatial infinity. Similar to fundamental monopole solu-
tion, radially excited monopole solutions also exist below
some maximal value of the gravitational constant α. How-
ever, they have no flat space counterpart as α → 0, but tends
to the Bartnik–Mckinnon solution of EYM theory .

In EWS theory, we also observed similar radially excited
monopole solution, as shown in Fig. 2. The gauge field func-
tion K (x) of the (1st) radially excited solution does not
decrease monotonically to zero, it develops a minimum node
before approaches zero at spatial infinity. These radial exci-
tations only exist below some maximal value of the gravita-
tional constant, αmax = 1.584. They similarly do not have
flat space counterpart as α → 0. Following the gravitating
monopole in previous section, we also tabulate the value of
Amin for values of α near αmax in Table 1. We again observed
no ‘backward-bending’ of the solution branch as reported in
Refs. [9,10].

Following Ref. [28], we plot the normalized mass m̃∞/α2

versus α for radial excitation in Fig. 3 (included in the same

Fig. 2 Functions of A(x) , K (x) and H(x) versus x of the radial exci-
tation for α = 0.2 (blue), 0.6, 1.0, 1.25 and 1.5 (red), for physical β

and Weinberg angle

graph is the corresponding plot for fundamental gravitating
monopole). As expected, the radial excitation branch pos-
sesses higher normalized mass than that of the fundamen-
tal gravitating monopole. In the limit of α → 0, the nor-
malized mass of the fundamental gravitating monopole con-
verges to a finite value (0.7197), whereas that of radial exci-
tation diverges to infinity. This coincides with the statement
that radial excitation does not have flat space counterpart.
Both massess of the fundamental monopole and radial exci-
tation decrease with α, but mass of the gravitating monopole
decreases monotonically while there is an inverse α fall-off
for radial excitation.

At αmax, the radial excitation (as well as the fundamental
monopole solutions) reaches their limiting functions but do
not bifurcate with the branch of extremal RN solution. This
is different from the results reported in Ref. [28], where at
αmax the fundamental monopole approaches its limiting solu-
tion and bifurcate with the branch of extremal RN solution
(bottom plot of Fig. 3). The non-bifurcation originates from
Eq. (18). Recall that in EYMH theory, the metric function of
the embedded RN solution with magnetic charge P reads

A = 1 − 2m̃∞
x

+ α2

x2 P
2. (24)
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Eq. (18) gives metric function of the embedded RN solution
of EWS theory as

A = 1 − 2m̃∞
x

+ α2

x2

1

4

(
1 + ε

ω2

)
. (25)

From Eq. (25), evaluating the third term by considering ε = 1
and ω = 0.53574546, we find that the magnetic charge of
embedded RN solution is 1.0588, which is slightly higher
than one and this contributes to the non-bifurcation (note
that the gravitating monopole or radially excited monopole
has unit magnetic charge).

Hence in general our results of radially excited Cho–
Maison monopole are quite identical to the radially excited
monopole in SU(2) EYMH theory. There are of course some
key differences. First, radial excitation (as well as gravitating
monopole) does not bifurcate with the branch of extremal RN
solution at αmax. We expect that a different (more realistic)
form of ε will contribute to the bifurcation, but that remains
to be answered in future investigation. Second, for a given
α, the mass of radial excitation (or gravitating monopole) in
EWS theory is always lower than the mass of their counter-
part in EYMH theory. This is evident from Fig. 3.

5 Black hole solutions

In SU(2) EMYH theory, there exist special kind of non-
Abelian black hole solutions which is different from the
embedded RN black hole solutions. These black hole solu-
tions emerge from the globally regular monopole solution
when a finite regular event horizon is imposed. Character-
ized as ‘black hole within magnetic monopole’, these solu-
tions provide counter-examples to the ‘no hair’ conjecture.
With increasing horizon radius xH, depending on the value of
gravitational coupling α, these non-Abelian black hole either
merges with Abelian RN black hole at some critical horizon
radius (for 0 < α < 1

2

√
3), or ceases to exist at some maxi-

mal value of xH when a second zero of the metric function is
formed (for 1

2

√
3 < α < αmax, where αmax = 1.403). These

behaviours of SU(2) EYMH black hole solutions are shown
in Fig. 4.

We now consider such non-Abelian black hole solutions
in EWS theory. Consider again asymptotic flatness, they sat-
isfy the same boundary conditions at spatial infinity as the
globally regular solutions, Eqs. (21) and (22). The existence
of a regular event horizon requires

m̃ (xH) = xH

2
, N (xH) < ∞. (26)

The matter functions must also satisfy

d A

dx

dK

dx

∣∣∣∣
xH

= K

(
H2 − 1 − K 2

x2

)∣∣∣∣
xH

, (27)

Fig. 3 Top: Plot of m̃∞/α2 versus α for gravitating monopole (red),
radial excitation (blue) and the extremal RN solution (dashed line) of the
EWS theory. Bottom: Plot of m̃∞/α2 versus α for gravitating monopole
(blue), radial excitation (red) and the extremal RN solution (dashed line)
of the EYMH theory when β = 0. Green line represents the gravitating
monopole when β = 0.77818833

Fig. 4 The (normalized) mass of the EYMH black hole solutions
m̃∞/α2 as a function of horizon radius xH for α = 0.6, 0.7, 0.86 and
1.0, together with the corresponding RN solutions with unit magnetic
charge (dashed lines)

and

d A

dx

dH

dx

∣∣∣∣
xH

= H

(
K 2

2x2 + 2β2
(
H2 − 1

)
+ 1

2ω2x4H

dε

dH

)∣∣∣∣
xH

.

(28)

In particular, for a given coupling constant α, black
hole solutions corresponding to the fundamental mono-pole
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Fig. 5 Black hole in electroweak monopole solutions with α =
1.6, physical β and Weinberg angle, plotted as a function of x for
xH = 0.1111 (blue), 0.2195, 0.3333, 0.4286, 0.5152, 0.6129, 0.7241
and 0.8519 (red). Dashed lines indicate regular gravitating solutions

branch emerge from globally regular solution in the limit
xH → 0 and persist up with increasing horizon radius. We
first consider the case of relatively large α (α = 1.6). With
increasing horizon radius, limiting solution is reached at a
maximal value of horizon radius (xH = 0.8519), where a
second zero of A(x) is formed, Fig. 5. For smaller values of
α, black hole solutions do not reach limiting solutions but
merge with the corresponding non-extremal RN solutions.
This behaviour which is reminiscent of SU(2) EYMH theory
can be understood clearer from Fig. 6, which shows the black
hole solutions emerge from globally regular monopole solu-
tions in the limit of xH → 0 and persist up with increasing xH.
For 0 < α < 1.576, the black hole solutions slowly converge
to the corresponding non-extremal RN solutions at large hori-
zon radius. For 1.576 < α < αmax where αmax = 1.814,
they however become limiting solution at maximal value of
horizon radius.

To better illustrate the solutions, following Refs. [9,10],
we also present the ‘phase diagram’ of black hole solution
in EWS theory for physical β and Weinberg angle in Fig. 7.
Non-Abelian black hole exist in regions of the (α, xH) plane
denoted by I and II. RN black holes as given by Eq. (18),
exist in regions II and III, whereas in region IV there are no
non-Abelian black hole solutions. The boundary xH = 0 of
region I corresponds to the regular gravitating solutions. The
cut-off point of α = 1.576 as mentioned above is seen as

Fig. 6 The (normalized) mass of the EWS black hole solutions m̃∞/α2

as a function of the horizon radius xH for the values of coupling constant
α = 1.0, 1.2, 1.4 and 1.6, together with the corresponding RN solutions
with unit magnetic charge (dashed lines)

separating region I into Ia and Ib. Approaching the curve AB
in region Ia, the solutions develop double zero in A(x) and
they become limiting solutions. In region Ib, the non-Abelian
solutions extend into region II and slowly merge into the RN
solution with increasing xH.

Hence the ‘black hole in Cho–Maison monopole’ of EWS
theory again have identical features as the ‘black hole in
monopole’ of SU(2) EYMH theory [9,10,28]. There are how-
ever some key differences:

1. First (for small α) the EWS black hole solutions do not
merge with the corresponding RN solution at critical hori-
zon radius, but only converges towards them slowly with
increasing horizon radius. The EYMH black hole solu-
tions merge with the non-extremal RN solutions at critical
value of the horizon radius [28].

2. Second, for region of (α, xH) plane where non-Abelian
black hole and RN black holes coexist, the mass of non-
Abelian black hole solution is always lower than the
mass of RN solution (mn.a./mRN ≤ 1). The case in
EYMH theory is however more complicated. The region
of coexistence for non-Abelian black hole and RN solu-
tion exists for 0 < α < 0.77. Here the mass of non-
Abelian black hole is smaller than the mass of RN solu-
tion (mn.a./mRN < 1), but there also exists small region
where mn.a./mRN > 1. Then for 0.77 < α < 0.866,
non-Abelian black hole solution joints smoothly with
the RN solution at critical value of horizon radius. For
0.866 < α < 1.403, non-Abelian black hole solu-
tion reach limiting solution at maximal value of horizon
radius, and does not bifurcate with the RN solution.

3. Third, for a given horizon radius xH, the mass of black
hole in EWS theory always has a lower value than its
counterpart in EYMH theory.

As mentioned in Sect. 1, there is also report on hairy mag-
netic and dyonic black holes in the Standard Model and gen-
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Fig. 7 ‘Phase diagram’ of black hole solution in Einstein–Weinberg–
Salam theory for physical β and Weinberg angle

eral relativity [26]. Our work of magnetic black hole here
share some differences and similarities with the magnetic
black hole in Ref. [26]. First, our Lagrangian (3) contains
a positive dimensionless modification term ε(φ) that modi-
fies the permeability of the hypercharge U(1) field but still
retains SU(2) × U(1) symmetry of the effective Lagrangian.
The Lagrangian in Ref. [26] is without this modification
term. Both our results and that of Ref. [26] shows a mag-
netically charged black hole that possesses ‘hairy’ cloud of
electroweak gauge and Higgs function outside the event hori-
zon. However it seems there is a difference in the behaviour of
the metric functions. Referring to Fig. 5, our metric function
A increases from zero at the horizon radius, then develops a
local maximum and minimum before tending to unity asymp-
totically. The corresponding metric function A in Ref. [26]
(denoted as N in the paper) increases monotonically from
zero at the horizon radius to unity asymptotically.

To further investigate, we plot the functions of K , H, A
and N for selected values of α = 0.2, 0.6, 1.0 and 1.4 at
a fixed horizon radius xH = 0.1765 in Fig. 8. When α is
relatively large, the function A has a more pronounced local
minimum and local maximum before approaches one asymp-
totically. When α becomes smaller, A becomes a monotonic
increasing function from A = 0 at the horizon radius to
A = 1 at spatial infinity. The function N also generally shows
a minimum and maximum outside the event horizon before
approaching unity asymptotically. As α becomes smaller, so
are the maximum/minimum and function N becomes approx-
imately one at small α = 0.2. This coincides with the fact that
the corresponding metric function N in Ref. [26] (denoted
as P) is mentioned to have value of approximately one. This
confirms that the magnetic black hole in Ref. [26] is analo-
gous to the specific case of small α of our general spectrum of
magnetic black hole solutions. Referring to the ‘phase dia-
gram’ of magnetically charged black hole as in Fig. 7, the
results of Ref. [26] is located in region Ib (southwest corner
of the plot).

Fig. 8 Plot of function A(x), N (x) versus x (top) and K (x), H(x)
versus x (bottom) of the EWS magnetically charged black hole for
α = 0.2 (red), 0.6 (green), 1.0 (blue) and 1.4 (black) at fixed horizon
radius xH = 0.1765

There are also some concerns that the black hole will
evolve via the emission of Hawking radiation, leading to
the evaporation of black hole and exposing the singularity.
However, again take note that our Lagrangian in Eq. (3) has
a modification term ε (φ) that serves to regularize the sin-
gularity originating from the U(1) part, so that the magnetic
monopole here is a regularized finite energy object rather than
a singular one. Even for the case of pure gravitationally cou-
pled Weinberg Salam model without the modification term
[26], result shows that a hairy black hole will evolve into an
(nearly) extremal RN black hole via emission of Hawking
radiation. We believe that our magnetic black hole will fol-
low similar path as in Ref. [26]. The details will be reported
in a future work.

6 Conclusions

We have studied numerical solutions of the Einstein–
Weinberg–Salam theory corresponding to: (1) fundamen-
tal gravitating electroweak monopole; (2) radially excited
electroweak monopole; and (3) non-Abelian magnetically
charged black hole.

The fundamental monopole solution emerges from the
corresponding flat space monopole solution and extends
smoothly up to a maximal value of the gravitational coupling
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Table 2 The numerical estimate of ADM mass for gravitating
monopole (g.m.) and radial excitation (r.e.) with ε = (H/H0)

8 and
physical value of β

α ADM mass (r.e.) ADM mass (g.m.)

0 ∞ 6.821 TeV

0.20 25.555 TeV 6.802 TeV

0.40 15.058 TeV 6.747 TeV

0.60 11.320 TeV 6.656 TeV

0.80 9.344 TeV 6.529 TeV

1.00 8.089 TeV 6.367 TeV

1.20 7.198 TeV 6.171 TeV

1.40 6.506 TeV 5.942 TeV

1.584 Black hole 5.702 TeV

1.80 – 5.369 TeV

1.814 – Black hole

constant αmax, before they collapse into a black hole. Besides
the fundamental monopole branch, there exist branches of
radially excited monopole solution, which also exist up to a
maximal value of α. However there are no flat space coun-
terpart in the limit of α → 0 for the radially excited solution.

Both the normalized mass of fundamental monopole and
radial excitation decrease with α, with radial excitation
branch possesses higher mass than that of the fundamental
gravitating monopole. In the limit of α → 0, the normalized
mass of the fundamental monopole branch converges to a
finite value (0.7197), indicating the ADM mass of approx-
imately 6.821 TeV. On the other hand the normalized mass
of radial excitation diverges to infinity as α → 0, indicating
that the radial excitation does not have flat space counter-
part. We summarize the numerical estimate of ADM mass
for gravitating monopole and radial excitation for selected
values of α in Table 2.

For the ‘black hole in electroweak monopole’, black hole
solutions corresponding to fundamental monopole branch
emerge from globally regular solution in the limit xH → 0
and persist up differently (depending on coupling constant
α) with increasing horizon radius. For a relatively large α

(1.576 < α < 1.814), limiting solution is reached at a max-
imal value of horizon radius, e.g. xH(max) = 0.8519 for
α = 1.6. However for smaller values of α (0 < α < 1.576),
black hole solutions do not reach limiting solutions but slowly
merge into the corresponding non-extremal RN solutions at
large horizon radius.

Despite mostly identical, our results in Einstein–Weinberg–
Salam theory have some key differences compared to that of
EYMH theory: (1) Our solutions of gravitating monopole
and radial excitation do not exhibit the phenomena of
‘backward-bending’ in coupling constant α as observed in
Refs. [9,10,28]. The maximal value αmax always correspond
to the lowest value of the metric function A and the solutions

become limiting solutions at αmax. (2) At αmax, both the (nor-
malized) mass of gravitating monopole and radial excitation
reaches minimum value but do not bifurcate with the branch
of extremal RN solution respectively. (3) The non-Abelian
black hole solution converges slowly into the corresponding
non-extremal RN solutions with large horizon radius. At a
given horizon radius where the non-Abelian black hole and
RN solution coexist, the mass of non-Abelian black hole is
always lower than the mass of RN solution. (4) At a given
α, the mass of gravitating monopole (or radial excitation) in
EWS theory always has lower value than its counterpart in
EYMH theory. Similarly, at a given horizon radius xH, the
mass of black hole in EWS theory is also lower than the
mass of its counterpart in EYMH theory. This suggests that
the configurations in EWS theory are more stable.

In SU(2) EYMH theory, gravitating monopoles and mag-
netically charged black holes can be generalized to gravi-
tating dyons and dyonic black holes [28]. Hence our results
here clearly have the dyonic generalization simply by switch-
ing on the time component of the gauge potential. We will
discuss these findings in a separate paper.
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