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Abstract Decays of B mesons with leptons in the final
state offer an interesting laboratory to search for possible
effects of physics from beyond the Standard Model. In view
of puzzling patterns in experimental data, the violation of lep-
ton flavour universality is an interesting option. We present
a strategy, utilising ratios of leptonic and semileptonic B
decays, where the elements |Vub| and |Vcb| of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix cancel, to constrain the
short-distance coefficients of (pseudo)-scalar, vector and ten-
sor operator contributions. The individual branching ratios
allow us then to extract also the CKM matrix elements, even
in the presence of new-physics contributions. Bounds on
unmeasured leptonic and semileptonic decays offer impor-
tant additional constraints. In our comprehensive analysis,
we give also predictions for decays which have not yet been
measured in a variety of scenarios.

1 Introduction

Decays of B mesons caused by semileptonic b → u�ν̄� and
b → c�ν̄� quark-level transitions provide valuable insights
into the quark-flavour sector of the Standard Model (SM) that
is described by the Cabibbo–Kobayashi–Maskawa (CKM)
matrix. These channels play a key role to determine the
CKM matrix elements |Vub| and |Vcb| from experimental
data, where we are facing extractions from inclusive and
exclusive modes that are not fully consistent with one another
[1]. Decays of this kind have also received a lot of attention
in view of experimental data indicating violations of lepton
flavour universality, which is a key feature of the SM (see,
e.g., Refs. [2–4] and references therein). Is it actually violated
in Nature? Analyses of New Physics (NP) effects in leptonic
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and semileptonic modes mediated by these transitions have
been performed in, e.g., Refs. [5–20].

For NP analyses to constrain the corresponding short-
distance parameters, care is needed concerning the values
of |Vub| and |Vcb| as their determinations may be affected
by contributions from physics beyond the Standard Model.
In view of this feature, we have proposed a strategy for the
exclusive b → u�ν̄� modes in Ref. [21], introducing suit-
able ratios of leptonic and semileptonic modes of this decay
class, where the CKM factor |Vub| cancels. Utilising these
observables, we then determined allowed regions for the
short-distance coefficients of (pseudo)-scalar operators, aris-
ing from NP effects. Using the individual branching ratios,
we may finally extract |Vub|, while simultaneously allowing
for physics from beyond the SM.

In this paper, we build upon this strategy, addressing two
new points. The first concerns the analysis of the effects of
new vector and tensor operators in the exclusive b → u�ν̄�

decays: the B− → �ν̄� as well as B → π�ν̄� and B → ρ�ν̄�

channels, thereby complementing our previous study where
we analysed only (pseudo)-scalar operators. The second –
and main – point is the development of a similar strategy
for exclusive B decays originating from b → c�ν̄� pro-
cesses, B → D�ν̄� and B → D(∗)�ν̄� transitions as well
as the leptonic B−

c → �ν̄� modes. Here we consider the
NP effects of vector, (pseudo)-scalar and tensor operators,
and constrain the corresponding short-distance coefficients
through the currently available experimental data. Moreover,
we extract the CKM matrix element |Vcb| with the help of the
individual branching ratios, and make predictions for decays
which have not yet been measured.

The theoretical framework of our study is given by the
corresponding low-energy effective Hamiltonians, allowing
for NP operators. We perform also the proper renormalisation
group evolution to connect the short-distance coefficients at
the high-energy scale at the 1 TeV level with the low-energy
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scale at the μ = mb level of the b-quark mass that is relevant
for the analysis of experimental data for the B-meson decays
under consideration.

The outline of this paper is as follows: in Sect. 2, we intro-
duce the theoretical tools, including the general expressions
for the exclusive decay rates, the renormalisation group evo-
lution and the strategy for extracting the CKM matrix ele-
ments |Vub| and |Vcb|. In Sect. 3, we focus on the exclusive
b → u�ν̄� modes, and explore the space for NP effects aris-
ing from vector and tensor operators, as well as update our
previous analysis of the (pseudo)-scalar operators. In Sect. 4,
these results are applied to determine the allowed range for
|Vub| and certain branching ratios that have not been mea-
sured. The exclusive b → c�ν̄� quark-level decays are then
discussed in Sect. 5, giving a comprehensive picture of the
constraints on the short-distance coefficients of the corre-
sponding (pseudo)-scalar, vector and tensor operators fol-
lowing from the current experimental data. In Sect. 6, we
present a detailed discussion of the picture for the CKM fac-
tor |Vcb|, emerging from our NP analysis and the experimen-
tal information available. There we also consider the leptonic
Bc decays, which have so far not been observed experimen-
tally. Finally, we summarise our conclusions in Sect. 7. In
two appendices, we collect details of the specific form factor
parameterisations applied in our numerical analysis, and the
various input parameters that are used in our calculations.

2 Theoretical framework

The effective Hamiltonian relevant to our studies is

Hq
eff = 4GF√

2
Vqb

[
C̃q,�
VL

Oq,�
VL

+ C̃q,�
VR

Oq,�
VR

+ C̃q,�
S Oq,�

S

+C̃q,�
P Oq,�

P + C̃q,�
T Oq,�

T

]
+ h.c., (1)

where q = u, c and � = e, μ, τ . The corresponding opera-
tors are

Oq,�
VL

= (q̄γ μPLb)(�̄γμPLν�),

Oq,�
VR

= (q̄γ μPRb)(�̄γμPLν�),

Oq,�
S = 1

2
(q̄b)(�̄PLν�),

Oq,�
P = 1

2
(q̄γ5b)(�̄PLν�),

Oq,�
T = (q̄σμν PLb)(�̄σμν PLν�), (2)

where PL ,R = 1
2 (1 ∓ γ5). The Wilson coefficients can be

decomposed in their SM and NP contributions as

C̃q,�
a = C (SM)q,�

a + Cq,�
a , (3)

with a = {VL , VR, S, P, T } and

C (SM)q,�
VL

= 1,

C (SM)q,�
VR

= C (SM)q,�
S

= C (SM)q,�
P = C (SM)q,�

T = 0. (4)

Potential NP contributions enter through the Cq,�
a . In view

of Eq. (4), we have C̃q,�

a′ = Cq,�

a′ for a′ = {VR, S, P, T },
i.e., they are fully characterized by their NP component. We
will consider CP-conserving NP effects and hence only real
Wilson coefficients.

As discussed in [22–24], within the framework of the Stan-
dard Model Effective Field Theory (SMEFT), the coefficient
Cq,�
VL

depends in general on the leptonic flavour. In contrast,

at the lowest order in the v2/	2 expansion, where v is the
vacuum expectation value of the Higgs boson and 	 is the NP
scale, the coefficient Cq,�

VR
turns out to be lepton-flavour uni-

versal. Therefore, unless indicated otherwise, we will assume

Cq,�
VR

= Cq
VR

. (5)

To constrain the Wilson coefficients in Eq. (1), we will
consider different leptonic and semileptonic B meson decays.
In the presence of pseudoscalar and vector interactions, the
leptonic modes obey the following expression:

B(B−
q → �−ν̄�) = B(B−

q → �−ν̄�)|SM

×
∣∣∣∣∣1 + Cq,�

VL
− Cq

VR
+

M2
Bq

m�(mb + mq)
Cq,�

P

∣∣∣∣∣
2

, (6)

where

B(B−
q → �−ν̄�)|SM = G2

F

8π
|Vqb|2MBqm

2
�

×
(

1 − m2
�

M2
Bq

)2

f 2
Bq τBq . (7)

Since the tensor matrix element vanishes,
〈
0

∣∣ q̄σμν PLb
∣∣ Bq

〉 =
0, leptonic Bq decays do not help us to constrain the coeffi-

cient Cq,�
T . They also receive no contribution from the scalar

operator.
In the case of semileptonic B decays involving a vector

meson Ṽ in the final state, we have the following expression
[25]:

dB(B̄ → Ṽ �−ν̄�)

dq2

= G2
FτB |Vqb|2
24π3m2

B

{
(|1 + Cq,�
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|2 + |Cq

VR
|2)

×
[

1

4

(
1 + m2

�

2q2
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HṼ 2
V,+ + HṼ 2

V,− + HṼ 2
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)

+3

8

m2
�

q2 HṼ 2
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]
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V,−

)
+3

8

m2
�

q2 HṼ 2
V,t

]

+3

8
|Cq,�

P |2HṼ 2
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2
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In addition, for a semileptonic B decay into a pseudoscalar
meson P , we have [25]

dB(B̄ → P�−ν̄�)

dq2
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In Eqs. (8) and (9), q2 represents the four momentum squared
transferred to the leptonic system, composed of the � and ν̄�.
In addition, the magnitude of the three momentum of the
meson in the final state has been denoted as | �pP | and | �pṼ |.
The expression of | �pṼ | in terms of q2 is given by

| �pṼ | =

√[
(MB − MṼ )2 − q2

][
(MB + MṼ )2 − q2

]

2MB
. (10)

The equation for | �pP | is analogous to Eq. (10), with the
straightforward replacement of MṼ by MP .

Before continuing we would like to introduce some nota-
tion. In what follows, we will use the symbol � to denote
either an electron, a muon or a tau lepton, on the other hand
�′ will refer only to electrons and muons.

On the experimental side it is not always transparent what
the branching ratios of the semileptonic modes represent. For
the purpose of determining |Vqb| under the assumption of the
SM, it is advantageous to combine information from decays
with electrons and muons in the final state. Hence, they are
often presented as B(B̄ → Ṽ (P)�′−ν̄�′), where �′ is an elec-
tron or a muon. The exact definition of these branching ratios
is often ambiguous. For example, they could be averages over
both leptons, or involve just one of the two. In order to test
the SM and search for NP, it would be instrumental to have
measurements separately for electrons and muons. It would
then also be pertinent that these analyses do not rely on the-
oretical assumptions such as a form factor parametrization,
and are presented independently for the B− and B̄0 modes,
which is currently not always the case. In this work, we will
employ PDG averages whenever available, averaging their
values for the B− and B̄0 channels, and interpret the experi-
mental data for B̄ → Ṽ (P)�′−ν̄�′ as averages over electronic
and muonic modes.

Our aim is to search for potential NP effects, entering
through the Wilson coefficients of the operators in Eq. (2),
as well as to determine the |Vqb| while allowing for new
contributions. We follow the strategy introduced in Ref. [21],
which is discussed in more detail in Sect. 2.2.

Our analysis works under the general assumption of NP
in τ leptons as well as electrons and muons. Therefore, in
principle, we should fit for three different coefficients Ce

X ,
Cμ
X and Cτ

X , where X = P, S, V, T . However, to simplify
the analysis, we will consider scenarios where the coefficients
for the electron and muon are correlated according to

Ce
X = f eμC

μ
X , (11)

where f eμ is a constant. In general, there are three possibil-
ities which can be addressed in a model-independent way:
Ce
X < Cμ

X , Ce
X ∼ Cμ

X and Cμ
X < Ce

X . For the purposes of
illustration, we consider three possible scenarios:

Scenario 1: Ce
X = 0.1Cμ

X ,

Scenario 2: Ce
X = Cμ

X ,

Scenario 3: Ce
X = 10Cμ

X . (12)

To evaluate the confidence regions allowed for our NP
Wilson coefficients CX at the one-σ level we consider the
following equation:
∣∣∣O(CX )Theory − OExperiment

∣∣∣<
√

σ 2
Theory + σ 2

Experiment, (13)

where O is a given physical observable with central value
OExperiment, and σTheory and σExperiment are the theoretical
and experimental uncertainties respectively. The theoretical
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uncertainty is estimated based on

σ 2
Theory =

N∑
i=1

(∂O(CX )Theory

∂xi

)2
�x2

i , (14)

where xi are the individual theoretical inputs on which
OTheory depends. Notice that the theoretical uncertainty is
in general not constant and depends on the particular value
assigned to CX .

2.1 Introduction of new physics effects

In this work, we will consider NP contributions arising at a
high energy scale of μ = 1 TeV. The evolution down to the
bottom scale μ = mb is given by the following matrix [26]:

⎛
⎜⎜⎜⎜⎜⎝

Cq,�
VL

(mb)

Cq
VR

(mb)

Cq,�
S (mb)

Cq,�
P (mb)

Cq,�
T (mb)

⎞
⎟⎟⎟⎟⎟⎠




⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1.71 0 −0.27
0 0 0 1.71 0.27
0 0 0 0 0.84

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Cq,�
VL

(1 TeV)

Cq
VR

(1 TeV)

Cq,�
S (1 TeV)

Cq,�
P (1 TeV)

Cq,�
T (1 TeV).

⎞
⎟⎟⎟⎟⎟⎠

.

(15)

Consequently, the short-distance coefficients at the bottom
scale entering in the B-meson branching fractions are essen-
tially functions of the coefficients at μ = 1 TeV. Notice that,
as the result of the renormalization group evolution, in our
basis the coefficientCq,�

T (1 TeV) yields contributions toCq,�
S

and Cq,�
P at the scale μ = mb.

In the following discussion, we will determine allowed
regions for the Wilson coefficients at the scale μ = 1 TeV,
making the connection with the bottom scale implicitly
through Eq. (15). From this point onwards and in order
to simplify the notation, wherever we write Cq,�

i (where
i ∈ {VL , VR, S, P, T }), i.e., without specifying the scale μ,
we are referring to the coefficients at μ = 1 TeV. There are
a few exceptions, for which we will clearly indicate in the
text that we are considering the scale μ = mb.

2.2 Strategy for the determination of |Vub| and |Vcb|

Typically, the |Vqb| are determined assuming no NP con-
tributions (see for instance Ref. [27]). We have proposed
a strategy to take into account potential NP effects arising
from (pseudo)-scalar operators when determining |Vub| from
exclusive b → u�ν̄� modes in Ref. [21]. In this section, we
describe this strategy, generalizing it to b → q�ν̄� and |Vqb|
for all operators in Eq. (2).

There are analyses that have evaluated |Vub| and |Vcb|
considering simultaneously NP contributions in scalar, vec-
tor and tensor operators, see for instance [7,8,12,17]. These
studies are based on simultaneous fits to |Vqb| and the dif-
ferent NP Wilson coefficients, and take advantage of the cor-

relation between these quantities established in branching
fractions and differential distributions.

Our strategy follows a different approach, which allows
us to extract NP effects independently of |Vqb| for q = u, c.
The key steps are as follows:

1. We first establish the possible regions for the different
NP Wilson coefficients using ratios of branching fractions
where |Vqb| cancels out.

2. We then proceed with the evaluation of |Vqb| by substi-
tuting the allowed NP regions established in the previous
step inside specific observables sensitive to the different
NP Wilson coefficients and |Vqb|. We would like to stress
that – since the NP contributions were already extracted in
a |Vqb| independent fashion – observables such as branch-
ing fractions only depend on one unknown parameter,
which is precisely |Vqb|. We can now finally extract this
parameter, obtaining a value that takes potential NP con-
tributions into account.

This procedure can, in certain cases, be further refined to
account for correlations between the different observables
and parameters considered during the analysis, as done in
Ref. [21].

3 The b → u transitions

The discussion in this section focuses on the determination of
the b → u�ν̄� short-distance coefficients, and complements
the analysis in Ref. [21]. There, the possibility of having NP
effects from scalar and pseudoscalar interactions entering
in different leptonic and semileptonic decays was explored.
Here, we will consider in addition the vector and tensor struc-
tures, taking into account the renormalization group evolu-
tion as introduced in Sect. 2.1. For completeness, we will
include the (pseudo)-scalar operators as well, switching on
their coefficients at μ = 1 TeV, whereas the results in Ref.
[21] relate to μ = mb.

Our determinations will employ the following experimen-
tal measurements for B− leptonic decays [28,29]:

B(B− → μ−ν̄μ) = (5.3 ± 2.2) × 10−7,

B(B− → τ−ν̄τ ) = (1.09 ± 0.24) × 10−4. (16)

For the corresponding process involving electrons, we will
consider the upper bound obtained by the Belle collaboration
in 2007 [30]:

B(B− → e−ν̄e) < 9.8 × 10−7 (90% C.L.). (17)
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Within the SM, we have

B(B− → τ−ν̄τ )|SM = (8.58 ± 0.71) × 10−5, (18)

B(B− → μ−ν̄μ)|SM = (3.86 ± 0.32) × 10−7, (19)

B(B− → e−ν̄e)|SM = (9.03 ± 0.75) × 10−12, (20)

where we have used [27]

|Vub| = (3.67 ± 0.15) × 10−3 (21)

and [31]

fB− = 0.1900 ± 0.0013 GeV. (22)

The value of |Vub| in Eq. (21) is determined by HFLAV
from B → π�′ν data, where �′ is an electron or a muon,
with form factors from lattice QCD (LQCD) and light-cone
sum-rule (LCSR) calculations, assuming no NP in the light
leptonic generations. This should be kept in mind when con-
sidering our evaluations for the branching fractions in the
SM given in Eqs. (18), (19) and (20). As argued in Ref.
[21], decoupling the determination of |Vub| from potential
NP effects in b → u�ν̄� transitions requires a more careful
approach which is developed further in this work. As a result,
the values in Eqs. (18), (19) and (20) serve an illustrative
purpose and should not be seen as predictions. Moreover, we
would like to point out that there is a long-standing tension
between exclusive, as in Eq. (21), and inclusive determina-
tions of |Vub|. For the latter, HFLAV gives the value [27]:

|Vub|incl. = (4.32 ± 0.12+0.12
−0.13) × 10−3. (23)

For the present analysis, we have also taken into account
the semileptonic decay processes involving the ρ vector
meson in the final state. From the results reported by the
Belle collaboration [32], we obtain
〈
B(B̄0 → ρ+�′−ν̄�′)

〉
[�′= e,μ], q2≤12 GeV2

= (1.90 ± 0.20) × 10−4,

2
〈
B(B− → ρ0�′−ν̄�′)

〉
[�′= e,μ], q2≤12 GeV2

= (2.03 ± 0.16) × 10−4. (24)

Here we have taken into account only the q2 region satis-
fying q2 ≤ 12 GeV2, as indicated by the subindex. The
reason for this is that, on the theory side, we make use of
form factors calculated using LCSRs, which are applicable
at low values of q2 [33]. Details on the form factors are pro-
vided in Appendix A.1. We interpret the experimental results
in Eq. (24) as an average over electrons and muons, as dis-
cussed in Sect. 2. Using the isospin symmetry, we combine
the results in Eq. (24) to obtain
〈B(B̄ → ρ�′−ν̄�′)

〉
[�′= e,μ], q2≤12 GeV2

= (1.98 ± 0.12) × 10−4. (25)

For semileptonic decays including a pseudo-scalar meson
in the final state, we consider the B̄ → π�′−ν̄�′ processes,
where �′ = e, μ. On the experimental side, we have [29]

〈
B(B̄0 → π+�′−ν̄�′)

〉
[�′= e,μ] = (1.50 ± 0.06) × 10−4,

2
〈
B(B− → π0�′−ν̄�′)

〉
[�′= e,μ] = (1.56 ± 0.05) × 10−4.

(26)

Making use of the isospin symmetry, we get
〈B(B̄ → π�′−ν̄�′)

〉
[�′= e,μ] = (1.53 ± 0.04) × 10−4. (27)

In addition, we consider the following upper bound:

B(B̄0 → π+τ−ν̄τ ) < 2.5 × 10−4 (90% C.L.), (28)

as obtained by the Belle Collaboration [34]. In Appendix A.1
we provide details on the B → π form factors.

When studying potential NP contributions to these decays,
we have to take into account that they are actually used to
determine |Vub| (see, e.g., Ref. [27]). Therefore, the value of
|Vub| may be affected by NP, and we have to construct observ-
ables independent of |Vub| for consistency. To that end, we
consider ratios of branching fractions to evaluate the possible
values of the NP Wilson coefficients.

The |Vub|-independent leptonic ratios are

R�1
�2

≡ m2
�2

m2
�1

(
M2

B− − m2
�2

M2
B− − m2

�1

)2 B(B− → �−
1 ν̄�1)

B(B− → �−
2 ν̄�2)

, (29)

where �1, �2 are any of the leptons e, μ, τ . Additionally, we
include the following combinations of leptonic and semilep-
tonic branching fractions:

R�

〈e,μ〉;ρ [q2≤12] GeV2 ≡ B(B− → �−ν̄�)/
〈B(B̄ → ρ�′−ν̄�′)

〉
[�′= e,μ], q2≤12 GeV2 ,

(30)

R�
〈e,μ〉;π ≡ B(B− → �−ν̄�)/〈B(B̄ → π�′−ν̄�′)

〉
[�′= e,μ] , (31)

with � = e, μ, τ . Finally, we use also the ratio of semilep-
tonic processes

R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π ≡ 〈B(B̄ → ρ�′−ν̄�′)
〉
[�′= e,μ], q2≤12 GeV2 /

〈B(B̄ → π�′−ν̄�′)
〉
[�′=e,μ] . (32)

With the currently available branching ratios in
Eqs. (16), (25) and (27), we have the following ratios at our
disposal:

Rτ
μ, Rτ

〈e,μ〉;ρ [q2≤12] GeV2 ,Rμ

〈e,μ〉;ρ [q2≤12] GeV2 ,

Rτ
〈e,μ〉;π , Rμ

〈e,μ〉;π , R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π , (33)
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where we use the notation defined in Eqs. (29)–(32). Given
the number of independent branching fractions, at most
three of these observables are independent. However, they
are sensitive to different short-distance coefficients. In the
following sections, we will consider each of the structures
i ∈ {P, S, VL , VR, T } independently, constraining the coef-
ficients Cu,μ

i and Cu,τ
i through three appropriate ratios of

branching fractions. For the Cu,e
i coefficient, we will con-

sider the three scenarios from Eq. (12).
There are two exceptions to the approach discussed above:

The Wilson coefficient CVR is lepton-flavour universal (see
Eq. (5)), and in case of the CS short-distance coefficient,
we have only sensitivity to Cu,e

S (1 TeV) and Cu,μ
S (1 TeV)

through
〈B(B̄ → π�′−ν̄�′)

〉
[�′= e,μ], so we will constrain

these coefficients without assuming any relation between
them.

3.1 Constraints on (pseudo)-scalar Wilson coefficients

We will start our analysis of the b → u transitions by
considering new contributions to the Wilson coefficients of
the (pseudo)-scalar operators Ou,�

P and Ou,�
S introduced in

Eq. (2). We have considered these operators before in Ref.
[21]. The main difference with respect to our previous anal-
ysis is that here we will include RGE effects, considering
the short-distance coefficients at the scale μ = 1 TeV. From
Eq. (15), we can see that this involves a rescaling of the coef-
ficients at μ = mb. In addition, we use more recent data on
B(B− → μ−ν̄μ) [28].

3.1.1 New physics entering through Cu,�
P

The short-distance coefficient Cu,�
P contributes to all branch-

ing ratios considered here with the exception of〈B(B̄ → π�′−ν̄�′)
〉
[�′= e,μ]. Still we may consider ratios

involving this decay mode, as it may be still be used to cancel
|Vub|. Actually, all six observables in Eq. (33) are sensitive
to the Cu,�

P coefficient, but, as stated before, they are not all
independent. We will consider the following three ratios:

Rτ
μ, Rμ

〈e,μ〉;ρ [q2≤12] GeV2 , R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π . (34)

We have verified, in the scenario where Cu,e
P = Cu,μ

P , that a
different subset of observables would not have a meaningful
impact on the results. Interestingly, of the ratios in Eq. (34),
the latter two do not involve a τ in the final state, so they
constrain only Cu,μ

P , whereas Rτ
μ is sensitive to both Cu,μ

P
and Cu,τ

P .

As it turns out, there is no agreement between theory and

experiment for the observable R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π in any of

the three scenarios for Cu,e
P . We will address this in the next

paragraph. First, we present in Fig. 1 the constraints on Cu,μ
P

andCu,τ
P from the other two observables listed in Eq. (34). We

note that the results are very insensitive to the assumptions
about Cu,e

P . In each scenario, we obtain four distinct regions
where both constraints overlap, one of which includes the
SM.

Studying the ratio R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π further, we find
that the theoretical value and experimental data only barely
disagree. In fact, small variations in the uncertainty may
have a significant impact in Fig. 1, yielding a contour that
agrees with all four regions defined by the overlap of Rτ

μ and
Rμ

〈e,μ〉;ρ [q2≤12] GeV2 . Specifically, we find that, on the basis

of this observable, we cannot exclude these solutions at the
1 σ level.

3.1.2 New physics entering through Cu,�
S

The only observable sensitive to Cu,�
S is〈B(B̄ → π�′−ν̄�′)

〉
[�′= e,μ]. Consequently, we cannot con-

strain Cu,τ
S and we will hence consider Cu,e

S and Cu,μ
S only.

We will still determine the bounds from all three ratios involv-
ing the

〈B(B̄ → π�′−ν̄�′)
〉
[�′= e,μ] branching fraction; the

distinction is that the cancellation of |Vub| is obtained from
different modes in each ratio. Specifically, we take

Rτ
〈e,μ〉;π , Rμ

〈e,μ〉;π , R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π . (35)

The constraints in the Cu,μ
S –Cu,e

S plane corresponding to
the observables in Eq. (35) are shown in Fig. 2. Since they
all overlap, we show them for clarity separately on the top
row, and all together on the bottom. In case of the Rμ

〈e,μ〉;π
ratio, we note that there is no solution for the central value;
a region only appears once the uncertainties are taken into

account. Furthermore, the ratio R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π yields
a doughnut-shaped constraint with a hole around the SM
point. However, this is slightly over 1 σ , i.e., not a significant
deviation.

3.2 Constraints on vector Wilson coefficients

We continue by considering the vector operators Ou,�
VL

and

Ou,�
VR

. First we will allow for NP to enter through Cu,�
VL

, where
� is any of the charged leptons e, μ and τ . Next, we will con-
sider a non-vanishingCu

VR
, which is lepton-flavour universal,

as we discussed in Sect. 2.
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Fig. 1 Constraints on Cu,μ
P and Cu,τ

P under different assumptions about the relation between Cu,e
P and Cu,μ

P , as indicated in the plots

3.2.1 New physics entering through Cu,�
VL

Allowing NP to enter only through Cu,�
VL

, the expressions in
Eqs. (6), (8) and (9) take the following form:

B(B− → �−ν̄�) = B(B− → �−ν̄�)
∣∣
SM

∣∣∣1 + Cu,�
VL

∣∣∣
2
, (36)

dB(B̄ → ρ�−ν̄�)

dq2 = dB(B̄ → ρ�−ν̄�)

dq2

∣∣∣∣
SM

∣∣∣1 + Cu,�
VL

∣∣∣
2

(37)

and

dB(B̄ → π�−ν̄�)

dq2 = dB(B̄ → π�−ν̄�)

dq2

∣∣∣∣
SM

∣∣∣1 + Cu,�
VL

∣∣∣
2
.

(38)

Given that all these expressions have exactly the same depen-
dence with respect to Cu,�

VL
, any ratio of these quantities

involving the same lepton flavour will lead to the cancel-
lation of the NP contributions. Consequently, to obtain con-
straints on the vector short-distance contributions, we have to
include ratios of leptonic and semileptonic branching ratios

with different leptonic content in numerator and denomina-
tor. Hence, from the set of observables in the list in Eq. (33)
the only relevant ratios are

Rτ
μ, Rτ

〈e,μ〉;ρ [q2≤12] GeV2 , Rτ
〈e,μ〉;π . (39)

Depending on the correlation between Cu,e
VL

and Cu,μ
VL

, some
of the other observables in Eq. (33) may be considered
as well. However, as indicated before, they are not inde-
pendent. In addition, the observables in Eq. (39), with the
semileptonic branching fractions inRτ

〈e,μ〉;ρ [q2≤12] GeV2 and

Rτ
〈e,μ〉;π replaced byB(B̄ → ρμ−ν̄μ) andB(B̄ → πμ−ν̄μ),

respectively, would be the obvious candidates to constrain
Cu,μ
VL

and Cu,τ
VL

in the future, should these measurements
become available.

Let us start by making the assumption

Cu,e
VL

= Cu,μ
VL

, (40)

allowing us to constrain the independent coefficients Cu,μ
VL

and Cu,τ
VL

. The corresponding results are shown in Fig. 3,
where the cross-shaped coloured areas illustrate the NP val-
ues for the Wilson coefficients that are allowed by the observ-
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Fig. 2 Constraints in the Cu,μ
S –Cu,e

S plane following from the ratios of branching fractions listed in the text. The top row shows the allowed regions
from each individual observable. On the bottom, we show them all together

ables in Eq. (39). One of the four branches agrees with
the SM, though the constraint from Rτ

〈e,μ〉;ρ [q2≤12] GeV2 is

slightly more than 1 σ away.
Unfortunately, it is not possible to use the regions in Fig. 3

to determine |Vub|, or to make predictions for branching
ratios that have not yet been measured, such as B(B− →
e−ν̄e), since they are not further constrained. Although at
some point the contours following from the three ratios may
no longer overlap, other effects will start to play a role. Since
|Vub| cancels in the ratios in Eq. (39), the region in Fig. 3 may
correspond to values of |Vub| that are completely unrealistic
when compared to other CKM constraints.

Let us illustrate this feature by considering the leptonic
decays. In Fig. 4, we show again the allowed region in the
Cu,μ
VL

–Cu,τ
VL

plane following from Rτ
μ. Moving along the dot-

ted line, which indicates the central value, we obtain a relation
between Cu,μ

VL
and Cu,τ

VL
. This information allows us to deter-

mine the corresponding correlation with |Vub| from any of the

branching fractions. In this case, we employ the Cτ
VL

short-
distance coefficient to extract |Vub| from B(B− → τ−ν̄τ ).
The variation of |Vub|, moving along the central value of Rτ

μ,
is added to Fig. 4. Here, we have restricted ourselves to a
range of ten times the uncertainty around the central value in
Eq. (21). We note that the value of |Vub| may differ signif-
icantly from that in Eq. (21) for the range of short-distance
coefficients considered in Figs. 3 and 4 .

So far we have considered universality between Cu,e
VL

and

Cu,μ
VL

. Let us continue with the other two scenarios from
Eq. (12). The results can be found in Fig. 5. The regions
agree with the SM, and in the case of Cu,e

VL
= 10Cu,μ

VL
, the

regions are actually quite constrained in comparison with the
other two scenarios considered here. In both plots in Fig. 5,
we find agreement with the SM for one region, though at a
bit more than 1 σ for Rτ

〈e,μ〉;ρ [q2≤12] GeV2 , as was the case

when making the assumption Cu,e
VL

= Cu,μ
VL

.
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Fig. 3 Constraints in the
Cu,μ
VL

–Cu,τ
VL

plane in the scenario

Cu,e
VL

= Cu,μ
VL

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

Fig. 4 Allowed region from Rτ
μ in theCu,μ

VL
–Cu,τ

VL
plane, with the value

of |Vub| indicated along the central values of the contours

3.2.2 New physics entering through Cu
VR

As indicated in Sect. 2, the short-distance coefficient Cq
VR

is
lepton-flavour universal. Switching on only this coefficient,
we will determine the constraints from several observables.
From Eq. (6), we find

B(B− → �−ν̄�) = B(B− → �−ν̄�)
∣∣
SM

∣∣1 − Cu
VR

∣∣2
. (41)

Considering that all the leptonic branching ratios have the
same dependence on Cu

VR
, taking ratios of purely leptonic

processes cannot help us to constrain Cu
VR

since its contribu-
tion will cancel. Nevertheless, we note that Rτ

μshould agree

with its SM prediction of Rτ
μ = 1. From the experimental

data, we obtain

Rτ
μ = 0.92 ± 0.43, (42)

so this constraint is satisfied.
Let us now consider the other observables from the list in

Eq. (33) that are also sensitive to Cu
VR

:

Rτ

〈e,μ〉;ρ [q2≤12] GeV2 , Rμ

〈e,μ〉;ρ [q2≤12] GeV2 ,

Rτ
〈e,μ〉;π , Rμ

〈e,μ〉;π , R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π . (43)

In Fig. 6, we plot the dependence of these ratios onCu
VR

, along
with the region that corresponds to the experimental data.
Comparing these contours in the range −15 ≤ Cu

VR
≤ 15,

we find that each observable yields agreement with the SM
value Cu

VR
= 0 at the (1–2) σ level. In addition, each ratio

allows for one or more intervals of NP values forCu
VR

, though
not all of them overlap at 1 σ .

3.3 Constraints on tensor Wilson coefficients

As a final step in our b → u analysis, we consider the tensor
operator. From Eq. (15) we can see that taking a non-zero vale
for CT at the scale μ = 1 TeV yields contributions at the low
energy scale μ = mb not only in CT , but also in the coeffi-
cients CP and CS . In consequence, even though the branch-
ing ratios of the leptonic modes do not depend on Cu,�

T (mb),

they are sensitive to Cu,�
T (1 TeV) through Cu,�

P (mb). Hence,

all six ratios in Eq. (33) can be employed to constrain theCu,�
T

coefficients at the high-energy scale. Since they are not all
independent, we will consider again three ratios of branching

123



658 Page 10 of 31 Eur. Phys. J. C (2021) 81 :658

Fig. 5 Allowed regions in the Cu,μ
VL

–Cu,τ
VL

plane following from the observables defined in the text. The left panel corresponds to the assumption

Cu,e
VL

= 10Cu,μ
VL

, whereas the right panel shows Cu,e
VL

= 0.1Cu,μ
VL

fractions,

Rτ
μ, Rμ

〈e,μ〉;ρ [q2≤12] GeV2 , R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π ,(44)

to constrain the coefficients Cu,μ
T and Cu,τ

T at μ = 1 TeV.
We verified, in the scenario where Cu,e

T = Cu,μ
T , that a dif-

ferent choice of observables would not meaningfully affect
the results.

We find, similar to the pseudoscalar case, that there is no
agreement between theory and experiment for

R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π . The contours from the remaining two
ratios are shown in Fig. 7. Each plot corresponds to a sce-
nario from Eq. (12). Note that when we assume Cu,e

T = Cu,μ
T

and Cu,e
T = 0.1Cu,μ

T , we obtain four regions where all
contours overlap, one of which includes the SM. On the
other hand, in the scenario where Cu,e

T = 10Cu,μ
T , the ratio

Rμ

〈e,μ〉;ρ [q2≤12] GeV2 does not yield a solution for the central

value. Still, a region appears once the uncertainties are taken
into account, yielding two solutions from the combination of
both observables, one of which agrees with the SM.

As for the ratio R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π , the constraint is

slightly stronger than in the case of Cu,�
P . One the one hand,

in the scenarios whereCu,e
T = Cu,μ

T andCu,e
T = 0.1Cu,μ

T , we
find that the constraint from this observable is quite unstable,
as was the case when we considered the Cu,�

P coefficients. In
particular, at the 1 σ level, it is actually still in agreement with
all four regions following from the overlap of the contours
from Rτ

μ and Rμ

〈e,μ〉;ρ [q2≤12] GeV2 . On the other hand, while

the R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π ratio agrees with the SM at the 1 σ

level in the scenario where Cu,e
T = 10Cu,μ

T , it does constrain
the NP parameter space in this scenario.

4 Determination of |Vub| and predictions

Now that we have determined allowed regions for the differ-
ent short-distance coefficients in several scenarios, we may
use these results to determine |Vub| and make predictions
for branching ratios that have not yet been measured. We
can consider any of the measured branching ratios to deter-
mine |Vub| while accounting simultaneously for NP. Then,
we may use the results for |Vub| and the Wilson coefficients
together to predict the branching fractions B(B− → e−ν̄e),
B(B̄ → ρτ−ν̄τ )q2≤12 GeV2 and B(B̄0 → π+τ−ν̄τ ). Since
experimental limits exist for two of these branching ratios,
B(B− → e−ν̄e) and B(B̄0 → π+τ−ν̄τ ), we may find
that (part of) our predicted range for these modes is already
excluded. In that case, the bounds will be used to constrain
the allowed parameter space even further.

The purpose of this section is to demonstrate our strat-
egy for the determination of |Vub|, as well as the constrain-
ing power and potential enhancements of branching ratios
such as B(B− → e−ν̄e), which have not yet been measured.
Therefore, we have chosen to limit ourselves to a selection
of scenarios, which are:

• NP through the pseudoscalar coefficients with the assump-
tion Cu,e

P = Cu,μ
P ,

• NP through the left-handed vector coefficients with the
assumption Cu,e

VL
= 10Cu,μ

VL
,

• NP through the tensor coefficients with the assumption
Cu,e
T = 0.1Cu,μ

T .

We will use the branching fraction〈B(B̄ → ρ�′−ν̄�′)
〉
[�′= e,μ], q2≤12 GeV2 for the determination

of |Vub|.
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Fig. 6 Dependence of the five observables listed in the text on Cu
VR

, and comparison with the experimental regions

4.1 The pseudoscalar coefficients

The first step in our strategy is to obtain bounds on the
short-distance coefficients Cu,μ

P and Cu,τ
P from the over-

lap of the contours from Rτ
μ and Rμ

〈e,μ〉;ρ [q2≤12] GeV2 in

the first plot in Fig. 1. As indicated in Sec. 3.1.1, the ratio

R〈e,μ〉;ρ [q2≤12] GeV2

〈e,μ〉;π just about excludes the four solutions
from the former two observables. However, as was discussed
there, this constraint is quite unstable, so we will still apply
our strategy using Rτ

μ and Rμ

〈e,μ〉;ρ [q2≤12] GeV2 . The result-

ing allowed ranges are given in Table 1, where the regions are
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Fig. 7 Constraints in the Cu,μ
T –Cu,τ

T plane for the observables listed in the text. The three plots correspond to different assumptions about the
relation between Cu,e

T and Cu,μ
T , as indicated

Table 1 Bounds on the short-distance coefficients from the constraints
on Cu,μ

P and Cu,τ
P , along with the allowed range for |Vub| from〈B(B̄ → ρ�′−ν̄�′ )
〉
[�′= e,μ], q2≤12 GeV2 , in the scenario where Cu,e

P =

Cu,μ
P . The regions marked by the asterisk are fully excluded by the

experimental upper bound on B(B− → e−ν̄e)

Scenario: Cu,e
P = Cu,μ

P

Region Cu,μ
P (1 TeV) Cu,τ

P (1 TeV) |Vub|
1 [−0.0001, 0.0055] [−0.05, 0.13] [0.0030, 0.0037]
2 [−0.0001, 0.0055] [−0.44,−0.27] [0.0030, 0.0037]
3∗ [−0.024,−0.018] [−0.44,−0.27] [0.0030, 0.0037]
4∗ [−0.024,−0.018] [−0.05, 0.13] [0.0030, 0.0037]

numbered 1 to 4 clockwise, starting at the SM-like solution
in the top right corner of the first plot in Fig. 1.

The next step is then to determine |Vub| from〈B(B̄ → ρ�′−ν̄�′)
〉
[�′= e,μ], q2≤12 GeV2 . Here we scan the

ranges for Cu,μ
P in Table 1 together with values for |Vub| to

find agreement with the measurement in Eq. (25). The result-
ing allowed ranges for |Vub| are added in the fourth column of
Table 1. Since the branching ratio

〈B(B̄ → ρ�′−ν̄�′)
〉
[�′= e,μ], q2≤12 GeV2

is very stable on such a small scale forCu,μ
P , we find the same

result from all four regions. The range contains the HFLAV
result for |Vub| from exclusive decays in Eq. (21) at the upper
end, but not |Vub|incl. as given in Eq. (23).

Now that the short-distance coefficients and |Vub| have
been determined, we can apply them to predict branching
ratios that have not yet been measured. Of the three modes
that were introduced for this purpose in the introduction of
this section, two are sensitive to Cu,�

P : B(B− → e−ν̄e) and
B(B̄ → ρτ−ν̄τ )q2≤12 GeV2 . It turns out that the branching
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ratio prediction of B(B− → e−ν̄e) is larger than the exper-
imental bound in Eq. (17) for both regions 3 and 4, thereby
excluding these solutions. The allowed ranges for regions 1
and 2 are given in Table 2. As we found in Ref. [21], as well
as in Ref. [35] for neutral leptonic B-meson decays, the CP

coefficient potentially enhances the branching ratio of the
B− → e−ν̄e decay by several orders of magnitude because
it lifts the helicity suppression.

4.2 The left-handed vector coefficients

Let us now apply the same strategy to the Wilson coeffi-
cientCu,�

VL
, specifically the scenario where we assumeCu,e

VL
=

10Cu,μ
VL

. The relevant contours are given in the left panel of
Fig. 5. There are a few key differences with respect to the
Cu,�

P scenario:

• The regions are now defined by the overlap of three dif-
ferent contours.

• Within the uncertainties, two solutions merge into one
region, thereby giving two instead of four regions in total.

• We can give predictions for all three branching ratios
B(B− → e−ν̄e), B(B̄ → ρτ−ν̄τ )q2≤12 GeV2 and

B(B̄0 → π+τ−ν̄τ ), since they are all sensitive to the
left-handed vector coefficient.

In this instance, we find that neither the upper bound on
B(B− → e−ν̄e) nor the one on B(B̄0 → π+τ−ν̄τ ) gives
any further constraints.

The results for the short-distance coefficients and |Vub|
are given in Table 3. Region 1 is the SM-like solution on
the top in the left panel of Fig. 5, and region 2 is the other
solution on the bottom. We find quite a large range for |Vub|,
which includes the HFLAV value from exclusive modes in
Eq. (21), as well as the inclusive result in Eq. (23). The large
size of the range is dominated by the NP effects, i.e., the
variation of |Vub| with respect to Cu,μ

VL
. This is in contrast

to the Cu
P scenario, where |Vub| was very stable over the

range of the short-distance coefficient. On the other hand,
this means that improving the determination of Cu,μ

VL
has the

potential to drastically reduce the allowed range for |Vub| as
well.

The predictions for the branching ratios are given in
Table 4. In contrast to the results for CP , the helicity sup-
pression of the leptonic decays is not lifted. Consequently, the
potential enhancement of B(B− → e−ν̄e) is not as dramatic
as when NP would enter through the pseudoscalar coefficient.

4.3 The tensor coefficients

Finally, we consider the Wilson coefficient Cu,�
T in the sce-

nario where Cu,e
T = 0.1Cu,μ

T . This is a very interesting situa-

tion for a few reasons. First of all, per Eq. (15), switching on
Cu,�
T (1 TeV) gives contributions in Cu,�

S,P (mb) as well as in

Cu,�
T (mb). Secondly, the upper bound on B(B̄0 → π+τ−ν̄τ )

in Eq. (28) severely restricts the allowed regions, but does
not fully exclude any of the four solutions.

In Table 5, we give the allowed ranges of the short-distance
coefficients and |Vub| that are in agreement with the upper
bound on B(B̄0 → π+τ−ν̄τ ). The corresponding predic-
tions for the branching ratios are given in Table 6. We have
numbered the regions again in a clockwise fashion, starting
with 1 for the SM-like solution in the top right corner of the
relevant plot in Fig. 7.

Although we reach the upper bound ofB(B̄0 → π+τ−ν̄τ )

in all four regions, it mostly restricts solution 2 and 3. For
these regions, the ranges of |Vub| are also quite small, and
do not contain the HFLAV value from exclusive decays in
Eq. (21), whereas the ranges found in regions 1 and 4 do.
None of them reach the inclusive result in Eq. (23). In all
four regions, the variation of |Vub| with respect to the short-
distance coefficient has only a minor impact on the range that
we obtain. As for the predictions of branching ratios that have
not yet been measured, we find again potentially spectacular
enhancements for B(B− → e−ν̄e), though the maximum
values are somewhat smaller than in the case of Cu,�

P . It is

not surprising to find such values, because the Cu,�
T (1 TeV)

yields a contribution to Cu,�
P (mb) as stated before, thereby

also lifting the helicity supression of the leptonic modes.
Due to the potential enhancement of B(B− → e−ν̄e) by

several orders of magnitude with respect to the SM value,
we have decided to summarize these results in Fig. 8. There
we show the range of values larger than the SM that may
be obtained for B(B− → e−ν̄e) in the two allowed regions
for Cu,�

P and the four regions for Cu,�
T . We also indicate the

SM value from Eq. (20) and the experimental limit from
Eq. (17). The results from the left-handed vector coefficient
are not included because on the scale of this plot they would
be essentially at the SM level.

5 The b → c transitions

To continue our discussion, we focus on semileptonic pro-
cesses induced by the b → c quark transition. More specif-
ically, we will concentrate on the semileptonic decays of
B-mesons B → D�ν̄� and B → D∗�ν̄� with � = e, μ, τ .
Since the D and D∗ are pseudoscalar and vector meson states,
respectively, this will allow us to probe different Lorenz
structures involving b → c processes.

For the semileptonic decays involving the B → D transi-
tion, the following experimental averages calculated from
independent measurements reported by the BaBar, Belle,
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Table 2 Predictions for
branching ratios that have not
yet been measured
corresponding to the allowed
ranges of |Vub| and Cu,μ

P or
Cu,τ

P , in the scenario where
Cu,e

P = Cu,μ
P

Scenario: Cu,e
P = Cu,μ

P
Region B(B− → e−ν̄e) B(B̄ → ρτ−ν̄τ )q2≤12 GeV2

1 [0, 1.4 × 10−7] [5.2 × 10−5, 1.2 × 10−4]
2 [0, 1.4 × 10−7] [4.3 × 10−5, 9.3 × 10−5]

Table 3 Allowed ranges for the
left-handed vector coefficients
and |Vub| in the scenario where
Cu,e
VL

= 10Cu,μ
VL

Scenario: Cu,e
VL

= 10Cu,μ
VL

Region Cu,μ
VL

(1 TeV) Cu,τ
VL

(1 TeV) |Vub|

1 [−0.19, 0.02] [−0.32, 0.19] [0.0028, 0.0058]
2 [−0.19, 0.02] [−2.2,−1.7] [0.0028, 0.0058]

Table 4 Predictions for branching ratios that have not yet been measured in the scenario where NP enters through new contributions to the
left-handed vector coefficient, making the assumption that Cu,e

VL
= 10Cu,μ

VL

Scenario: Cu,e
VL

= 10Cu,μ
VL

Region B(B− → e−ν̄e) B(B̄ → ρτ−ν̄τ )q2≤12 GeV2 B(B̄0 → π+τ−ν̄τ )

1 [0, 1.0 × 10−11] [6.1 × 10−5, 1.6 × 10−4] [5.3 × 10−5, 1.3 × 10−4]
2 [0, 1.0 × 10−11] [6.1 × 10−5, 1.6 × 10−4] [5.3 × 10−5, 1.3 × 10−4]

CLEO and ALEPH collaborations [29] are available:

〈B(B̄0 → D−�′+ν̄�′)〉 = (2.35 ± 0.09) × 10−2,

〈B(B− → D̄0�′−ν̄�′)〉 = (2.35 ± 0.09) × 10−2. (45)

For channels with a τ lepton in the final state, we have con-
sidered the processes

B(B̄0 → D+τ−ν̄τ ) = (1.08 ± 0.23) × 10−2,

B(B− → D̄0τ−ν̄τ ) = (7.7 ± 2.5) × 10−3, (46)

where the first and the second ratios were obtained by the
BaBar [36] and the Belle [37] experiments, respectively.

On the other hand, for the B → D∗�′ν̄�′ decays we
have the following averages which combine partial measure-
ments by Belle, BaBar, DELPHI, CLEO, OPAL, ARGUS
and ALEPH [29]:

〈B(B̄0 → D∗+�′−ν̄�′)〉 = (5.05 ± 0.14) × 10−2,

〈B(B− → D̄∗0�′−ν̄�′)〉 = (5.66 ± 0.22) × 10−2. (47)

Table 5 Allowed ranges for the
tensor short-distance
coefficients and |Vub| in the
scenario where Cu,e

T = 0.1Cu,μ
T

Scenario: Cu,e
T = 0.1Cu,μ

T

Region Cu,μ
T (1 TeV) Cu,τ

T (1 TeV) |Vub|
1 [−0.001, 0.035] [−0.29, 0.84] [0.0030, 0.0037]
2 [−0.0011, 0.0032] [−1.72,−1.67] [0.0030, 0.0031]
3 [−0.13,−0.12] [−1.8,−1.7] [0.0029, 0.0031]
4 [−0.16,−0.12] [−0.26, 0.95] [0.0029, 0.0035]

Table 6 Allowed ranges for branching ratios that have not yet been measured corresponding to the allowed ranges for |Vub| and Cu,μ
T or Cu,τ

T , in
the scenario where Cu,e

T = 0.1Cu,μ
T

Scenario: Cu,e
T = 0.1Cu,μ

T

Region B(B− → e−ν̄e) B(B̄ → ρτ−ν̄τ )q2≤12 GeV2 B(B̄0 → π+τ−ν̄τ )

1 [3.6 × 10−12, 1.6 × 10−9] [5.1 × 10−5, 6.2 × 10−4] [3.4 × 10−5, 2.5 × 10−4]
2 [2.3 × 10−12, 2.8 × 10−11] [1.7 × 10−3, 2.4 × 10−3] [2.3 × 10−4, 2.5 × 10−4]
3 [9.3 × 10−9, 1.1 × 10−8] [1.7 × 10−3, 2.4 × 10−3] [2.3 × 10−4, 2.5 × 10−4]
4 [9.5 × 10−9, 2.3 × 10−8] [4.6 × 10−5, 6.8 × 10−4] [3.2 × 10−5, 2.5 × 10−4]
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Fig. 8 Summary of the potential enhancements of B(B− → e−ν̄e)

corresponding to the two allowed regions for the Cu,�
P and the four

solutions for Cu,�
T , along with the SM value and experimental limit

For the analogous processes involving a τ in the final state,
we have the following experimental results available [29]:

B(B̄0 → D∗+τ−ν̄�) = (1.57 ± 0.09) × 10−2,

B(B− → D̄∗0τ−ν̄�) = (1.88 ± 0.20) × 10−2, (48)

which are based on measurements performed by the Belle and
BaBar Collaborations. We can average both determinations
in Eq. (48), obtaining

〈B(B̄ → D∗τ−ν̄τ )〉 = (1.62 ± 0.08) × 10−2. (49)

To exemplify the application of our strategy for the extrac-
tion of the CKM element |Vcb| in the presence of possible NP
effects, we need observables where |Vcb| itself is not present.
One possibility is to construct new quantities based on ratios
of the branching fractions in Eqs. (45), (46), (47) and (48).
Fortunately, ratios of this nature are already available directly
from experimental determinations.

Indeed, the ratios

R(D) = B(B̄ → Dτ−ν̄τ )

B(B̄ → D�′−ν̄�′)
, R(D∗) = B(B̄ → D∗τ−ν̄τ )

B(B̄ → D∗�′−ν̄�′)
(50)

satisfy the requirement of |Vcb| independence. Furthermore,
they posses the feature of showing a combined tension with
the SM determination at the 3 σ level, as reported in Ref.
[27]. The most recent averages include the latest measure-
ment reported by Belle [38,39], and reads as follows [27]:

R(D) = 0.340 ± 0.027 ± 0.013 = 0.340 ± 0.030,

R(D∗) = 0.295 ± 0.011 ± 0.008 = 0.295 ± 0.014, (51)

being in tension with the SM at 3.08 σ , as reported in [27]. We
would like to emphasize thatR(D) andR(D∗) are defined in
terms of physical quantities which depend on the CKM factor
|Vcb|. However, this factor actually cancels out in the ratios
which define R(D) and R(D∗) themselves. This is precisely
the desirable feature we need to decouple the determination

of NP effects in the different Wilson coefficients and the
independent extraction of |Vcb|.

Our SM evaluations of the observables R(D) and R(D∗)
are

R(D)|SM = 0.300 ± 0.006, R(D∗)|SM = 0.253 ± 0.005,

(52)

where we have performed the corresponding theoretical eval-
uations using the form factors for the B → D and B →
D∗ transitions obtained from QCD sum-rule (QCDSR) and
LQCD calculations. The technical details of the correspond-
ing parameterizations are summarized in Appendix A.2.

In addition, different |Vcb|-independent polarization observ-
ables can, in principle, serve our purposes as well [14]. Nev-
ertheless, for most of them, their implementation suffers from
large experimental uncertainties or from the lack of experi-
mental information at all.

In this analysis, we consider the following polarization
ratio which allows us to obtain useful constraints on NP coef-
ficients associated with semileptonic processes involving a
D∗ meson in the final state:

FL(D∗) = �(B → D∗
Lτ ν̄τ )

�(B → D∗τ ν̄τ )
. (53)

Within the SM, we find

FL(D∗)|SM = 0.458 ± 0.004, (54)

which is compatible with the current experimental result [40]

FL(D∗) = 0.60 ± 0.08 ± 0.04, (55)

at the 1.6 σ level, in agreement with other studies reported
in the literature [41].

Finally, the Belle Collaboration [42] has performed an
experimental test which quantifies the flavour universality
between electrons and muons through the semileptonic ratio

Re
μ(D∗) = B(B0 → D∗−e+νe)

B(B0 → D∗−μ+νμ)
. (56)

The corresponding experimental result reads [42]

Re
μ(D∗) = 1.01 ± 0.01 ± 0.03, (57)

which can be compared with our SM evaluation

Re
μ(D∗)|SM = = 1.0045(1). (58)

A striking feature of Re
μ(D∗) is its small uncertainty on both

the theoretical and the experimental side. This quantity will
play an important role in restricting NP in the light genera-
tions of leptons.

For completeness, we present a set of semi-numerical for-
mulae which display the dependence of the different observ-
ables in our study on the presence of the different NP con-
tributions. To simplify the presentation, we show two cases
separately depending on whether NP enters either through
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the τ leptons or through the light generations, i.e., muons and
electrons. In addition, we don’t give the uncertainty of the
numerical coefficients, which arises from, e.g., the form fac-
tors. However, it is important to mention that we do take these
uncertainties into account in our analysis. Finally, we would
like to stress that, in order to compare with other sources
available in the literature, we present results where the Wil-
son coefficients are evaluated at the scale μ = mb. The con-
nection with the 1 TeV value can be established straightfor-
wardly using the renormalization group evolution given in
Eq. (15).

In the case of NP entering through the τ leptons, we have

R(D∗)/R(D∗)SM
∣∣∣
τ

= |1 + Cc,τ
VL

|2 + |Cc,τ
VR

|2

−1.80�[(1 + Cc,τ
VL

)Cc,τ∗
VR

]
+0.11�[(1 + Cc,τ

VL
− Cc,τ

VR
)Cc,τ∗

P ]
+0.034|Cc,τ

P |2
−5.02�[(1 + Cc,τ

VL
)Cc,τ∗

T ]
+15.94|Cc,τ

T |2 + 6.60�[Cc,τ
VR

Cc,τ∗
T ],

R(D)/R(D)SM
∣∣∣
τ

= |1 + Cc,τ
VL

+ Cc,τ
VR

|2 + 1.46�[(1 + Cc,τ
VL

+Cc,τ
VR

)Cc,τ∗
S ]

+0.98|Cc,τ
S |2 + 1.14�[(1 + Cc,τ

VL

+Cc,τ
VR

)Cc,τ∗
T ] + 0.91|Cc,τ

T |2,

FL(D∗) =
(
R(D∗)SM/R(D∗)

∣∣∣
τ

)

[
0.46|1 + Cc,τ

VL
− Cc,τ

VR
|2

+0.11�[(1 + Cc,τ
VL

− Cc,τ
VR

)Cc,τ∗
P ]

+0.034|Cc,τ
P |2

−1.95�[(1 + Cc,τ
VL

− Cc,τ
VR

)Cc,τ∗
T ]

+3.08|Cc,τ
T |2

]
. (59)

On the other hand, should NP affect the light generations, the
effects on RD∗ are described as

R(D∗)/R(D∗)SM
∣∣∣
e,μ

= 1

GD∗
μ + GD∗

e
, (60)

with

GD∗
μ = 0.499|1 + Cc,μ

VL
|2 + 0.499|Cc,μ

VR
|2

−0.874�[(1 + Cc,μ
VL

)Cc,μ∗
VR

]
+0.009�[(1 + Cc,μ

VL
− Cc,μ

VR
)Cc,μ∗

P ]
+0.025|Cc,μ

P |2 − 0.221�[(1 + Cc,μ
VL

)Cc,μ∗
T ]

+7.710|Cc,μ
T |2 + 0.356�[Cc,μ

VR
Cc,μ∗
T ],

GD∗
e = 0.501|1 + Cc,e

VL
|2 + 0.501|Cc,e

VR
|2

−0.878�[(1 + Cc,e
VL

)Cc,e∗
VR

]
+4.50 × 10−5�[(1 + Cc,e

VL
− Cc,e

VR
)Cc,e∗

P ]
+0.026|Cc,e

P |2
−0.001�[(1 + Cc,e

VL
)Cc,e∗

T ] + 7.743|Cc,e
T |2

+1.75 × 10−3�[Cc,e
VR

Cc,e∗
T ]. (61)

For R(D), the corresponding contributions to the light gen-
erations are given by

R(D)/R(D)SM
∣∣∣
e,μ

= 1

GD
μ + GD

e
(62)

with

GD
μ = 0.50|1 + Cc,μ

VL
+ Cc,μ

VR
|2

+0.07�[(1 + Cc,μ
VL

+ Cc,μ
VR

)Cc,μ∗
S ]

+0.52|Cc,μ
S |2

+0.10�[(1 + Cc,μ
VL

+ Cc,μ
VR

)Cc,μ∗
T ]

+0.37|Cc,μ
T |2,

GD
e = 0.50|1 + Cc,e

VL
+ Cc,e

VR
|2 + 3.6 × 10−4�[(1 + Cc,e

VL

+Cc,e
VR

)Cc,e∗
S ] + 0.53|Cc,e

S |2
+5.0 × 10−4�[(1 + Cc,e

VL

+Cc,e
VR

)Cc,e∗
T ] + 0.37|Cc,e

T |2. (63)

For the light semileptonic ratio Re
μ(D∗) introduced in

Eq. (56), we have

Re
μ(D∗)/Re SM

μ (D∗) = G̃D∗
e

G̃D∗
μ

, (64)

with

G̃D∗
e = |1 + Cc,e

VL
|2 + |Cc,e

VR
|2

+1.753�[(1 + Cc,e
VL

)Cc,e∗
VR

]
+8.981 × 10−5�[(1 + Cc,e

VL
− Cc,e

VR
)Cc,e∗

P ]
+0.051|Cc,e

P |2
+2.164 × 10−3�[(1 + Cc,e

VL
)Cc,e∗

T ]
+3.504 × 10−3�[Cc,e

VR
Cc,e∗
T ]

+15.455|Cc,e
T |2,

G̃D∗
μ = |1 + Cc,μ

VL
|2 + |Cc,μ

VR
|2

+1.753�[(1 + Cc,μ
VL

)Cc,μ∗
VR

]
+0.018�[(1 + Cc,μ

VL
− Cc,μ

VR
)Cc,μ∗

P ]
+0.051|Cc,μ

P |2 + 0.443�[(1 + Cc,μ
VL

)Cc,μ∗
T ]

+0.714�[Cc,μ
VR

Cc,μ∗
T ]

+15.458|Cc,μ
T |2. (65)
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Fig. 9 Constraints in the
Cc,τ

P –Cc,μ
P plane considering

different correlations between
Cc,e

P and Cc,μ
P

Table 7 Bounds for Cc,μ
P and Cc,τ

P in different scenarios correlating Cc,e
P and Cc,μ

P

Scenario Cc,μ
P (1 TeV) Cc,τ

P (1 TeV)

R(D∗) R(D∗) R(D∗), FL (D∗)
and Re

μ(D∗) and and
FL (D∗) FL (D∗) Re

μ(D∗)

Cc,e
P = 10Cc,μ

P [−0.27, 0.27] [−0.05, 0.05] [−3.78,−2.32] [−2.76,−2.32]
[−0.27, 0.27] [0.48, 1.94] [0.48, 0.90]

Cc,e
P = Cc,μ

P [−2.0, 1.90] [−1.46, 1.04] [−3.78,−2.32] [−3.52,−2.32]
[−2.00, 1.89] [0.48, 1.94] [0.48, 1.66]

Cc,e
P = 0.1Cc,μ

P [−2.86, 2.65] [−0.55, 0.34] [−3.78,−2.32] [−2.73,−2.32]
[−2.84, 2.64] [0.48, 1.94] [0.48, 0.89]

In order to avoid any potential confusion, let us emphasize
again that the short-distance coefficients in Eqs. (59), (61),
(63) and (65) correspond to the scale μ = mb.

5.1 Constraints pseudo-scalar Wilson coefficients

In order to constrain the possible values of the pseudo-scalar
Wilson coefficients for τ and light leptons e, μ, we make a
combined scan which includes the observables R(D∗) and
FL(D∗) introduced in Eq. (50) and Eq. (53), respectively. The
corresponding results are presented in Fig. 9 from which we
can read off the intervals allowed for Cc,μ

P and Cc,τ
P at 1 TeV.

We summarize these results in the 2nd and the 4th columns of
Table 7. Here we see how the regions for Cc,τ

P fall into any of
the two intervals (−3.78,−2.32) or (0.48, 1.94) regardless
of the assumed NP scenario correlating Cc,e

P with Cc,μ
P .

In the case of the light generations, the NP intervals depend
on the scenario under consideration, see the 2nd column in
Table 7, and can be relatively sizeable, reaching values as
large as |Cc,μ

P | ∼ 3. We can, however, refine these bounds by
including the light universality ratio Re

μ(D∗). Unlike R(D∗)
and FL(D∗), the observable Re

μ(D∗) is only sensitive to
potential NP in light generations and has the potential of
further constraining Cc,μ

P by one order of magnitude in most
of the cases. We show the effect of Re

μ(D∗) in Fig. 10, and
present our numerical results in the 3rd column of Table 7.

Interestingly, since Cc,μ
P and Cc,τ

P are correlated by R(D∗)
and FL(D∗), we can return to these ratios with our new find-
ings for Cc,μ

P to improve the available regions for Cc,τ
P . We

present the corresponding results in the 5th column of Table 7.
We have seen how the observable Re

μ(D∗), introduced
in Eq. (56), plays an important role in constraining the NP
contributions to the light generations of leptons. This results
from its high experimental precision, as given in Eq. (57). An
interesting question is whether this observable can impose
any restriction on the correlation factor f eμ which relates the
short distance contributions for e and μ presented in Eq. (11).
To answer this, we study the relationship between f eμ and
|Cc,μ

P (mb)|, finding

f eμ = ± 1

Cc,μ
P

√
1

0.051

[
Re

μ(D∗)
Re,SM

μ (D∗)

(
1 + 0.051|Cc,μ

P |2
)

−1

]
,

(66)

where the Wilson coefficients are evaluated at μ = mb.
A careful analysis of the expression inside the square root

shows that as long as the quantity Re
μ(D∗)/Re,SM

μ (D∗) is
compatible with one, there is no upper bound on | f eμ|. If we
take Re

μ(D∗) equal to the experimental value given in Eq. (57)
we see that, within the current theoretical and experimental
uncertainties, we have Re

μ(D∗) = Re,SM
μ (D∗). Hence, we

conclude that, in spite of the precision in theory and exper-
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Fig. 10 Constraints on the
Cc,μ

P and Cc,e
P Wilson

coefficients considering
different correlations between
them. The observable taken into
account is Re

μ(D∗)
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Fig. 11 Correlation following from Eq. (66) between Cc,μ
P and the

NP enhancement factor f eμ, the latter relating the former with Cc,e
P as

defined through Eq. (11)

iment available for Re
μ(D∗), it is not possible to restrict the

values for f eμ. For completeness, we present graphically the
relationship between f eμ and Cc,μ

P in Fig. 11.

5.2 Constraints on scalar Wilson coefficients

The scalar Wilson coefficients for semileptonic b → c transi-
tions enter in our analysis only through the observableR(D).
Even though R(D) correlates Cc,τ

S with Cc,μ
S , we find that

this observable does not lead to strong bounds on these coef-
ficients. We illustrate the interplay between Cc,τ

S and Cc,μ
S

as imposed by R(D) in Fig. 12 for the different assumed
scenarios between Cc,e

S and Cc,μ
S .

5.3 Constraints on vector Wilson coefficients

At first sight, the constraints on the left-handed Wilson coef-
ficients can be derived using R(D), R(D∗), FL(D∗) and
Re

μ(D∗). The observables R(D) and R(D∗) are sensitive
to the effects of τ as well as e and μ. On the other hand,
FL(D∗) is only sensitive to NP in τ leptons in general. Inter-

estingly, if the vector-left coefficient is the only effect enter-
ing in FL(D∗), then they cancel exactly since they have equal
contributions in numerator and denominator, thereby render-
ing FL(D∗) insensitive to Cc,τ

VL
. This can be verified using

Eq. (59). Therefore, the limits on Cc,τ
VL

can only be computed
through R(D) and R(D∗), which as shown in Fig. 13 cannot
yield bounded regions in the Cc,τ

VL
–Cc,μ

VL
plane. Nevertheless,

the inclusion of Re
μ(D∗), which is sensitive toCc,e

VL
andCc,μ

VL
,

improves this situation. Indeed, by providing bounds on Cc,e
VL

and Cc,μ
VL

as shown in Fig. 14, the observable Re
μ(D∗) is also

able to constrainCc,τ
VL

because the NP Wilson coefficients are
not independent from each other but are correlated through
R(D) and R(D∗), as can be seen in Fig. 13. Our findings are
summarized in Table 8. As seen in Fig. 14, whenCc,e

VL
= Cc,μ

VL

the observable Re
μ(D∗) does not provide constrains on Cc,e

VL

and Cc,μ
VL

.
In order to study the behaviour of CVR , we consider the

universality behaviour with respect to the different lepton
flavours as established in Eq. (5). However, as seen in Fig. 15,
the combination of observables included in this study cannot
explain the current experimental data if CVR is the only NP
contribution.

5.4 Constraints on tensor Wilson coefficients

The tensor Wilson coefficient enters in R(D), R(D∗),
FL(D∗) and Re

μ(D∗). In the case of FL(D∗), the tensor Wil-
son coefficientCc,τ

T does not reproduce the experimental data
within 1 σ . As for R(D) and R(D∗), the resulting regions
are not bounded in the Cc,τ

T –Cc,μ
T plane. This can be seen

in Fig. 16. For completeness, we perform the analysis for
Re

μ(D∗) finding bounded regions for Cc,μ
T in Fig. 17, we

also present the corresponding numerical intervals in Table 9.
However, our results for R(D) and R(D∗) already exclude
the possibility of explaining data with a tensor interaction at
the 1 σ level.
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Fig. 12 Constraints in the Cτ
S–Cμ

S plane considering different correlations between Ce
S and Cμ

S

Fig. 13 Constraints in the Cc,τ
VL

–Cc,μ
VL

plane considering different correlations between the Wilson coefficients Cc,e
VL

and Cc,μ
VL

6 Extraction of |Vcb| and implications for
B(Bc → �−ν̄�)

In this section, we proceed with the extraction of the val-
ues of |Vcb| which are compatible with the NP contribu-
tions determined in the previous subsections. In analogy
with the determination of |Vub| presented in Sect. 4, we use

the bounds for the NP Wilson coefficients derived from the
|Vcb|-independent observables R(D), R(D∗), FL(D∗) and
Re

μ(D∗) to extract |Vcb| through the interplay of an extra
observable which is |Vcb|-dependent. To accomplish this goal
and for the purposes of illustration, we will focus on the aver-
aged branching fraction 〈B(B̄ → D∗τ−ν̄τ )〉 which is sensi-
tive to both the NP short-distance contributions and |Vcb|
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Fig. 14 Constraints on the
Wilson coefficient Cc,μ

VL
,

considering different NP
scenarios through its correlation
with Cc,e

VL
. The observable taken

into account is Re
μ(D∗)

Table 8 Bounds for Cc,μ
VL

and Cc,τ
VL

in different scenarios correlating Cc,e
VL

and Cc,μ
VL

. For the scenario Cc,e
VL

= Cc,μ
VL

the allowed NP regions are not
bounded and thus not presented

Scenario Cc,μ
VL

(1 TeV) Cc,τ
VL

(1 TeV)

Re
μ(D∗) R(D∗), R(D) and Re

μ(D∗)

Cc,e
VL

= 10Cc,μ
VL

[−0.183,−0.181] [−1.913,−1.857] ∪ [−0.143,−0.087]
[−0.001, 0.002] [−2.120,−2.045] ∪ [0.045, 0.120]

Cc,e
VL

= 0.1Cc,μ
VL

[−1.828,−1.805] [−1.911,−1.855] ∪ [−0.144,−0.089]
[−0.020, 0.015] [−2.116,−2.042] ∪ [0.042, 0.116]

Fig. 15 Constraints on the Wilson coefficient CVR following from FL (D∗) (left) and R(D∗) (right)

itself. Moreover, this particular average is not affected by the
ambiguity concerning the leptonic combination in the final
state which we encountered while interpreting the experi-
mental measurement of 〈B(B̄ → D∗�−ν̄�)〉, where the con-
tributions from electrons and muons were not transparent.

The possible regions for the short-distance coefficients
and |Vcb| can be further refined by imposing upper bounds
on the leptonic Bc branching ratios as extra constraints, espe-
cially in scenarios with non-vanishing pseudoscalar Wilson
coefficients at the bottom scale, as they lift the helicity sup-
pression of the leptonic modes. Unfortunately, no direct con-
straints are available from the LHC. In view of this, an esti-
mate of a bound on B(Bc → τ−ν̄τ ) has been derived from
LEP data at the Z peak in Ref. [43]. In Refs. [14,15], it was
argued that this bound is too strict and values up to 60%
cannot be excluded. Thus we will take

B(Bc → τ−ν̄τ ) < 0.60. (67)

Information on the lifetime τBc of the Bc mesons can also be
converted into bounds for the leptonic branching ratios [22,
44], giving results in the same ballpark [14]. However, as this
observable depends on any possible Bc decay channel, the
interpretation is more complex since other NP contributions
may enter.

In order to incorporate Eq. (67) in our studies, we use the
theoretical expression

B(Bc → τντ )/B̃r(Bc → τντ )
SM

= |Vcb|2|1 + Cc,τ
VL

+ 4.06Cc,τ
P |2, (68)

with

B̃r(Bc → τντ )
SM = G2

F

8π
MBcm

2
τ

(
1 − m2

τ

M2
Bc

)2
f 2
BcτBc , (69)
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Fig. 16 Constraints in the Cc,τ
T –Cc,μ

T plane following from R(D) and R(D∗), considering different correlations between the Wilson coefficients
Cc,e
T and Cc,μ

T

Fig. 17 Constraints on the
Wilson coefficient Cc,μ

T ,
considering different NP
scenarios through its correlation
with Cc,e

T . The observable taken
into account is Re

μ(D∗)

and the Wilson coefficients are evaluated at μ = mb.
For the purposes of numerical comparison, we make a

small digression from our strategy and evaluate the leptonic
branching fractions for the Bc meson using the value of |Vcb|
obtained in [27] from exclusive B̄ → D�−ν̄� decays:

|Vcb| = 0.03958 ± 0.00117. (70)

Assuming this value of |Vcb|, we may calculate the following
“SM” leptonic branching fractions:

B(Bc → e−ν̄e)

∣∣∣
SM

= (2.03 ± 0.19) × 10−9, (71)

B(Bc → μ−ν̄μ)

∣∣∣
SM

= (8.67 ± 0.80) × 10−5, (72)

B(Bc → τ−ν̄τ )

∣∣∣
SM

= (2.25 ± 0.21) × 10−2. (73)

We would like to stress that since the results in Eq. (71) to
Eq. (73) use an external determination for |Vcb|, they were
not derived from our strategy and presented only as reference
values for our future discussion. For completeness and for the
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Table 9 Bounds for Cc,μ
T in different NP scenarios correlating it with

Cc,e
T . The observable considered is Re

μ(D∗)

Scenario Cc,μ
T (1 TeV)

Re
μ(D∗)

Ce
T = 10Cμ

T [−0.006, 0.006]
Ce
T = Cμ

T (−∞,−1.242]
[−0.080, 0.115]
[0.781,∞)

Ce
T = 0.1Cμ

T [−0.037, 0.073]

purposes of comparison we also provide the inclusive value
of |Vcb| as presented in [45]

|Vcb| = 0.04162+0.00026
−0.00080. (74)

We are now ready to discuss the extraction of |Vcb| in the
presence of NP contributions. In view of the results obtained
in Sect. 5, we can only fulfill this task for the Wilson coef-
ficients Cc,τ

P and Cc,τ
VL

where the resulting NP regions are
bounded. We describe both cases in the following subsec-
tions.

6.1 |Vcb| compatible with NP pseudoscalar coefficients

Using the values for Cc,τ
P given in Table 7 and the branch-

ing fraction 〈B(B̄ → D∗τ−ν̄τ )〉, we obtain the bounds for
|Vcb| shown in the second column of Table 10. Notice that
we present our results for each of the possible correlations
between Cc,e

P and Cc,μ
P . We observe that values for |Vcb|

in the range 0.032 ≤ |Vcb| ≤ 0.042 are compatible with
the experimental data considered so far. This seemingly
large interval can be further reduced once the constraint in
Eq. (67) is included. Indeed, this extra restriction has two
effects. Firstly, it restricts the values of |Vcb| to the subinterval
0.039 ≤ |Vcb| ≤ 0.042. Secondly, it leads to the following
region for the Wilson coefficient Cc,τ

P : 0.49 ≤ Cc,τ
P ≤ 0.60.

The interplay between Cc,τ
P , |Vcb| and 〈B(B̄ → D∗τ−ν̄τ )〉

is shown in Fig. 18. We would like to stress that our values
for |Vcb| are compatible with the exclusive determination
shown in Eq. (70) as well as with the inclusive value shown
in Eq. (74).

Interestingly, since the Wilson coefficients for tau leptons
and muons are correlated through the observable R(D∗), the
constraint imposed by the bound in Eq. (67) over Cc,τ

P has
effects on the light generations as well. In the 5th column
of Table 10 we show the new intervals for Cc,τ

P after the
inclusion of B(Bc → τ−ν̄τ ) in our analysis. In addition we
recalculated the new intervals for Cc,μ

P correspondingly and
present them in the 4th-column of the same table.

We would like to highlight that, as can be seen in Table 10,
the interval forCc,τ

P does not include the SM valueCc,τ
P = 0,

which indicates that the experimental measurements involv-

0.475

0.500

0.525

0.550

0.575

0.600

Fig. 18 Values for |Vcb| and Cc,τ
P compatible with the B(Bc → τ ν̄τ )

bound in Eq. (67)

ing τ leptons require NP effects to be addressed theoreti-
cally. In contrast, for muons Cc,μ

P = 0 is compatible with the
current experimental results which in our case also implies
Cc,e

P = 0 in view of the different scenarios that we are study-
ing.

Another interesting feature that distinguishes τ leptons
from its lighter counterparts is the fact that our final intervals
for Cc,μ

P and Cc,e
P translate into values for B(Bc → μν̄μ)

and B(Bc → eν̄e) that are at most about 30%. To the best
of our knowledge, this does not break any constraint anal-
ogous to the one in Eq. (67). Therefore, we can consider
the values for B(Bc → μν̄μ) and B(Bc → eν̄e) obtained
from our regions for Cc,μ

P and Cc,e
P as predictions, which

we present in Table 11. Notice that the NP contributions can
potentially lead possible cancellations which imply branch-
ing fractions below the corresponding SM values. We find
that the masses of the light leptons can enhance the branch-
ing fractions B(Bc → μν̄μ) and B(Bc → eν̄e) by several
orders of magnitude through NP effects entering in pseu-
doscalar couplings. This effect is most dramatic for elec-
trons, where the enhancement can reach up to eight orders of
magnitude. In the case of muons, the largest enhancement is
about four orders of magnitude. This situation is analogous
to the one explored in Ref. [35] for B leptonic decays. A pre-
vious model-dependent study, which accounts for enhance-
ments in the branching fractions of the processes Bc → �′ν̄�′ ,
can be found in Ref. [5]. The dependence of B(Bc → eν̄e)
and B(Bc → μν̄μ) on Cc,e

P and Cc,μ
P , respectively, is pre-

sented in Fig. 19 showing the maximal effects achievable.
Moreover, in Fig. 20 we illustrate how the enhancements for
B(Bc → �′ν̄�′), with �′ = e, μ, compare to each other for
each one of our NP scenarios.
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Table 10 Values of |Vcb| obtained in different NP scenarios correlating Cc,e
P and Cc,μ

P . For completeness we present the effect of including
(excluding) the bound given in Eq. (67) on B(Bc → τ−ν̄τ )

Scenario |Vcb| Cc,μ
P (1 TeV) Cc,τ

P (1 TeV)

R(D∗), FL (D∗), Re
μ(D∗)

Without With With With
B(Bc → τ−ν̄τ ) B(Bc → τ−ν̄τ ) B(Bc → τ−ν̄τ ) B(Bc → τ−ν̄τ )

Cc,e
P = 10Cc,μ

P [0.032, 0.042] [0.039, 0.042] [−0.05, 0.05] [0.49, 0.60]
Cc,e

P = Cc,μ
P [0.032, 0.042] [0.039, 0.042] [−0.51, 0.41] [0.49, 0.60]

Cc,e
P = 0.1Cc,μ

P [0.034, 0.042] [0.039, 0.042] [−0.55, 0.34] [0.49, 0.60]

Table 11 Predictions of B(Bc → �
′−ν̄�′ ) in the presence of a NP Wil-

son coefficient Cc,�′
P for different scenarios correlating Cc,e

P and Cc,μ
P .

The zero minima predicted for the different leptonic branching fractions

is the consequence of a perfect cancellation between the NP contribu-
tions and the purely SM ones in Eq. (6). This implies that the effect
of a pseudoscalar NP contributions can lead to values of the branching
fractions of leptonic decays below their corresponding SM values

Predictions

Scenario B(Bc → e−ν̄e) B(Bc → μ−ν̄μ)

Cc,e
P = 10Cc,μ

P [0, 3.33 × 10−3] [0, 4.55 × 10−3]
Cc,e

P = Cc,μ
P [0, 0.31] [0, 0.30]

Cc,e
P = 0.1Cc,μ

P [0, 4.04 × 10−3] [0, 0.39]

Fig. 19 Dependence of B(Bc → �′ν̄�′ ) normalized to its SM value on Cc,e
P and Cc,μ

P for �′ = e, μ

Fig. 20 Possible enhancements of B(Bc → e−ν̄e) (left) and B(Bc → μ−ν̄μ) (right) for the different NP scenarios correlating the Wilson
coefficients of electrons and muons
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Table 12 Values of |Vcb| in different NP scenarios correlating Cc,e
VL

and Cc,μ
VL

. We do not present the scenario Cc,e
VL

= Cc,μ
VL

since in this case there
are not bounded regions

Scenario |Vcb| Cc,μ
VL

(1 TeV) Cc,τ
VL

(1 TeV)

R(D), R(D∗), Re
μ(D∗) and B(Bc → τ−ν̄τ )

Cc,e
VL

= 10Cc,μ
VL

[0.038, 0.043] [−0.001, 0.002] [−2.120,−2.045]
[0.045, 0.120]

Cc,e
VL

= 0.1Cc,μ
VL

[0.038, 0.043] [−0.020, 0.01] [−2.116,−2.042]
[0.042, 0.116]

0.0260

0.0265

0.0270

0.0275

0.0280

0.0285

0.0260

0.0265

0.0270

0.0275

0.0280

0.0285

Fig. 21 Values for |Vcb| and Cc,τ
VL

compatible with the bound for B(Bc → τ−ν̄τ ) presented in Eq. (67)

6.2 |Vcb| Compatible with NP left-handed vector
coefficients

As discussed in Sec. 5.3, should NP enter through a left-
handed vector interaction at 1 TeV, the available constraints
given by the observables R(D), R(D∗) and Re

μ(D∗) lead to
four independent bounded regions for Cc,e

VL
, Cc,μ

VL
and Cc,τ

VL

only when either Cc,e
VL

= 10Cc,μ
VL

or Cc,e
VL

= 0.1Cc,μ
VL

. How-
ever, once we include the bound for B(Bc → τ−ν̄τ ) given
in Eq. (67), we find that there are actually only two regions
in the Cc,τ

VL
–Cc,μ

VL
plane compatible with data, which can be

read in the 3rd and 4th columns of Table 12.
From our maximally constrained regions for Cc,μ

VL
and

Cc,τ
VL

we proceed with the extraction of |Vcb| using the CKM-

dependent observable 〈B(B̄ → D∗τ−ν̄τ )〉. Just as for the
pseudoscalar NP interaction, we do this by assessing the
combinations of values for Cc,τ

VL
and |Vcb| compatible with

the measurement in Eq. (49). Our final result for |Vcb| is
then 0.038 ≤ |Vcb| ≤ 0.043, whose correlation with Cc,τ

VL
is shown in Fig. 21. Once more, we find that our determina-
tion for |Vcb| is compatible with the exclusive and inclusive
values presented in Eqs. (70) and (74) respectively.

To conclude our study, we analyze the interplay between
C�
VL

and B(Bc → �−ν̄�). As we have discussed at the begin-
ning of this section,B(Bc → τ−ν̄τ ) reduces the possible val-

ues that Cc,μ
VL

and Cc,τ
VL

can take by eliminating two out of the
four regions allowed by the CKM-independent experimental
ratios R(D), R(D∗) and Re

μ(D∗). However, it is interest-
ing to notice that the remaining solutions have Cc,τ

VL
compo-

nents which imply values for B(Bc → τ−ν̄τ ) that are below
the experimental bound in Eq. (67). Hence, we can interpret
these effects as predictions for B(Bc → τ−ν̄τ ). Something
similar occurs with the projections on Cc,μ

VL
with respect to

B(Bc → μ−ν̄μ), and with the corresponding transformation
toCc,e

VL
with respect toB(Bc → e−ν̄e). In contrast to the pseu-

doscalar case discussed in the previous section, the helicity
enhancement does not occur with the vector interaction. In
other words, unlike NP entering through pseudo-scalar inter-
actions, the contribution of NP through vector interactions
are suppressed by the mass of the lepton in the final state in
the decay processes B(Bc → �−ν̄�) for � = e, μ, τ . Conse-
quently, our NP scenarios lead to values for B(Bc → �′−ν̄�′)
that are close to their SM values, as shown in Table 13.

7 Conclusions

We have mapped out the space for NP effects in exclu-
sive B decays originating from b → u�ν̄� and b → c�ν̄�

quark-level transitions, developing and implementing strate-
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Table 13 Predictions for B(Bc → �
′−ν̄�) in the presence of a NP Wilson coefficient C�′

VL
for different scenarios correlating Cc,e

VL
and Cc,μ

VL
. The

scenario Cc,e
VL

= Cc,μ
VL

does not yield bounded NP regions and it is thus not presented

Predictions

Scenario B(Bc → e−ν̄e) B(Bc → μ−ν̄μ) B(Bc → τ−ν̄τ )

Cc,e
VL

= 10Cc,μ
VL

[1.91 × 10−9, 2.36 × 10−9] [8.39 × 10−5, 1.10 × 10−4] [0.026, 0.029]
Cc,e
VL

= 0.1Cc,μ
VL

[1.96 × 10−9, 2.36 × 10−9] [8.08 × 10−5, 1.10 × 10−4] [0.026, 0.029]

gies which utilise ratios of various decay observables to avoid
input on the CKM matrix elements |Vub| and |Vcb|. In the
first case, considering B− → �ν̄� as well as B → π�ν̄� and
B → ρ�ν̄� modes, we updated a previous analysis of NP
effects arising from (pseudo)-scalar operators and comple-
mented it with a study of vector and tensor operator contri-
butions. The corresponding constraints for the Wilson coef-
ficients are consistent with the SM at the (1–2) σ level. Since
our approach attempts to investigate the effect of NP in all the
leptonic generations, we have assumed three possible scenar-
ios which correlate the short-distance contributions between
electrons and muons. In particular, we explored specific
cases which fall within the following categories: Ce

X � Cμ
X ,

Cμ
X � Ce

X and Cμ
X ∼ Ce

X . We have concluded our studies of
the b → u�ν̄� modes by determining |Vub| from the branch-
ing ratio of the B → ρ�′ν̄�′ channel, where �′ = e, μ, while
allowing simultaneously for NP in a variety of scenarios.
When we considered NP entering through the pseudoscalar
or tensor coefficients, we found quite similar results, obtain-
ing 3.0 × 10−3 ≤ |Vub| ≤ 3.7 × 10−3 and 2.9 × 10−3 ≤
|Vub| ≤ 3.7 × 10−3, respectively. Both these ranges include
the exclusive determination from HFLAV, which assumes the
SM, of |Vub|excl. = (3.67 ± 0.15) × 10−3 but do not reach
the inclusive value of |Vub|incl. = (4.32 ± 0.12+0.12

−0.13)× 10−3

[27]. Furthermore, we found in both cases that the value
of |Vub| only shows a minor variation with respect to the
short-distance coefficient on the relevant scales. On the other
hand, we found that the variation with respect to the Wil-
son coefficient was a lot stronger in the case of new con-
tributions to the left-handed vector coefficients, yielding a
larger range of 2.8 × 10−3 ≤ |Vub| ≤ 5.8 × 10−3, which
includes both the exclusive and inclusive determination from
HFLAV. We then applied our results for the short-distance
coefficients and |Vub| to make predictions for the branching
ratios of the B− → eν̄e, B → πτ ν̄τ and B → ρτ ν̄τ decay
modes, which have not yet been measured. For the first two,
experimental limits are available, which excluded (part of)
the space for the Wilson coefficients and |Vub|, which was
already taken into account in the results for |Vub| presented
above. The largest effects were found in the tensor and pseu-
doscalar NP scenarios. For the former, the branching ratio
of B → πτ ν̄τ severely constrains the allowed regions. As a
result, the current data allow for values of this observable up

to the experimental limit B(B̄0 → π+τ−ν̄τ ) < 2.5 × 10−4

[34]. Additionally, the branching ratio of B− → eν̄e may
reach values of up to 2.3×10−8, being enhanced with respect
to its SM value by three orders of magnitude. NP entering
through the pseudoscalar operator yields even larger effects
for the leptonic mode, with a potential enhancement by four
orders of magnitude with respect to the SM, corresponding
to B(B− → e−ν̄e) = 1.4 × 10−7.

We have extended this framework to b → c�ν̄� modes,
considering B → D�ν̄� and B → D(∗)�ν̄� transitions.
Moreover, we had a closer look at the leptonic B−

c →
�ν̄� channels which provide very interesting probes for NP
effects. We have provided a state-of-the-art discussion of the
SM predictions of the key observables, including the RD(∗)

ratios, and the constraints on contributions from (pseudo)-
scalar, vector and tensor operators. Useful constraints arise
also from the polarisation observable FL(D∗) and the ratio
Re

μ(D∗), putting an interesting experimental limit on the
flavour universality between electrons and muons. Just as
for the b → u transitions, we have performed our studies
within the context of three scenarios correlating the Wil-
son coefficients for electrons and muons. We found that
the experimental results for our different observables can
be explained through pseudoscalar and left-handed vector
NP effects. Following a procedure analogous to the one
applied in the case of the b → u transitions, we have
extracted |Vcb| using the CKM-dependent branching frac-
tion 〈B(B̄ → D∗τ−ν̄τ )〉, finding values within the range
0.038 ≤ |Vcb| ≤ 0.043 which are compatible with the exclu-
sive [27] |Vcb| = 0.03958 ± 0.00117 and the inclusive [45]
|Vcb| = 0.04162+0.00026

−0.00080 determinations.
In addition, we have determined potential NP enhance-

ments of the branching fractions for the leptonic decays
B−
c → μ−ν̄μ and B−

c → e−ν̄e. Interestingly, if NP is
present in pseudo-scalar Wilson coefficients, the branching
fraction B(B−

c → e−ν̄e) can be enhanced by up to eight
orders of magnitude in our scenarios reaching B(B−

c →
e−ν̄e) = 0.31. In the case of B(B−

c → μ−ν̄μ), we may
obtain an increase as large as four orders of magnitude lead-
ing to B(B−

c → μ−ν̄μ) = 0.39.
In the future, it will be especially useful to have more

measurements of the semileptonic decay modes with light
leptons in the final state available, separately for electrons
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and muons, as well as (further) searches for decays that have
so far not been measured. We look forward to seeing how the
picture for the NP constraints following from leptonic and
semileptonic B(c) decays and the methods proposed in this
paper will evolve, exploiting the wealth of experimental data
to become available.
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A Form factor parameterization

The branching ratios of the semileptonic modes B̄ → Ṽ �−ν̄�

and B̄ → P�−ν̄�, given in Eqs. (8) and (9), respectively,
are expressed in terms of hadronic amplitudes. In case of
B → Ṽ , they are given by [25]

HṼ
V,±(q2) = (MB + mṼ )A1(q

2) ∓ 2MB | �pṼ |
MB + mṼ

V (q2), (75)

HṼ
V,0(q

2) = MB + mṼ

2mṼ

√
q2

[
−(M2

B − m2
Ṽ

− q2)A1(q
2)

+ 4M2
B | �pṼ |2

(MB + mṼ )2 A2(q
2)

]
, (76)

HṼ
V,t (q

2) = −2MB | �pṼ |√
q2

A0(q
2), (77)

HṼ
S (q2) 
 −2MB | �pṼ |

mb + mq
A0(q

2), (78)

HṼ
T,±(q2) = 1√

q2

[
±(M2

B − m2
Ṽ
)T2(q

2)

+2MB | �pṼ |T1(q
2)

]
, (79)

HṼ
T,0(q

2) = 1

2mṼ

[
−(M2

B + 3m2
Ṽ

− q2)T2(q
2)

+4M2
B | �pṼ |2

M2
B − m2

Ṽ

T3(q
2)

]
(80)

and

HP
V,0(q

2) = 2MB | �pP |√
q2

F1(q
2), (81)

HP
V,t (q

2) = M2
B − m2

P√
q2

F0(q
2), (82)

HP
S (q2) 
 M2

B − m2
P

mb − mq
F0(q

2), (83)

HP
T (q2) = − 2MB | �pP |

MB + mP
FT (q2) (84)

for the B → P transitions. Note that the | �pṼ | and | �pP | are
functions of q2. The seven form factors V , A0, A1, A2, T1,
T2 and T3 for B → Ṽ and the three form factors F0, F1

and FT for B → P have to be determined through non-
perturbative techniques. In Appendices A.1 and A.2 , we
discuss these form factors for B → {ρ, π} and B → D(∗)

modes, respectively.

A.1 B → {ρ, π} form factors

For the calculation of the branching ratio of the B̄ → ρ�−ν̄�

decay, we require the form factors V , A0, A1, A2, T1, T2

and T3. As we did in Ref. [21], we make use of the LCSR
calculation from Ref. [33]. The form factors are given by

Fi (q
2) = k(ρ0,u)

1 − q2/m2
R,i

2∑
k=0

αi
k

[
zρ(q2, tρ0 ) − zρ(0, tρ0 )

]k
,

(85)

where

zρ(q2, tρ0 ) ≡
√

(MB + mρ)2 − q2 −
√

(MB + mρ)2 − tρ0
√

(MB + mρ)2 − q2 +
√

(MB + mρ)2 − tρ0

,

(86)

with

tρ0 ≡ (MB + mρ)
[
MB + mρ − 2

√
MBmρ

]
. (87)

The factor k(ρ0,u) = f (u)

ρ0 / f̄ ρ I

ρ , where

f (u)

ρ0 = (221.5 ± 0.3) × 10−3 GeV, (88)

f̄ ρ I

ρ = (213 ± 5) × 10−3 GeV, (89)

takes into account that we have a b → u instead of a b → d
transition.
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Table 14 Coefficients for the B → ρ form factors [33]

Form factor Fi αi
0 αi

1 αi
2

V 0.33 ± 0.03 −0.86 ± 0.18 1.80 ± 0.97

A0 0.36 ± 0.04 −0.83 ± 0.20 1.33 ± 1.05

A1 0.26 ± 0.03 0.39 ± 0.14 0.16 ± 0.41

A12 0.30 ± 0.03 0.76 ± 0.20 0.46 ± 0.76

T1 0.27 ± 0.03 −0.74 ± 0.14 1.45 ± 0.77

T2 0.27 ± 0.03 0.47 ± 0.13 0.58 ± 0.46

T23 0.75 ± 0.08 1.90 ± 0.43 2.93 ± 1.81

The form factors can now be determined using the coeffi-
cients αi

k in Table 14 and the mass termsmR,i in Table 15. We
do not consider the correlations between the αi

k coefficients
in our evaluations. The form factors are valid in the range
0 ≤ q2 ≤ 14 GeV2. We note that Ref. [33] considers the
form factors A1, A12 instead of A1, A2, and T2, T23 instead
of T2, T3. We can convert the form factors using the following
expressions [33]:

A2(q
2) = (MB + mρ)2(M2

B − m2
ρ − q2)A1(q2) − 16MBm2

ρ(MB + mρ)A12(q2)

4M2
B | �pρ |2 , (90)

T3(q
2) = (M2

B − m2
ρ)(M2

B + 3m2
ρ − q2)T2(q2) − 8MBm2

ρ(MB − mρ)T23(q2)

4M2
B | �pρ |2 . (91)

For the B̄ → π�−ν̄� form factors, we make use of the
LQCD calculations in Refs. [46,47]. Here the form factors
are parameterized as

F0(q
2) =

3∑
n=0

b0
nzπ (q2, tπ0 )n, (92)

F1(q
2) = 1

1 − q2/M2
B∗

3∑
n=0

b1
n

×
[
zπ (q2, tπ0 )n − (−1)n−4 n

4
zπ (q2, tπ0 )4

]
,

(93)

FT (q2) = 1

1 − q2/M2
B∗

3∑
n=0

bTn

×
[
zπ (q2, tπ0 )n − (−1)n−4 n

4
zπ (q2, tπ0 )4

]
.

Table 15 Mass terms for the form factor evaluation in Eq. (85) [33]

Form factor Fi mR,i/GeV

A0 5.279

V , T1 5.325

A1, A12, T2, T23 5.724

(94)

The zπ and tπ0 are defined in analogy to zρ and tρ0 with
mρ replaced by mπ . The required parameters bin are given
in Table 16. We do not consider correlations between these
parameters. These form factors are valid over the full kine-
matic range.
A.2 B → D(∗) form factors

In order to determine the different hadronic form factors
required for the calculation of the B(B̄ → D�ν̄) and
B(B → D∗�ν̄) branching ratios, we use the parameteriza-
tion provided in Ref. [48] that includes O(	QCD/mc,b) and
O(αs) contributions.

In the case of the B → D transition, the connection
between the current form factors F1, F0, FT and the HQET
hadronic form factors h+, h− and hT is given by

F1(q
2) = 1

2
√
mBmD

[
(mB + mD)h+(w)

−(mB − mD)h−(w)
]
,

F0(q
2) = 1

2
√
mBmD

[ (mB + mD)2 − q2

mB + mD
h+(w)

− (mB − mD)2 − q2

mB − mD
h−(w)

]
,

FT (q2) = mB + mD

2
√
mBmD

hT (w), (95)

where w depends on the four momentum transfer q2 to
the system composed by the � and ν̄�, so that it can recoil
against the D mesons according to

w(q2) = m2
B + m2

D − q2

2mBmD
. (96)

Of particular interest is the zero-recoil point, correspond-
ing to the maximum four-momentum transferred to the lepton
pair,

q2
0 = (MB − MD)2, (97)

for which Eq. (96) trivially reduces to

w0 ≡ w(q2
0 ) = 1. (98)
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Table 16 Coefficients for the
B → π form factors [46,47] Fi bi0 bi1 bi2 bi3

F0 0.507 ± 0.022 −1.77 ± 0.18 1.27 ± 0.81 4.2 ± 1.4

F1 0.407 ± 0.015 −0.65 ± 0.16 −0.46 ± 0.88 0.4 ± 1.3

FT 0.393 ± 0.017 −0.65 ± 0.23 −0.6 ± 1.5 0.1 ± 2.8

Table 17 Inputs used in the evaluation of the HQET form factors

Input Value

ρ̄2∗ 1.24 ± 0.08

χ̂2(1) −0.06 ± 0.02

χ̂ ′
2(1) 0.00 ± 0.02

χ̂ ′
3(1) 0.04 ± 0.02

η(1) 0.31 ± 0.04

η′(1) 0.05 ± 0.10

m1s
b (GeV) 4.71 ± 0.05

δmbc (GeV) 3.40 ± 0.02

Analogously, for the B → D∗ processes, there are
six form factors: V (q2), A1(q2), A2(q2), A0(q2), T1(q2),
T2(q2), T3(q2). They can be expressed in terms of the HQET
form factors hV (w), hAi (w), hTi (w) (for i = 1, 2, 3) through

V (q2) = 1

2
√
mBmD∗

hV (w),

A1(q
2) = (mB + mD∗)2 − q2

2
√
mBmD∗(mB + mD∗)

hA1(w),

A2(q
2) = mB + mD∗

2
√
mBmD∗

[
hA3(w) + mD∗

mB
hA2(w)

]
,

A0(q
2) = 1

2
√
mBmD∗

[
(mB + mD∗)2 − q2

2mD∗
hA1(w)

−m2
B − m2

D∗ + q2

2mB
hA2(w)

−m2
B − m2

D∗ − q2

2mD∗
hA3(w)

]
,

T1(q
2) = 1

2
√
mBmD∗

[
(mB + mD∗)hT1(w)

−(mB − mD∗)hT2(w)

]
,

T2(q
2) = 1

2
√
mBmD∗

[
(mB + mD∗)2 − q2

mB + mD∗
hT1(w)

− (mB − mD∗)2 − q2

mB − mD∗
hT2(w)

]
,

T3(q
2) = 1

2
√
mBmD∗

[
(mB − mD∗)hT1(w)

−(mB + mD∗)hT2(w)

−2
m2

B − m2
D∗

mB
hT3(w)

]
. (99)

Due to the Heavy Quark Symmetry, the HQET form fac-
tors depend on a single form factor, the Isgur–Wise function,
in the heavy-quark limit 	QCD/mb,c � 1:

h(w) = ξ(w)ĥ(w). (100)

In the case of the B → D transitions, we have

ĥ+ = 1 + αs

π

[
CV1 + w + 1

2
(CV2 + CV3)

]
+

(
εc + εb

)
L̂1,

ĥ− = αs

π

w + 1

2
(CV2 − CV3) +

(
εc − εb

)
L̂4,

ĥT = 1 + αs

π

(
CT1 − CT2 + CT3

)

+
(
εc + εb

)(
L̂1 − L̂4

)
. (101)

On the other hand, the corresponding expressions for the
B → D∗ mode read

ĥV = 1 + αs

π
CV1 + εc

(
L̂2 − L̂5

)
+εb

(
L̂1 − L̂4

)
,

ĥ A1 = 1 + αs

π
CA1 + εc

(
L̂2 − L̂5

w − 1

w + 1

)

+εb

(
L̂1 − L̂4

w − 1

w + 1

)
,

ĥ A2 = αs

π
CA2 + εc

(
L̂3 + L̂6

)
,

ĥ A3 = 1 + αs

π

(
CA1 + CA3

)
+εc

(
L̂2 − L̂3 + L̂6 − L̂5

)

+εb

(
L̂1 − L̂4

)
,

ĥT1 = 1 + αs

π

(
CT1 + w − 1

2
(CT2 − CT3)

)
+εc L̂2 + εb L̂1,

ĥT2 = αs

π

w + 1

2

(
CT2 + CT3

)
+εc L̂5 − εb L̂4,

ĥT3 = αs

π
CT2 + εc

(
L̂6 − L̂3

)
. (102)

The αs corrections in Eqs. (101) and (102) are included
in the functions CVi , CAi , CTi which depend on w, defined
in Eq. (96), and on the ratio z = mc/mb. On the other
hand, the O(	QCD/mb,c) power corrections are contained
in L̂1,2,3,4,5,6, which depend on the subleading Isgur–Wise
functions whose linearized version around the zero recoil
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Table 18 Correlation matrix for the input parameters used to calculate the HQET form factors for the B → D(∗)�ν̄� decays

ρ̄2∗ χ̂2(1) χ̂ ′
2(1) χ̂ ′

3(1) η(1) η′(1) m1s
b δmbc

ρ̄2∗ 1.00 −0.27 −0.13 0.81 0.08 −0.07 0.24 0.02

χ̂2(1) −0.27 1.00 0.00 0.01 0.01 0.03 −0.01 0.00

χ̂ ′
2(1) −0.13 0.00 1.00 −0.01 −0.01 0.01 0.01 0.00

χ̂ ′
3(1) 0.81 0.01 −0.01 1.00 −0.02 −0.09 0.04 0.00

η(1) 0.08 0.01 −0.01 −0.02 1.00 0.11 −0.48 0.04

η′(1) −0.07 0.03 0.01 −0.09 0.11 1.00 0.07 −0.01

m1s
b −0.24 −0.01 0.01 0.04 −0.48 0.07 1.00 0.00

δmbc 0.02 0.00 0.00 0.00 0.04 −0.01 0.00 1.00

point w = w0 = 1 read

χ̂2(w) = χ̂2(1) + χ̂ ′
2(1)(w − 1)

χ̂3(w) = χ̂ ′
3(1)(w − 1)

η(w) = η(1) + η′(1)(w − 1). (103)

For the leading Isgur–Wise function, we use

ξ(w) = ξ(w0)

[
1 − 8aρ̄2∗ z∗

+z2∗
(
V21ρ̄2∗ − V20 + (εb − εc)

)[
2�η′(1)

1 − rD(∗)

1 + rD(∗)

]

+(εb + εc)
[
�

(
12χ̂ ′

3(1) − 4χ̂2(1)
)

−16
(
[a2 − 1]� − 16a4

)
χ̂ ′

2(1)
]

+αs

π

[
�

(
C ′
V1

(w0) + CV3(w0) + rD(∗)CV2 (w0)

1 + rD(∗)

)

+2a2(� − 32a2)
C ′
V3

(w0) + rD(∗)C ′
V2

(w0)

1 + rD(∗)

−64a6
C ′′
V3

(w0) + rD(∗)C ′′
V2

(w0)

1 + rD(∗)

− 32a4C ′′
V1

(w0)
]]

, (104)

with

� = 64a4ρ̄2∗ − 16a2 − V21,

z∗(w) =
√

w + 1 − √
2a√

w + 1 + √
2a

,

a =
(1 + rD(∗)

2
√

2

)
,

rD(∗) = mD(∗)

mB
. (105)

We can determine ξ(w0) by demanding the zero recoil point
normalization condition ξ(1) = 1, our result is

ξ(w0) = 0.70 ± 0.015. (106)

Notice that in Eqs. (101) and (102), the power corrections
in mb and mc are included through the terms multiplying

εb,c = 	̄

2mb,c
, (107)

where 	̄ is of O(	QCD):

	̄ = mB − mb(m
1S
b ) + λ1/(2m

1S
b ). (108)

The required inputs in Eq. (108) are

mB = 5.313 GeV, λ1 = −0.3 GeV2 [49], (109)

and as indicated in [48], the prescription

mb(m
1S
b ) → m1S

b , (110)

has to be used everywhere except in those terms where the
	̄/mb,c factors do not multiply subleading Isgur–Wise func-
tions in Eqs. (101) and (102) to ensure the cancellation of
leading renormalons.

It can be seen how at leading order in αs and 	QCD/mb,c

the different HQET form factors either reduce to a common
Isgur–Wise function ξ or vanish.

Since we want to explore the possibility of having NP
effects in light leptons, we consider the set of input param-
eters shown in Table 17 and present the corresponding cor-
relation matrix in Table 18. They were obtained from a fit to
QCDSR and LQCD calculations as presented in [49]. This
set of inputs avoids the usage of the differential distributions
for the processes B → D(∗)�ν̄�, for � = e, μ, to fit the data.

B Input parameters

For convenience, we summarize the numerical values and
sources of the input parameters used in this paper in Table 19.
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Table 19 Collection of input parameters used in this paper

Parameter Value Unit Reference

me 0.5109989461(31) × 10−3 GeV [29]

mμ 105.6583745(24) × 10−3 GeV [29]

mτ (1776.86 ± 0.12) × 10−3 GeV [29]

mu (2.2+0.5
−0.4) × 10−3 GeV [29]

mc 1.275+0.025
−0.035 GeV [29]

mb 4.18+0.04
−0.03 GeV [29]

m1S
b 4.71 ± 0.05 GeV [49]

MB± (5279.32 ± 0.14) × 10−3 GeV [29]

MBd (5279.63 ± 0.15) × 10−3 GeV [29]

MBc 6274.9(8) × 10−3 GeV [29]

MB∗ (5324.65 ± 0.25) × 10−3 GeV [29]

mπ± 139.57061(24) × 10−3 GeV [29]

mπ0 134.9770(5) × 10−3 GeV [29]

mρ± (775.11 ± 0.34) × 10−3 GeV [29]

mρ0 (775.26 ± 0.25) × 10−3 GeV [29]

MD0 1864.83(5) × 10−3 GeV [29]

MD+ 1869.65(5) × 10−3 GeV [29]

MD∗0 2.00685(5) × 10−3 GeV [29]

MD∗+ 2.01026(5) × 10−3 GeV [29]

τB± (1.638 ± 0.004) × 10−12 s [29]

τBd (1.520 ± 0.004) × 10−12 s [29]

τBc (0.510 ± 0.009) × 10−12 s [29]

|Vub| (3.67 ± 0.15) × 10−3 [27]

|Vcb| (3.958 ± 0.117) × 10−2 [27]

fB± (190.0 ± 1.3) × 10−3 GeV [31]

fBc (434 ± 15) × 10−3 GeV [50]

GF 1.1663787(6) × 10−5 GeV−2 [29]
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