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Abstract The motion of photons around black holes deter-
mines the shape of shadow and match the ringdown proper-
ties of a perturbed black hole. Observations of shadows and
ringdown waveforms will reveal the nature of black holes.
In this paper, we study the motion of photons in a general
parametrized metric beyond the Kerr hypothesis. We inves-
tigated the radius and frequency of the photon circular orbits
on the equatorial plane and obtained fitted formula with var-
ied parameters. The Lyapunov exponent which connects to
the decay rate of the ringdown amplitude is also calculated.
We also analyzed the shape of shadow with full parameters
of the generally axisymmetric metric. Our results imply the
potential constraint on black hole parameters by combining
the Event Horizon Telescope and gravitational wave obser-
vations in the future.

1 Introduction

One of the main problems of gravity theories is to test the
theory in strong field regime with high accuracy. However,
the LIGO-Virgo experiments on gravitational wave obser-
vation [1–3] and observation of black hole shadow image
at the center of M87 elliptic galaxy [4] give us the oppor-
tunity to develop new tests of general relativity and modi-
fied/alternative theories of gravity in the strong field regime.
Further improvements of the experiments and observations
will give more precise results and opportunity to obtain con-
straints on different theories of gravity.

Up to now the general relativity proposed by Albert Ein-
stein in 1916 is considered as the main theory of gravity
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which is justified by the different tests in the weak (e.g.
Solar system tests [5,6]) and strong field (e.g. gravitational
waves [7,8], shadow of M87 [9–12,114,116] regimes with
high accuracy. However, general relativity meets number of
problems connected with the spacetime singularity at the ori-
gin of the solutions of the field equations, renormalization,
compatibility with quantum field theory and etc. Despite
the attempts to resolve the singularity problem introduc-
ing conformal transformation [13–17], coupling with non-
linear electrodynamics [18–20], higher dimensional correc-
tions [21] and etc, no single unique theory has been found
to resolve all fundamental problems of general theory of rel-
ativity. Thus, we need to deal with the big number of the
modified/alternative theories of gravity to resolve the funda-
mental problems of general relativity and describe the current
observational and experimental data.

There is a belief that astrophysical black holes are
described by the Kerr spacetime (at least by Schwarzschild
spacetime when the effect of rotation is negligible). How-
ever, the so-called Kerr hypothesis has not been yet well
confirmed by current experimental and observational data.
The new parameters of solutions within modified or alter-
native theories of gravity representing the deflections from
Kerr spacetime may mimic the effects of the spin param-
eter of the Kerr black holes [22–24]. Due to this fact one
needs to develop more independent tests of the gravity the-
ory [25,26] together with further improvements of the astro-
physical instrumentation [27,28].

On the other hand big number of alternative and modified
theories of gravity and corresponding solutions of field equa-
tion describing the compact gravitating object creates the dif-
ficulties associated with resolving the cross mimicking of the
parameters of theories. One of the attempt to resolve this issue
is to use the parametrization of the spacetime metric. The
parametrization of the spacetime around rotating black hole
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may help to cover big number of the solutions of different
gravity models. Several ways of parametrization of the space-
time describing the rotating black hole have been proposed
by different authors [29–31]. So-called KRZ metric was pro-
posed by Konoplya et al. [30] where they have suggested
parametrization of the spacetime of rotating black hole. They
have proposed a parametric frame to describe the spacetime
of the axisymmetric black holes which have the Killing vec-
tor η = (0, 0, 0, 1). The most interesting point of the KRZ
metric is that it contains many significant parameters. These
parameters associated with physical properties of the black
hole and we briefly discuss them in the text of the paper. Par-
ticularly, when all the parameters of KRZ parametrization
are equal to zero, the specetime metric reduces to Kerr one.

The most distinguishable feature of the metric theories of
gravity is the light deflection and other effects connected with
photon motion in the curved spacetime. Some authors stud-
ied the photon surfaces [32] through the photon motion. The
gravitational lensing was the one of the first consequences
of the general relativity and has been discovered by Ein-
stein. The study of the light deflection can be used to study
either gravitational object or distant source. The review of
the gravitational lensing effect can be found in Refs. [33–
36]. The effects of the plasma on gravitational lensing in
different spacetimes have been studied in [37–56]. The most
basic gravitational lensing is the Schwarzschild lensing and
it have been studied in [57,58], some papers also studied the
cosmic censorship hypothesis (CCH) with the gravitational
lensing [59,60].

Additionally, the properties of circular orbits of photons
around black holes reflect on the ringdown signal from the
merger of binary black holes [61,62]. The latter are quasi-
normal modes (QNMs) which describe the end state of a
black hole-black hole merger. Therefore the gravitational-
wave emission at late times can be well described by the
properties of null geodesics on unstable circular orbits at
the black hole’s light ring [63,64]. The direct calculation of
QNMs of the KRZ metric is difficult, however, one may use
the alternative method to calculate the frequency and Lya-
punov exponent of unstable circular orbits leading to the fea-
tures of ringdown of waveforms [61–64]. Some authors work
on the spherical and static parametrized RZ metric and pro-
posed the higher order WKB method to reduce the difficult
of computing the QNMs [65]. On the other hand the stan-
dard metric perturbations of the Schwarzschild black hole has
been studied in the pioneer work of Regge and Wheeler [66]
and Zerilli [67]. Later the QNM of the black holes have been
calculated using the perturbative method in different works
(see, e.g. [68–73] and reference therein).

The recent [74–77] and future observation of the black
hole shadow by event horizon telescope (EHT) using very
long baseline interferometry (VLBI) technique can be used
to explore the the gravity in the strong field regime around

supermassive black hole (SMBH). At the same time one may
test the gravity theories using the observational data from the
black hole shadow. The shadow of SMBH has been theoret-
ically studied in Refs. [43,52,78–104] within the different
gravity models. Here we plan to study shadow of the black
holes described by the parametric spacetime metric proposed
in [30].

The paper is organized as follows: Sect. 2 is devoted to
briefly review of the motion of massive and massless particles
in the KRZ space-time and construction of the ray tracing
algorithm necessary to investigate the shadow. We also study
the frequency of photon orbits (Sect. 3) and the Lyapunov
Exponent (Sect. 4) of light ring. Section 5 describes the ray-
tracing code used to construct the shadow of the KRZ metric.
In Sect. 6, we consider the shadow cast by the KRZ space-
time for observer at infinity. Finally, in Sect. 7 we summarize
the obtained results. Throughout the paper we use a space-
like signature (−,+,+,+), a system of units in which G =
c = 1. Greek indices run from 0 to 3, Latin indices from 1
to 3.

2 Photon motion

In this section we explore the parametrized KRZ metric pro-
posed in [30] and investigate the photon motion around com-
pact object described by KRZ metric. The lowest-order met-
ric expression of the KRZ parametrization has the following
form:

ds2 = −N 2(r̃ , θ) − W 2(r̃ , θ) sin2 θ

K 2(r̃ , θ)
dt2

−2W (r̃ , θ)r̃ sin2 θdtdφ

+K 2(r̃ , θ)r̃2 sin2 θdφ2

+Σ(r̃ , θ)

(
B2(r̃ , θ)

N 2(r̃ , θ)
dr̃2 + r̃2dθ2

)
, (1)

where r̃ = r/M, ã = a/M and the other metric functions
are defined as [105]:

Σ = 1 + a2 cos2 θ/r̃2, (2)

N 2 = (1 − r0/r̃)

×
[
1 − ε0r0/r̃ + (k00 − ε0) r

2
0 /r̃2 + δ1r

3
0/r̃3

]

+[a20r
3
0/r̃3 + a21r

4
0 /r̃4 + k21r

3
0/r̃3L]cos2θ, (3)

B = 1 + δ4r
2
0 /r̃2 + δ5r

2
0 cos2 θ/r̃2 , (4)

W =
[
w00r

2
0 /r̃2 + δ2r

3
0/r̃3 + δ3r

3
0/r̃3 cos2 θ

]
/Σ, (5)

K 2 = 1 + aW/r +
{
k00r

2
0 /r̃2 + k21r

3
0/r̃3L cos2 θ

}
/Σ,

(6)

L =
[

1 + k22 (1 − r0/r̃)

1 + k23 (1 − r0/r̃)

]−1

. (7)
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In this paper we use the following parameters defined
as [105]:

r0 = 1 +
√

1 − ã2, (8)

a20 = 2ã2/r3
0 , (9)

a21 = −ã4/r4
0 + δ6, (10)

ε0 = (2 − r0) /r0, (11)

k00 = ã2/r2
0 , (12)

k21 = ã4/r4
0 − 2ã2/r3

0 − δ6, (13)

w00 = 2ã/r2
0 , (14)

k22 = −ã2/r2
0 + δ7, (15)

k23 = ã2/r2
0 + δ8, (16)

where r0 is the radius of the event horizon in the equatorial
plane and δi (i = 1, 2, 3, 4, 5, 6, 7, 8) is the dimensionless
parameter describing the corresponding deformation of the
parameter in the metric (1). Particularly, δ1 corresponds to the
deformation of gtt , δ2 and δ3 correspond to the deformations
of spin, δ4 and δ5 correspond to the deformations of grr , δ6

corresponds to the deformation of the event horizon. In the
case when δi = 0 the KRZ one (1) reduces to Kerr metric
and ã = 0 reduces the Kerr metric to Schwarzschild one.

The stationary and axisymmetric KRZ metric is indepen-
dent of t and φ coordinates which leads to existence of time-
like and spacelike Killing vectors. Consequently, these two
Killing vectors correspond to two conserved quantities: the
energy E and the z-component of the angular momentum Lz

of test particle. The conserved energy and angular momen-
tum of the test particle can be expressed as:

− E = gtt ṫ + gtφφ̇, (17)

Φ = gφt ṫ + gφφφ̇, (18)

where the overhead dot represents the derivative with respect
to the affine parameter (proper time for a massive particle).
One can thus express the equation of motion of test particles
with these two conserved quantities. Substituting Eqs. (17)–
(18) into the normalization condition of the four-velocity
uαuα = −1 for a massive particle, where uα = (ṫ, ṙ , θ̇ , φ̇)

is the 4-velocity, one may obtain the following equation for
the motion in the equatorial plane (θ = π/2):

gtt ṫ
2 + grr ṙ

2 + gφφφ̇2 + 2gtφ ṫ φ̇ = −1. (19)

Similarly one can consider the orbits of photons around
black hole. For the photon orbits the normalization condition
of the four-velocity take the form uαuα = 0. Considering the
orbit in the equatorial one may get the following expression:

gtt ṫ
2 + grr ṙ

2 + gφφφ̇2 + 2gtφ ṫ φ̇ = 0. (20)

1. We expand the normalization equation uαuα = −1 or
uαuα = 0.

2. We substitute the equations for the conserved quantities
E and Φ (17)–(18) into the normalization equation.

3. We rewrite the normalization equation by the two con-
served quantities in a form similar to the equation in New-
tonian mechanics.

The equations of radial motion containing the effective
potential for particle and photon have the following form:

E2 − 1

2
= 1

2
ṙ2 + Veff(r), (21)

E2

Φ2 = 1

Φ2 ṙ
2 + Weff(r), (22)

where Veff and Weff are the effective potential for particle
and photon orbits, respectively. The expressions for the Veff

and Weff depend on parameters of the chosen spacetime met-
ric. However, application of these steps to the KRZ metric
becomes problematic due to its complicate form. Thus here
we use a method described in Ref. [106].

For the light ring (LR) we have the following condition

Veff = ∇Veff = 0, (23)

where the Veff has the following form

Veff = − 1

D

(
E2gφφ + 2EΦgtφ + Φ2gtt

)
, (24)

One may now easily introduce new potential functions rewrit-
ing the Eq. (24)in the following form

Veff = −Φ2gφφ (σ − H+) (σ − H−) /D, (25)

where σ = 1/b. b ≡ |Φ/E| is the impact parameter. Newly
introduced effective potential H± of photon orbits on the
orthogonal 2-space has the following form

H±(r, θ) ≡ −gtφ ± √
D

gφφ

, (26)

where D ≡
(
g2
tφ − gtt gφφ

)
. The circular orbits of photon

obey the condition ∂r H±=0, where the ± sign is associated to
the two direction of the rotation. In this paper for our analysis
we consider the case corresponding to the sign ”+”. Now we
can calculate the circular orbits of photon in the equatorial
plane i.e. θ = π/2 through the method described in [106].
Since we consider the motion in the equatorial plane and
use the condition ∂r H±=0, one can find out that the circular
orbits of photon depend on δ1, δ2 and ã only. We cannot
get the exact analytical relationship of these three variables
δ1, δ2 and ã, because the relationship of the three variables
δ1, δ2 and ã in the equation ∂r H±=0 are complicated. So
we try to perform a numerical fit to get the fitting equation
Fr (δ1, δ2, ã). After a series of fittings, we get the equation
Fr (δ1, δ2, ã) (see Appendix A). Fig. 1 shows the numerical

123



649 Page 4 of 16 Eur. Phys. J. C (2021) 81 :649

Fig. 1 Comparison of
numerical and fitting results for
the radius of photon orbit
depending on the spin a (left
panel) and the δ2 (right panel)
parameters for different values
of a, δ1 and δ2. Note the plane
we choose is the equatorial one
i.e. θ = π/2
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results and fitting results with different variables. From Fig. 1
we can see that the fitting results fits well with the numerical
results. With the increase of spin a and δ2, the radius of
photon orbits decrease.

After obtaining the radius of the photon circular orbit, one
can explore the photon motion. The geodesic equations for
null geodesics has the following form:

d2xμ

dλ2 + Γ μ
ντ

dxν

dλ

dxτ

dλ
= 0, (27)

where λ is the affine parameter, Γ μ
ντ are Christoffel Symbols

defined as

Γ μ
ντ = 1

2
gμσ

(
gσν,τ + gστ,ν − gντ,σ

)
, (28)

From Eqs. (27)–(28), one can easily get a differential equa-
tions including the terms d2t/dλ2 , d2r/dλ2 , d2θ/dλ2 ,

d2φ/dλ2 . Using the relation for radius of photon orbits and
the Eqs. (17), (18) and (20), one can determine the whole set
of initial conditions.

3 Frequency of the photon orbits

As we have mentioned before, the QNM of a perturbative
black hole can be determined by the unstable circular orbits
of photons around the black hole. The frequency of QNM is
related the orbital frequency of the light ring [61]. Follow-
ing the procedure described in Ref. [64], we calculate the
frequency of light ring in order to quantify the frequency of
ringdown waveforms from KRZ black holes.

In this subsection, we will explore the frequency of the
photon orbits in the equatorial plane around black hole
described the KRZ spacetime metric. One can calculate the
frequency of photon orbits around Kerr black hole in the fol-
lowing way. Using the normalization condition of the four-
velocity uαuα = 0 one may easily write the radial equation
of motion in the form:

1

Φ2

(
dr

dλ

)2

= 1

b2 − Weff(r, b, σm), (29)

where σm ≡ sign(Φ) and photon effective potentialWeff (r, b,
σm) has the following form:

Weff(r, b, σm) = 1

r2

[
1 −

(a
b

)2 − 2M

r

(
1 − σm

a

b

)2
]

.

(30)

Solving the equation ∂Weff/ ∂r |rcir = 0 and using the value
for rcir one can easily get the the angular velocity Ω = dφ/dt
and consequently get information about the frequency. We
may apply the same method to calculate the frequency for
the KRZ spacetime.

From the Eqs. (18) and (20) one may get the following
equation

1

Φ2

(
dr

dλ

)2

= − gtt + gφφΩ2 + 2gtφΩ

grr
(
g2
tφ + g2

φφΩ2 + 2gtφgφφΩ
) . (31)

Comparing the Eq. (29) with Eq. (31), one can see that the
Eq. (31) does not contain the term 1/b2. This is due to fact
that the parameter b is independent of the radial coordinate
r . Consequently, one can include the parameter b into the
expression for Weff in order to calculate the frequency. Now
we solve the equation

∂Weff

∂r

∣∣∣∣
rcir

= 0,

using the value rcir obtained using the fitting and get the fre-
quency of the circular photon orbits in KRZ spacetime in
the equatorial plane. Since we consider the equatorial plane
the frequency of photon orbits depend only on δ1, δ2 and
ã under the condition δ4 = 0. It is easy to find the fre-
quency of the photon orbits for the different fixed values
of δ1, δ2 and ã. However, the analytical expression describ-
ing the relation of radius with δ1, δ2 and ã cannot be found
explicitly due to complicated view of the metric functions.
Here we tried to perform a numerical fit to obtain the equation
Fω(δ1, δ2, ã) for the frequency of photon orbits. After a num-
ber of fittings, we have obtained the expressions Fω(δ1, δ2, ã)

(see Appendix B). Figure 2 shows the numerical and fit-
ting results for the frequency of photon orbits. Although the
data shows some differences on the graphs, the relative error

123



Eur. Phys. J. C (2021) 81 :649 Page 5 of 16 649

Fig. 2 Comparison of
numerical and fitting results for
the frequency depending on the
spin a, δ1 and δ2 parameters.
The corresponding parameters
have been given in the figures.
In all calculations we use the
equatorial plane i.e. θ = π/2
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between the data is found to be less than one percent after
calculation. From Fig. 2 we can find that when δ1,2 is as
large as 0.5, the frequency changes less than 10%. There-
fore, only when these non-Kerr parameters are large enough,
we can read the derivation from the frequency of ringdown
waveform.

4 The Lyapunov exponent of light ring

The Lyapunov exponent (LE) is the key indicator of chaos
in dynamical systems. Interestingly, the LE of the unstable
circular orbit of photon corresponds to the decay rate of the
ringdown amplitude from a perturbed black hole [62]. The
Lyapunov coefficient characterizes the rate of divergence of
nearby null geodesics. Based on the orbital frequency and LE
of light-ring, analytical black hole binary merger waveforms
are constructed in [64], and the waveform amplitude decays
as |Ψ4| = Apsech[γ (t − tp)], where Ap is the amplitude
when the congruence converges. In this section we compute
the LE of the the photon circular motion around a gener-
ally axisymmetric black hole which is described by the KRZ
metric.

Authors of Ref. [107] have considered two particle’s
orbital motions with small differences in their initial con-
ditions, then using the metric functions they have calculated
LE. However, in this paper we use another approach pro-
posed by McWilliams [64]. We consider the perturbation in

the radial direction and use the following expression for LR
radius [64]:

r = rlr
[
1 + εΥ

(
t − tp

)]
, (32)

where tp is the time when the congruence converges, ε is a
small dimensionless order-counting parameter and rlr is the
light ring radius. Υ in Eq. (32) is a function defined as:

Υ = sinh
[
γ

(
t − tp

)]
, (33)

where γ is the Lyapunov exponent. Since we consider the
motion in the equatorial plane we consider the effect of the
parameters δ1 and δ2 in the KRZ metric Eq. (1).

Using the Eqs. (32)–(33) one may explore the dependence
of LE from the metric parameters. For the appropriate time
we plan to plot three-dimensional graphics and explore the
influence of the parameters δ1 and δ2 of the metric Eq. (1) on
LE.

We have chosen the different orbits having separation in
the ṙ of the order 10−5 with the other initial conditions to
be the same. In Fig. 3 we present the 3-D dependence of LE
from the parameters δ1 and δ2. From the Fig. 3 one can easily
see that when δ1 increases from 0 to 1, LE will have two max-
imum values and there is no obvious downward trend in the
overall dependence. When δ2 increases from 0 to 1 LE have
a single maximum value and the overall trend of the graph
is down. From the results of Fig. 3 one may speculate that
this is related to the initial conditions: the ṫ0 and φ̇0 decrease
with increasing δ1, the ṫ0 and φ̇0 increase with increasing

123



649 Page 6 of 16 Eur. Phys. J. C (2021) 81 :649

-1

-0.5

0

0.5

1

0.5

1.5

2

2.5

3
(

K
R
Z-

K
er
r)/

K
er
r

2
1

10 0.80.60.40.20

-1

-0.5

0

0.5

0.5

1

1.5

2

2.5

K
R
Z-

K
er
r)/

K
er
r

1
2

10 0.80.60.40.20

Fig. 3 Relative differences of LEs between the KRZ and Kerr cases as
functions of δ1 and δ2. Left panel corresponds to the dependence from
δ1 ranging from 0 to 1 and δ2 ranging from 0 to 0.5. Right panel cor-

respond to the dependence from δ2 ranging from 0 to 1 and δ1 ranging
from 0 to 0.5. Both panels can be regarded as 3D figures observed in
different directions but the values of the coordinate axes are different

δ2. Moreover, the angular momentum l increases with the
decrease of δ1 and δ2. However, the angular momentum l
decreases faster with the increase of δ2. Finally, we conclude
that the results show in Fig. 3 is related to the interaction of
these initial conditions affected by the parameters of KRZ
metric.

From Fig. 3, we can find that the magnitude of LE is
very sensitive to the KRZ parameters δ1 and δ2. Comparing
with the frequency changes due to non-Kerr parameters, the
decay rate of ringdown can constrain δ1 and δ2 better. How-
ever, from the figure, the variation of LE is very complicated
and hard to be fitted. This creates a problem to construct a
parameterized ringdown waveform.

5 Ray-tracing code for photons

The information from the the distant source in the KRZ space-
time comes through the study and analyze of the light ray
from them to the observer. Through the light ray one can get
an image of the source and consequently get some informa-
tion. In this work we study the the trajectories of photons in
the KRZ spacetime using the ray-tracing code described in
the Ref. [108]. The code describes the trajectories of photons
near the black hole.

The evolution of the photon’s position with different com-
ponents: the t- and φ-components can be obtained by the first-
order differential equations (17)–(18). Then one can rewrite
pt and pφ in terms of two parameters: the normalized affine
parameter λ′ = E/λ

dt

dλ′ = −gφφ − bgtφ
gφφgtt − g2

tφ

, (34)

dφ

dλ′ = bgtt + bgtφ
gφφgtt − g2

tφ

. (35)

For the remaining r - and φ- components of the photon’s
position in the KRZ space-time, we can use the second-order
geodesic equations with the normalized affine parameter and
the Christoffel symbols Γ σ

μν as:

d2xσ

dλ′2 + Γ σ
μν

dxμ

dλ′
dxν

dλ′ = 0. (36)

In this way we can get the system of equations that the
ray-tracing code can be used for KRZ spacetime.

We suppose that the massive source described by the KRZ
spacetime is located at the origin of the reference frame and
coordinate system. We choose the mass of the object M = 1
since it does not affect the shape of the shadow. We assume
that the observer’s screen is located at a distance away the
source of d = 1000, the azimuthal and polar angles are γr t
and 0, respectively. The celestial coordinates (α, β) on the
observer’s sky are related to polar coordinates rscr and φscr

on the screen by α = rscr cos(φscr) and β = rscr sin(φscr).
Since we only know the positions and momenta of the photon
in the screen, we should solve the geodesic equations from
the screen to the source. The photons depart from the screen
with a four-momentum perpendicular to the screen and other
initial conditions. The method assumes that the screen at
spatial infinity, only the photons which moving perpendicular
to the screen at a distanced could influence the infinite screen.

The initial position and four-momentum of each photon
in the KRZ spacetime are given as [109]

ri =
(
d2 + α2 + β2

)1/2
, (37)
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θi = arccos

(
d cos γr t + β sin γr t

ri

)
, (38)

φi = arctan

(
α

d sin γr t − β cos γr t

)
, (39)

and(
dr

dλ′

)
i
= d

ri
, (40)

(
dθ

dλ′

)
i
=

− cos γr t + d
r2
i
(d cos γr t + β sin γr t )√

r2
i − (d cos γr t + β sin γr t )2

, (41)

(
dφ

dλ′

)
i
= −α sin γr t

α2 + (d cos γr t + β sin γr t )2 , (42)

Using of the Eq. (20) of the photon four-momentum to be
zero one can find the component (dt/dλ′)i . The conserved
quantity b, which is involved in Eqs. (34) and (35), is calcu-
lated from the initial conditions of E and Lz .

The initial conditions of the code on the screen is defined
in the following way. The confines of the location of the
compact source is found inside 0 ≤ rscr ≤ 20, and the value
of theφscr in the range 0 ≤ φscr ≤ 2π with step ofπ/180. The
confines is the border between the photons that are captured
by the compact source and the photons that are able to escape
to infinity. The photons are considered as captured by the
compact source if they cross the surface r = rsurf + δr with
δr = 10−3, where rsurf is the radius of the horizon. Then the
confines is amplified in to an accuracy of δrscr = 10−3 to
accurately determine the shadow boundary with the value of
rscr for the corresponding value of φscr. This method allows
one to accurately calculate the shadow produced by light
ray in the KRZ parametrized metric with high accuracy with
respect to sampling the entire screen.

6 The shadow of the KRZ metric

In this section, we plan to study the apparent shape of the
compact object shadow under the KRZ spacetime. We can use
the celestial coordinates α and β [17] to describe the shadow
of the compact object described by the KRZ spacetime

α = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

)
, (43)

β = lim
r0→∞

(
r2

0
dθ

dr

)
, (44)

where r0 is the distance between the massive source and
observer and θ0 is the inclination angle between the observer
lens axis and the normal of observer’s sky plane (see Fig. 4).

In order to describe the dependence of the shadow’s shape
with different deformation parameters, we will use the coor-
dinate independent formalism proposed in [110]. The shape
of the shadow is described by the horizontal displacement

Fig. 4 Schematic illustration of the celestial coordinates used for the
ray tracing code in the KRZ spacetime

from the center of the image D, the average radius of the
sphere 〈R〉, and the asymmetry parameter A. Since the KRZ
spacetime is axially symmetric, the parameter D is always
identically equal to zero. In the papers Refs. [111,112]
authors proposed different ways to describe the shape of the
shadow. However, the results of the different approaches are
similar to each other. The average radius 〈R〉 is the average
distance of the boundary of the shadow from its center, which
is defined by

〈R〉 ≡ 1

2π

∫ 2π

0
R(ϑ)dϑ, (45)

where R(ϑ) ≡ [
(α − D)2 + β(α)2

]1/2
, D = 0 and ϑ ≡

tan−1[β(α)/α)]. The asymmetry parameter A is the distor-
tion of the shadow from a circle and defined as

A ≡ 2

[
1

2π

∫ 2π

0
(R − 〈R〉)2 dϑ

]1/2

. (46)

The shadow of the compact object in KRZ spacetime for
the different values of metric parameters is shown in Figs. 5,
6, 7 and 8. From the Figs. 5, 6, 7 and 8 one may come to the
following conclusions:

– From Fig. 5a one can see that with the increase of rotation
parameter a one side of the shadow goes away from the
center while other one comes closer.

– From Fig. 5b one can observe that the presence of the
parameters δ1 and δ2 force the shape of shadow to be
more flatter.

– The Fig. 5c shows the same effect similar to one caused
by the rotation parameter a: the result is obvious because
the effect of inclination angle between the observer lens
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Fig. 5 Ray-traced shadow
images in the Kerr and KRZ
spacetime. The a is for the
shadow with different spin a in
the Kerr spacetime, the b is for
the shadow with different spin a
in the KRZ spacetime, the c is
for the shadow with different
inclination in the Kerr
spacetime, the d is for the
shadow with different
inclination in the KRZ
spacetime
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axis and the normal of observer’s sky can be converted
by projection of the spin a.

– From Fig. 5d, one can see that the parameters δ1 and δ2

don’t affect inclination as much as they spin parameter
does.

– The Fig. 6a shows the shadow is more small when δ1

increases. Since δ1 related to gtt one may conjecture as
gtt increases the size of shadow decreases just like as
the particle or photon moves around the black hole with
different energy then captured by the black hole .

– The Fig. 6b shows that with the increase of δ2 the shadow
becomes more asymmetric and the center of the image
will be shifted.

– The Fig. 6c shows the similar effect as one due to param-
eter δ2. Here the interesting point is that with increase of
the value of parameter δ3 the additional protrusions will
appear in the image of the shadow. Since the effect of
the δ2 and δ3 is similar to the one due to spin parameter
a, they may be related to rotational deformations of the
spacetime metric.

– The Fig. 6d, e show that the size of shadow becomes
bigger with the increase either δ4 or δ5. Due to this reason
δ4 and δ5 may be related to deformations of grr .

– The Fig. 6f shows that as the value of δ6 moves away from
0 the shadow spreading inward/outward is more obvious,
and the graphs become similar to the egrosphere’s outer
boundary. This may be due to fact that the δ6 is related
to deformations of the event horizon.

Summarizing we may conclude that the parameters δ1 and
δ4 can change the size of the shadow but with opposite effect,
the parameters δ2 makes the shadow deviate from the cen-
ter point, the parameters δ5 also can change the size of the
shadow but not obvious and a little stretched, the parameters
δ3 and δ6 can change the contour shape.

From Fig. 7 we can see when δ7 increases, the change
of the shadow is small, the small picture in the upper right
corner of the picture is the enlarged view of the graph. It
shows the minor difference corresponding to the different
values of parameter δ7. From Fig. 8 one can observe similar
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Fig. 6 Ray-traced shadow
images in the KRZ spacetime.
The a–f are for the shadow
corresponding different values
of δ. And the text δi = 0 in the
graph means that other
parameters except one varying
in the plot equal to zero

(a) (b)

(c) (d)

(e) (f)
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Fig. 7 The shadow of the black hole for the different values of param-
eter δ7 in the KRZ spacetime

Fig. 8 The shadow of the black hole for the different values of param-
eter δ8 in the KRZ spacetime

results corresponding to the parameter δ8. Since the effect of
the δ7 and δ8 is very small, in some places (see, e.g. [31])
authors neglect the parameters δ7 and δ8 and put the Eq. (7)
to be 1. Although the simplification has very weak impact
on the shadow, it is mathematically misleading, because the
metric used in the Ref. [31] does not reduce to the Kerr metric
when the δi = 0.

As for sensitivity, the shadow is sensitive to parameters
δ1, δ2, δ4. The shadow is less sensitive to parameters δ3, δ5,
δ6. The shadow is almost not sensitive to parameters δ7, δ8.

We also want to know how the shadows of KRZ metric
can reproduce the ones from exact metrics, so we calculate
the shadows with the Kerr–Sen (KS) and Einstein Dilaton

Gauss–Bonnet (EDGB) metrics [115], and compare with the
KRZ’s results. From Fig. 9 we can find that the shadows of
KRZ metric almost overlap with the ones of KS and EDGB
metrics.

Figure 10 shows the dependence of 〈R〉 and A as a func-
tion of the spin parameter (Kerr metric) and δi (KRZ metric)
for the fixed values of inclination angle θ0 = π/4 and the
spin parameter a = 0.5. From Fig. 10b one can easily see that
the δ1 and δ4 have a greater impact on 〈R〉, but with differ-
ent trend: when δ1 increases the value of 〈R〉 decreases and
when δ4 increases the value of 〈R〉 increases. This is due to
the fact that δ1 corresponds the deformation of gtt , while δ4

corresponds the deformation of grr . On the other hand δ2 and
δ3 have the same trend: when their values increase the 〈R〉
decreases. From Fig. 10d, we may also see that the δ2 have
a greater impact on A. Other δi ’s have small influence on A.
From Fig. 10b–d, one may see that the trend of 〈R〉 and A
with δ4, δ5 always opposite to effect of δ2, δ3 and δ6. Finally,
with the increase of δ7 and δ8, the value of 〈R〉 and A change
very slowly, which also shows that δ7 and δ8 are adjustment
parameters and have weak effect on the KRZ metric.

7 Conclusion

In the present work we have studied the photon motion in the
equatorial plane around the generally axisymmetric black
hole which is described by the parametrized KRZ metric.
From the properties of the circular orbits of photon, we can
quantify the frequency and decay rate of ringdown GW sig-
nals by the orbital frequency and Lyapunov exponent of the
light-ring. At the same time, the shape of the shadow which be
measured by distant observers is also gotten from the photons
motion around the parametrized black hole. We have calcu-
lated the frequency and LE of the unstable circular orbits of
photon in order to get the information on QNMs. We have
also obtained the frequency and decay rate of ringdown which
can be used to construct a waveform model for the KRZ black
hole merger.

In the special case when the photon orbits in the equatorial
plane, we have found that only two primary parameters δ1 and
δ2 of the KRZ metric affect on photon trajectory. It has been
shown that with the increase of the spin parameter a, δ1 and
δ2 the radius of photon circular orbits decreases. However,
the change of the radius of photon circular orbits are more
sensitive to the change of spin parameter a, especially when
the spin parameter exceeds the value 0.4. It has been found
out that effects of spin parameter a and δ2 on the frequency
of photon orbits is the same order while the effect of δ2 is
weaker. With these fitted formula, one can in principle get
the frequency of ringdown waveforms from a perturbed black
hole described by the KRZ metric.
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Fig. 9 The shadows of the
black hole for varied metrics.
Left panel: shadows of the KS
and KRZ metrics. Right panel:
shadows of the EDGB and KRZ
metrics. a is the value of spin, b
is the value of scalar(dilaton)
field and ζ is the value of
deformation
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Fig. 10 Average radius 〈R〉
(top row) and asymmetry
parameter A (bottom row). The
first column corresponds to the
Kerr metric with the values of
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The decay rate of QNM amplitude can be obtained from
the LE characterizing the rate of divergence of nearby null
geodesics. In this work we have shown that when δ1 increases
from 0 to 1, LE will have two maximum values and there
is no obvious downward trend in the overall trend of the
dependence. When δ2 increases from 0 to 1 LE will have
one maximum value and the overall trend of the graph is
down. This is related to the initial conditions of the equation
of motion. Though the angular momentum l increases with
the decrease of δ1 and δ2. We have shown that the decay of
ringdown is very sensitive to the KRZ parameters.

We have also studied the shadow of the black hole
described by the parametrized KRZ spacetime. It has been
shown that the parameters δ1 and δ4 can change the size
of the shadow but with opposite effect. The parameter δ2

makes the shadow deviate from the center, the parameter
δ5 also can change the size of the shadow but effect is rela-
tively weak. The parameters δ3 and δ6 can change the contour
shape. The shape of the shadow has different sensitivity to
different parameters: the shadow is more sensitive to param-
eters δ1, δ2, δ4 and less sensitive to parameters δ3, δ5, δ6. The
effects of the parameters δ7 and δ8 to the shape of shadow is
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very weak and almost negligible (compare with [31] where
authors have neglected the effects of δ7 and δ8 on the iron
line in the X-ray spectrum of black holes).

One of the main results of this paper is the analysis of the
dependence of the average radius of the shadow and asymme-
try (distortion) parameter from the spin parameter and KRZ
parameters. Among the effects of other parameters the effect
of parameter δ1 is dominant in changing the average radius
of the shadow. On the other hand the main contribution to the
change of the asymmetry parameters comes due to the pres-
ence of the parameter δ2. In principle, one may see that the
two observable quantities (radius of shadow and asymmetry
parameter) could provide the rough estimation of the param-
eters δ1 and δ2. Further analysis of the KRZ parameters and
comparison with particular black hole solutions may provide
a useful tool to probe the gravity models.

The ringdown and shadow reflect the dynamical process
and geometric properties in the strong field of the black hole,
respectively. The former can be observed by the ground and
space-borne GW detectors and the later can be observed by
the EHT. From the GWs and image of EHT, one can reveal
the nature of the black holes and test if they are described
by the Kerr spacetime which is an exact solution of Einstein
field equation in general relativity and assumed to describe
the astrophysical black holes. Fortunately, both of these two
phenomenon are related to the photon orbits around the black
hole at the light-ring. In the present work, by calculating the
photon’s motion at the light-ring, we qualify the QNMs and
shadows of generally axisymmetric black holes under gen-
eral parametrized metrics. Perturbing the supermassive black
hole and radiating the ringdown signals can be expected in
our Galaxy [113], and the imaging of this nearest supermas-
sive black hole is a target of the EHT project. Our results
may play a role to construct a joint constraint of dynamical
and stationary spacetime of black hole with both LISA and
EHT observations.
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Appendix A

The function describing the radius of the photon orbits in
equatorial plane and under parametrized KRZ metric has the
following form

Fr (δ1, δ2, ã) = k + F1(ã) + F2(δ1) + F3(δ2) + F4(δ1, ã)

+ F5(δ2, ã) + F6(δ1, δ2) + F7(δ1, δ2, ã)

K = 3.00209

F1(ã) = −1.28767ã + 0.34098ã2 − 0.76082ã3

F2(δ1) = −0.444022δ1 + 0.13889δ1
2

F3(δ2) = −1.40618δ2 − 9.94242δ2
2+37.6563δ2

3−53.23631δ2
4

+ 34.56977δ2
5−8.59813δ2

6

F4 (δ1, ã) = 0.0612867δ1ã + 1.14277δ1ã
2 − 0.618507δ1ã

3

+ 0.6384δ2
1 ã − 1.49899δ2

1 ã
2 + 0.59456δ2

1 ã
3

− 0.339307δ3
1 ã + 0.573049δ3

1 ã
2 − 0.174293δ3

1 ã
3

F5(δ2, ã) = −1.45769δ2ã+9.1916δ2ã
2−5.08388δ2ã

3

+ 18.3726δ2
2ã−40.509δ2

2ã2+20.9555δ2
2ã3

−29.5518δ2
3ã+55.2847δ2

3ã2−27.9031δ2
3ã3

+13.799δ2
4ã−24.2201δ2

4ã2+12.0752δ2
4ã3

F6(δ1, δ2) = −1.40231δ1δ2+21.6537δ1δ2
2−64.9458δ1δ2

3

+ 85.1184δ1δ2
4−52.1275δ1δ2

5+12.139δ1δ2
6

+ 1.25238δ1
2δ2−11.7479δ1

2δ2
2+32.1809δ1

2δ2
3

− 39.8198δ1
2δ2

4+22.9467δ1
2δ2

5−4.93156δ1
2δ2

6

F7(δ1, δ2, ã) = −4.30625δ1δ2ã+27.7323δ1
2δ2ã−20.6891δ1

3δ2ã

+ 49.0293δ1δ2
2ã−212.63δ1

2δ2
2ã+147.897δ1

3δ2
2ã

−103.967δ1δ2
3ã+396.656δ1

2δ2
3ã−269.764δ1

3δ2
3ã

+59.1911δ1δ2
4ã−212.401δ1

2δ2
4ã+142.897δ1

3δ2
4ã

−29.2685δ1δ2ã
2+43.0102δ1

2δ2ã
2−22.4658δ1

3δ2ã
2

+ 83.9201δ1δ2
2ã2−93.1165δ1

2δ2
2ã2+43.369δ1

3δ2
2ã2

− 75.7107δ1δ2
3ã2+31.359δ1

2δ2
3ã2

− 0.681802δ1
3δ2

3ã2

+ 19.9327δ1δ2
4ã2+20.2448δ1

2δ2
4ã2−20.796δ1

3δ2
4ã2
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+ 25.6721δ1δ2ã
3−52.2594δ1

2δ2ã
3+31.4421δ1

3δ2ã
3

− 97.0986δ1δ2
2ã3+204.307δ1

2δ2
2ã3−125.38δ1

3δ2
2ã3

+ 122.861δ1δ2
3ã3−260.441δ1

2δ2
3ã3+161.188δ1

3δ2
3ã3

− 50.8252δ1δ2
4ã3+107.8δ1

2δ2
4ã3−67.0748δ1

3δ2
4ã3.

Appendix B

The function describing the frequency of the photon orbits
in equatorial plane under parametrized KRZ metric has the
form

Fω(δ1, δ2, ã) = k + F1(ã) + F2(δ1) + F3(δ2) + F4(δ1, ã)

+ F5(δ2, ã) + F6(δ1, δ2) + F7(δ1, δ2, ã)

K = 0.193

F1(ã) = 0.04952ã + 0.21633ã2 − 0.39405ã3 + 0.34292ã4

F2(δ1) = 0.029013δ1 + 0.0038367δ1
2 − 0.0014046δ1

3

F3(δ2) = 0.04095δ2+0.47366δ2
2−0.17638δ2

3

F4 (δ1, ã) = +0.0257427δ1ã + 0.0434687δ1ã
2

− 0.0517708δ1ã
3 + 0.00400781δ2

1 ã − 0.0577969δ2
1 ã

2

+ 0.0404687δ2
1 ã

3 − 0.00567736δ3
1 ã + 0.0235175δ3

1 ã
2

− 0.0140544δ3
1 ã

3

F5(δ2, ã) = +0.348684δ2ã+0.0161719δ2ã
2−0.229635δ2ã

3

− 0.413807δ2
2ã−0.611906δ2

2ã2+0.508229δ2
2ã3

− 0.0418396δ2
3ã+0.550562δ2

3ã2−0.326042δ2
3ã3

F6(δ1, δ2) = +0.7407δ1δ2−1.5587δ1δ2
20.820459δ1δ2

3

− 1.6814δ1
2δ2+3.60301δ1

2δ2
2−1.93261δ1

2δ2
3

+ 1.04502δ1
3δ2−2.2501δ1

3δ2
2+1.21019δ1

3δ2
3

F7(δ1, δ2, ã) = +2.11264δ1δ2ã−4.82564δ1
2δ2ã

+2.93892δ1
3δ2ã + 4.69601δ1δ2

2ã−12.9595δ1
2δ2

2ã

+8.31046δ1
3δ2

2ã − 2.37167δ1δ2
3ã+6.77483δ1

2δ2
3ã

−4.36464δ1
3δ2

3ã − 0.651905δ1δ2ã
2−0.439267δ1

2δ2ã
2

+0.477762δ1
3δ2ã

2 − 3.38313δ1δ2
2ã2+13.1134δ1

2δ2
2ã2

−8.64233δ1
3δ2

2ã2 + 1.7363δ1δ2
3ã2−7.06456δ1

2δ2
3ã2

+4.67207δ1
3δ2

3ã2 + 5.5584δ1δ2ã
3−11.4069δ1

2δ2ã
3

+7.00828δ1
3δ2ã

3 − 2.21971δ1δ2
2ã3+0.443027δ1

2δ2
2ã3

−0.0293486δ1
3δ2

2ã3 + 0.846215δ1δ2
3ã3

+0.77316δ1
2δ2

3ã3−0.622904δ1
3δ2

3ã3

− 3.60367δ1δ2ã
4+7.94229δ1

2δ2ã
4−4.94668δ1

3δ2ã
4

+ 2.08781δ1δ2
2ã4−3.02619δ1

2δ2
2ã4+1.85113δ1

3δ2
2ã4

− 0.823382δ1δ2
3ã4+0.819658δ1

2δ2
3ã4

−0.488054δ1
3δ2

3ã4.

Appendix C

When δi = 0 the KRZ metric (1) reduces to the Kerr one.
One can get the expression for grr as

grr = Σ
B2

N 2 ,

where:

Σ = 1 + ã2

r2 cos2 θ

B = 1 + δ4r
2
0 /r̃2 + δ5r

2
0 cos2 θ/r̃2

N 2 = (1 − r0/r̃)

×
[
1 − ε0r0/r̃ + (k00 − ε0) r

2
0 /r̃2 + δ1r

3
0/r̃3

]

+ [a20r
3
0/r̃3 + a21r

4
0 /r̃4 + k21r

3
0/r̃3L]cos2θ (C.1)

when δi = 0, then we get

N 2 = (a2 + r̃2 − 2r̃)/r̃2, (C.2)

B = 1, (C.3)

Σ(r, θ) = 1 + ã2

r̃2 cos2 θ, (C.4)

and

grr = r̃2 + ã2 cos2 θ

r̃2 − 2r̃ + ã2 , (C.5)

which coincides the metric component grr in Kerr metric
with the unit mass M = 1.

However in [31] authors have written N 2 in the form:

N 2 =
(

1 − r0

r̃

) [
1 − ε0r0

r̃
+ (k00 − ε0)

r2
0

r̃2 + δ1r3
0

r̃3

]

+
[
(k21 + a20)

r3
0

r̃3 + a21r4
0

r̃4

]
cos2 θ. (C.6)

From (C.1) and (C.6), one can see the difference between
the parameter N 2 is the function in front of the cos2 θ . One
can simplify the expression (C.6) and after simple calculation
one may find the function in front of the cos2 θ in the form

[a4/(r̃3((1 − a2)(1/2) + 1)) − a4/r̃4],
so (C.6) takes the form

N 2 = (a2 + r̃2 − 2r̃)/r̃2

+[a4/(r̃3((1 − a2)(1/2) + 1)) − a4/r̃4] cos2 θ.

(C.7)

When we put the function (C.7) into the function grr , we find
that the grr can not reduce to the grr for Kerr metric. However,
since the parameters δ7 and δ8 have a small impact to the
spacetime, one may neglect these parameter while using the
KRZ paramertrization.
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