
Eur. Phys. J. C (2021) 81:648
https://doi.org/10.1140/epjc/s10052-021-09460-7

Regular Article - Theoretical Physics

Einstein–Yang–Mills theory: gauge invariant charges and
linearization instability

Emel Altas1,a, Ercan Kilicarslan2,b, Bayram Tekin3,c

1 Department of Physics, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
2 Department of Mathematics, Usak University, 64200 Usak, Turkey
3 Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

Received: 2 June 2021 / Accepted: 15 July 2021 / Published online: 23 July 2021
© The Author(s) 2021

Abstract We construct the gauge-invariant electric and
magnetic charges in Yang–Mills theory coupled to cosmo-
logical general relativity (or any other geometric gravity),
extending the flat spacetime construction of Abbott and Deser
(Phys Lett B 116:259–263, 1982). For non-vanishing back-
ground gauge fields, the charges receive non-trivial contri-
bution from the gravity part. In addition, we study the con-
straints on the first order perturbation theory and establish
the conditions for linearization instability: that is the validity
of the first order perturbation theory.

1 Introduction

In 3+1 dimensions neither General Relativity [2] nor pure
Yang–Mills theory [3,4] has solitonic solutions. However,
the coupled theory, the Einstein–Yang–Mills theory, with or
without a cosmological constant has various solitons. See [5]
for the first noted example in asymptotically flat spacetimes,
and [6] for asymptotically anti-de Sitter spacetimes. See [7]
for monopole type solutions in R2 gravity.

In this work we will work out the conserved charges of
this coupled system and also find the constraints in the lin-
earization instability of the first order perturbation theory.
Conserved quantities in asymptotically flat spacetimes for
pure gravity was famously given in [8,9], which was gener-
alized to asymptotically (anti) de Sitter spacetimes in [10] and
generalized to higher derivative gravity theories in [11,12].
On the other hand, conserved gauge invariant charges in pure
Yang–Mills theory was constructed by Abbott and Deser [1].
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Here in the first part of this work we follow the Abbott-
Deser construction for a dynamical curved background with
generically an asymptotically (A)dS behavior.

The second problem we study is the question of the valid-
ity of the perturbation theory in the Einstein–Yang–Mills sys-
tem. It is well known [13–23] that not all perturbative solu-
tions come from the linearization of a possible exact solution.
If that happens, one speaks of linearization instability and the
perturbation thus fails. To have a linearization stable theory
the first order perturbative solution must satisfy an integral
constraint. We shall find this for the Einstein–Yang–Mills
theory.

Before we study the Einstein–Yang–Mills system in full
detail, let us give our conventions [24] and recap the flat
space construction [1]. We will work in D = 3 + 1 dimen-
sions exclusively, but the discussion can be extended to other
dimensions with the caveat that both pure Yang–Mills theory
and pure General Relativity might have solitonic solutions for
D > 3 + 1. We use the mostly plus signature (− + ++) and
assume a compact Lie group G with the Lie algebra G given
as

[Ta, Tb] = iCabcT
c, (1)

with Cabc real. In the adjoint representation we write
(T Ad

a )b c := −iCb
ca ; and defining (Dμψ)n := ∂μψn −

i Aa
μ(Ta)knψk in flat spacetime we have

L = −1

4
Fa

μνF
μν
a + Lmatter (ψ, Dμψ), (2)

with the field equations

∂μF
μν
a = −J ν

a . (3)

The current

Jμ
a = −Fμν

c Ccab Abν − i
∂Lmatter

∂(Dμψ)n
(Ta)

k
nψk, (4)
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is partially conserved

∂μ J
μ
a = 0, (5)

and hence yields the conserved charges

Qa :=
ˆ

J 0
a d

3x . (6)

But these charges are gauge-covariant, not gauge-invariant.
To get gauge-invariant charges, one can employ the AD
technique [10] which is based on the following observation.
Assuming the Yang-Mills coupling gYM = 1, without loss
of generality, we can define the matrix valued gauge field and
the field strength

Âμ := T a Aa
μ, F̂μν := T aFa

μν. (7)

Let the unitary matrix Û be in the same representation as T a ,
then the gauge transformed gauge field reads

ÂÛ
μ = Âμ + Û−1DμÛ , (8)

with the gauge-covariant derivative defined as

DμÛ := ∇μÛ + [ Âμ, Û ], (9)

and the field strength transforms as usual

F̂Û
μν = Û−1 F̂μνÛ . (10)

Under an infinitesimal transformation Û ∼= 1 + ξ̂ , one gets

δ Âμ = Dμξ̂ , δ F̂μν = [F̂μν, ξ̂ ]. (11)

So clearly, Dμξ̂ = 0 defines the symmetries of a “back-

ground” field Âμ which we shall denote as ¯̂Aμ from now
on; clearly [F̂μν, ξ̂ ] = 0. In the space of gauge fields, ξ̂ acts
like a Killing vector akin to the spacetime Killing vectors
δgμν = ∇μXν + ∇νXμ = 0. As there can be more than one
solution to Dμξ̂ = 0, we shall put an index to denote the ele-
ments of the symmetry set and write as ξ̂ s , which is exactly
the correct matrix that will turn Jμ

a to be a gauge invariant
current since Tr(ξ̂ Ĵμ) is gauge-invariant for Ĵμ = JaμT

a . But
this procedure requires a choice of background gauge-field
and hence it must be done carefully. Instead of repeating the
full details of the flat space construction, we now study the
curved space version which also includes the flat space as a
special case.

2 Construction of the conserved charges in the
Einstein–Yang–Mills system

The following construction works for any gravity theory
based on Riemannian geometry with a Lagrangian of the
generic form, but for the sake of concreteness, we shall

take the gravity sector to be given as the Einstein–Hilbert
Lagrangian. The coupled action reads

S =
ˆ

M
d4x

√−g

(
R − 2�

2κ
− 1

4
Fa

μνF
μν
a + Lmatter

)
. (12)

As long as the Yang–Mills and the matter fields decay suffi-
ciently fast at spatial infinity, the conserved energy, momen-
tum, angular momentum as constructed, say in [1,11,12] are
intact, so we will not repeat these well-established discus-
sions here, but work out the Yang–Mills part in some detail.
Variation with respect to Âμ yields

Dμ F̂
μν = ∇μ F̂

μν + [ Âμ, F̂μν] = Ĵ ν, (13)

where

F̂μν := ∇μ Âν − ∇ν Âμ + [ Âμ, Âν]. (14)

The field strength satisfies the Bianchi identity

Dα F̂μν + Dμ F̂να + Dν F̂αμ = 0, (15)

and with the normalization Tr(T aT b) = 1
2δab, one has in

components

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + Ca

bc A
b
μA

c
ν . (16)

Using (13) we will construct the gauge-invariant electric
field, while the magnetic charge will follow from the Bianchi
identity. Assume now that for Ĵ ν = 0, the background matrix
¯̂Aμ solves the source-free equation D̄μ

¯̂Fμν = 0; and we
expand the field equations about this solution as1

Âμ = ¯̂Aμ + λâμ + λ2

2
b̂μ + O(λ3), (17)

where λ is a small parameter. As we are in a dynamical
background spacetime, the metric also receives perturbations
which we shall write as

gμν = ḡμν + τhμν + τ 2

2
kμν + O(τ 3), (18)

with τ being a different small parameter. Under these expan-
sions, the full equation split as

Dμ F̂
μν = D̄μ

¯̂Fμν + (Dμ F̂
μν)(1) + (Dμ F̂

μν)(2) + · · · = J ν ,

(19)

and by assumption the zeroth order term vanishes in the
absence of a source

D̄μ
¯̂Fμν = ∇̄μ

¯̂Fμν + [ ¯̂Aμ,
¯̂Fμν] = 0. (20)

1 Please see Appendix-A for an extended discussion of the expansion
of the field equations up to and including second order in perturbation
theory.
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At the linear order one finds

(Dμ F̂
μν)(1) = D̄μ

(
λ(D̄μâν − D̄ν âμ) + τ(

¯̂Fσμhν
σ

− ¯̂Fσνhμ
σ + 1

2
¯̂Fμνh)

)
+ λ[âμ,

¯̂Fμν]. (21)

Similarly, the second order expansion, (Dμ F̂μν)(2), reads

(Dμ F̂
μν)(2) = D̄μ

(
(F̂μν)(2) + τ

2
(F̂μν)(1)h

+τ 2

4
¯̂Fμν(k − hρσ h

ρσ )

)

−τ

2
hD̄μ(F̂μν)(1) + λ[âμ, (F̂μν)(1)]

+λ2

2
[b̂μ,

¯̂Fμν]. (22)

Moving all the higher order terms to the right-hand side, we
can recast (19) as

(Dμ F̂
μν)(1) = Ĵ ν, (23)

where the current

Ĵ ν := Ĵ ν − (Dμ F̂
μν)(2) − · · · (24)

is composed of the matter current as well as all the terms
beyond the linear one coming from the expansion. The crucial
point is that this current is covariantly conserved with respect
to the background connection explicitly, D̄νĴ ν = 0.2

Finally, substituting (21) in (23), one finds

D̄μ

(
λ(D̄μâν − D̄ν âμ) + τ(

¯̂Fσμhν
σ − ¯̂Fσνhμ

σ + 1

2
¯̂Fμνh)

)

+λ[âμ,
¯̂Fμν ] = Ĵ ν . (25)

Covariantly conserved current does not immediately yield a
conserved charge; to get a partially conserved current, we
appeal to the symmetries of the background gauge field as
discussed in the previous section. So we assume the exis-
tence of some (but at least one) background gauge covariant

matrices ¯̂
ξ s such that

D̄μ
¯̂
ξ s = ∇̄μ

¯̂
ξ s + [ ¯̂Aμ,

¯̂
ξ s] = 0, (26)

which yields
[
D̄ν, D̄μ

] ¯̂
ξ s = 0 = [ ¯̂Fνμ,

¯̂
ξ s]. Since D̄νĴ ν =

0 and D̄ν
¯̂
ξ s = 0, we can write

√−ḡ D̄νTr( ¯̂ξ sĴ ν) = √−ḡ∇̄νTr( ¯̂ξ sĴ ν)

= ∂ν

(√−ḡTr( ¯̂ξ sĴ ν)
)

= 0, (27)

2 To see the direct computation for the conservation of the current see
Appendix B.

which can be used to express the conserved electric charges3

for each background gauge symmetry as:

Qs
E := 1

4π

ˆ

�

d3x
√

γ̄ Tr( ¯̂ξ sĴ 0), (28)

where we assumed that the four dimensional spacetime M
is diffeomorphic to � ×R and γ̄ denotes the induced metric
on the spatial hypersurface. Using the explicit form of the
current and employing the Stokes’ theorem, one arrives at

Qs
E = 1

4π

ˆ

∂�

d2x
√

β̄σiTr
( ¯̂
ξ s

(
λ(D̄i â0 − D̄0âi )

+τ

( ¯̂F0i h0
0 + ¯̂Fki h0

k + ¯̂F0khik + h

2
¯̂Fi0

)))
, (29)

where β̄ is the two dimensional induced metric on the bound-
ary of the hypersurface and σi is its unit one form. Observe
that if the background gauge field is chosen to be pure gauge
or zero, then the order τ term in the charge expression van-
ishes and the gauge-invariant electric charges have the same
form as their flat spacetime versions [1], while generically
gravity contributes in a nontrivial way.

Magnetic charge discussion follows similarly but now one
employs the Bianchi identity which can be written with the
help of the dual of the field strength as

Dμ
� F̂μν = 0, (30)

where � F̂μν := 1
2
√−g

εμνρσ F̂ρσ . More explicitly the identity
can be written as

1

2
√−g

εμνρσ
(
∂μ F̂ρσ + [ Âμ, F̂ρσ ]

)
= 0, (31)

which is the same as the expression in the flat spacetime case.

So, expanding the gauge field about a background ¯̂Aμ, and
the metric tensor about ḡμν one arrives at

�̄Ĵ ν = D̄μ
�(F̂μν)(1) + λ[âμ, �̄ ¯̂Fμν], (32)

with the linear part of the dual field strength given as
�(F̂μν)(1) = 1

2
√−ḡ

ε̄μνρσ λ(D̄ρ âσ − D̄σ âρ) and the back-

ground dual field as �̄ ¯̂Fμν = 1
2
√−ḡ

ε̄μνρσ (D̄ρ
¯̂Aσ − D̄σ

¯̂Aρ).
Then the conserved magnetic charges can be written as

Qs
M = 1

4π

ˆ

∂�

d2x σi Tr
(
ξ̄ s �̄(Fi0)(1)

)
, (33)

which has the same form as its flat space version [1]. The
magnetic charges are topological: as can be seen from com-
paring equations (29) and (33) the metric

√
β̄ does not explic-

itly appear in (33). Instead the Hodge dual appears which just

3 For the details of the calculation see Appendix C.
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is used to define the magnetic field. Hence we can equiva-
lently express (33) as follows

QM = 1

4π

ˆ

∂Σ

d2x σi B
(s)i ,

where

B(s)i = Tr(ξ̄ (s) ∗̄(Fi0)(1)).

3 Linearization instability

In nonlinear theories, there are some cases for which the
first order perturbation theory is constrained at the second
order. When this happens, one speaks of the theory hav-
ing a linearization instability about the zeroth order (or the
background solution). This topic is rather extensive: see [13–
17,19–22]; and for a relevant review of the literature we
would like to refer the reader to the recent PhD thesis [23],
where the issue is elaborated in sufficient detail. Here let us
study the linearization instability issue in the Gravity-Yang–
Mills system. [Einstein gravity can be taken as a concrete
example, but generic gravity theories can exhibit nontrivial
linearization instability behavior as discussed in [21,22].] We
first assume a spacetime with noncompact hypersurfaces and
at the end concentrate on the case of compact hypersurfaces
without a boundary. Let us go back to the Yang-Mills equa-
tion with J ν = 0, expand again up to second order in the
gauge-field and the metric perturbation to get

(D̄μ
¯̂Fμν) · ( ¯̂A, ḡ) + (

DμF
μν

)(1) · (â, h)

+ (
DμF

μν
)(1) · (b̂, k) + (

DμF
μν

)(2) · (â2, h2, âh) + · · · = 0,

(34)

where the center dot notation means, for example,
(
DμFμν

)(1)

operator is evaluated at the first order expansion of the gauge
field and the metric tensor (â, h). By assumption, we have

(D̄μ F̄μν)·( ¯̂A, ḡ) = 0, which together with the gravity sector,
determine the background solutions ( Āμ, ḡμν) up to gauge
degrees of freedom, of course.

Similarly, by assumption, we have
(
DμFμν

)(1) · (â, h) =
0, which together with the linearized part of the gravity sec-
tor, determine the linearized solutions (âμ, hμν), again up to
gauge transformations. So the second order terms are deter-
mined from the equation
(
DμF

μν
)(1) · (b̂, k) + (

DμF
μν

)(2) · (â2, h2, âh) = 0,

(35)

which basically says that once (âμ, hμν) are found from the

linearized equations, − (
DμFμν

)(2) · (â2, h2, âh) acts like a

source term for the second order perturbations (b̂μ, kμν). If

this happens then the first order perturbation theory is intact
and improvable and moreover, linearized solutions obtained
from the linearized equations can come from the linearization
of some exact solutions. Please see the diagram in [21] that
depicts this commumativity.

So the necessary and sufficient condition for lineariza-
tion stability is that (35) should not constrain the first order
solutions (âμ, hμν) and it should determine the second order
solutions (b̂μ, kμν) up to gauge transformations. But clearly
this is very hard to check for all linear solutions of the theory,
so in what follows let us find a weaker (necessary) condition.
This condition will be in the form of an integral whose purely
gravitational analog is called the Taub charge [25] and see
the following recent discussion [26]. From (35), we have
ˆ

�

d3x
√

γ̄ Tr
( ¯̂
ξ s(Dμ F̂

μ0)(1) · (b̂, k)

+¯̂
ξ s(Dμ F̂

μ0)(2) · (â2, h2, âh)
)

= 0. (36)

The first term in the integrand is of the same form as the

first order term
(
DμFμ0

)(1) · (â, h), albeit now evaluated at
the second order fields instead of the first order ones. So,
obviously this piece can be written as a boundary term as
(29) with the substitution (â, h) → (b̂, k).

The second term in the integrand requires more work, it
is not clear at all if it can be written as a boundary integral.
Nevertheless, to write some parts of (Dμ F̂μ0)(2)·(â2, h2, âh)

as a boundary term, we use the explicit form of the second
order expansion (22):

(Dμ F̂
μν)(2) · (â2, h2, âh) = D̄μ

(
(F̂μν)(2) + τ

2
(F̂μν)(1)h

+τ 2

4
¯̂Fμν(k − hρσ h

ρσ )

)
− τ

2
hD̄μ(F̂μν)(1)

+λ[âμ, (F̂μν)(1)] + λ2

2
[b̂μ,

¯̂Fμν], (37)

where

(F̂μν)(2) = λ2

2

(
D̄μb̂ν − D̄ν b̂μ + 2

[
âμ, âν

])

+τλ
(
hνσ (D̄σ â

μ − D̄μâσ ) + hμσ (D̄ν âσ − D̄σ â
ν)

)

+τ 2

2

( ¯̂Fμσ (2hνλhλσ − kν
σ )

− ¯̂Fνσ (2hμλhλσ − kμ
σ ) + 2 ¯̂Fσρh

μσ hνρ
)

. (38)

Inserting this expression into (37) obtains

(
DμF

μν
)(2) · (â2, h2, âh) = D̄μX̂μν

−τ

2
hD̄μ(F̂μν)(1) + λ[âμ, (F̂μν)(1)], (39)

where we have introduced an antisymmetric field, X̂μν , to
express the result in a more compact form. Direct calculation
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yields

X̂μν = τ

2
(F̂μν)(1)h + λ2 [

âμ, âν
] − τ 2

4
¯̂Fμνhρσ h

ρσ

+ τ 2
( ¯̂Fμσ hνλhλσ − ¯̂Fνσ hμλhλσ + ¯̂Fσρh

μσ hνρ
)

+ τλ
(
hνσ (D̄σ â

μ − D̄μâσ ) + hμσ (D̄ν âσ − D̄σ â
ν)

)
.

(40)

Then from (39), one finds

Tr
( ¯̂
ξ s(Dμ F̂

μ0)(2) · (â2, h2, âh)
)

= ∇̄iTr
(
ξ̄ sX̂ i0

)

−τ

2
Tr

( ¯̂
ξ sh D̄i (F̂

i0)(1)
)

+ λTr
( ¯̂
ξ s[âi , (F̂ i0)(1)]

)
. (41)

Since Tr
( ¯̂
ξ s[âi , (F̂ i0)(1)]) = Tr

([(F̂ i0)(1),
¯̂
ξ s]âi

)
, we have

ˆ

�

d3x
√

γ̄ Tr
( ¯̂
ξ s(Dμ F̂

μ0)(2) · (â2, h2, âh)
)

=
ˆ

�

d3x ∂i

(√
γ̄ Tr

( ¯̂
ξ sX̂ i0))

+ λ

ˆ

�

d3x
√

γ̄ Tr
(
[(F̂ i0)(1),

¯̂
ξ s]âi

)

− τ

2

ˆ

�

d3x
√

γ̄ Tr
( ¯̂
ξ sh D̄i (F̂

i0)(1)
)

. (42)

If we use the first order equation

D̄i (F̂
i0)(1) = τ

2
D̄i

(
h ¯̂Fi0) + λ[âi , ¯̂Fi0], (43)

Equation (42) reduces to

ˆ

�

d3x
√

γ̄ Tr
( ¯̂
ξ s(Dμ F̂

μ0)(2) · (â2, h2, âh)
)

=
ˆ

�

d3x ∂i

(√
γ̄ Tr

( ¯̂
ξ sX̂ i0))

+ λ

ˆ

�

d3x
√

γ̄ Tr
(
[(F̂ i0)(1),

¯̂
ξ s]ai

)

− τ 2

8

ˆ

�

d3x ∂i

(√
γ̂ Tr

( ¯̂
ξ sh2 ¯̂Fi0)) . (44)

So from (36) we arrive at

λ

ˆ

�

d3x
√

γ̄ Tr
(
[(F̂ i0)(1),

¯̂
ξ s]ai

)
=

ˆ
∂�

d2x
√

β̄I, (45)

where we knowI from (36) and (44) explicitly so we need not
depict it again. Consider now the case for which all the fields
decay sufficiently fast, such that the boundary term on the
right-hand side vanishes, or the case when the hyperspace

is compact without a boundary (∂� = 0), then we get an
integral constraint in the bulk for the linearized solutions:ˆ

�

d3x
√

γ̄ Tr
(
[(F̂ i0)(1),

¯̂
ξ s]âi

)
= 0, (46)

which reads explicitly asˆ

�

d3x
√

γ̄ Tr
(
[D̄i â0 − D̄0âi , ¯̂

ξ s]âi
)

= 0. (47)

This is not satisfied for generic solutions. Hence in a space-
time for closed hypersurfaces, the theory is generically lin-
earization unstable.

4 Conclusions

We have constructed the gauge-invariant conserved electric
and magnetic charges in Yang–Mills theory in a dynamical
curved background generalizing the flat spacetime construc-
tion of Abbott–Deser [1]. Electric charges arise from the field
equations, while the magnetic charges arise from the Bianchi
identity. The crucial ingredient is the symmetry of the back-
ground gauge field that solves the curved space Yang–Mills
equation. For the gravity part one can take any geometric
theory of gravity based on the Riemannian geometry, but
to be concrete we chose the cosmological General Relativ-
ity. To be able to define the electric and magnetic charges,
besides the mentioned symmetry of the background gauge
field, as defined by δξ Aμ = D̄μξ = 0, one also needs a
time-like Killing vector for the spacetime which we assumed.
Our results in curved spacetime reduces to the flat spacetime
expressions in the correct limit.

We have also studied the linearization instability issue
in the Gravity-Yang–Mills theory and established a second
order integral constraint that must be satisfied by any solution
of linearized Yang–Mills theory in a spacetime with closed
(compact without boundary) spatial hypersurfaces. We have
not discussed the linearization instability in the gravity sector
as it was recently done in [21] and described in great detail
in the thesis [23].
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Appendix A: First and second order expansions of the
field equations

Here, we consider the expansion of the Yang–Mills fields and
equations about the background quantities, the background
metric and background gauge field, up to the cubic terms.
While the first order terms will be used to construct the con-
served charges, the quadratic terms will give us the integral
constraint on solutions of the linearized equations.

Let us start with the gauge field and assume that it can be

expanded about the background field ¯̂Aμ up to the third order
terms as

Âμ = ¯̂Aμ + λâμ + λ2

2
b̂μ. (48)

Here λ denotes the expansion parameter, âμ and b̂μ are the
first and the second order expansions respectively. The back-

ground gauge field ¯̂Aμ satisfies the background field equa-
tions without a source

D̄μ
¯̂Fμν = ∇̄μ

¯̂Fμν + [ ¯̂Aμ,
¯̂Fμν] = 0. (49)

We express the expansion of a generic tensor field T about
its background value T̄ as

T = T̄ + (T )(1) + (T )(2) + · · · , (50)

where (T )(1) denotes the linearized T tensor and (T )(2)

denotes the second order expansion of it. For example, explic-
itly the field strength is expanded as

F̂μν = ¯̂Fμν + (F̂μν)
(1) + (F̂μν)

(2) + · · · (51)

up to the third order. Assuming a Riemann connection, we
have

F̂μν = ∂μ Âν − ∂ν Âμ + [ Âμ, Âν]. (52)

The decomposition of the field strength at first order reads

(F̂μν)
(1) = λ(D̄μâν − D̄ν âμ), (53)

and at second order one arrives at

(F̂μν)
(2) = λ2

2

(
D̄μb̂ν − D̄ν b̂μ + 2[âμ, âν]

)
. (54)

Now we can compute the expansion of F̂μν . For this pur-
pose, we use perturbation of the spacetime metric about a

background metric ḡμν

gμν = ḡμν + τhμν + τ 2

2
kμν, (55)

and its inverse

gμν = ḡμν − τhμν + τ 2

2

(
2hμσ hν

σ − kμν
)
. (56)

The field strength with upper indices, F̂μν = gμσ gνρ F̂σρ , at
the first order yields

(F̂μν)(1) = λ(D̄μâν − D̄ν âμ) + τ(
¯̂Fσμhν

σ − ¯̂Fσνhμ
σ ),

(57)

which at second order reads

(F̂μν)(2) = λ2

2

(
D̄μb̂ν − D̄ν b̂μ + 2

[
âμ, âν

])

+τλ
(
hνσ (D̄σ â

μ − D̄μâσ ) + hμσ (D̄ν âσ − D̄σ â
ν)

)

+τ 2

2

( ¯̂Fμσ (2hνλhλσ − kν
σ ) − ¯̂Fνσ (2hμλhλσ

−kμ
σ ) + 2 ¯̂Fσρh

μσ hνρ
)

. (58)

Now we can expand Dμ F̂μν . Using

Dμ F̂
μν = ∂μ F̂

μν + �μ
μσ F̂

σν + [ Âμ, F̂μν] (59)

together with the previous expressions one obtains

(Dμ F̂
μν)(1) = D̄μ

(
λ(D̄μâν − D̄ν âμ) + τ(

¯̂Fσμhν
σ

− ¯̂Fσνhμ
σ ) + τ

2
¯̂Fμνh

)
+ λ[âμ,

¯̂Fμν], (60)

where h = ḡμνhμν . Similarly, the second order expansion
gives us the following

(Dμ F̂
μν)(2) = D̄μ

(
(F̂μν)(2) + τ

2
(F̂μν)(1)h + τ 2

4
¯̂Fμν(k − hρσ h

ρσ )

)

− τ

2
hD̄μ(F̂μν)(1) + λ[âμ, (F̂μν)(1)] + λ2

2
[b̂μ,

¯̂Fμν ],
(61)

with k = ḡμνkμν . In order to construct the conserved charges
of the theory, we will not use the explicit form of the second
order expansion. But this result will become important in
linearization instability discussion. The field equations are
expanded as

Dμ F̂
μν = D̄μ

¯̂Fμν + (Dμ F̂
μν)(1) + (Dμ F̂

μν)(2) + · · · = Ĵ ν

(62)

where D̄μ
¯̂Fμν = 0 by assumption. We put all the higher

order terms to the right hand side of the equation and define
a new current

Ĵ ν := Ĵ ν − (Dμ F̂
μν)(2) − · · · . (63)
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Then we express the linearized field equations as

(Dμ F̂
μν)(1) = Ĵ ν . (64)

Substituting (60) in the last equation, one finds

D̄μ

(
λ(D̄μâν − D̄ν âμ) + τ(

¯̂Fσμhν
σ − ¯̂Fσνhμ

σ ) + τ

2
¯̂Fμνh

)

+λ[âμ,
¯̂Fμν ] = Ĵ ν . (65)

Using the last equation one can prove the conservation of the
new current Ĵ ν .

Appendix B: conservation of the new current

For the consistency of the construction, the new current have
to be conserved. To prove the conservation let us consider an
antisymmetric rank two tensor, say Xμν . We first calculate the
commutator

[
D̄ν, D̄μ

]
Xμν to make the construction easier.

Explicitly we write

[D̄ν, D̄μ]Xμν = D̄ν D̄μX
μν − D̄μ D̄νX

μν, (66)

which yields

[D̄ν, D̄μ]Xμν = [∇̄ν, ∇̄μ]Xμν + [∇̄ν
¯̂Aμ − ∇̄μ

¯̂Aν, X
μν]

+[ ¯̂Aν, [ ¯̂Aμ, Xμν]] − [ ¯̂Aμ, [ ¯̂Aν, X
μν]],

(67)

where [∇̄ν, ∇̄μ]Xμν = 0. Using the Jacobi identity, the last
two terms in the last equation yields

[ ¯̂Aν, [ ¯̂Aμ, Xμν]] − [ ¯̂Aμ, [ ¯̂Aν, X
μν]]

= −[Xμν, [ ¯̂Aν,
¯̂Aμ]]. (68)

Then Eq. (67) reduces to

[D̄ν , D̄μ]Xμν = [∇̄ν
¯̂Aμ − ∇̄μ

¯̂Aν , X
μν ] − [Xμν, [ ¯̂Aν ,

¯̂Aμ]].
(69)

Since ∇̄ν
¯̂Aμ −∇̄μ

¯̂Aν = ¯̂Fνμ −[ ¯̂Aν,
¯̂Aμ], one can re-express

the commutator as

[D̄ν, D̄μ]Xμν = [ ¯̂Fνμ, Xμν]. (70)

Due to antisymmetry of the tensor field Xμν , the last expres-
sion also yields the following identity

D̄ν D̄μX
μν = 1

2
[ ¯̂Fνμ, Xμν]. (71)

For the special case Xμν = F̂μν , one has

D̄ν D̄μ F̂
μν = 1

2
[ ¯̂Fνμ, F̂μν] = 0. (72)

Note that D̄νĴ ν includes these type of terms and the above
identities will be useful when we prove the conservation of
the new current. From Eq. (65), we write

D̄ν Ĵ ν = D̄ν D̄μ

(
λ(D̄μâν − D̄ν âμ)

+τ(
¯̂Fσμhν

σ − ¯̂Fσνhμ
σ ) + τ

2
¯̂Fμνh

)
+ λD̄ν [âμ,

¯̂Fμν ]. (73)

Using the identity (71) it can be rewritten as

D̄ν Ĵ ν = λ

2
[D̄μâν − D̄ν âμ,

¯̂Fμν ] + τ

2
[ ¯̂Fσμhν

σ − ¯̂Fσνhμ
σ ,

¯̂Fμν ]

+ τ

4
h[ ¯̂Fμν,

¯̂Fμν ] + λ[D̄ν âμ,
¯̂Fμν ],

(74)

and then it becomes

D̄νĴ ν = λ[D̄μâν,
¯̂Fμν] + τhν

σ [ ¯̂Fσμ,
¯̂Fμν]

+τ

4
h[ ¯̂Fμν,

¯̂Fμν] + λ[D̄ν âμ,
¯̂Fμν]. (75)

The first and the last term on the right vanish from the anti-
symmetry of the indices. Also we have proved the vanishing
of the third term in Eq. (72). There remains the second term
only

D̄νĴ ν = τhν
σ [ ¯̂Fσμ,

¯̂Fμν]. (76)

Renaming the indices ν and σ , vanishing of this term is obvi-
ous. So, one ends up with D̄νĴ ν = 0, which is the expected
result.

5 Appendix C: definition of the conserved charges

Using the expressions D̄νĴ ν = 0 and D̄ν
¯̂
ξ s = 0, we can

write

D̄ν(
¯̂
ξ sĴ ν) = 0 = ∇̄ν(

¯̂
ξ sĴ ν) + [ ¯̂Aν,

¯̂
ξ sĴ ν]. (77)

But we need a quantity which is conserved in the ordinary
sense instead of the covariant conservation. Following the
flat spacetime case we write

D̄νTr( ¯̂ξ sĴ ν) = ∇̄νTr( ¯̂ξ sĴ ν) + [ ¯̂Aν, Tr( ¯̂ξ sĴ ν)] = 0, (78)

where [ ¯̂Aν, Tr( ¯̂ξ sĴ ν)] = 0 and so we have

D̄νTr( ¯̂ξ sĴ ν) = ∇̄νTr( ¯̂ξ sĴ ν) = 0. (79)

Multiplying with
√−ḡ and using

√−ḡ∇̄νXν = ∂ν

(√−ḡXν
)

we express
√−ḡ D̄νTr( ¯̂ξ sĴ ν) = √−ḡ∇̄νTr( ¯̂ξ sĴ ν)

= ∂ν

(√−ḡTr( ¯̂ξ sĴ ν)
)

, (80)
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from which we can define the total charges as

Qs := 1

4π

ˆ
d4x ∂0

(√−ḡTr( ¯̂ξ sĴ 0)
)

. (81)

Using the Stokes theorem this can be written as

Qs := 1

4π

ˆ
d3x

√
γ̄ Tr( ¯̂ξ sĴ 0). (82)

Note that γ̄ denotes the induced metric on the hypersurface.
Using the explicit form of the linearized field equations Ĵ 0

reads

Ĵ 0 = D̄i

(
λ(D̄i â0 − D̄0âi ) + τ

( ¯̂F0i h0
0 + ¯̂Fki h0

k + ¯̂F0khik

+h

2
¯̂Fi0

))
+ λ[âi , ¯̂Fi0]. (83)

We have

Tr
( ¯̂
ξ s[âi , ¯̂Fi0]

)
= Tr

(
[ ¯̂ξ s, ¯̂Fi0]âi

)
= 0, (84)

where the first equality comes form the cyclic property of

trace and the second one is obtained from [D̄μ, D̄ν] ¯̂ξ s = 0.
Then inserting (83) in Eq. (82), the conserved charges can be
written as

Qs := 1

4π

ˆ
d3x

√
γ̄ TrD̄i

( ¯̂
ξ s

(
λ(D̄i â0 − D̄0âi )

+τ(
¯̂F0i h0

0 + ¯̂Fki h0
k + ¯̂F0khik + h

2
¯̂Fi0)

))
. (85)

To be able to use the Stokes theorem again, we need to convert
the background gauge covariant derivative to the tensorial
covariant derivative. The gauge covariant derivative and trace
commute with each other. So we can express

4πQs :=
ˆ

d3x
√

γ̄ ∇̄iTr
( ¯̂
ξ s

(
λ(D̄i â0 − D̄0âi )

+τ(
¯̂F0i h0

0 + ¯̂Fki h0
k + ¯̂F0khik + h

2
¯̂Fi0)

))

+
ˆ

d3x
√

γ̄
[ ¯̂Ai , Tr

( ¯̂
ξ s

(
λ(D̄i â0 − D̄0âi )

+τ(
¯̂F0i h0

0 + ¯̂Fki h0
k + ¯̂F0khik + h

2
¯̂Fi0)

))]
,

(86)

where the terms in the second line of the last equation vanish
automatically. Then we arrive at

Qs := 1

4π

ˆ
d3x ∂i

{√
γ̄ Tr

( ¯̂
ξ s

(
λ(D̄i â0 − D̄0âi )

+τ(
¯̂F0i h0

0 + ¯̂Fki h0
k + ¯̂F0khik + h

2
¯̂Fi0)

))}
. (87)

After applying the Stokes theorem one more time the last
equation yields the following expression for the conserved

charges

Qs := 1

4π

ˆ
d2x

√
β̄σ̄iTr

( ¯̂
ξ s

(
λ(D̄i â0 − D̄0âi )

+τ(
¯̂F0i h0

0 + ¯̂Fki h0
k + ¯̂F0khik + h

2
¯̂Fi0)

))
. (88)

Here β̄ denotes the two dimensional induced metric on the
boundary of the hypersurface and σ̄i is its unit one form.
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