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Abstract The objective of this paper is to discuss anisotropic
solutions representing static spherical self-gravitating sys-
tems in f (R) theory. We employ the extended gravitational
decoupling approach and transform temporal as well as radial
metric potentials which decomposes the system of non-linear
field equations into two arrays: one set corresponding to
seed source and the other one involves additional source
terms. The domain of the isotropic solution is extended in
the background of f (R) Starobinsky model by employing
the metric potentials of Krori–Barua spacetime. We deter-
mine two anisotropic solutions by employing some physical
constraints on the extra source. The values of unknown con-
stants are computed by matching the interior and exterior
spacetimes. We inspect the physical viability, equilibrium
and stability of the obtained solutions corresponding to the
star Her X-I. It is observed that one of the two extensions sat-
isfies all the necessary physical requirements for particular
values of the decoupling parameter.

1 Introduction

The study of the vast universe offers insights into its ori-
gin and puzzling nature. In the present era, different astro-
physical phenomena such as the formation and evolution
of cosmic structures have captured the attention of many
researchers. Among the cosmic entities, stars are consid-
ered as the elementary constituents of galaxies which are
organized systematically in a cosmic web. The collapse of
stars due to the inward pull of gravity results in the forma-
tion of new compact objects. In order to explore the interior
geometry of these objects, we need analytical solutions of the
non-linear field equations. Despite the non-linearity of these
partial differential equations, many researchers have con-
structed exact viable astrophysical and cosmological solu-
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tions. Schwarzschild [1], developed the first solution of Ein-
stein filed equations for an isotropic sphere in the vacuum.

It has been observed that the presence of interacting
nuclear matter in dense celestial objects leads to the genera-
tion of anisotropy [2]. Fluid configurations with condensed
pion like neutron stars are also anisotropic in nature [3]. The
impact of pressure anisotropy on features of stellar struc-
tures is apparent in various studies of charged or uncharged
compact objects. In 1974, the effects of anisotropy on rela-
tivistic spherical objects were studied by using specific equa-
tions of state (EoS) and an increase in redshift was noted in
static models with particular forms of anisotropy [4]. Santos
and Herrera [5] examined the origin of anisotropy in gen-
eral relativity (GR) and studied its impact on the stability
of self-gravitating systems. Harko and Mak [6] developed
well-behaved anisotropic spherical solutions and examined
their physical properties. In 2002, Dev and Gleiser [7] dis-
cussed the factors contributing to pressure anisotropy in stel-
lar objects. Hossein et al. [8] constructed anisotropic models
for different values of the cosmological constant and used
cracking approach to check their stability. Paul and Deb [9]
examined feasible anisotropic solutions in hydrostatic equi-
librium and showed that the anisotropic stars corresponding
to these solutions represent viable behavior. In 2016, Arbañil
and Malheiro [10] considered the MIT bag model and dis-
cussed the stability of a strange star comprising of anisotropic
fluid. Murad [11] developed a model of anisotropic strange
star by incorporating the effects of charge for particular forms
of radial metric function.

It is a difficult task to extract an anisotropic solution of the
non-linear system of field equations due to the greater num-
ber of unknowns as compared to the number of equations. To
overcome this problem, various techniques have been intro-
duced which aid in the construction of feasible solutions. In
this regard, the gravitational decoupling technique through
minimal geometric deformation (MGD), proposed by Ovalle
[12,13], determines new solutions corresponding to differ-
ent relativistic distributions in astrophysics. This approach
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deforms the radial metric component and generates two sets
of differential equations from the system of field equations.
One system incorporates the seed source while the other one
is governed by the impact of the additional source. Both sets
are solved separately and the solution of the whole system
is obtained by using the superposition principle. The MGD
technique prevents the exchange of energy between matter
sources and preserves the spherical symmetry of the self-
gravitating system.

Following the MGD scheme, Ovalle and Linares [14] eval-
uated a solution in braneworld and deduced that the compact-
ness factor reduces due to the bulk effects of fluid distribu-
tion. Later, in 2018, Ovalle and his collaborators [15] devel-
oped an anisotropic interior solution for perfect fluid distri-
bution by the inclusion of an additional gravitational source.
Gabbanelli et al. [16] inspected the salient features of the
anisotropic extension of Durgapal–Fuloria model via gravi-
tational decoupling. Sharif and Sadiq [17] devised charged
anisotropic models through this scheme and examined the
physical features of stellar bodies. Morales and Tello-Ortiz
[18] used Heintzmann solution as a seed source and exam-
ined the static spherical anisotropic model under the influ-
ence of electromagnetic field. Graterol [19] adopted this
approach to extend the domain of isotropic Buchdahl solu-
tion via some physical constraints. Contreras and Bargueño
[20] obtained an anisotropic static BTZ model by employ-
ing MGD in (2 + 1)-dimensional spacetime. Estrada and
Prado [21] explored the higher-dimensional extension of
MGD approach to construct well-behaved analytical solu-
tions corresponding to anisotropic star models. Maurya and
Tello-Ortiz [22] graphically analyzed the physical charac-
teristics of an anisotropic solution formulated via the MGD
approach. Sharif and Ama-Tul-Mughani [23] discussed the
(2 + 1)-dimensional charged string cloud through this tech-
nique. They also formulated analytical solutions of axially
symmetric geometry in the framework of cosmic strings
through gravitational decoupling technique [24].

Although the MGD technique has facilitated the study
of self-gravitating objects, it transforms radial coordinate
only while the temporal coordinate remains invariant which
gives rise to certain shortcomings in the decoupling proce-
dure. Since there is no transfer of energy between matter
sources, therefore the interaction between them is purely
gravitational. To resolve these issues, Casadio et al. [25]
proposed an extension of the MGD technique by imple-
menting radial as well as temporal transformations and con-
structed a solution for a static spherical object. However, the
extended method is applicable only in vacuum and fails in
the presence of matter as the conservation law does not hold.
Therefore, the intrinsic features of astrophysical systems can-
not be examined via this approach. Later, in 2019, Ovalle
[26] introduced a novel extension of the MGD approach
known as extended geometric deformation (EGD). He suc-

cessfully decoupled two static spherically symmetric grav-
itational sources and examined its efficiency by recreating
the Reissner–Nordström solution. Contreras and Bargueño
[27] used this technique in (2 + 1)-dimensional gravity and
obtained exterior charged BTZ solution from its vacuum
counterpart. Sharif and Ama-Tul-Mughani employed EGD
approach to compute anisotropic solutions corresponding to
Tolman IV [28] and Krori–Barua [29] solutions.

Recent study of the universe suggests that strange dark
energy is causing cosmic expansion. The modification of GR
helps us to investigate the mysterious nature of this repulsive
energy. The f (R) theory is one of the simplest modification
as it generalizes GR by replacing Ricci scalar (R) with its
generic function in the action integral [30]. Starobinsky [31]
introduced a model of higher curvature terms (R + σ R2) to
study the inflationary epoch. Many astrophysicists have dis-
cussed other forms of f (R) to resolve different cosmic prob-
lems such as accelerated cosmic expansion [32] and history
of the universe [33,34]. In the last decade, numerous work has
been done on the viability and dynamical stability of astro-
physical objects in f (R) gravity. Effects of this theory on
the dynamical instability of expansion free fluid were investi-
gated [35–37]. Later, Capozziello et al. [38,39] discussed the
hydrostatic equilibrium and dynamics of collisionless self-
gravitating systems. Researchers have extensively discussed
the collapsing behavior of neutron stars in f (R) theory [40–
44]. In 2015, the dynamics of a static spherically symmetric
object was investigated by using the Tolman–Oppenheimer–
Volkoff equation [45]. Zubair and Abbas [46] explored the
stability and dynamics of anisotropic compact stars in f (R)

background. Recently, researchers have adopted various EoS
to describe the mechanism and salient features of different
compact anisotropic spheres [47–49].

In 2019, Sharif and Waseem [50,51] used the isotropic
Krori–Barua model for both charged and uncharged spheri-
cally symmetric systems in the f (R) framework to construct
viable and stable anisotropic solutions via MGD. Recently,
EGD and MGD approaches have extensively been used in
other modified theories as well [52–55]. This paper explores
the efficiency of the EGD method in the framework of f (R)

gravity. We consider the Krori–Barua solution as a seed
source to construct a new anisotropic solution and inspect
salient features of the extended version. The paper is arranged
in the following format. The next section provides the f (R)

field equations with an additional gravitational source. The
gravitational decoupling of f (R) field equations via EGD
technique is presented in Sect. 3. In Sect. 4, the junction
conditions are computed by matching the interior with exte-
rior Schwarzschild solution. In Sect. 5, we construct two
anisotropic static models by applying physical constraints
on the additional gravitational source and analyze the valid-
ity of both solutions. Finally, Sect. 6 summarizes the obtained
results.
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2 Field equations in f (R) gravity

The modified Einstein–Hilbert action for f (R) gravity has
the form [56]

I f (R) =
∫ √−g

[
f (R)

2κ
+ Lm + χL�

]
d4x, (1)

where g and f (R) represent determinant of the metric tensor
and arbitrary function of Ricci scalar, respectively. Also, κ =
1 (in relativistic units) represents the coupling constant, while
χ symbolizes the decoupling parameter. Furthermore, Lm

and L� are the Lagrangian densities for seed source and
additional source, respectively. The field equation obtained
by varying Eq. (1) with respect to the metric is given as

fR Rξη − 1

2
gξη f (R) − (∇ξ∇η − gξη�) fR = T (m)

ξη , (2)

where fR = ∂ f
∂R , � is the d’Alembertian operator defined as

� = gξη∇ξ∇η, ∇ξ represents the covariant derivative and

T (m)
ξη is the standard energy-momentum tensor for perfect

fluid given as

T (m)
ξη = (ρ + p)uξuη − pgξη. (3)

Here, ρ, p and uξ denote the energy density, pressure and
four velocity of the fluid, respectively. An alternative form
of Eq. (2) is

Rξ
η − 1

2
Rδξ

η = 1

fR
T ξ(tot)

η , (4)

where T ξ(tot)
η is the energy-momentum tensor describing the

internal configuration of the stellar object and is given as

T ξ(tot)
η = T ξ(m)

η + χ�ξ
η + T ξ(F)

η = T̃ ξ
η + χ�ξ

η, (5)

where T̃ ξ
η = T ξ(m)

η + T ξ(F)
η and T ξ(F)

η =
(

f (R)−R fR
2

)
δ
ξ
η +

(∇ξ∇η − δ
ξ
η�) fR . Moreover, �

ξ
η represents the additional

source which is coupled to gravity through a free parameter
χ . This source term comprises of new fields which induce
anisotropy in self-gravitating bodies.

The interior line element describing the spherical structure
of a static spacetime has the form

ds2− = eμ(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (6)

where μ(r) and λ(r) are unknown metric potentials. Here,
subscript “−” represents the interior spacetime. The f (R)

field equations corresponding to Eq. (4) turn out to be

ρ + χ�0
0 = e−λ

[(
μ′′

2
+ μ′

r
+ μ

′2

4
− μ′λ′

4

)
fR

−
(

2

r
− λ′

2

)
f ′
R − f ′′

R

]

− f

2
, (7)

p − χ�1
1 = e−λ

[(
λ′

r
− μ

′2

4
− μ′′

2
+ μ′λ′

4

)
fR

+
(

μ′

2
+ 2

r

)
f ′
R

]

+ f

2
, (8)

p − χ�2
2 = e−λ

[(
λ′

2r
− μ′

2r
− 1

r2 + eλ

r2

)
fR

−
(

λ′ − μ′

2
− 1

r

)
f ′
R

+ f ′′
R

] + f

2
, (9)

where prime denotes derivative with respect to r . In f (R)

theory, the conservation of the considered setup is expressed
as

p′ + μ′

2
(ρ + p) − χ

[
(�1

1)
′ + μ′

2
(�1

1 − �0
0) + 2

r
(�1

1 − �2
2)

]
= 0.

(10)

We can regain the conservation equation for the perfect fluid
by setting χ = 0.

Scalar fields consistent with theories of superstring and
supergravity have been utilized to formulate several inflation-
ary models representing the primordial universe. The infla-
tionary model suggested by Starobinsky [31] is given as

f (R) = R + σ R2, (11)

where σ is a constant (σ > 0) and fRR > 0. In this model,
the term σ R2 describes the exponential expansion of the uni-
verse. Moreover, this model is consistent with the anisotropic
temperature detected in Cosmic Microwave Background.
Thus, it can be used as a reliable alternative for the infla-
tionary models [57]. Researchers have determined that the
value of σ corresponding to celestial objects lies between 0
and 6 [46]. It is worth mentioning here that the results of GR
can be recovered for σ = 0.

The field equations corresponding to Eq. (11) are expressed
as

ρ + χ�0
0 = 1

r2 − e−λ

(
1

r2 − λ′

r

)
− σ F1, (12)

p − χ�1
1 = e−λ

(
μ′

r
+ 1

r2

)
− 1

r2 − σ F2, (13)

p − χ�2
2 = e−λ

(
μ′′

2
− λ′

2r
+ μ′

2r
− μ′λ′

4
+ μ

′2

4

)
− σ F3,

(14)
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where F1, F2 and F3 contain the modified terms as

F1 = − R2

2
+ 2e−λ

[
R′′ −

(
λ′

2
− 2

r

)
R′

]

−2R

[
e−λ

(
λ′

r
− 1

r2

)
+ 1

r2

]
,

F2 = R2

2
− 2e−λ

(
μ′

2
+ 2

r

)
R′

−2R

[
e−λ

(
μ′

r
+ 1

r2

)
− 1

r2

]
,

F3 = R2

2
+ 2e−λ

[
R′

(
λ′ − μ′

2
− 1

r

)

−R

(
μ′′

2
− λ′ − μ′

2r
+ μ′2 − λ′μ′

4

)

− R′′] .

We identify the effective energy density and effective pres-
sure components as

ρ̃ e f f = ρ+χ�0
0, p̃ e f f

r = p−χ�1
1, p̃ e f f

t = p−χ�2
2.

(15)

It is clear through direct analysis that the addition of new
source generates anisotropy in self-gravitating systems. The
effective anisotropic parameter �̃e f f in the interior of stellar
objects is defined as

�̃e f f = p̃ e f f
t − p̃ e f f

r = χ(�1
1 − �2

2), (16)

which vanishes if we set χ = 0. The system of three
differential equations (12)–(14) interlink seven unknowns
(μ, λ, ρ, p,�0

0,�
1
1,�

2
2). In order to compute these unknowns,

we follow a systematic scheme proposed by Ovalle [26].

3 The extended geometric deformation approach

In this section, we formulate a solution of non-linear field
equations through the EGD approach [26]. This scheme
transforms the system of field equations corresponding to
the additional source �

ξ
η into a system of quasi-field equa-

tions. The effects of additional source �
ξ
η are analyzed by

applying geometric deformation on the metric functions (μ
and λ) as

e−λ = ν + χh(r), μ = α + χg(r), (17)

where the temporal and radial deformation functions are
represented by g(r) and h(r), respectively. Plugging these
decompositions in Eqs. (12)–(14), we split them into two
arrays. The first system is obtained for χ = 0 and provides
the following standard field equations

ρ = 1

r2 − ν

r2 − ν′

r
− 1

8r4 σY1, (18)

p = ν

(
α′

r
+ 1

r2

)
− 1

r2 + 1

8r4 σY2, (19)

p = ν

(
α′′

2
+ α′

2r
+ α

′2

4

)

+ ν′

2r
+ ν′α′

4
+ 1

8r4 σY3, (20)

where Y1, Y2 and Y3 contain the modified terms defined in
Appendix A. The second set of equations, comprising of the
additional source, leads to

�0
0 = − h

r2 − h′

r
+ 1

8r4 σ Z1, (21)

�1
1 = −h

(
α′ + χg′

r
+ 1

r2

)
− νg′

r
+ 1

8r4 σ Z2, (22)

�2
2 = −h

(
α′′ + χg′′

2
+ (α′ + χg′)2

4

+α′ + χg′

2r

)
− h′

2r
− ν

(
g′′

2

+ α′g′

2
+ χg′2

4
+ g′

2r

)

−h′

4

(
α′ + χg′) − ν′g′

4
− 1

8r4 σ Z3. (23)

The terms Z1, Z2 and Z3, appearing due to the function f (R),
are expressed in Appendix A.

The Bianchi identity is preserved for the perfect fluid dis-
tribution in the (α, ν)-frame as

∇(α,ν)
ξ T̃ ξ

η = 0, (24)

while the divergence of T̃ ξ
η associated with metric (6) turns

out to be

∇ξ T̃
ξ
η = ∇(α,ν)

ξ T̃ ξ
η + χg′

2
(ρ + p)δ1

η. (25)

For the gravitational source �
ξ
η, the conservation equation

takes the form

∇ξ�
ξ
η = −g′

2
(ρ + p)δ1

η. (26)

We conclude from Eqs. (25) and (26) that the matter sources
(perfect fluid source and the additional source) exchange
energy in contrast to the MGD scheme where interaction
is purely gravitational. Here, it is noteworthy that the EGD
technique is applicable when there is no exchange of energy
in two particular scenarios: vacuum (T̃ ξ

η = 0) and barotropic
(T̃ 0

0 = T̃ 1
1 ) fluid distributions.
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4 Junction conditions

In order to investigate the physical features of self-gravitating
system, the junction conditions must be fulfilled at the hyper-
surface (�) of stellar body. A hypersurface is a boundary
between interior and exterior spacetimes that separates them
from each other. These matching conditions describe a con-
nection between interior and exterior spacetimes at r = R,
where R denotes the radius of stellar body. In GR, the exte-
rior vacuum of a static spherical object is represented by the
Schwarzschild spacetime. However, in the present work, the
contributions from f (R) gravity as well as the deformed met-
ric potentials may modify the exterior manifold. The vacuum
solution in f (R) theory coincides with the Schwarzschild
metric if the function f (R) belongs to class C3 (a function
whose first three derivatives are continuous) with [58]

f (0) = 0, fR(0) �= 0. (27)

The model f (R) = R + σ R2 is consistent with these condi-
tions. Thus, we can use Schwarzschild spacetime to represent
the exterior vacuum.

We consider the interior geometry as

ds2− = eμ−(r)dt2 −
(

1 − 2m(r)

r
+ χh(r)

)−1

dr2

−r2(dθ2 + sin2 θdφ2), (28)

wherem(r) is the mass of interior geometry. The line element
describing the exterior geometry takes the following form

ds2+ =
(

1 − 2m̄(r)

r
+ χg∗(r)

)
dt2

−
(

1 − 2m̄(r)

r
+ χh∗(r)

)−1

dr2 − r2

×
(
dθ2 + sin2 θdφ2

)
. (29)

Here, subscript “+” represents the exterior spacetime. More-
over, m̄, h∗ and g∗ represent the exterior mass, radial and tem-
poral geometric deformations in the exterior Schwarzschild,
respectively. The smooth matching between interior and exte-
rior spacetimes at the hypersurface � : r = R specifies the
unknown constants. The continuity of the first fundamental
form ([ds2]� = 0) yields

α(R) + χg(R) = 1 − 2m̄(R)

R + χg∗(R), (30)

1 − 2m(R)

R + χh(R) = 1 − 2m̄(R)

R + χh∗(R). (31)

The second fundamental form of continuity, expressed as
[T tot

ξη Xη]� = 0 (Xη is a unit four vector in radial direction),
leads to

p(R) − χ�1
1(R)− = −χ�1

1(R)+.

Using Eq. (22), the above expression is rewritten as

p(R) + χ

(
h(R)

(
1

R2 + μ′

R
)

+ νg′

R − σ

8r4 Z2

)

= χh∗(R)

R2

(
1 + 2m̄

R − 2m̄

)

+χνg∗′

R − χσ

8r4 Z
∗
2 , (32)

We assume that h∗ = g∗ = 0 so that the exterior manifold
reduces to Schwarzschild metric and the pressure remains
unaffected at the boundary of the star, i.e.,

p̃ e f f (R) = p(R) + χ

(
h(R)

(
1

R2 + μ′

R
)

+νg′

R − σ

8r4 Z2

)
= 0. (33)

In f (R) gravity, two additional conditions related to Ricci
scalar must hold to ensure a smooth junction between interior
and exterior manifolds [59–61]. These conditions read

[R]� = 0, [∇ξ R]� = 0, (34)

where scalar curvature R is a function of r only. The condi-
tions in Eq. (34) hold for the stellar model constructed in the
current work.

5 Anisotropic interior solutions

In order to solve the system of field equations associated
with the anisotropic distribution, we need known isotropic
solutions. Thus, we choose Krori–Barua solution for per-
fect matter configuration [62]. This solution is known for
its singularity free nature and was initially used to study
charged relativistic objects. However, later on, this solution
has also been used in the absence of charge in GR as well as
in other modified theories [63,64]. The Krori–Barua solution
is isotropic in the presence of electromagnetic field but it may
not correspond to an isotropic spacetime in the absence of
charge. The metric potentials of Krori–Barua solution gen-
erate a purely isotropic fluid distribution in f (R) theory, if
and only if pr = pt . Therefore, in order to evaluate the
expression of isotropic pressure, we employ this condition
pr = pt . Thus, the Krori–Barua solution in f (R) gravity
takes the form

eα(r) = eBr2+C, (35)

eλ(r) = ν−1(r) = eAr2
, (36)

ρ = e−Ar2
(

2A − 1

r2

)
+ 1

r2

−2σe−2Ar2

r4

[
e2Ar2 − B4r8 − 6B3r6
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−6eAr2 + 3B2r4 + 5

−12A3r6
(
Br2 + 2

)
+ A2r4

(
11B2r4

+ 68Br2 + 40
)

+ 2Ar2
(
B3r6

−13B2r4 − 24Br2 + 2
)]

, (37)

p = e−2Ar2

2r2

[
−e2Ar2 + eAr2

{
1 + B2r4

−A
(
Br4 + r2 + 12σ

)
+ 4B

(
r2

+ 3σ)} − 4σ
{

6A3r4
(
Br2 + 2

)

+A
(

4B3r6 + 34B2r4 + 35Br2 − 3
)

−A2r2
(

10B2r4 + 43Br2 + 20
)

+B
(
−5B2r4 − 11Br2 + 3

)}]
, (38)

whereA,B and C are constants that can be computed through
matching conditions on the hypersurface. The smooth match-
ing of external and internal regions on the hypersurface
determine the unknown constants of the anisotropic solution
and contribute to the investigation of its physical features.
Here, we consider Schwarzschild as an exterior spacetime
described by the line element

ds2+ =
(

1 − 2m̄(r)

r

)
dt2 − 1(

1 − 2m̄(r)
r

)dr2

−r2(dθ2 + sin2 θdφ2), (39)

The continuity of the metric components g00, g11 and g00,1

at the boundary (r = R and total mass= M) yields

A = − 1

R2 ln

(
1 − 2M

R
)

, (40)

B = M
R2(R − 2M)

, (41)

C = ln

(
1 − 2M

R
)

− M
R − 2M . (42)

with the compactness parameter M
R < 4

9

(
1 + β

6

)
, where

β (with 0 ≤ β � 1) denotes small modification in the
Buchdahl–Bondi limit [65]. The model is also consistent with
the conditions in Eq. (34). For anisotropic model, the expres-
sions of effective matter variables are evaluated as follows

ρ̃ e f f = 1

r2 − ν

r2 − ν′

r
− 1

8r4 σY1

+χ

[
− h

r2 − h′

r
+ 1

8r4 σ Z1

]
, (43)

p̃ e f f
r = ν

(
α′

r
+ 1

r2

)
− 1

r2 + 1

8r4 σY2

−χ

[
−h

(
α′ + χg′

r
+ 1

r2

)
− νg′

r

+ 1

8r4 σ Z2

]
, (44)

p̃ e f f
t = ν

(
α′′

2
+ α′

2r
+ α

′2

4

)
+ ν′

2r
+ ν′α′

4

+ 1

8r4 σY3 − χ

[
−h

(
α′′ + χg′′

2

+ (α′ + χg′)2

4
+ α′ + χg′

2r

)
− h′

2r

−ν

(
g′′

2
+ α′g′

2
+ χg′2

4
+ g′

2r

)

− h′

4

(
α′ + χg′) − ν′g′

4
− 1

8r4 σ Z3

]
, (45)

with anisotropic factor

�̃e f f = χ

[
−h

(
α′ + χg′

r
+ 1

r2

)
− νg′

r

+ 1

8r4 σ Z2 −
{
−h

(
α′′ + χg′′

2

+ (α′ + χg′)2

4
+ α′ + χg′

2r

)
− h′

2r

−ν

(
g′′

2
+ α′g′

2
+ χg′2

4
+ g′

2r

)

− h′

4

(
α′ + χg′) − ν′g′

4
− 1

8r4 σ Z3

}]
. (46)

The system (21)–(23) interlinks the components of addi-
tional source with the deformation functions. In order to solve
this system of quasi-field equations, we need additional con-
straints to close the system. In this regard, we implement a
barotropic equation of state on �

ξ
η as

�0
0 = δ�1

1 + γ�2
2, (47)

For simplicity, we set γ = 0 and δ = 1 which forms the
relation �0

0 = �1
1. We also employ two additional constraints

(density-like and pressure-like) and formulate corresponding
solutions.

5.1 Solution I

In this section, we apply an additional constraint on the tem-
poral component of source term in order to close the system.
We adopt density-like constraint such as

�0
0 = ρ. (48)

The deformation functions are evaluated numerically through
Eqs. (47) and (48) by plugging the metric potentials of
Krori–Barua spacetime. For this constraint, the presence
of higher order derivatives of unknown functions hinders
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Fig. 1 Plots of ρ̃ e f f , p̃ e f f
r , p̃ e f f

t and �̃e f f for the solution I

Fig. 2 Plots of ρ̃ e f f − p̃ e f f
r and ρ̃ e f f − p̃ e f f

t for solution I

the extraction of numerical solutions. Therefore, we assume
quadratic deformation functions and solve the correspond-
ing system of differential equations for the initial conditions
g(0.01) = g′(0.01) = h(0.01) = h′(0.01) = 0. The values
of constants A and B evaluated in Eqs. (40) and (41) are used
to evaluate the numerical solution. We discuss physical char-
acteristics of the stellar bodies through graphical analysis
corresponding to the star Her X-I with radius R = 8.10 km
and mass M = 1.25375 km [66,67]. We compute values of
σ for χ = 0.04, 0.06 through the condition p̃ e f f

r (R) = 0.
The energy density and pressure (radial as well as tempo-

ral) of a well-behaved stellar structure must be finite, positive

and maximum at the center. The plots of physical parame-
ters (ρ̃ e f f , p̃ e f f

r , p̃ e f f
t ) along with anisotropy factor are

displayed in Fig. 1. The profile of effective energy density
indicates that it is maximum at r = 0 and declines gradu-
ally with increasing r . It is found that an increase in χ and
σ causes a decrease in ρ̃ e f f . The graph of effective radial
pressure p̃ e f f

r depicts that it vanishes at the star’s surface
and decreases monotonically as σ and χ decrease. The trend
of p̃ e f f

r gradually decreases with respect to r . It is observed
that the behavior of p̃ e f f

t decreases towards the boundary and
at the center of the star, it increases for larger values of χ .
The plot of effective anisotropic factor shows that �̃ e f f > 0

123
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Fig. 3 Plots of hydrostatic equilibrium with χ = 0 (dotted),
0.04 (dashed), 0.06 (solid) for solution I

away from the center. Moreover, it violates the regularity con-
dition as radial and tangential pressures are not same at the
center of the celestial object. We observe that the anisotropic
factor vanishes for χ = 0.

To measure the viability of the resulting solution, four
energy conditions (null (NEC), weak (WEC), strong (SEC)
and dominant (DEC)) must be satisfied. These energy con-
ditions indicate the presence of ordinary matter in a compact
celestial system. In f (R) scenario, these energy bounds are
given in terms of ρ̃ e f f , p̃ e f f

r and p̃ e f f
t as

NEC: ρ̃ e f f + p̃ e f f
r ≥ 0, ρ̃ e f f + p̃ e f f

t ≥ 0,

WEC: ρ̃ e f f ≥ 0, ρ̃ e f f + p̃ e f f
r ≥ 0,

ρ̃ e f f + p̃ e f f
t ≥ 0,

SEC: ρ̃ e f f + p̃ e f f
r + 2 p̃ e f f

t ≥ 0,

DEC: ρ̃ e f f − p̃ e f f
r ≥ 0, ρ̃ e f f − p̃ e f f

t ≥ 0.

As Fig. 1 illustrates the positive behavior of ρ̃ e f f , p̃ e f f
r

and p̃ e f f
t , the null, weak and strong energy conditions are

satisfied. Therefore, we only display the plots of DEC which
also exhibit positive behavior as shown in Fig. 2. Hence,
the graphical behavior assures the physical viability of the
constructed solution.

In order to determine the equilibrium state of the con-
structed anisotropic model, we use the Tolman–Oppenheimer–
Volkoff (TOV) equation [68,69]. This equation demonstrates
that sum of all physical forces acting on the system must be
equal to zero. In the considered setup these forces are clas-
sified as gravitational ( fg), anisotropic ( fa) and hydrostatic
( fh) forces. Corresponding to the spherical spacetime, the
TOV equation becomes

−[p′ − χ(�1
1)

′] −
[
α′

2
(ρ + p) + χg′

2
(ρ + p)

+μ′χ
2

(�0
0 − �1

1)

]
+

[
2χ

r
(�2

2 − �1
1)

]
= 0.

Fig. 4 Plots of v2
sr , v2

st and |v2
st − v2

sr | for the solution I
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Fig. 5 Plot of � and �cri tical for solution I

Fig. 6 Plots of ρ̃ e f f , p̃ e f f
r , p̃ e f f

t and �̃e f f for solution II

The hydrostatic, gravitational and anisotropic forces are,
respectively expressed as

fh = −[p′ − χ(�1
1)

′],
fg = −

[
α′

2
(ρ + p) + χg′

2
(ρ + p) + μ′χ

2
(�0

0 − �1
1)

]
,

fa =
[

2χ

r
(�2

2 − �1
1)

]
.

The graphical analysis of these forces in Fig. 3 exhibits
that gravitational force is balanced by the remaining forces.
Moreover, for χ = 0, the gravitational force vanishes and
the other two force counter balance each other. This depicts

that the constructed model is in hydrostatic equilibrium. We
now check the stability of the constructed anisotropic model.

The stability of a self-gravitating body is an important
feature that ensures its existence and realistic matter con-
figuration. In this regard, causality condition [70] (squared
speed of sound v2

s must lie in the range [0, 1]) is a substan-
tial tool to examine the stability of celestial objects. Herrera
[71] proposed the idea of cracking by analyzing potentially
stable or unstable regions of celestial objects. According to
this idea, these regions are defined as

• − 1 ≤ v2
st − v2

sr ≤ 0 
⇒ Potentially stable mode

• 0 < v2
st − v2

sr ≤ 1 
⇒ Potentially unstable mode
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Fig. 7 Plots of ρ̃ e f f − p̃ e f f
r and ρ̃ e f f − p̃ e f f

t for solution II

Fig. 8 Plots of hydrostatic equilibrium with χ = 0 (dotted),
0.3 (dashed), 0.5 (solid) for solution II

where v2
st and v2

sr are the tangential and radial components
of squared speed of sound, respectively and are defined as

v2
sr = d p̃ e f f

r

dρ̃ e f f
, v2

st = d p̃ e f f
t

dρ̃ e f f
.

The cracking conditions are expressed in combined form as
|v2

st − v2
sr | < 1. Figure 4 illustrates the graphical behavior of

v2
sr and v2

st which indicates that the anisotropic extension is
not stable. On the other hand, cracking condition |v2

st − v2
sr |

yields stable behavior of system for the chosen values of
parameters.

The system obeys a stiff equation of state (EoS) if an
increase in density causes an effective increase in pressure.
A structure associated with a stiff EoS is harder to compress
and more stable as compared to a setup corresponding to
a soft EoS. The stiffness of EoS is measured through adi-
abatic index (�). According to the condition proposed by
Heintzmann and Hillebrandt [72], the adiabatic index must
be greater than 4

3 for a stable model in equilibrium. However,
the inclusion of local anisotropies in the system changes the
upper limit. So, in the anisotropic case, the adiabatic index
should satisfy [73]

� >
4

3
+

[
r

3

ρ̃
e f f

0 p̃ e f f
r0

|( p̃ e f f
r0 )′|

+ 4

3

( p̃ e f f
t0 − p̃ e f f

r0 )

r |( p̃ e f f
r0 )′|

]
,

where p̃ e f f
r0 , p̃ e f f

r0 and p̃ e f f
t0 denote effective initial density,

effective initial radial and tangential pressures. The above
expression involves the contributions from local anisotropies
and represents relativistic corrections in the adiabatic index.
However, Chandrasekhar [74,75] pointed out that relativis-
tic corrections to the adiabatic index could induce insta-
bilities within the stellar interior. To resolve this problem,
Moustakidis [76] introduced a more strict condition on �

and proposed a critical value of adiabatic index (�cri tical ).
The value of critical adiabatic index depends on the ampli-
tude of Lagrangian displacement (ζ(r)) from equilibrium
and the compactness parameter 2M/R. Considering a par-
ticular value of the parameter ζ(r), we obtain the critical
adiabatic index as

�cri tical = 4

3
+ 19

21

(M
R

)
.

Thus, the stability condition becomes � ≥ �cri tical , where
the � is defined as

� = p̃ e f f
r + ρ̃ e f f

p̃ e f f
r

d p̃ e f f
r

dρ̃ e f f
= p̃ e f f

r + ρ̃ e f f

p̃ e f f
r

v2
sr .

A compact star with an increasing and positive anisotropy
factor, behaves stable for the limit given above. The posi-
tive anisotropy generates a repulsive force that counteracts
against the inward gravitational pull. This implies that a star
does not collapse for p̃ e f f

t > p̃ e f f
r . Thus, the analysis of adi-

abatic index in radial direction is sufficient to gauge the sta-
bility of the spherical system. The rapid decrease in the radial
pressure near the boundary of the star causes � to increase at a
faster rate. Moreover, radial adiabatic index behaves asymp-
totically near the star’s surface as p̃ e f f

r (R) = 0. The profiles
of radial and critical adiabatic index in Fig. 5 are not con-
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Fig. 9 Plots of v2
sr , v2

st and |v2
st − v2

sr | for solution II

Fig. 10 Plot of � and �cri tical for solution II

sistent with the inequality � ≥ �cri tical . Thus, the extended
solution is locally unstable in the presence of higher curva-
ture terms of f (R).

5.2 Solution II

In order to obtain the second anisotropic solution, we apply
a constraint on radial component of �

ξ
η. The matching of

Schwarzschild exterior and deformed interior metric on the
boundary stipulates p(R) ∼ χ(�1

1(R))−. Thus,

�1
1 = p, (49)

is considered as a suitable constraint. We solve Eqs. (47) and
(49) simultaneously by employing Eqs. (35), (36), (40) and
(41). The unknown functions h(r) and g(r) are determined
numerically for the initial conditions g(0.01) = 1 × 10−9,
g′(0.01) = g′′(0.01) = 1 × 10−7, g′′′(0.01) = 1 × 10−10,
h(0.01) = 9 × 10−8, h′(0.01) = 1 × 10−8 and h′′(0.01) =
1×10−6. The physical behavior of solution II is investigated
for the same compact star Her X-I.

In this solution, we choose three values of parameter χ =
0, 0.3 and 0.5 and corresponding to σ = 0.1, 0.2 and 0.3,
respectively. The profiles of ρ̃ e f f , p̃ e f f

r , p̃ e f f
t and �̃e f f are

displayed in Fig. 6. It is observed that the energy density
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declines and the radial/tangential pressure increases with the
increasing values of χ and σ . Moreover, matter variables are
finite within the interior of celestial object. The anisotropic
factor becomes zero at the center of object and increases
for larger values of r and χ . Moreover, for χ = 0, radial and
tangential pressures become equal leading to zero anisotropy.
As all energy conditions are satisfied therefore, the solution
is physically viable as shown in Fig. 7. From Fig. 8, we
can see that the system is in hydrostatic equilibrium for the
chosen values of χ and σ , as all the three forces are balanced.
Figures 9 and 10 demonstrate the potential stability of the
second solution. The plots of radial and critical adiabatic
index satisfy the inequality � ≥ �cri tical and lie above the
defined limit.

6 Conclusions

The formulation of new solutions for the study of self-
gravitating bodies has captured the interest of many astro-
physicists. In this regard, the EGD approach has effec-
tively extended spherical isotropic solutions by adding the
anisotropic gravitational source. In the current work, we
have applied gravitational decoupling via EGD to derive
anisotropic solutions corresponding to the Starobinsky model
of f (R) gravity. In order to check the consistency of the
EGD approach with this model, we have added the effects
of a new gravitational source in the isotropic Krori–Barua
solution. The f (R) field equations for anisotropic fluid have
been successfully decoupled into two sets of equations with
each array corresponding to separate sources. The Bianchi
identities for the matter sources have indicated the transfer
of energy between the two sources. Furthermore, the con-
stants in the considered solution have been determined by the
matching of interior and exterior spacetimes on the boundary.

We have introduced a barotropic EoS for �
ξ
η as well as

imposed constraints on �0
0 and �1

1 which has yielded solu-
tions I and II, respectively. We have analyzed the physi-
cal characteristics of the obtained solutions by plotting the
graphs of fluid parameters such as energy density, radial and
tangential pressures for the star Her X-I. It has been found
that the obtained solutions are physically well-behaved as
they obey the necessary conditions of viability. The energy
density decreases with a rise in values of χ which has led to
the construction of less dense spheres. On the other hand, the
anisotropy attains larger values for higher values of χ in both
static solutions. Moreover, the system corresponding to each
solution is in hydrostatic equilibrium. The proposed model
corresponding to solution I is potentially unstable accord-
ing to the speed of sound constraints while solution II is
stable. We have also checked the stiffness parameter cor-
responding to both solutions and found that solution I vio-
lates the conditions � > 4

3 and � ≥ �cri tical whereas solu-

tion II is consistent with these criteria. Thus, the pressure
of the developed spherical model corresponding to solution
II increases greatly in response to a small change in den-
sity. Consequently, the compact body cannot be compressed
easily.

Sharif and Ama-Tul-Mughani [29] extended charged
Krori–Barua solution to the anisotropic domain via the EGD
scheme in GR and deduced that the solutions corresponding
to both constraints are physically viable and stable. The via-
bility of the extended solutions is preserved in f (R) grav-
ity while stability is preserved for pressure-like constraint
only. From the graphical analysis, we have deduced that the
second solution shows stable behavior when χ ∈ [0, 0.5].
Sharif and Waseem [50,51] also utilized the metric potentials
of Krori–Barua solution to generate anisotropic models by
MGD approach in f (R) gravity for χ ranging from 0 to 1.
In comparison to this work, a smaller range of χ generates
stable anisotropic solutions corresponding to the second con-
straint. It is worthwhile to mention here that the f (R) analog
of this solution is physically viable and stable for the par-
ticular values of the parameters σ and χ . We conclude that
the f (R) theory yields stable decoupled stellar configuration
through EGD technique.
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Appendix A

The modified terms appearing in the set related to the
isotropic source are

Y1 = 4r3 (
rα′ + 4

)
ν′ν′′ + r2ν′2 (

12r2α′′

+3r2α′2 + 16rα′ + 16
) + ν

(
8

(
r3 × ν(3)

(
rα′ + 4

)
+r2ν′′ (4r2α′′ + r2α′2 + 6rα′(r) + 4

) − 12
)

−2rν′ (r3

×α′3 + α′ (8r − 18r3α′′) − 4r2α′2

−8
(

3r3α(3) + 8r2α′′ − 4
)))

+ ν2

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2021) 81 :641 Page 13 of 17 641

×
(
−r4α′4 − 8r3α′3 + 16r3α′ (rα(3) + α′′)

−4r2α′2 (
r2α′′ + 4

) + 4

×
(

3r4α′′2 + 4
(
r4α(4) + 4r3α(3) + 5

)))
+ 16, (A1)

Y2 = −r2 (
rα′ + 4

)2
ν′2 + 2ν

(
r4α′3ν′

+2r3α′2 (
rν′′ + 6ν′) + 4r2α′ (ν′ (8

+ r2α′′) + 4rν′′) + 16
(
r3α′′ν′ + 2r2ν′′ + 3

))
+ν2 (−r4α′4 + 4r4α′2

×α′′ + 8rα′ (r3α(3) + 6r2α′′ − 8
)

−4
(
r4α′′2 − 8r3α(3) − 16r2α′′

+ 28)) + 16, (A2)
Y3 = r3ν′2 (

12rα′′ + 5rα′2 + 20α′)
+4rν′ (r2 (

rα′ + 4
)
ν′′ + 12

) + 2ν
(
3r4

× α′3ν′ + 2r3α′2 (
3rν′′ + 8ν′)

+4rα′ (r3ν(3) + r
(
7r2α′′ − 6

)
ν′ + 7r2ν′′

+ 6) + 8
(

2
(
r4α′′ν′′ + r3ν(3) − 3

)

+r
(

3r3α(3) + 7r2α′′ − 7
)

ν′))
+ ν2

× (
r4α′4 + 4r3α′3 + 4r2α′2 (

3r2α′′ − 4
)

+8rα′ (3r3α(3) + 5r2α′′ − 2
)

+ 4
(

4r4α(4) + 5r4α′′2 + 12r3α(3) − 8r2α′′ + 28
))

− 16,

(A3)

where the superscripts (3) and (4) indicate the third and
fourth order derivatives of the function with respect to r ,
respectively. Equations (21)–(23) contain the terms Z1, Z2

and Z3, which are defined as

Z1 = χ
(
r4χ4g′4 + 4r3χ3 (

rα′ + 2
)
g′3

+2r2χ2
(

8 + 3α′2r2 + 2r2 (
g′′χ

+ α′′) + 12α′r
)
g′2 + 4r2χ

(
r2α′3

+6rα′2 + 2
(
χg′′r2 + α′′r2 + 4

)
α′

− 4r
(
χg′′ + α′′ + rχg(3) + rα(3)

))
g′ + r4α′4

+8r3α′3 + 4r2α′2 (
χg′′r2

+ α′′r2 + 4
)

− 16r3α′ (χg′′ + α′′ + r
(
χg(3) + α(3)

))

−4
(

3χ2g′′2r4 + 3

×α′′2r4 + 6χg′′α′′r4 + 4
(
χg(4)r4 + α(4)r4

+4χg(3)r3 + 4α(3)r3 + 5
)))

×h2 + 2
(
χ3g′3ν′r4 + α′3ν′r4

+3χg′α′ν′r4 (
α′ + χg′) − 18χ2g′ν′g′′r4

−18χα′ν′g′′r4 − 4χh′′r4
(
χ2g′2 + α′2)

−8χ2g′α′h′′r4 − 16χ2g′′h′′r4

−18χg′ν′α′′r4 − 18α′ν′α′′r4

−16χh′′α′′r4 − 4χ2g′2ν′′r4 − 4α′2ν′′r4

−8χg′α′ν′′r4 − 16χg′′ν′′r4 − 16α′′ν′′r4

−24χν′g(3)r4 − 4χ2g′h(3)r4

−4χα′h(3)r4 − 24ν′α(3)r4 − 4χg′ν(3)r4

−4α′ν(3)r4 − 4χ2g′2ν′r3

−4α′2ν′r3 − 8χg′α′ν′r3 − 64χν′g′′r3

−24χ2g′h′′r3 − 24χα′h′′r3

−64ν′α′′r3 − 24ν′′r3 (
χg′ + α′)

−16χh(3)r3 − 16ν(3)r3 + 8χg′ν′r2

+8α′ν′r2 − 16χh′′r2 − 16ν′′r2 + 32ν′r
+χh′ (r3χ3g′3 + r2χ2g′2 (

3rα′

− 4) + rχ
(

3α′2r2 − 18r2 (
χg′′ + α′′)

−8α′r + 8
)
g′ + r3α′3 − 4r2α′2

−2rα′ (9χg′′r2 + 9α′′r2 − 4
)

−8
(
−4 + 3χg(3)r3 + 3α(3)r3 + 8χg′′r2

+ 8α′′r2
))

r + ν
(
r4χ4g′4 + 4r3χ3 (

rα′ + 2
)
g′3

+2r2χ2
(

8 + 3α′2r2

+ 2χg′′r2 + 2α′′r2 + 12α′r
)
g′2

+4r2χ
(
r2α′3 + 6rα′2 + 2α′ (χg′′r2

+ α′′r2 + 4
)

− 4r
(
χg′′ + α′′

+rχg(3) + rα(3)
))

g′ + r4α′4 + 8r3α′3

+4r2α′2 (
χg′′r2 + α′′r2 + 4

)

−16r3α′ (χg′′ + α′′ + r
(
χg(3) + α(3)

))

−4
(

3χ2g′′2r4 + 3α′′2r4 + 6χg′′α′′r4

+4
(
χg(4)r4 + α(4)r4 + 4χg(3)r3

+ 4α(3)r3 + 5
)))

+ 48
)
h + r

(
r
(
r2χ3g′4

+4rχ2 (
rα′ + 2

)
g′3 + 2χg′2

×
(

3α′2r2 + 2χg′′r2 + 2α′′r2 + 12α′r + 8
)

+4
(
r2α′3 + 6rα′2 + 2α′ (4

+ χg′′r2+α′′r2
)

−4rg′ (χg′′+α′′+rχg(3)+rα(3)
))

−4r
(
−g′′α′2r
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+4
(
g′′ + rg(3)

)
α′ + 3rχg′′2 + 6rg′′α′′

+16g(3) + 4rg(4)
))

ν2 + 2
(
h′

×
(
r3χ3g′3 + r2χ2 (

3rα′ − 4
)
g′2

+rχg′ (3α′2r2 − 18χg′′r2 − 18α′′r2

− 8α′r + 8
) + r3α′3 − 4r2α′2

−2rα′ (9χg′′r2 + 9α′′r2 − 4
)

− 8 (−4

+ 3χg(3)r3 + 3α(3)r3 + 8r2 (
χg′′ + α′′)))

+r
(
r2χ2ν′g′3 − rχ

((−3rα′

+ 4) ν′ + 4r
(
χh′′ + ν′′)) g′2

+
(
ν′ (3α′2r2 − 18χg′′r2 − 18α′′r2 − 8α′r

+ 8) − 4r
(
2

(
rα′ + 3

) (
χh′′ + ν′′)

+r
(
χh(3) + ν(3)

)))
g′ − 2

(
rν′ ((9

× rα′ + 32
)
g′′ + 12rg(3)

)

+2
((

4 + α′2r2 + 4r2 (
χg′′ + α′′) + 6α′r

)

× h′′ + r
(

4rg′′ν′′ + (
rα′ + 4

)
h(3)

)))))
ν

−r
(
χ

(
3χ2g′2r2 + 3α′2r2

+12χg′′r2 + 12α′′r2 + 16α′r
+2χg′ (3rα′ + 8

)
r + 16

)
h′2 + 2

(
ν′ (16

+3χ2g′2r2 + 3α′2r2 + 12r2 (
χg′′ + α′′)

+16α′r + 2χg′ (3rα′ + 8
)
r
)

+ 2r
(
rχg′ + rα′ + 4

) (
χh′′ + ν′′)) h′

+rν′ (3rχν′g′2 + 2
((

3rα′ + 8
)

× ν′ + 2r
(
χh′′ + ν′′)) g′

+4
(
3rν′g′′ + (

rα′ + 4
)
h′′)))) , (A4)

Z2 = χ
(
χ4g′4r4 + α′4r4 + 4χ3g′3α′r4

−4α′2 (
χg′′ + α′′) r4 − 2χ2g′2 (2

× (
χg′′ + α′′) − 3α′2) r4

−8α′r
(
χg(3)r3 + α(3)r3 + 6χg′′r2 + 6α′′r2

− 8) − 4χg′ (−α′3r3 + 2α′ (χg′′ + α′′) r3

+2
(
χg(3)r3 + α(3)r3 + 6r2

× (
α′′ + χg′′) − 8

))
r

+4
(
χ2g′′2r4 + α′′2r4 − 8r3

(
χg(3) + α(3)

)
− 16

× α′′r2 + 2χg′′ (r2α′′ − 8
)
r2 + 28

))
h2

−2
(
α′3r4 (

χh′ + ν′) + χ3g′3

× (
χh′ + ν′) r4 − 4χα′g′′r4(χh′ + ν′)

−2χα′2h′′r4 − 4χh′α′α′′r4

−4α′ν′α′′r4 − 2α′2ν′′r4 − 12α′2r3 (
χh′ + ν′)

−16χg′′r3 (
χh′ + ν′)

−16χα′h′′r3 − 16χh′α′′r3 − 16ν′α′′r3 − 16α′ν′′r3

−χ2g′2 (
3χh′ (rα′

+ 4) + 3ν′ (rα′ + 4
) + 2r

(
χh′′ + ν′′)) r3

−32r2 (
χh′α′ + α′ν′ + χh′′

+ ν′′) − χg′ (ν′ (r2
(

3α′2 + 4χg′′ + 4α′′)

+24α′r + 32
) + χh′ (3r2α′2

+ 24rα′ + 4
(
χg′′r2 + α′′r2 + 8

))

+4r
(
rα′ + 4

) (
χh′′ + ν′′)) r2 + ν

×
(
χ4g′4r4+α′4r4+4χ3g′3α′r4 − 4α′2 (

χg′′+α′′) r4

−2χ2g′2 (
2

(
χg′′

+ α′′) − 3α′2) r4 − 8α′ (χg(3)r3 + α(3)r3

+6χg′′r2 + 6α′′r2 − 8
)
r

−4χg′ (−α′3r3 + 2α′ (χg′′ + α′′) r3

+2
(
χg(3)r3 + α(3)r3 + 6r2 (

χg′′

+ α′′) − 8
))
r + 4

(
χ2g′′2r4 + α′′2r4

−8χg(3)r3 − 8α(3)r3 − 16α′′r2

+ 2χg′′ (r2α′′ − 8
)
r2 + 28

))
− 48

)
h

+r
((

r3χ3g′4 + 4r3χ2α′g′3

−2r3χ
(

2
(
χg′′ + α′′) − 3α′2) g′2

+4
(
α′3r3 − 2α′ (χg′′ + α′′) r3 − 2

×
(
χg(3)r3 + α(3)r3 + 6χg′′r2 + 6α′′r2 − 8

))
g′

+4r
(
r2χg′′2 −

(
α′2r2

− 2α′′r2 + 12α′r + 16
)
g′′ − 2r

(
rα′ + 4

)
g(3)

))
ν2

−2r
(
r2χ2 (

χh′

+ ν′) g′3 + rχ
(
3χh′ (rα′ + 4

)
+3ν′ (rα′ + 4

) + 2r
(
χh′′ + ν′′)) g′2

+
(
ν′ (3α′2r2 + 4χg′′r2 + 4α′′r2 + 24α′r + 32

)

+χh′ (3r2α′2 + 24rα′
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+ 4
(
χg′′r2 + α′′r2 + 8

))

+4r
(
rα′ + 4

) (
χh′′ + ν′′)) g′ + (

rα′ + 4
)

×
(

4rν′g′′ + 2
(
rα′ + 4

)
h′′ + h′ (rα′2 + 8α′

+4r
(
χg′′ + α′′)))) ν + r

×
(
χh′2 (

rχg′ + rα′ + 4
)2

+2h′ν′ (rχg′ + rα′ + 4
)2 + rg′ν′2 (

rχg′

+ 2rα′ + 8
)))

, (A5)

Z3 = χ
(
r4χ4g′4 + 4r3χ3 (

rα′ + 1
)
g′3

+2r2χ2
(

3α′2r2 + 6χg′′r2 + 6α′′r2

+ 6α′r − 8
)
g′2 + 4rχ

(
r3α′3 + 3r2α′2

+
(

6r3(χg′′ + α′′) − 8r
)

α′ + 2

×
(

3r3(χg(3) + α(3)) + 5r2(χg′′ + α′′) − 2
))

g′

+r4α′4 + 4r3α′3 + 4

×r2α′2 (
3χg′′r2 + 3α′′r2 − 4

)

+8rα′ (3χg(3)r3 + 3α(3)r3 + 5χg′′r2

+ 5α′′r2 − 2
)

+ 4
(

5χ2g′′2r4 + 5α′′2r4 − 8α′′r2

+2χg′′ (5r2α′′ − 4
)
r2

+4
(
χg(4)r4 + α(4)r4 + 3χg(3)r3

+3α(3)r3 + 7
)))

h2 + 2
(

3χh′α′3r4

+3α′3ν′r4 + 3χ3g′3 (
χh′ + ν′) r4

+28χα′g′′r4 (
χh′ + ν′) + 6χα′2h′′r4

+16χ2g′′h′′r4 + 28χh′α′α′′r4 + 28α′ν′α′′r4

+16χh′′α′′r4 + 6α′2ν′′r4

+16χg′′ν′′r4 + 16α′′ν′′r4 + 24χ2h′g(3)r4

+24χν′g(3)r4 + 4χα′h(3)r4

+24α(3)r4(χh′ + ν′) + 4α′ν(3)r4

+16α′2r3 (
χh′ + ν′) + 56χ

(
χh′

+ ν′) g′′r3 + 28χα′h′′r3 + 56χh′α′′r3

+56ν′α′′r3 + 28α′ν′′r3 + χ2g′2

× (
χh′ (9rα′ + 16

) + ν′ (9rα′ + 16
)

+6r
(
χh′′ + ν′′)) r3 + 16r3

(
χh(3)

+ ν(3)
)

− 24χh′α′r2 − 24α′ν′r2 − 56χh′r

+24α′r − 56ν′r + χg′ (rχh′

×
(

9r2α′2 + 32rα′ + 4
(

7χg′′r2 + 7α′′r2 − 6
))

+rν′ (9r2α′2 + 32rα′

+ 4
(

7χg′′r2 + 7α′′r2 − 6
))

+ 4
(
χh(3)r3 + ν(3)r3

+χ
(
3rα′ + 7

)
h′′r2

+ (
3rα′ + 7

)
ν′′r2 + 6

))
r

+ν
(
r4χ4g′4 + 4r3χ3 (

rα′ + 1
)
g′3 + 2r2χ2

×
(

3α′2r2 + 6χg′′r2 + 6α′′r2 + 6α′r − 8
)
g′2

+4rχ
(
r3α′3 + 3r2α′2

+α′ (6χg′′r3 + 6α′′r3 − 8r
)

+2
(

3r3(χg(3) + α(3)) + 5χg′′r2 + 5α′′r2

− 2)) g′ + r4α′4 + 4r3α′3

+4r2α′2 (
3χg′′r2 + 3α′′r2 − 4

)
+ 8rα′ (−2

+ 3χg(3)r3 + 3α(3)r3 + 5χg′′r2 + 5α′′r2
)

+4
(

5r4
(
χ2g′′2 + α′′2)

−8α′′r2 + 2χg′′ (5r2α′′ − 4
)
r2

+4
(
χg(4)r4 + α(4)r4 + 3χg(3)r3

+ 3α(3)r3 + 7
)))

− 48
)
h

+r
(
χh′2 (

5χg′(rχg′ + 2
(
rα′ + 2

)
) + 5rα′2

+ 20α′ + 12r
(
χg′′ + α′′)) r2 + ν′ (5rχν′g′2

+2
(
5
(
rα′ + 2

)
ν′ + 2r

(
ν′′

+ χh′′)) g′ + 4
(
3rν′g′′ + (

rα′ + 4
)
h′′)) r2

+2h′ (5χ2g′2ν′r3 + 5α′2ν′r3

+2α′ (10ν′ + r
(
χh′′ + ν′′)) r2

+2χg′ (5
(
rα′ + 2

)
ν′ + r

(
χh′′ + ν′′)) r2

+ 4
(

3ν′ (χg′′ + α′′) r3 + 2
(
χh′′r2 + ν′′r2 + 3

)))

+2ν
(

3r3χ2g′3 (
χh′

+ ν′) + r2χ
(
χh′ (9rα′ + 16

)
+ν′ (9rα′ + 16

) + 6r
(
χh′′ + ν′′)) g′2

+
(
rχh′ (9r2α′2 + 32rα′

+4
(

7χg′′r2 + 7α′′r2 − 6
))

+ rν′ (9r2α′2

+ 32rα′ + 4
(

7χg′′r2 + 7α′′r2 − 6
))

+4
(
χh(3)r3 + ν(3)r3 + χ

(
3rα′

+ 7) h′′r2 + (
3rα′ + 7

)
ν′′r2 + 6

))
g′
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+2r2
(

3rh′′α′2 + 2α′ (7h′′

+ rh(3)
)

+ 2ν′ (7
(
rα′ + 2

)
g′′ + 6rg(3)

)

+8
(
rh′′α′′ + rg′′ (χh′′ + ν′′)

+ h(3)
))

+ h′ (3r3α′3 + 16r2α′2

+4r
(

7χg′′r2 + 7α′′r2 − 6
)

α′ + 8
(

3r3

×
(
χg(3) + α(3)

)
+ 7χg′′r2 + 7α′′r2 − 7

)))

+ν2
(
r3χ3g′4 + 4r2χ2 (

rα′

+ 1) g′3 + 2rχ
(

3α′2r2 + 6χg′′r2

+6α′′r2 + 6α′r − 8
)
g′2 + 4

(
r3α′3

+3r2α′2 +
(

6χg′′r3 + 6α′′r3 − 8r
)

α′

+2
(

3r3(χg(3) + α(3)) + 5r2 (
α′′

+ χg′′) − 2
))
g′ + 4r

(
5r2χg′′2

+
(

3α′2r2 + 10α′′r2 + 10α′r − 8
)
g′′

+ 2r
(

3
(
rα′ + 2

)
g(3) + 2rg(4)

))))
. (A6)

Appendix B

The uncharged isotropic Krori–Barua solution is obtained by
adopting the following procedure. Substituting expressions
of Y2 and Y3 in Eqs. (19) and (20), respectively, we obtain

pr = ν

(
α′

r
+ 1

r2

)
− 1

r2 + 1

8r4 σ
[
−r2 (

rα′ + 4
)2

ν′2

+2ν
(
r4α′3ν′ + 2r3α′2

× (
rν′′ + 6ν′) + 4r2α′ (r2α′′ν′ + 8ν′ + 4rν′′)

+16
(
r3α′′ν′ + 2r2ν′′

+ 3)) + ν2
(
−α′4r4 + 4r4α′2α′′

+8rα′ (r3α(3) + 6r2α′′ − 8
)

− 4
(
r4α′′2

− 8r2
(
rα(3) + 2α′′) + 28

))
+ 16

]
, (B1)

pt = ν

(
α′′

2
+ α′

2r
+ α

′2

4

)
+ ν′

2r
+ ν′α′

4

+ 1

8r4 σ
[
r3ν′2 (

12rα′′ + 5rα′2

+ 20α′) + 4rν′ (r2 (
rα′ + 4

)
ν′′ + 12

)

+2ν
(

3r4α′3ν′ + 2r3α′2 (
3rν′′

+ 8ν′) + 4rα′ (r3ν(3) + r
(

7r2α′′ − 6
)

ν′

+7r2ν′′ + 6
)

+ 8
(

2
(
r4α′′ν′′

+ r3ν(3) − 3
)

+ r
(

3r3α(3) + 7r2α′′ − 7
)

ν′))

+ν2
(
r4α′4 + 4r3α′3

+4r2α′2 (
3r2α′′ − 4

)

+8rα′ (3r3α(3) + 5r2α′′ − 2
)

+ 4
(

4r4α(4)

+ 5r4α′′2 + 12r3α(3) − 8r2α′′ + 28
))

− 16
]
. (B2)

Equations (B1) and (B2) are the f (R) field equations cor-
responding to radial and tangential pressures, respectively.
The fluid represents isotropic configuration if pr = pt = p.
Employing this condition yields

p = 1

8r3

[
2rσν′2 (

3r2α′′ + r2α′2 + 3rα′ − 4
)

+ν′ (r3α′ (2σν′′ + 1
) + 2

×
(

4r2σν′′ + r2 + 12σ
))

+ ν
(

4r3σα′3ν′

+r2α′2 (
8rσν′′ + 28σν′ + r

)
+2

(
r
(
r2α′′ (8σν′′ + 1

) + 8rσν(3) + 16σν′′ + 2
)

+4σν′ (3r3α(3) − 7

+ 9r2α′′))
+ α′ (4r3σν(3)

+8rσ
(

4r2α′′ + 1
)

ν′ + 44r2σν′′ + 6r2

+ 24σ)) + 2σν2
(
r2α′3 + 4rα′2 (

r2α′′ − 1
)

+4r
(
r2α(4) + r2α′′2 + 2α′′

+ 5rα(3)
)

+ α′ (8r3α(3)

+22r2α′′ − 20
))

− 4r
]
, (B3)

which represents the expression of isotropic pressure. By
plugging the metric potentials of Krori–Barua solution,
Eq. (B3) turns out to be

p = e−2Ar2

2r2

[
−e2Ar2 + eAr2

{
1 + B2r4

−A
(
Br4 + r2 + 12σ

)
+ 4B

(
r2

+ 3σ)} − 4σ
{

6A3r4
(
Br2 + 2

)

+A
(

4B3r6 + 34B2r4 + 35Br2 − 3
)

− A2r2
(

10B2r4 + 43Br2 + 20
)

+B
(
−5B2r4 − 11Br2 + 3

)}]
. (B4)
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