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Abstract The Fourier analysis of the final particle distri-
bution followed by cumulant study of the Fourier coefficient
event-by-event fluctuation is one of the main approaches for
testing the collective evolution in the heavy-ion collision.
Using a multidimensional generating function, we propose
a method to extract any possible cumulant of multiharmonic
flow fluctuations and classify them in terms of the order of
cumulants and harmonics involved in them. In particular, we
show that there are 33 distinct cumulants with order 2, 3, 4, 5
and harmonics 2, 3, 4, 5. We compute the normalized version
of these cumulants from hydrodynamic simulation for Pb–Pb
collisions based on TRENTo+VISH2+1+UrQMD. We com-
pare the simulation with those normalized cumulants that
the LHC has measured and predict the unmeasured ones.
Comparing the initial and final state fluctuation normalized
cumulants, we compute the linear and nonlinear hydrody-
namic response couplings. We finally introduce the genuine
three-particle correlation function containing information of
all third-order cumulants.

1 Introduction

It is widely accepted in the heavy-ion community that QCD
matter in the deconfined phase, quark-gluon plasma, is pro-
duced in ultrarelativistic heavy-ion collisions. The collective
models equipped with QCD as an underlying physics can suc-
cessfully explain the majority of experimental observations.
However, measuring the accurate transport coefficients such
as shear and bulk viscosity over entropy density and find-
ing QCD critical point are still one of the main challenges in
the heavy-ion community [1–3]. Moreover, observing similar
collectivity signals in small system collisions such as p–p or
p–Pb [4–10] raise debates about relation between the obser-
vations and the collective processes. These indicate that the
ultimate goal has not been achieved, and we need to deepen
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our understanding of heavy-ion collision physics. To this end,
introducing new observables to probe various aspects of the
full image is crucial. The present manuscript tries to introduce
a systematic procedure to generate observables related to the
anisotropic flow and classify them. Some of these observ-
ables are studied before, and some others are introduced for
the first time.

The anisotropic particle emission in the azimuthal direc-
tion [11–13] is one of the most important evidences of col-
lectivity in ultrarelativistic heavy-ion collisions. The final
particle momentum distribution in the azimuthal direction
can be expanded in a Fourier series,

f (ϕ) = 1

2π

[
1 + 2

∞∑
n=1

vn cos n(ϕ − ψn)

]
, (1)

with Fourier coefficients vneinψn , called flow harmonics. The
imprints of different stages of a heavy-ion collision, pre-
equilibrium, initial state, collective evolution, and freezeout
are cumulatively encoded in the flow harmonics. On account
of the quantum mechanical nature of partons inside the nucle-
ons, the initial geometry has a complicated structure and more
importantly fluctuates from one event to the other (event-by-
event fluctuation) leading to nonvanishing and fluctuating
vn and ψn for any n [4,14–23]. Practically, we measure the
statistical properties of the vneinψn fluctuation in the experi-
ment. Several attempts focus on the moments [24–33] or on
cumulants of fluctuations to achieve information from flow
harmonic fluctuations. Single harmonic cumulants [34,35],
symmetric cumulants [36–39], generalized (or higher-order)
symmetric cumulants [40,41], asymmetric cumulant [24] are
some examples of these attempts.

It is noteworthy that each cumulant of a probability den-
sity function (p.d.f.) contains independent information about
the underlying fluctuation. Therefore, a complete study of all
possible cumulants up to a given order of cumulant expan-
sion is crucial to gain a comprehensive insight into the fluctu-
ations. In the present work, we start with the standard defini-
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tion of cumulants based on generating functions for an arbi-
trary number of variables. We extract and classify all possible
cumulants depending on their order and the involved num-
ber of harmonics. Considering the space limitation, we focus
on cumulants of harmonics n = 2, 3, 4, 5 up to fifth order,
which contains 33 distinct cumulants. Among them, there are
already known cumulants together with new cumulants con-
taining symmetry plane correlations. To ease the future appli-
cation, we have prepared a Mathematica [42] package
accessible as an ancillary file for the present manuscript or in
the GitHub repository [43]. The package returns the cumu-
lants in three different forms: in terms of vn and ψn moment,
final particle azimuthal angle correlations, and Q-vectors
(see Eq. (29)) notations. For cases that the Mathematica
software is not available, a list of few first multiharmonic
cumulants in terms of vn and ψn symbolic moments are tab-
ulated in the Appendix A.

Regarding multiharmonic cumulants, other studies have
been done previously [44,45] with some similarities and dif-
ferences compared to the present work. In Ref. [44], the
underlying p.d.f. of the fluctuations are classified into three
categories, flow-amplitude (only vn fluctuations), event-
plane-correlation (only ψn fluctuations) and mixed-
correlations (both vn and ψn fluctuations). We find that,
instead of classifying the p.d.f. into three types, considering
one general p.d.f. is more suitable way to extract all pos-
sible cumulants up to a given degree. The author believes
that the cumulants extracted in the present paper are achiev-
able with the method introduced earlier in Ref. [45]. In this
reference, however, the explicit calculations are limited to
the simple few known observables, and the dependence of
the cumulant expressions to the harmonics is not presented.
Our explicit calculations show that the cumulants’ form is
related to the involved harmonics in the cumulant (see also
Refs. [44,46]). For instance, we see that the first cumulant
involving simultaneous harmonics n = 2, 3, 5 appears in the
third order, and the next cumulants appear in the fifth order
in three different forms. For the case involving simultane-
ous harmonics n = 2, 4, 5, however, cumulants starts from
fifth order with two different forms (see Table 1). Besides,
our study is equipped with Monte Carlo hydrodynamic sim-
ulation as well (TRENTo [47]+VISH2+1 [48,49]+UrQMD
[50,51] with parameter calibrated by a Global Bayesian anal-
ysis [52]) to see which unmeasured cumulants would have
larger signals in future measurements. Comparing this simu-
lation with future measurements can also validate the heavy-
ion collision parameters tuned with Global Bayesian analy-
sis. We compare the simulation with normalized cumulants
that are measured at the LHC, which reveals a rather good
agreement.

We study the initial state fluctuation cumulants to see
how the final state inherits the fluctuations from the initial
state. The initial energy density anisotropy translation to the

final state momentum anisotropy is formulated by a set of
equations so-called hydrodynamic response [53]. By com-
paring the initial and final state fluctuations, we obtain the
hydrodynamic response coefficients. Moreover, our system-
atic cumulant study guide us to extend the two-particle corre-
lation function (2PC) notion [5,54–56] to multiparticle cor-
relation functions, qPC (see the definition in Sect. 6). We
specifically study the flow-induced 3PC for harmonics 2 to
5 via our hydrodynamic simulation. This quantity contains
information on all third-order cumulants.

This paper is structured as follows: The Sect. 2 is dedi-
cated to introduce generating function method for multihar-
monic cumulants. In Sect. 3, the functions available in the
Mathematica package are introduced. A realistic Monte
Carlo study of the first Fourier-cumulant expansion terms
is presented in Sect. 4. The linear and nonlinear hydrody-
namic response couplings are extracted by comparing the
initial state, and final state fluctuation normalized cumulants
in Sect. 5. Finally, we study genuine three-particle correla-
tion functions in Sect. 6. In the Appendix A, a list of few
first cumulants is tabulated. In Appendix B, a technical study
about the statistical fluctuation of multiharmonic correlations
is presented. Detail of some derivations in the text is pre-
sented in the Appendices C and D.

2 Multiharmonic generating function

Despite the simplicity of Eq. (1), experimental measurement
of flow harmonics is a challenging task. The number of final
produced particles per event in a given collision is not enough
to extract statistically accurate flow harmonics values. Many
events average resolves the problem of low statistics while
leads to the convolution of event-by-event fluctuation of the
initial state into the measurement. Strictly speaking, the mea-
surable quantities are the moments or cumulants of the fol-
lowing gigantic probability density function (p.d.f.)

p(vn1,x , vn1,y, . . . , vnk ,x , vnk ,y), (2)

where we have used the Cartesian coordinate notation for the
flow harmonics, vn,x = vn cos nψn and vn,y = vn sin nψn .
Noting the fact that f (ϕ) (Eq. (1)) is assigned to each ini-
tial state, the p.d.f. (2) is tightly related to the event-by-event
fluctuation of the initial state, which is, accordingly, related
to the underlying physics of nucleons/nuclei. Moreover, the
map which connects the above p.d.f. to the initial state fluctu-
ation is governed by the collective evolution process. Indeed,
there are stochastic processes in the collective evolution that
can be convoluted into the above p.d.f. as well. Besides the
experiment’s statistical uncertainty issues, the reaction plane
angle is not experimentally measurable conveniently, which
leads to loss of one more degree of freedom in p.d.f. (2). In
the polar coordinate the p.d.f. (2) depends on k flow ampli-
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tudes vni s and k symmetry plane angles (or event-planes)
ψni s. After imposing the randomness of the reaction plane
angle, from k variable ψni , only k − 1 independent variables
ψni − ψn1 remain

p(vn1 , vn2 , . . . , vnk , ψn2 − ψn1 , . . . , ψnk − ψn1). (3)

Here, ψn1 is chosen conventionally to compute the angle
differences. One could choose any other combination of two
symmetry plane angle differences. The final cumulants are
independent of this choice.

In the present section, we introduce the method of generat-
ing function to extract all possible cumulants of the p.d.f. (3).
To this end, we start with a standard definition of generating
function of a generic multivariate p.d.f. g(x) (see for instance
[57]),

G(k) ≡ 〈eix·k〉g =
∫

dx g(x) eix·k, (4)

where x is a m-dimensional random vector. The cumulants
of the distribution function g(x) (shown by Ka1,...,am ) are
the Taylor expansion coefficients of the cumulant generating
function logG(k),

logG(k) =
∑

a1,...,ak

(
k∏

i=1

(iki )ai

ai !

)
Ka1,...,ak . (5)

The above generating function returns the cumulants of
p.d.f. (2), while in heavy-ion physics, we are interested in
cumulants of p.d.f. (3). To clarify the difference between
cumulants of p.d.f. (2) compared to p.d.f. (3), let us start
with the most simple example. Focusing on one-harmonics
vneinψn , the p.d.f. of the flow fluctuation in the Cartesian
coordinate has the form p(vn,x , vn,y), and its cumulants can
be obtained via the definition presented in Eq. (5) for k = 2.
For instance,

K0,2 = 〈v2
n,y〉 − 〈vn,y〉2,

K3,0 = 〈v3
n,x 〉 − 3〈vn,x 〉〈vn,x 〉2 + 2〈vn,x 〉3,

(6)

are the width of the distribution in thevn,y and the skewness in
the vn,x direction, respectively. In the experiment, however,
we lose one of the degrees of freedom in p(vn,x , vn,y) due to
the randomness of the reaction plane angle. After imposing
event-by-event random reaction plane angle to p(vn,x , vn,y),
we obtain a rotationally symmetric p.d.f. p̃(vn,x , vn,y). The
information of the latter p.d.f. is encoded in a radial distribu-
tion p(vn). Traditionally, we assume the cumulants of p(vn)
are cn{2k} [35] where the two first orders of them are given
by

cn{2} = 〈v2
n〉,

cn{4} = 〈v4
n〉 − 2〈v2

n〉2.
(7)

These quantities, however, are specific combinations of two-
dimensional cumulants of p(vn,x , vn,y) that survived after

imposing the randomness of the reaction plane angle. For
instance, it turns out [58,59],

cn{2} = K20 + K02,

cn{4} = K40 + 2K22 + K04.
(8)

Here, we have assumed that v̄n = 〈vn,x 〉 = 0 and 〈vn,y〉 = 0
for simplicity. This condition is satisfied when the flow har-
monics are sourced purely from fluctuations, namely ellip-
ticity in central Pb–Pb collisions, or triangularity in round
nuclei collisions. For nonvanishing v̄n , similar relations with
more terms in the right-hand side of Eq. (8) are obtained.
In any case, the cumulants cn{2k} are the maximum infor-
mation we can achieve from the cumulants of the original
distribution p(vn,x , vn,y).

Before proceeding, let us briefly review the generating
functional method to find cn{2k} [60]. The generating func-
tion in Eq. (4) corresponds to the rotationally symmetric
p̃(vn,x , vn,y) reads as

G(kx , ky) =
∫

dvn,xdvn,y p̃(vn,x , vn,y)e
ivn,x kx+ivn,yky

=
∫

vndvndψn p̃(vn)e
ivnk cos ψn

=
∫

dvn
[
vn p̃(vn)

]
J0(k vn)

= 〈J0(k vn)〉p,

(9)

where in the above J0(k vn) is the Bessel function of the first
kind and the averaging 〈J0(k vn)〉p is performed with respect
to p(vn) ≡ vn p̃(vn). One can expand the logarithm of the
generating function in terms of k,

log〈J0(k vn)〉 p̃ =
∑
m

km �(m) cn{m}, (10)

with

�(m) = im

2m(m/2!)2 , (11)

to find the cumulants cn{2k}.
We extend the above procedure into the cases with an

arbitrary number of harmonics. To simplify the notation, we
rewrite the p.d.f. (3) as p(v, δψ) where

v = (vn1, . . . , vnk ), δψ = (δψn1 , . . . , δψnk−1), (12)

and

δψni = ψni+1 − ψn1 . (13)

Considering the rotational symmetry imposed by the ran-
domness of the reaction plane angle, one can first average the
characteristic function over the azimuthal angle to find a sym-
metric characteristic function. Then the nonvanishing com-
bination of cumulants of p(vn1,x , vn1,y, . . . , vnk ,x , vnk ,y) can
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be obtained directly from the symmetric characteristic func-
tion,

G(k, δφ) = 〈J (v,k, δψ, δφ)〉p, (14)

where

J (v,k, δψ, δφ) = 1

2π

∫ 2π

0
dψn1e

i L , (15)

and

L = vn1kn1 cos n1ψn1

+
k∑

i=2

vni kni cos
[
ni
(
ψn1 + δψni−1 − δφni−1

)]
.

(16)

For the derivation refer to the Appendix D. Having found
G(k, δφ), the cumulants of flow fluctuations can be obtained
from the following expansion:

logG(k, δφ)=
∑

m1,...,mk
α1,...αk−1

km1
n1

· · · kmk
nk eiα1δφn1 · · · eiαk−1δφnk−1

× �(m,α) c{α1,...αk−1}
n1,...,nk {m1, . . . ,mk},

(17)

where the coefficients

c{α1,...αk−1}
n1,...,nk {m1, . . . ,mk}
≡ 〈vm1

n1
· · · vmk

nk cos(α1δψn1 + · · · + αkδψnk )〉c
(18)

are the cumulants (δψni are defined in Eq. (13)). In the right-
hand side of the above equation, we have represented the
cumulant with its highest rank moment together with a sub-
script c. Here, ni = 1, 2, . . . stand for the involving har-
monics, mi = 0, 1, 2, . . . are the power of flow amplitudes
and αi = 0,±1,±2, . . . are the coefficients of the symmetry
plane angle differences. The order of the cumulant is given
by

q = m1 + · · · + mk . (19)

By definition, ni s are all distinguished while, without loss
of generality, we impose a strictly ascending order conven-
tion to them, n1 < · · · < nk .1 The coefficient �(m,α) is a
numerical factor that does not depend on the moments. We
fix the coefficient so that the numerical factor of the highest
rank moment in cumulant c{α1,...αk−1}

n1,...,nk {m1, . . . ,mk} turns to
be equal to unity. As we will see in the next section, some
combinations of harmonics ni , mi , and αi lead to vanishing
cumulant. A trivial example is k = 1 where the Eq. (18)
reduces to cn{m} ≡ 〈vmn 〉c. It is known that this cumulant is
nonvanishing only for even m (see Eq. (7)).

Each distinguished cumulant c{α1,...αk−1}
n1,...,nk {m1, . . . ,mk}

contains a piece of independent information about the
p.d.f. (3). To numerically compute these cumulants for a

1 In this manuscript, we use harmonic index ai for those repeated in
the sequence, while ni is reserved for strictly ascending indices.

given p.d.f., we need to find the explicit form of them written
in terms of the moments. Although the cumulants c{α1,...αk−1}

n1,...,nk
{m1, . . . ,mk} can be found analytically using Eq. (17), its
computation is cumbersome, except for the case k = 1.
By considering one flow harmonic (k = 1), the generat-
ing function reduces to that mentioned in Eq. (9). Keeping
two flow harmonics, the flow fluctuation distribution con-
tains three degrees of freedom vn1 , vn2 , and δψn1 . In this
case, the function J can be written in terms of general-
ized Bessel function [61], and by expansion, one obtains
the cumulants c{α1}

n1,n2{m1,m2}. However, extracting them is
arithmetically more involved. For more general cases, the
complexity increases, forcing us to choose a more practical
and efficient way for the computation.

3 One package for all cumulants

Using the cumulant generating function in Eq. (17), one can
find the cumulants c{α1,...αk−1}

n1,...,nk {m1, . . . ,mk} written in terms
of symbolic moments of variables vn and ψn . These results
can be immediately used in theoretical studies where vn and
ψn of every single event are accurately accessible. In the
experiment as well as some simulations, however, the out-
comes are particles azimuthal angles. As a result, one needs
to invest an extra effort to translate the azimuthal angle of
final particles into the averages containing vn and ψn . For
that, we use the multiparticle techniques to compute the flow
harmonic cumulants. We rewrite the moments in terms of
Q-vectors (see Eq. (29)) which can be calculated from final
particle azimuthal angles at every single event and employed
in computing the cumulant [36,62]. This section presents
a practical way to find cumulants and their statistical uncer-
tainties in terms of symbolic moments, correlation of particle
azimuthal angles, and Q-vectors.

3.1 Cumulants from generating function

As it is mentioned in the previous section, the analytical
computation of a generic cumulant cα1,...αk−1

n1,...,nk {m1, . . . ,mk}
is cumbersome. For that reason, we do it symbolically in
Mathematica. We encapsulated this computation into dif-
ferent functions (see below) and implemented them into a
Mathematica package. One can load the package in a sep-
arateMathematicanotebook and recall the functions. This
package is available as an ancillary file of this manuscript, or
in the GitHub repository [43].

In the package, we first compute the Taylor expan-
sion of the exponential function in Eq. (15) in terms
kn1, kn2 , . . . up to order m1,m2, . . .. Then we perform the
integral in Eq. (15). After that, we replace the combinations
v

w1
n1 · · · vwk

nk e
β1δψn1 · · · eβkδψnk in the expansion with a sym-
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bolic variable as a moment. Computing the logarithm of the
result, we read the coefficients of the Taylor series for the
variables k1, k2, . . . , and the Fourier series for the variables
α1, α2, . . . (see Eq. (17)). We extract the cumulants in terms
of our symbolic moment variables up to a numerical fac-
tor �(m,α) by comparing the result with Eq. (17). Finally,
we single out the highest rank moment in the result and fix
the coefficient �(m,α) such that the numerical factor of this
moment turns to unity.

We listed the available functions in a short manual at the
header of the package file. One of these functions is

c[m1, . . . ,mk,α1, . . . ,αk−1,n1, . . . ,nk,v,ψ] (20)

that returns the associated cumulants written in terms of
moments of variables vn and ψn . For instance,

In[1] :=c[4, ,2,v,ψ]
Out[1] =〈v4

2〉 − 2〈v2
2〉2

In[2] :=c[2,1,4,2,4,ε,φ]
Out[2] =〈ε2

2ε4 cos (4 (φ2 − φ4))〉 (21)

In[3] :=c[2,2,0,2,3,v,ψ]
Out[3] =〈v2

2v2
3〉 − 〈v2

2〉〈v2
3〉.

By usingcMean instead ofc, the angle brackets are replaced
by Mean[]. For instance, cMean[{2},{},{2},v,ψ]
returns Mean[v[2]2].

The above representation of cumulant is useful when flow
harmonics are accurately accessible in a single event, typ-
ically in hydrodynamic simulations. If the final state is the
particle azimuthal angles, one needs to employ the particle
correlations,

〈k〉a1,...,ak ≡ 〈ei a1ϕi1+···+i akϕik 〉,
= (M − k)!

M !
∑

i1 �=···�=ik

ei a1ϕi1+···+i akϕik ,
∑
i

ai = 0. (22)

Here, ϕi is the azimuthal angle of the i th particle in an event,
and M is the multiplicity of the event [34–36,62]. A generic
flow harmonic moment 〈Va1,...,ak 〉 with

Va1,...,ak ≡ va1 · · · vak cos(a1ψa1 + · · · + akψak ), (23)

can be written in terms of particle correlations as 〈Va1,...,ak 〉 =
〈〈k〉a1,...,ak 〉. The function

cCorr[{m1, . . . ,mk}, {α1, . . . , αk−1}, {n1, . . . ,nk}] (24)

returns the cumulant written in terms of correlations. For
instance,

In[1] :=cCorr[{2,2}, {0}, {2,4}]
Out[1] =〈〈4〉−4,−2,2,4〉 − 〈〈2〉−2,2〉〈〈2〉−4,4〉. (25)

For external applications, it is easier if the output can be
simply copied to the codes outside of Mathematica. This

can be obtained via

cCorr[m1, . . . ,mk, α1 , . . . ,αk−1

,n1, . . . ,nk, corr]. (26)

Using functionCForm (FortranForm) inMathematica,
one immediately convert the output of cCorr to an expres-
sion applicable in a C + + (Fortran) code. For instance,

In[1] :=cCorr[2,2,0,2,4,corr]
Out[1] =corr[−4,−2, 2, 4] − corr[−2, 2]corr[−4, 4],

(27)

where,

corr[a1, . . . , ak] ≡ 〈〈k〉a1,...,ak 〉. (28)

From the practical point of view, computing 〈〈k〉a1,...,ak 〉
contains several nested loops depending on the value of k
which are computationally expensive. A technique is intro-
duced in Refs. [36,62] where the moments 〈k〉a1,...,ak are
obtained in terms of Q-vectors,2

Qn =
M∑
k=1

einϕk . (29)

Using this technique, only one loop over particles in an event
is needed to compute the correlations.

For those who want to analyze anisotropic flow inside
Mathematica, we implemented the recursive algorithm
mentioned in Ref. [36] into the package to find 〈k〉a1,...,ak in
terms of Q-vectors. Substituting vn and ψn symbolic aver-
ages with moments written in terms of Q-vectors, we find
cumulants in terms Q-vectors (so-called Q-cumulants),

cQvec[m1, . . . ,mk,α1 , . . . ,αk−1

,n1, . . . ,nk,M,Q], (30)

where M and Q are the multiplicity and Q-vector symbols,
respectively. For example,

In[1] :=cQvec[2, ,2,M,Q]
Out[1] =Mean

[M − Q[−2]Q[2]
M(1 − M)

]
, (31)

which is nothing but

c2{2} =
〈
M − Q∗

2Q2

M(1 − M)

〉
, (32)

as it is already obtained in Refs. [36,62]. Having defined
M, Q[-2], and Q[2] as a list in Mathematica contain-
ing multiplicity, Q2, and Q∗

2 of many events, the function in
Eq. (31) returns the numerical value of the cumulant c2{2}.
The function works accordingly for all other cumulants dis-
cuss in the present work.

2 We ignored the particle weights wk in the Q-vector definition for
simplicity.
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The other function we advertise here is

cTable[n1, . . . ,nk,minOrd,maxOrd,v,ψ] (33)

that returns a table of all nonvanishing cumulants for flow
harmonics n1, . . . , nk and orders between minOrd and
maxOrd. It is worth mentioning that considering more flow
harmonics and computing higher-order cumulants makes
computations more time-consuming. For future studies and
cases that Mathematica software is not available, we tab-
ulate the cumulants of flow harmonics n = 2, . . . , 6 up to
four harmonics combinations in the Appendix A. In Tables 3,
4, 5 and 6 in the Appendix A, we present the one- and
two-harmonics cumulants up to eight, and three- and four-
harmonics up to six orders, concerning the length of the final
expressions. The interested reader can extract the cases which
are not appeared in the tables by using the Mathematica
package.

Apart from cn{2m} cumulant which is obviously a spe-
cial case of c{α1,...αk−1}

n1,...,nk {m1, . . . ,mk}, several multiharmonic
cumulants are known before, such as symmetric cumulants
[36],

SC(k, l) ≡ c{0}
k,l {2, 2} = 〈v2

kv
2
l 〉 − 〈v2

k 〉〈v2
l 〉, (34)

generalized (or higher-order) symmetric cumulants for some
combination of harmonics [40] (the actual form of the cumu-
lant in terms of moments can be found in the Appendix A),3

SC(k, l,m) ≡ c{0,0}
k,l,m{2, 2, 2}, and asymmetric cumulant

[21,22,24],

acn{3} ≡ c{2n}
n,2n{2, 1} = 〈v2

nv2n cos 2n (ψn − ψ2n)〉, (35)

as special cases of what we present here. There are other
cumulants, however, missed in other studies so far. For
instance,

c{4}
2,4{2, 3} = 〈v2

2v3
4 cos (4 (ψ2 − ψ4))〉

2〈v2
4〉〈v2

2v4 cos (4 (ψ2 − ψ4))〉 (36)

is an example of a cumulant which have not been studied
before.

3.2 Statistical uncertainty of cumulants

Having computed the flow harmonic cumulants, we dis-
cuss the statistical fluctuation of the cumulants. In case the
flow harmonics vneinψn are accurately accessible in a single
event, one can follow a standard procedure (see for instance
Ref. [63]) to find the covariance matrix of the moments

3 The equivalence of generalized symmetric cumulants and
c{0,0}
k,l,m{2, 2, 2} is not exact. As a different approach in Ref. [40],

the cumulants of flow amplitude squared fluctuations are studied,
which for most of the cases it is equivalent to what is presented here.

〈Va1,...,ak 〉 (see Eq. (23)). The covariance matrix of two
generic moments are simply given by

cov(Vi , Vj ) = 1

N

(〈ViVj 〉 − 〈Vi 〉〈Vj 〉
)
, (37)

where N is the number of events and the subscript i stands
for a generic collective index a1, . . . , ak . The variance of any
function of moments, f (〈V1〉, 〈V2〉, . . .) is obtained by [63],

σ 2
f =

∑
i, j

∂ f

∂〈Vi 〉
∂ f

∂〈Vj 〉cov(Vi , Vj ). (38)

For instance, the variance of c2{4} = 〈v4
2〉 − 2〈v2

2〉2 is given
by

σ 2
c2{4} = 1

N

[
cov(v4

2, v4
2) − 8〈v2

2〉cov(v4
2, v2

2)

+16〈v2
2〉2cov(v2

2, v2
2)
]
,

= 1

N

[
〈v8

2〉 − 8〈v2
2〉〈v6

2〉 − 〈v4
2〉2 + 24〈v2

2〉2〈v4
2〉

−16〈v2
2〉4

]
. (39)

If the azimuthal angle of particles in the final state are
available, the flow harmonic Va1,...,ak should be replaced
by particle correlations Re〈k〉a1,...,ak . Although Re〈k〉a1,...,ak
is not an accurate estimation for Va1,...,ak , in the ultimate
many events average it approaches to an accurate estimation.
By replacing Va1,...,ak with (〈k〉a1,...,ak + 〈k〉−a1,...,−ak )/2 in
Eq. (38), we obtain the variance of the function of correla-
tions in terms of correlations. For instance, in this notation,
we have c2{4} = 〈〈4〉−2,−2,2,2〉 − 2〈〈2〉−2,2〉, and accord-
ingly, the example in Eq. (39) turns to the following form:

σ 2
c2{4} = 1

N

[
〈〈4〉2−2,−2,2,2〉 − 8〈〈2〉−2,2〉〈〈2〉−2,2〈4〉−2,−2,2,2〉
−〈〈4〉−2,−2,2,2〉2 + 16〈〈2〉2−2,2〉〈〈2〉−2,2〉2

+8〈〈4〉−2,−2,2,2〉〈〈2〉−2,2〉2 − 16〈〈2〉−2,2〉4
]
,

(40)

where we have used the explicit form of covariance matrix
in Eq. (38). One can immediately substitute the quantity
〈k〉a1,...,ak in terms of Q-vectors for practical computations
by using Refs. [36,62].

The procedure explained above is implemented into the
following functions in the package:

Nsigma2[func], (41a)

Nsigma2Mean[func,v,ψ], (41b)

Nsigma2Qvec[func,M,Q]. (41c)

The output of the above functions is Nσ 2
f . The input

function (func) can be any function of correlations but
the correlations should be always written in the form
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corr[a1, . . . ,ak] as the output of Eq. (24).4 For instance,
to find Nσ 2

c2{2} by using Nsigma2, we should call the func-
tion as follows:

In[1] :=Nsigma2[cCorr[{2}, {}, {2},corr]]
Out[1] =〈〈2〉2−2,2〉 − 〈〈2〉−2,2〉2. (42)

The difference between functions in Eq. (41) is in their output
presentations. The output of function Nsigma2 is shown in
Eq. (42), the function Nsigma2Mean output is similar to
cMean function, andNsigma2Qvec returns the variance in
terms of Q-vectors similar to cQvec function (see Eq. (31)).
As an example, the statistical error of c2{2} = 〈〈2〉−2,2〉 in
terms of Q-vectors can be found below:

In[1] :=Nsigma2Qvec[cCorr[{2}, {}, {2},M,Q]]
Out[1] =Mean

[(
M−Q[−2]Q[2]

M(1−M)

)2] − Mean
[
M−Q[−2]Q[2]

M(1−M)

]
.

(43)

Referring to Eqs. (40) and (42) (and to any other
Nsigma2 outcomes), we find that the statistical uncertainty
has no explicit multiplicity dependence. Let us consider two
equal-size sets of events when the multiplicity of events in
one set is smaller than in the other set. We expect that the
statistical uncertainty of cumulants computed from the set of
events with smaller multiplicity is larger than the statistical
uncertainty obtained from the other set with higher multi-
plicity events. This apparent contradiction with intuition is
due to the presence of correlations 〈〈k〉a1,...,ak 〈�〉a1,...,a�

〉 in
the statistical uncertainty (for instance 〈〈2〉−2,2〈4〉−2,−2,2,2〉
in Eq. (40)). These forms of correlations are the conse-
quence of cov(Vi , Vj ) in Eq. (38) and have not appeared
in previous studies in Refs. [36,62]. In fact, the correlations
〈〈k〉a1,...,ak 〈�〉a1,...,a�

〉 depend on multiplicity due to the pres-
ence of autocorrelations remained in them. To be more spe-
cific, we focus on the first terms in the output in Eqs. (42),

〈2〉2−2,2 = 1

M2(M − 1)2

∑
i1 �=i2,i3 �=i4

e2i(ϕi1−ϕi2 +ϕi3−ϕi4 ). (44)

The above relation is a four-particle correlation with some
remaining autocorrelations. In the technical Appendix B, a
more direct approach is employed to extract the statistical
uncertainties. This approach is implemented in the function
Nsigma2P[func,M]. The result of this function for c2{2}
is as follows:

4 It does not matter how the correlations are named,
correl[a1, . . . ,ak], f[a1, . . . ,ak], or anything else.

Nσ 2
c2{2} =

〈
1 + 〈2〉−4,4

M(M − 1)

+ (M − 2)

M(M − 1)

[
〈3〉−4,2,2 + 〈3〉−2,−2,4 + 2〈2〉−2,2

]

+ (M − 2)(M − 3)

M(M − 1)
〈4〉−2,−2,2,2

〉
− 〈〈2〉−2,2〉2. (45)

As seen from the above equation, on the one hand, there
is no correlation with the form 〈〈k〉a1,...,ak 〈�〉a1,...,a�

〉, and
on the other hand, there are explicit M dependences as we
expect. One can explicitly show that the terms inside the first
bracket in Eq. (45) are exactly equal to 〈2〉2−2,2. It becomes
more apparent when we replace all 〈k〉a1,...,a�

in Eq. (45)
with Q-vectors using the results of Refs. [36,62] where one
finds that Eq. (45) in terms of Q-vectors is identical with that
mentioned in Eq. (43). In general, the result of function (41b)
is identical with that obtained from function Nsigma2P.

As a final remark in this section, we would like to compare
our statistical uncertainty results with previous studies. By
ignoring the event-by-event fluctuation, all events would be
identical. Therefore, we can ignore the outer angle brackets
in Eq. (45). Also, by collecting many events we can increase
the accuracy such that each 〈k〉a1,...,ak estimates the true value
of the flow harmonic Va1,...,ak (see Eq. (23)). In such an ideal
scenario, Eq. (45) turns into the following form:

Nσ 2
c2{2} = v2

4 + 1

M(M − 1)

+ 2(M − 2)

M(M − 1)

[
v2

2v4 cos(4(ψ2 − ψ4)) + v2
2

]

+ (M − 2)(M − 3)

M(M − 1)
v4

2 − v4
2, (46)

which has been obtained before in Refs. [36,64] for the case
with ψ2 = ψ4.

4 Fourier-cumulant expansion to study flow distribution

An important property of cumulant analysis is that the
lowest order cumulants capture the global features of the
p.d.f., and by moving toward higher-orders, more detailed
features become relevant. The same is true for Fourier expan-
sion of f (ϕ) in Eq. (1) where lower harmonics contain more
coarse-grained pictures than higher harmonics. As a result,
we consider a double expansion for studying p.d.f. (3): first,
harmonic expansion, and second cumulant order expansion.
According to this approach, c2{2} contains the most coarse-
grained information (we ignore direct flow in the present
study). The harmonic n = 2 is the first dominant flow, and
c2{2} is the only possible second-order cumulant for n = 2.
It is well-known that c2{2} contains information about the
initial state ellipticity together with elliptic flow fluctuation.
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Table 1 List of all cumulants with order q = 2, 3, 4, 5 and harmonics n = 2, 3, 4, 5

Cumulant Order Cumulant expression

1 c2{2} 2 〈v2
2〉

2 c3{2} 2 〈v2
3〉

3 c4{2} 2 〈v2
4〉

4 c5{2} 2 〈v2
5〉

5 c{4}
2,4{2, 1} 3 〈v2

2v4 cos (4 (ψ2 − ψ4))〉
6 c{−3,5}

2,3,5 {1, 1, 1} 3 〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉
7 c2{4} 4 〈v4

2〉 − 2〈v2
2〉2

8 c3{4} 4 〈v4
3〉 − 2〈v2

3〉2

9 c4{4} 4 〈v4
4〉 − 2〈v2

4〉2

10 c5{4} 4 〈v4
5〉 − 2〈v2

5〉2

11 c{0}
2,3{2, 2} 4 〈v2

2v2
3〉 − 〈v2

2〉〈v2
3〉

12 c{0}
2,4{2, 2} 4 〈v2

2v2
4〉 − 〈v2

2〉〈v2
4〉

13 c{0}
2,5{2, 2} 4 〈v2

2v2
5〉 − 〈v2

2〉〈v2
5〉

14 c{0}
3,4{2, 2} 4 〈v2

3v2
4〉 − 〈v2

3〉〈v2
4〉

15 c{0}
3,5{2, 2} 4 〈v2

3v2
5〉 − 〈v2

3〉〈v2
5〉

16 c{0}
4,5{2, 2} 4 〈v2

4v2
5〉 − 〈v2

4〉〈v2
5〉

17 c{6,−4}
2,3,4 {1, 2, 1} 4 〈v2

3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉
18 c{8,−5}

3,4,5 {1, 2, 1} 4 〈v2
4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉

19 c{3,4,−5}
2,3,4,5 {1, 1, 1, 1} 4 〈v2v3v4v5 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉

20 c{6}
2,3{3, 2} 5 〈v3

2v2
3 cos (6 (ψ2 − ψ3))〉

21 c{4}
2,4{2, 3} 5 〈v2

2v3
4 cos (4 (ψ2 − ψ4))〉 − 2〈v2

4〉〈v2
2v4 cos (4 (ψ2 − ψ4))〉

22 c{4}
2,4{4, 1} 5 〈v4

2v4 cos (4 (ψ2 − ψ4))〉 − 3〈v2
2〉〈v2

2v4 cos (4 (ψ2 − ψ4))〉
23 c{−6,8}

2,3,4 {1, 2, 2} 5 〈v2
4v2

3v2 cos (2 (ψ2 + 3ψ3 − 4ψ4))〉
24 c{0,4}

2,3,4{2, 2, 1} 5 〈v2
3v2

2v4 cos (4 (ψ2 − ψ4))〉 − 〈v2
3〉〈v2

2v4 cos (4 (ψ2 − ψ4))〉
25 c{−3,5}

2,3,5 {1, 1, 3} 5 〈v3
5v2v3 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 2〈v2

5〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉
26 c{−3,5}

2,3,5 {1, 3, 1} 5 〈v3
3v2v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 2〈v2

3〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉
27 c{−3,5}

2,3,5 {3, 1, 1} 5 〈v3
2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 2〈v2

2〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉
28 c{−8,10}

2,4,5 {1, 2, 2} 5 〈v2
5v2

4v2 cos (2 (ψ2 + 4ψ4 − 5ψ5))〉
29 c{4,0}

2,4,5{2, 1, 2} 5 〈v2
5v2

2v4 cos (4 (ψ2 − ψ4))〉 − 〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2

5〉
30 c{−4,10}

3,4,5 {2, 1, 2} 5 〈v2
5v2

3v4 cos (6ψ3 + 4ψ4 − 10ψ5)〉
31 c{4,5}

3,4,5{3, 1, 1} 5 〈v3
3v4v5 cos (9ψ3 − 4ψ4 − 5ψ5)〉

32 c{−3,0,5}
2,3,4,5 {1, 1, 2, 1} 5 〈v2

4v2v5v3 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 〈v2
4〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉

33 c{3,−4,5}
2,3,4,5 {2, 1, 1, 1} 5 〈v2

2v3v4v5 cos (4ψ2 − 3ψ3 + 4ψ4 − 5ψ5)〉

The first third-order cumulant is c{4}
2,4{2, 1} which means, in

addition to second harmonic n = 2, the harmonic n = 4
should be involved as well. Keeping more harmonics and
higher-order cumulants, more detailed information about the
p.d.f. (3) and f (ϕ) can be achieved. The number of cumulants
increases rapidly by including more harmonics and keeping
higher-order cumulants.

Henceforth, we study harmonics n = 2, 3, 4, 5 and cumu-
lants up to fifth order, which includes 33 different cumulants
as they are tabulated in Table 1. Apart from those cumulants
that contain only one moment, there are cumulants containing
more than one event-plane moment (see lines 21, 24, 25, 26,
27, 29, and 32 in Table 1) which are studied here for the first
time. We should point out that three different five-particle
cumulants have been measured by ALICE [65,66] two of
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them (see [66]) contain more than one event-plane moment.
The direct flow (flow harmonics with n = 1) is involved in
all these cumulants. The cumulant c{4}

2,4{4, 1} (see Ref. [44]
as well) in line 22 is equivalent with v4{5} measured by CMS
up to a normalization factor [67].

4.1 Normalized cumulants from initial and final states

To understand the observed cumulants’ origin, let us recall
that the central part of the flow fluctuations comes from the
initial state. To study the initial state fluctuation, we need to
quantify the shape of the initial state with quantities similar
to those done for flow harmonics, namely eccentricities [68],

εne
inφn ≡ −{rneinϕ}

{rn} , n > 1, (47)

where {· · · } = ∫
rdrdϕε(r, ϕ) is the averaging with respect

to the energy density ε(r, ϕ). The true initial energy density
shape is captured by the cumulants of the distribution ε(r, ϕ)

not its moments (eccentricities) in Eq. (47) [53]. The cumu-
lants of the energy density have been obtained by Teaney and
Yan in the seminal paper [53] and follow-up papers [25,69].
Employing the convention in Ref. [69], the two-dimensional
energy density cumulants in the polar coordinate are given
by

C2e
i2�2 = ε2e

i2φ2 , (48a)

C3e
i3�3 = ε3e

i3φ3 , (48b)

C4e
i4�4 = ε4e

i4φ4 + 3

( {r2}2

{r4}
)

ε2
2 e

i4φ2 , (48c)

C5e
i5�5 = ε5e

i5φ5 + 10

( {r2}{r3}
{r5}

)
ε2ε3e

i2φ2ei3φ3 . (48d)

One notes that the eccentricities for n = 2 and 3 are cumu-
lants as well, while for n > 3 there are contributions from
lower harmonics eccentricities and radial shape of the energy
density (see Eqs. (2.9) and (2.11) in Ref. [69]).

The anisotropic flow in the final state is a collective
response to the initial anisotropic geometry. This process is
formulated via the following response relation [53],

vne
i n ψn = wn Cn ei n �n + nonlinear terms. (49)

Up to the leading order, the physics of collectivity and
freezeout is encoded in the linear coupling wn . Ignoring the
nonlinear terms, the flow harmonic cumulants of the p.d.f
(3) should be proportional to the cumulants of the p.d.f.
pini(Cn1, . . . , �n2 − �n1, . . .). The cumulants of the latter
p.d.f. are obtained precisely similar to those studied so far by
replacing vneinψn with Cnein�n .5 To be more precise, let us

5 One notes that Cnein�n is the cumulant of the initial energy density
ε(r, ϕ) in a single event. We call it energy density cumulants in the

recall the important properties of cumulants, homogeneity.
Based on this property, by scaling the random variable xi as
xi → wi xi , the cumulants defined in Eq. (5) are scaled as

Ka1,...,ak → w
a1
1 · · ·wak

k Ka1,...,ak . (50)

One can examine the above relation in two explicit examples
shown in Eq. (6). By ignoring the nonlinear parts in Eq. (49),
we can relate the cumulants c{α1,...αk−1}

n1,...,nk {m1, . . . ,mk}obtained
from eccentricities and flow harmonics as

c{α1,...αk−1}
n1,...,nk {m1, . . . ,mk}
= (

wm1
n1

· · · wmk
nk

)
c{α1,...αk−1}(init)
n1,...,nk {m1, . . . ,mk}. (51)

The above relation indicates that the initial state and final state
fluctuation cumulants differ by a numerical factor, similar to
that mentioned in Eq. (50).

For comparing the initial and final state cumulants in the
linear response approximation, the values of wn are needed.
However, it is still possible to modify our cumulant definition
such that it is independent of wn numerical value. To this end,
we define normalized (standardized) cumulants,

nc{α1,...αk−1}
n1,...,nk {m1, . . . ,mk} = c

{α1,...αk−1}
n1,...,nk {m1,...,mk }√

c
m1
n1 {2}···cmk

nk {2}
. (52)

Referring to Eqs. (51) and (52), one finds that the normal-
ized cumulants of the initial anisotropy and flow harmonics
fluctuations must be precisely the same at the linear approx-
imation. Any deviation between two normalized cumulants
should be sourced from nonlinear terms.

The definition of normalized cumulants in Eq. (52) is
compatible with the suggestion in Refs. [25,70] made for
event-plane correlations. According to the above definition,
for k = 1, we have

ncn{2m} = cn{2m}
cmn {2} ∝

(
vn{2m}
vn{2}

)2m

, (53)

compatible with Ref. [71]. Also for nc{0}
m,n{2, 2}, we obtain

nc{0}
m,n{2, 2} = c{0}

m,n{2, 2}
〈v2

m〉 〈v2
n〉

≡ NSC(m, n) (54)

where NSC(m, n) is the normalized symmetric cumulant.
There is an alternative way of defining the normalized

cumulant,

n′c{α1,...αk−1}
n1,...,nk {m1, . . . ,mk} = c

{α1,...αk−1}
n1,...,nk {m1,...,mk }√

〈v2m1
n1 〉···〈v2mk

nk 〉
. (55)

footnote5 continued
text. We also study Cnein�n event-by-event fluctuation cumulants (the
cumulants of the p.d.f. pini(Cn1 , . . . , �n2 −�n1 , . . .)) which are called
initial state fluctuation cumulants in the manuscript.
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This definition is compatible with the scalar product method
mentioned in Ref. [30]. For cumulants with all mi = 1,
two approaches coincide. In the present study, we use the
first convention in Eq. (52) when all cumulants are normal-
ized with the first single-harmonics cumulants. In compar-
ison between the LHC data and simulation, we employ the
alternative approach only when the first approach is not mea-
sured.

4.2 Normalized cumulants from simulation and the LHC

We study the first 29 normalized cumulants in the
Fourier-cumulant expansion by using a hybrid hydrodynamic
model, TRENTo [47]+VISH2+1 [48,49]+UrQMD [50,51]
(ncn{2} = 1 by definition). We simulate events for Pb–Pb
collisions at

√
sNN = 2.76 TeV. The global Bayesian analy-

sis calibrates the model’s free parameters (consist of the tem-
perature dependence of shear and bulk viscosity over entropy
density) to explain the measurements by ALICE experiment
[52]. In Fig. 1, the normalized version of flow harmonic
cumulants listed in Table 1 are plotted with red filled cir-
cles. We kept a fixed range for the vertical axes in all panels
to simplify the magnitude comparison of different normal-
ized cumulants. In the calibration, the cumulants cn{2} for
n = 2, 3, 4, and c2{4} are used. This means that only the
information of normalized cumulant nc2{4} (in panel (7))
has been used for calibration and the rest of the simulations
are predictions.

A series of normalized cumulants in Fig. 1 has already
been measured at the LHC (see Table 2 for a summary).
The normalized symmetric cumulants, nc{0}

m,n{2, 2}, are mea-
sured by ALICE [20,37,38], ATLAS [21,22], and CMS [72]
experiments. The event-plane correlations via scalar product
method for Pb–Pb collisions at

√
sNN = 2.76 TeV are mea-

sured by ATLAS experiment [30]. The measurement of the
normalized version (with alternative convention in Eq. (55))
of cumulants c{4}

2,4{2, 1}, c{−3,5}
2,3,5 {1, 1, 1}, c{6,−4}

2,3,4 {1, 2, 1}, and

c{6}
2,3{2, 3} can be found in this analysis.6 The alternative nor-

malized version of c{4}
2,4{2, 1} is also measured by ATLAS

experiment for Pb–Pb collisions at
√
sNN = 2.76 TeV [21]

and
√
sNN = 5.02 TeV [22]. And finally, the normalized

cumulants ncn{4} for n = 2, 3, 4 are measured at
√
sNN =

5.02 TeV by ATLAS experiment [22].
Although the simulation is calibrated with ALICE exper-

iment kinematics (0.2 < pT < 5 GeV and |η| < 0.8),
the normalized versions of cumulants are less sensitive to
these kinematics. In particular, the transverse momentum
range dependence of the normalized cumulants has been
examined in Refs. [22,38]. As a result, in addition to the

6 The normalization conventions in Eqs. (55) and (52) are equivalent
for c{−3,5}

2,3,5 {1, 1, 1}.

ALICE experiment measurements, we compare our sim-
ulation with ATLAS measurements (pT > 0.5 GeV and
|η| < 2.5) for Pb–Pb collisions at

√
sNN = 2.76 TeV. The

results are depicted in Fig. 2. In general, the simulations
and experimental measurements are in agreement. As seen
in the figure, the simulation for cumulants nc{4}

2,4{2, 1} and

n′c{−3,5}
2,3,5 {1, 1, 1} can accurately explain the ATLAS mea-

surements. The ALICE measurement for normalized sym-
metric cumulant nc{0}

2,3{2, 2} is overestimated by simulation

at centralities below ∼ 25%. The same is true for nc{0}
3,4{2, 2}

around centrality ∼ 25%. However, the normalized cumulant
nc{0}

2,4{2, 2} is underestimated for centralities above 35 %. The
simulation at centralities below 10% reveals a sign change
for nc{0}

2,3{2, 2} that is not observed by ALICE measurement.
Except nc2{4} which is used for calibration, the rest of

the normalized cumulants shown in Fig. 1 and not displayed
in Fig. 2 contain an independent piece of information that
can be examined in the future experiment. Here, we only
focus on the Pb–Pb collisions at fixed center-of-mass energy.
The cumulants’ system size and energy dependence would
lead to interesting information about the underlying initial
state fluctuation and collective evolution in the future. Refer-
ring to Fig. 1, we find that the normalized symmetric cumu-
lants nc{0}

m,n{2, 2} are not the most pronounced ones com-
pared to the others. For instance, the fourth-order normal-
ized cumulant nc3,4,−5

2,3,4,5{1, 1, 1, 1} (panel (19)), and fifth-

order normalized cumulants nc{4}
2,4{4, 1},7 nc{−3,5}

2,3,5 {3, 1, 1}
and nc{−4,10}

3,4,5 {2, 1, 2} (panels (22), (27), and (30)) are the
largest cumulants up to n = 5 harmonics that have not been
measured yet.

Concerning the feasibility of the cumulant measurements,
there is a resent analysis by ALICE collaboration measur-
ing higher-order normalized symmetric cumulants (shown
by NSC(m, n, �)) consisting flow amplitudes v2, v3, v4 and
v2, v3, v5 [41]. To calculate these sixth-order cumulants,
the moments as 〈v2

2v2
3v2

4〉 and 〈v2
2v2

3v2
5〉 are needed to be

measured. Given that these cumulants are one order higher
than those we presented in Table 1, we would expect that
all the unmeasured normalized cumulants in Table 1 are
experimentally accessible in the near future. The cumulant
nc−3,5

2,3,5{1, 1, 3} (see line25 in Table 1) contains moments

with v3v
3
5 combination. Compared to NSC(2, 3, 5), it has

one power higher for flow amplitude for v5 and one power
lower for v3. Considering its large signal from the simulation,
we expect that an experimental observation for this cumulant
as well.

So far, we have studied the normalized cumulants of
Pb–Pb collisions and investigate to what extend the Monte
Carlo simulation can explain the experimental data. To better

7 The measured quantity v4{5} in Ref. [67] is equivalent with c{4}
2,4{4, 1}

with normalization factor −2v4
2{4}.
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Fig. 1 All 2, 3, 4, 5-order normalized cumulants for harmonics n =
2, 3, 4, 5. Magenta squares and open blue circles are eccentricity and
energy density cumulant fluctuations from TRENTo initial state model,
red filled circles are flow fluctuations after hydrodynamic evolution

(VISH2+1+UrQMD). The black triangles are the initial state with a lin-
ear and nonlinear hydrodynamic response. In the lower-left part of each
panel, the corresponding cumulant line number in Table 1 are presented
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Table 2 Measured normalized cumulants at the LHC for Pb–Pb colli-
sions. The far left column indicates the line number of the corresponding
cumulant in Table 1. In the references shown by [...]′, the alternative ver-
sion of normalized cumulants (see Eq. (55)) are presented. The method

of the measurements, scalar product (SP), standard multiparticle (ST),
and subevent multiparticle (SE) methods, are indicated for each refer-
ence

Normalized cumulant ALICE ATLAS CMS
2.76 TeV 5.02 TeV 2.76 TeV 5.02 TeV 2.76 TeV 5.02 TeV

5 nc{4}
2,4{2, 1} [30]′(SP), [21]′(SE) [22]′(ST,SE)

6 nc{−3,5}
2,3,5 {1, 1, 1} [30](SP)

7 nc2{4} [22](ST,SE)

8 nc3{4} [22](ST,SE)

9 nc4{4} [22](ST,SE)

11 nc{0}
2,3{2, 2} [37](ST) [20](SE) [21](SE) [22](ST,SE) [72](ST)

12 nc{0}
2,4{2, 2} [37](ST) [20](SE) [21](SE) [22](ST,SE) [72](ST)

13 nc{0}
2,5{2, 2} [38](ST)

14 nc{0}
3,4{2, 2} [38](ST)

15 nc{0}
3,5{2, 2} [38](ST)

17 nc{6,−4}
2,3,4 {1, 2, 1} [30]′(SP)

20 nc{6}
2,3{3, 2} [30]′(SP)

Fig. 2 The (alternative) normalized cumulants that measured by ALICE [37,38] and ATLAS [30] compared with TRENTo+VISH2+1+UrQMD
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understand both initial state and collective evolution, we have
also compared the initial and final state fluctuation cumu-
lants. In the next section, we investigate it in more detail. As
we have discussed earlier, up to the linear order of hydrody-
namic response, the normalized cumulants of flow harmonics
and energy density cumulant fluctuations must be the same.
As a result, the observed difference in Fig. 1 is due to the
nonlinear hydrodynamic response.

5 Linear and nonlinear hydrodynamic response
coefficients

In Sec. 4.1, it has been discussed that by comparing the nor-
malized cumulants of the initial and final state fluctuation, we
can obtain information about the collective hydrodynamic
evolution. In the present section, we quantitatively study the
hydrodynamic response coefficients.

In the present study, we keep only the linear terms for
n = 2, 3, and the first subleasing nonlinear terms for n =
4, 5. In particular, we consider the following explicit form of
Eq. (49),

v2e
i2ψ2 
 w2 C2e

i2�2 (56a)

v3e
i3ψ3 
 w3 C3e

i3�3 (56b)

v4e
i4ψ4 
 w4 C4e

i4�4 + w4(22) C2
2e

i4�2 , (56c)

v5e
i5ψ4 
 w5 C5e

i5�5 + w5(23) C2C3e
i2�2+i3�3 . (56d)

There is another convention in studying hydrodynamic
response (see Ref. [68]) in which the eccentricities are
employed to present the hydrodynamic response,

v2e
i2ψ2 
 k2 ε2e

i2φ2 , (57a)

v3e
i3ψ3 
 k3 ε3e

i3φ3 , (57b)

v4e
i4ψ4 
 k4 ε4e

i4φ4 + k4(22) ε2
2e

i4φ2 , (57c)

v5e
i5ψ4 
 k5 ε5e

i5φ5 + k5(23) ε2ε3e
i2φ2+i3φ3 . (57d)

We will discuss the interpretation of these two conventions
later.

Different approaches can be employed to extract the cou-
plings wn , w4(22), and w5(23) (or kn , k4(22), and k5(23)). We
can start from a Gaussian geometrical initial energy density
and deform it with one (or a few numbers) of nonvanish-
ing Cnein�n . Then we change the value of the energy density
cumulant to probe the hydrodynamic response from this “sin-
gle shot” simulation [25,69]. It is shown that (Marcinkiewicz
theorem8) reproducing a distribution (except Gaussian dis-

8 Marcinkiewicz has proved that only Gaussian distribution has a poly-
nomial generating function with a finite number of nonzero cumulants
[73].

tribution) with a finite number of cumulants leads to negative
values at some parts of distribution domain. These negative
values should be regulated, which consequently produces
spurious cumulants [69]. Until spurious cumulants are small,
we can neglect their effect in the coupling estimations. The
initial state with larger deformation would have more such a
problem.

As another approach, one can generate many events with
complicated initial geometries and study the hydrodynamic
response. For instance, to extract the response coefficient
kn in Refs. [68,74], the authors multiply both sides of
Eq. (49) (ignore nonlinear terms) with εne−inφn and then
average over many simulated events in a given central-
ity class. This approach leads to the following estimation:
kest
n = 〈εnvn cos(n(ψn − φn))〉/〈ε2

n〉. By writing this esti-
mator in the Cartesian coordinate, εneinφn = εn,x + iεn,y

and vneinψn = vn,x + ivn,y , we see that this relation is
the Pearson correlation between eccentricities and flow har-
monics. This estimator is related to the covariance matrix of
pε|v(εn,x , εn,y, vn,x , vn,y). To estimate the nonlinear hydro-
dynamic couplings similar to what is done in Ref. [68], we
need to include more harmonics in p.d.f. pε|v . Using this
approach, we have ignored the non-Gaussian effects encoded
in pε|v .

Comparing the event-by-event fluctuation of the initial and
final states in a simulation is an alternative method (the one
we employ here) to study the hydrodynamic response cou-
plings. For that, we technically compare p(vn1, . . . , ψn2 −
ψn1, . . .) with pini(Cn1, . . . , �n2 − �n1, . . .). By substi-
tuting vneinψn in the flow harmonic fluctuation cumulant
(moments) with the corresponding expression for the hydro-
dynamic response Eqs. (56), we obtain a function written
in terms of initial state fluctuation cumulant (moments). For
instance, by employing Eq. (56c), we obtain

〈v2
4〉 
 〈|w4 C4e

i4�4 + w4(22)C2
2e

i4�2 |2〉
= w2

4〈C2
4 〉 + w2

4(22)〈C4
2 〉

+2w4w4(22)〈C2
2C4 cos(4�4 − 4�2)〉. (58)

Similarly, we work out the following flow harmonic cumu-
lants in terms of Cnein�n ,

〈v2
2〉 
 w2

2〈C2
2 〉,

〈v2
3〉 
 w3

3〈C2
3 〉,

〈v2
5〉 
 w2

5〈C2
5 〉 + w2

5(23)〈C2
2C2

3 〉
+2w5w5(23)〈C2C3C5 cos(5�5 − 3�3 − 2�2)〉,

〈v2
2v4 cos(4ψ4 − 4ψ2)〉

 w2

2w4(22)〈C4
2〉 + w2

2w4〈C2
2C4 cos(4�4 − 4�2)〉,

〈v2v3v5 cos(5ψ5 − 3ψ3 − 2ψ2)〉 
 w2w3w5(23)〈C2
2C2

3 〉
+w2w3w5〈C2C3C5 cos(5�5 − 3�3 − 2�2)〉. (59)
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Fig. 3 Linear and nonlinear hydrodynamic response couplings
obtained by comparing initial and final state normalized cumulants

We can rewrite the right-hand sides of the above equations
in terms of cumulants as well.

There are six equations (Eqs. (58) and (59)) and six
unknown response coupling constants that we can find
numerically. We do a naïve analysis by ignoring the statistical
errors in our Monte Carlo simulation to extract the unknown
coefficients. At the linear level, the initial state’s pressure gra-
dient enforces that the event-plane angle ψn to be the same as
the participant plane �n . As a result, we expect that all wns
are real and positive. By demanding that the linear response
coupling constants wn , n = 2, . . . , 5 are positive, we obtain
only one set of solutions for couplings at each centrality class.
The results are depicted in Fig. 3. The couplings k2 and k3

(which are identical with w2 and w3 in our study) are explic-
itly reported in Ref. [74]. Considering that a different hydro-
dynamic model (with different tuning) has been used, and
a different method (mentioned in Ref. [68]) is employed to
extract the couplings, our results for w2 and w3 are compati-
ble with those computed in Ref. [74]. The couplings w4 and
w5 are computed in Ref. [25]. The values of these couplings
approach zero and change the sign at mid-central collisions.
In our method, there are valid positive solutions for w4 and
w5 with no sign change. We have also found larger values
for these couplings. However, our computations have rather
similar behavior as those reported in Ref. [25] for the nonlin-
ear coefficients. The observed differences between the two
studies could be due to the different hydrodynamic models
or different approaches of extracting the coefficients (single-
shot approach has been employed in Ref. [25]). One notes that
our estimations depend on the number of nonlinear response
terms that we have considered in our hydrodynamic response
estimation. By adding more terms, we need to employ more
moments (cumulants) as input. This modification can lead to
slightly different values for the couplings.

As it has been mentioned in Sect. 4.1, to understand that
how much flow harmonic fluctuation is originated from the
initial state, one can compute the initial state fluctuation nor-
malized cumulants and compare them with those obtained
from flow harmonic. In Fig. 1, Cnein�n fluctuation normal-
ized cumulants (blue empty circles) and εneinφn fluctuation
normalized cumulants (magenta squares) are depicted. The
observed difference between εneinφn and vneinψn cumulants
is interpreted as the presence of nonlinear terms similar to
what is mentioned in Eqs. (57). The comparison of Cnein�n

and vneinψn gives us a hint about the nonlinear terms similar
to what has been shown in Eqs. (56).

We see in the figure that some of the normalized cumu-
lants that are computed from εneinφn have a different sign
from those calculated from vneinψn (see for instance pan-
els (5), (6), (22), and (30), in Fig. 1). In fact, the “wrong”
sign of εneinφn fluctuation in participant plane correlation
has been observed in the previous studied [25,30,69,75–77].
In particular, the quantities χ422 and χ523 in [77] are simi-
lar to nc{4}

2,4{2, 1} and nc{−3,5}
2,3,5 {1, 1, 1}, up to a normalization

factor. A sign difference between initial and final state fluc-
tuations has been observed for these quantities. The authors
of Ref. [77] conclude that this sign difference is a signature
of hydrodynamic response to the initial state. Up to a nor-
malization factor, the same quantities have been studied in
[25]. Again a sign change has been observed between eccen-
tricity and flow harmonic fluctuations while the sign change
is resolved by replacing εneinφn with Cnein�n . However, we
cannot conclude that replacing εneinφn with Cnein�n always
leads to a compatible correlation sign with final state fluctu-
ation. For instance, one can find cases in panels (18), (23),
and (28) of Fig. 1 that Cnein�n correlations have opposite
sign compared to flow harmonic fluctuations. Few examples
can be found in [25] as well.9

The cumulants calculated from hydrodynamic nonlinear
response estimation are shown with black filled triangles in
Fig. 1, where the response couplings are those displayed
in Fig. 3. The figure shows that the two first cumulants
(c{4}

2,4{2, 1} and c{−3,5}
2,3,5 {1, 1, 1}) have a perfect agreement with

the nonlinear response estimation. These two cumulants are
inputs to estimate the response couplings. Since normalized
cumulants are plotted in Fig. 1, only two ratios w4(22)/w4

and w5(23)/w5 play a role. As a result, two normalized cumu-
lants are enough to fix these ratios. The rest of the normalized
cumulants computed from the nonlinear response are, in fact,

9 We have observed that if we effectively assume the hydrodynamic cou-
plings k4 and k5 are negative in many event averages, all the observables
in Fig. 1 reveals a compatible correlation sign with vneinψn fluctuation
at the linear hydrodynamic response approximation. Further investiga-
tions are needed in this regard.
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Fig. 4 The TRENTo initial state radial shape (diamond points), and
the nonlinear over linear hydrodynamic response couplings from
VISH2+1+UrQMD (circle and square points)

the predictions. Some of these predictions perfectly match
with hydrodynamic computations. For instance, nc{0}

3,5{2, 2},
nc{4}

2,4{4, 1} and nc{−4,10}
3,4,5 {2, 1, 2} has shown in panels (15),

(22), and (30) in Fig. 1. There are cases with a poor agree-
ment between hydrodynamic simulation and the nonlinear
response estimation, namely nc4{4} and nc5{4} (panels (9)
and (10) in Fig. 1). The nonlinear terms could not cure the ini-
tial and final correlation sign differences in panels (18), (23),
and (28). Including more nonlinear terms would increase the
accuracy of the latter cases.

Concerning the interpretation of the nonlinear hydrody-
namic response coefficients, we note that the true deforma-
tion of the initial energy density is quantified by cumulants
Cnein�n . One expects that the final anisotropy to be propor-
tional to the true deformation [53]. Assuming w4(22) and
w5(23) have solely collective evolution contributions, the non-
linear couplings k4(22) and k5(23) in Eq. (57) have contribu-
tions from both initial shape and collective evolution. One can
relate these two couplings by substituting cumulants (48) into
Eqs. (56) and compare them with Eqs. (57). The linear cou-
plings are identical in both conventions, wn = kn . However,
we obtain the following relation for the nonlinear couplings:

k4(22)

k4
= w4(22)

w4
+ 3

{r2}2

{r4} , (60a)

k5(23)

k4
= w5(23)

w5
+ 10

{r2}{r3}
{r5} . (60b)

The above relations mean that the coefficients k4(22) and
k5(23) receive contributions from the radial shape of the ini-
tial energy density as well. In Fig. 4, the coupling ratios

w4(22)/w4 and w5(23)/w5 are plotted with square points (blue
curves). The couplings k4(22)/k4 and k5(23)/k5 (shown by
circles, black curves) are estimated by solving six equations
in Eqs. (58) and (59) where energy density cumulants are
replaced by eccentricities. Since the coupling ratio estima-
tions are estimated from many events in a given centrality,
we compute the right-hand side of Eqs. (60), where the ini-
tial energy density contributions are averaged over events
in the given centrality class. The quantities 3

〈{r2}2/{r4}〉
and 10

〈{r2}{r3}/{r5}〉 (shown by diamonds, red curve) are
directly computed from TRENTo events. The estimated
k4(22)/k4 and k5(23)/k5 from Eqs. (60) are shown by trian-
gles (green curves) in Fig. 4. We see a rather perfect match
between black curves and green curves, as we expected. From
the figure, we see a nontrivial centrality dependence of quan-
tities 3

〈{r2}2/{r4}〉 and 10
〈{r2}{r3}/{r5}〉. This observation

indicates that there are contributions from the radial shape
of the initial energy density in the values of k4(22) and k5(23).
This contribution should be taken into account in interpret-
ing the nonlinear couplings k4(22) and k5(23) as hydrodynamic
response couplings.

6 Flow-induced genuine three-particle correlation

The observation of long-range correlations between parti-
cles at Δϕ 
 0 and nonzero Δη is one of the first and most
important fluid(-like) signals in large (small) system colli-
sions [5,54–56,78]. In particular, function C(Δη,Δϕ), the
two-particle correlation function (2PC),10 quantifies the cor-
relation between two particles in the final state. In the present
section, we introduce a generalized version of this function
and study its relation with flow harmonic cumulants.

Ignoring the experimental complications, in principle, the
function C(Δη,Δφ) is measured as follows: we choose all
distinguished pairs of particles in an event and compute Δη

and Δϕ for each pair and fill a histogram from a collec-
tion of pairs in many events. To find the connection between
2PC with cumulants, we focus only on the Δϕ part of the
correlation. In other words, we choose all the distinguished
particles and compute Δϕ irrespective of their position in
the η direction. One can use η-gaps (see Refs. [24,79]) to
decrease the contamination of nonflow effects in the corre-
lation function estimation. For two-particle correlation, we
find the well-known relation between 2PC and second-order
cumulants cn{2},
10 In the present work, we refer to the quantity in Eq. (28) as correla-
tions, while C(Δη,Δφ) is called correlation functions.
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C2(Δϕ) = 1

(2π)2

[
1 + 2

∞∑
n=1

cn{2} cos(nΔϕ)

]
. (61)

Here, we have used the notation C2(Δϕ) instead of com-
monly used notation C(Δϕ) for future generalization. The
advantage of measuring C2(Δϕ) compared to cn{2} is that it
contains a cumulative information of all second order cumu-
lants cn{2} with n > 0.

We can extend the notion of two-particle correlation func-
tion into q-particle correlation function (qPC). Specifically,
in the following, we focus on correlations of three particles
in the final state, C3(Δϕ1,Δϕ2) because it is a function of
two variables

Δϕ1 = ϕ2 − ϕ1, Δϕ2 = ϕ3 − ϕ1, (62)

and easy to visualize. For the same reason (and finding a clear
connection to the flow harmonic cumulants), we ignore the η

dependence similar to Eq. (61). The η-gap method can also
be used in this case to decrease the nonflow effects as well.
Employing the systematic study of multiharmonic cumulants
presented in this manuscript, we can find an expansion of
any qPC in terms q-order cumulants, similar to what has
been written in Eq. (61). The technical details of finding the
relation between qPC and q order cumulants can be found in
Appendix C. Here, we show the final result for 3PC where
harmonics n = 2, . . . , 5 are involved,

C3(Δϕ1,Δϕ2)

= 1

(2π)3

[
1 + 2c{4}

2,4{2, 1} �
{4}
2,4(Δϕ1,Δϕ2)

+2c{−3,5}
2,3,5 {1, 1, 1} �

{−3,5}
2,3,5 (Δϕ1,Δϕ2)

]
. (63)

The above relation is the correlation function of three par-
ticles when all lower-order correlations are removed (see
Appendix C.2). The functions �4

2,4 and �
{−3,5}
2,3,5 can be found

in Eq. (118). By employing c{4}
2,4{2, 1} and c{−3,5}

2,3,5 {1, 1, 1}
fromTRENTo+VISH2+1+UrQMD simulation, we have plot-
tedC3(Δϕ1,Δϕ2) in Fig. 5. Here, we have subtracted 1/8π3

to focus only on the nontrivial correlation.
As seen in Fig. 5, the correlation reveals repeating patterns

which is a consequence of symmetries. Before explaining
these symmetries in three-particle correlations, let us dis-
cuss them in a more simple case, two-particle correlation
functions. To measure two-particle correlation functions, two
(charged) particles in a given event are chosen and compute
Δϕ = ϕ2 − ϕ1. The signal distribution is obtained by mea-

Fig. 5 Genuine three-particle correlation function, 3PC. The correla-
tion is obtained from the TRENTo+VISH2+1+UrQMD simulation for
Pb–Pb collision at

√
sNN = 2.76 TeV in the 10–20% centrality class

suring Δϕ for many events.11 Let us call two distinguished
particles in a given event as α and β with azimuthal angles
ϕα and ϕβ . Choosing all pairs of distinguished particles in
an event and call them as particle 1 and 2, the particle α is
labeled as particle 1 and β as particle 2 once and the par-
ticle α as particle 2 and β as particle 1 again. The former
labeling leads to Δϕ = ϕ2 − ϕ1 = ϕβ − ϕα and the latter to
Δϕ′ = ϕ2 −ϕ1 = ϕα −ϕβ = −Δϕ. As a result, in the signal
distribution both Δϕ and −Δϕ have contribution from a sin-
gle configuration of particles α and β. This labeling brings us
to the following symmetry, C2(Δϕ) = C2(−Δϕ). One notes
that the mentioned “double counting” is also considered in
cn{2} = 〈〈2〉−n,n〉 (see Eq. (22)). As a result, this symmetry
is manifestly true in Eq. (61). We also have an obvious peri-
odic symmetry C2(Δϕ) = C2(Δϕ + 2nπ) for any integer n.
Using these two symmetries, we find that we have indepen-
dent information in C2(Δϕ) in the range 0 < Δϕ < π . The
correlation C2(Δϕ) (or C2(Δϕ,Δη)) is mostly reported in
the range −π

2 � Δϕ � 3π
2 to see a clear ridge and shoul-

der structures (see for instance [78]). Due to the symmetries
explained above, both ridge and shoulder structures are sym-
metric with respect to the axes pass through their peaks at
Δϕ = 0 and Δϕ = π and only half of these structures con-
tain independent information in the range −π

2 < Δϕ < 3π
2 .

11 To suppress the combinatorial backgrounds and acceptance effects,
a background distribution is constructed from Δϕ = ϕ2 −ϕ1 when one
particle is chosen from the given even and the second particle from sev-
eral randomly selected other events. The ratio of signal and background
distribution is proportional to C2(Δϕ) [80].
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When we have three particles in the final state, there are 3!
possible ways to label three distinguished particles, leading
to six different values for (Δϕ1,Δϕ2) with a single config-
uration of particles. Let us call three particles as α, β, and
γ with azimuthal angles ϕα , ϕβ , and ϕγ . If particles α, β,
and γ are labeled by 1, 2, and 3 (see Eq. (62)), we obtain
Δϕ1 = ϕβ −ϕα , and Δϕ2 = ϕγ −ϕα . The particles α, β and
γ can be labeled as 2, 1, and 3. With this labeling, we have
Δϕ′

1 = ϕα−ϕβ = −Δϕ1 and Δϕ′
2 = ϕγ −ϕβ = Δϕ2−Δϕ1.

Both values for (Δϕ1,Δϕ2) and (Δϕ′
1,Δϕ′

2) refer to the
same configuration of particles and exist in the signal dis-
tribution. As a result, the final distributions have the follow-
ing symmetry: C3(Δϕ1,Δϕ2) = C3(−Δϕ1,Δϕ2 − Δϕ1).
Another case is labeling α, β, and γ particles with 1, 3, and
2. This labeling leads to the values Δϕ′′

1 = ϕγ − ϕα = Δϕ2

and Δϕ′′
2 = ϕβ − ϕα = Δϕ1. Consequently, the dis-

tribution has symmetry C3(Δϕ1,Δϕ2) = C3(Δϕ2,Δϕ1).
There are three other permutations, but all of them lead to
a combination of symmetries explained above. More than
the above symmetries, for any configuration of particles, we
expect the same probability for the mirrored configurations,
ϕi → −ϕi , which leads to the symmetry C3(Δϕ1,Δϕ2) =
C3(−Δϕ1,−Δϕ2). Finally, we have rotational symmetry
ϕi → ϕi + 2niπ for any integer ni , which eventually leads
to the periodic condition for C3(Δϕ1,Δϕ2) with periodicity
2π . We summarize all the symmetries of 3PC as follows,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C3(Δϕ1,Δϕ2) = C3(Δϕ2,Δϕ1),

C3(Δϕ1,Δϕ2) = C3(−Δϕ1,Δϕ2 − Δϕ2),

C3(Δϕ1,Δϕ2) = C3(−Δϕ1,−Δϕ2),

C3(Δϕ1,Δϕ2) = C3(Δϕ1 + 2n1π,Δϕ2 + 2n2π).

(64)

The symmetries in Eq. (64) are responsible of repeating
patterns observed in Fig. 5. Each dashed line in the figure
refers to one (or combination of more than one) symme-
try(ies). As seen in the figure, the range 0 < Δϕ1,Δϕ2 < 2π

is divided into twelve repeating triangular regions. In the
experiment and the simulations, we lose the statistics twelve
times by considering the full region without gaining any
more information. For that reason, we confine ourselves into
a “unit cell” of Δϕ1 and Δϕ2 containing all the nontrivial
non-repeating patterns. Here, we conventionally choose the
following region,⎧⎪⎨
⎪⎩

Δϕ2 < 2Δϕ1,

Δϕ2 > Δϕ1,

Δϕ2 < −Δϕ1 + 2π,

(65)

as it is shown by a black triangle in Fig. 5. If any choice
of particles leads to (Δϕ1,Δϕ2) outside this triangle, the
symmetries mentioned in Eq. (64) can be used to map that
point inside it. The edges of the black triangle in Fig. 5 refer
to the combinations of the angles, Δϕ1 and Δϕ2 with unequal

Fig. 6 Dalitz-like plot of the “unit-cell” (black triangle in Fig. 5) of
genuine three-particle correlation function

lengths. It will have more symmetric visualization if we use
the following variables,

δ1 = 4Δϕ1 − 2Δϕ2,

δ2 = 3Δϕ2 − Δϕ1,

δ3 = 2π − Δϕ2 − Δϕ1, (66)

where 0 < δ1, δ2, δ2 < 2π and δ1 + δ2 + δ3 = 2π . Using
this variables, we can plot the unit cell of C3(Δϕ1,Δϕ2) in
a Dalitz-like plot as it is shown in Fig. 6.

Similar to C2(Δϕ) which has cumulative information
from all second-order cumulants, experimental measurement
of C3(Δϕ1,Δϕ2) (or equivalently C3(δ1, δ2, δ3)) contains a
cumulative information of all third-order cumulants at the
same time. Measuring these correlations in large and small
systems can be used as an independent method of testing
the collectivity and event-by-event fluctuation in heavy-ion
experiments. We leave more investigation of this measurable
quantity to future studies.

7 Conclusion

A multidimensional generating function method was intro-
duced to extract a large class of cumulants related to the flow
harmonic fluctuations. We proposed an ordering based on
the Fourier-cumulant expansion for these observables to sys-
tematically capture the most dominant features of the flow
harmonic fluctuations. Using this method and reproducing
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the already known cumulants, we have found new cumu-
lants consisting of symmetry plane correlations that have not
been studied before. We defined the normalized cumulants to
compare the cumulant’s magnitude with each other and with
initial state fluctuation. We employed hydrodynamic simula-
tion for Pb–Pb collisions (TRENTo+VISH2+1+UrQMD) cal-
ibrated by a Global Bayesian analysis to predict the unmea-
sured normalized cumulants’ value. The observables intro-
duced in this study can be used as inputs for calibration of the
Bayesian analysis or to validate the already tuned parameters.

We extract the linear and nonlinear hydrodynamic response
by comparing the initial anisotropy and flow harmonic fluc-
tuation cumulants. This method can be extended to obtain
higher-order nonlinear terms by comparing more initial and
final state fluctuations cumulants.

Based on the Fourier-cumulant expansion, we also intro-
duced a general way to find the genuine q-particle distribu-
tion function, qPC. In particular, we studied 3PC contain-
ing information of all third-order cumulants for all harmon-
ics. The flow-induced 3PC for harmonics n = 2, · · · , 5 was
presented by usingTRENTo+VISH2+1+UrQMD simulation.
This measurable helps to study flow and nonflow effects in
large and small systems in the future.
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Appendix A: List of few first order cumulants for har-
monics 2 to 6

By employing the Mathematica package introduced in
Sect. 3, we tabulate the cumulants containing one and two
harmonics up eight order. The cumulants harmonics con-
taining three and four harmonics are presented in up to six
orders. Except for the one-harmonic, the cumulants’ final
expression is mostly dependent on the values of n1, . . . , nk .
There are still repeating patterns in the expressions, like
c{0}
n1,n2{2, 2} = 〈v2

n1
v2
n2

〉 − 〈v2
n1

〉〈v2
n2

〉. However, we sacrifice
brevity for the sake of clarity and dedicate a separate table for
each combination of flow harmonics regardless of repeating
patterns (Tables 3, 4, 5 and 6).

Table 3 One-harmonic cumulants up to order eight

{m} cn{m}
{2} 〈v2

n〉
{4} 〈v4

n〉 − 2〈v2
n〉2

{6} 〈v6
n〉 − 9〈v4

n〉〈v2
n〉 + 12〈v2

n〉3

{8} 〈v8
n〉 − 18〈v4

n〉2 − 16〈v6
n〉〈v2

n〉 + 144〈v4
n〉〈v2

n〉2 − 144〈v2
n〉4

Table 4 Two-harmonic cumulants up to order eight

{m1,m2} {α} c{α}
2,3{m1,m2}

{2, 2} {0} 〈v2
2v2

3〉 − 〈v2
2〉〈v2

3〉
{3, 2} {6} 〈v3

2v2
3 cos (6 (ψ2 − ψ3))〉

{2, 4} {0} 〈v2
2v4

3〉 − 4〈v2
3〉〈v2

2v2
3〉 − 〈v2

2〉〈v4
3〉 + 4〈v2

2〉〈v2
3〉2

{4, 2} {0} 〈v4
2v2

3〉 − 〈v4
2〉〈v2

3〉 − 4〈v2
2〉〈v2

2v2
3〉 + 4〈v2

2〉2〈v2
3〉

{3, 4} {6} 〈v3
2v4

3 cos (6 (ψ2 − ψ3))〉 −
3〈v2

3〉〈v3
2v2

3 cos (6 (ψ2 − ψ3))〉
{5, 2} {6} 〈v5

2v2
3 cos (6 (ψ2 − ψ3))〉 −

4〈v2
2〉〈v3

2v2
3 cos (6 (ψ2 − ψ3))〉

{2, 6} {0} 〈v2
2v6

3〉− 9〈v2
2v2

3〉〈v4
3〉− 9〈v2

3〉〈v2
2v4

3〉− 〈v2
2〉〈v6

3〉+
36〈v2

3〉2〈v2
2v2

3〉 + 18〈v2
2〉〈v2

3〉〈v4
3〉 − 36〈v2

2〉〈v2
3〉3

{4, 4} {0} 〈v4
2v4

3〉 − 8〈v2
2v2

3〉2 − 4〈v2
3〉〈v4

2v2
3〉 − 〈v4

2〉〈v4
3〉 −

4〈v2
2〉〈v2

2v4
3〉 + 4〈v4

2〉〈v2
3〉2 +

32〈v2
2〉〈v2

3〉〈v2
2v2

3〉 + 4〈v2
2〉2〈v4

3〉 − 24〈v2
2〉2〈v2

3〉2

{6, 2} {0} 〈v6
2v2

3〉− 〈v6
2〉〈v2

3〉− 9〈v4
2〉〈v2

2v2
3〉− 9〈v2

2〉〈v4
2v2

3〉+
18〈v2

2〉〈v4
2〉〈v2

3〉 + 36〈v2
2〉2〈v2

2v2
3〉 − 36〈v2

2〉3〈v2
3〉
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{m1,m2} {α} c{α}
2,4{m1,m2}

{2, 1} {4} 〈v2
2v4 cos (4 (ψ2 − ψ4))〉

{2, 2} {0} 〈v2
2v2

4〉 − 〈v2
2〉〈v2

4〉
{2, 3} {4} 〈v2

2v3
4 cos (4 (ψ2 − ψ4))〉 − 2〈v2

4〉〈v2
2v4 cos (4 (ψ2 − ψ4))〉

{4, 1} {4} 〈v4
2v4 cos (4 (ψ2 − ψ4))〉 − 3〈v2

2〉〈v2
2v4 cos (4 (ψ2 − ψ4))〉

{4, 2} {8} 〈v4
2v2

4 cos (8 (ψ2 − ψ4))〉 − 6〈v2
2v4 cos (4 (ψ2 − ψ4))〉2

{2, 4} {0} 〈v2
2v4

4〉 − 4〈v2
4〉〈v2

2v2
4〉 − 〈v2

2〉〈v4
4〉 + 4〈v2

2〉〈v2
4〉2

{4, 2} {0} 〈v4
2v2

4〉 − 〈v2
2v4 cos (4 (ψ2 − ψ4))〉2 − 〈v4

2〉〈v2
4〉 − 4〈v2

2〉〈v2
2v2

4〉 + 4〈v2
2〉2〈v2

4〉
{2, 5} {4} 〈v2

2v5
4 cos (4 (ψ2 − ψ4))〉 − 6〈v2

4 〉〈v2
2v3

4 cos (4 (ψ2 − ψ4))〉 − 3〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v4

4 〉 + 12〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2

4 〉

{4, 3} {4} 〈v4
2v3

4 cos (4 (ψ2−ψ4))〉−3〈v2
2〉〈v2

2v3
4 cos (4 (ψ2−ψ4))〉−2〈v4

2v4 cos (4 (ψ2−ψ4))〉〈v2
4〉−6〈v2

2v4 cos (4 (ψ2−ψ4))〉〈v2
2v2

4〉
+ 12〈v2

2〉〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2

4〉
{6, 1} {4} 〈v6

2v4 cos (4 (ψ2 − ψ4))〉 − 6〈v4
2 〉〈v2

2v4 cos (4 (ψ2 − ψ4))〉 − 8〈v2
2 〉〈v4

2v4 cos (4 (ψ2 − ψ4))〉 + 24〈v2
2 〉2〈v2

2v4 cos (4 (ψ2 − ψ4))〉

{4, 4} {8} 〈v4
4v4

2 cos (8 (ψ2 − ψ4))〉 − 18〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2

2v3
4 cos (4 (ψ2 − ψ4))〉 − 3〈v2

4〉〈v4
2v2

4 cos (8 (ψ2 − ψ4))〉
+ 36〈v2

2v4 cos (4 (ψ2 − ψ4))〉2〈v2
4〉

{6, 2} {8} 〈v6
2v2

4 cos (8 (ψ2 − ψ4))〉 − 20〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v4

2v4 cos (4 (ψ2 − ψ4))〉 − 5〈v2
2〉〈v4

2v2
4 cos (8 (ψ2 − ψ4))〉

+ 60〈v2
2〉〈v2

2v4 cos (4 (ψ2 − ψ4))〉2

{2, 6} {0} 〈v2
2v6

4〉 − 9〈v2
2v2

4〉〈v4
4〉 − 9〈v2

4〉〈v2
2v4

4〉 − 〈v2
2〉〈v6

4〉 + 36〈v2
4〉2〈v2

2v2
4〉 + 18〈v2

2〉〈v2
4〉〈v4

4〉 − 36〈v2
2〉〈v2

4〉3

{4, 4} {0} 〈v4
2v4

4〉 − 8〈v2
2v2

4〉2 − 4〈v2
4〉〈v4

2v2
4〉 − 〈v4

2〉〈v4
4〉 − 4〈v2

2〉〈v2
2v4

4〉 + 4〈v4
2〉〈v2

4〉2 + 32〈v2
2〉〈v2

4〉〈v2
2v2

4〉 + 4〈v2
2〉2〈v4

4〉 − 24〈v2
2〉2〈v2

4〉2

− 4〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2

2v3
4 cos (4 (ψ2 − ψ4))〉 + 8〈v2

2v4 cos (4 (ψ2 − ψ4))〉2〈v2
4〉

{6, 2} {0} 〈v6
2v2

4〉 − 〈v6
2〉〈v2

4〉 − 9〈v4
2〉〈v2

2v2
4〉 − 9〈v2

2〉〈v4
2v2

4〉 + 18〈v2
2〉〈v4

2〉〈v2
4〉 + 36〈v2

2〉2〈v2
2v2

4〉 − 36〈v2
2〉3〈v2

4〉
− 6〈v2

2v4 cos (4 (ψ2 − ψ4))〉〈v4
2v4 cos (4 (ψ2 − ψ4))〉 + 18〈v2

2〉〈v2
2v4 cos (4 (ψ2 − ψ4))〉2

{m1,m2} {α} c{α}
2,5{m1,m2}

{2, 2} {0} 〈v2
2v2

5〉 − 〈v2
2〉〈v2

5〉
{2, 4} {0} 〈v2

2v4
5〉 − 4〈v2

5〉〈v2
2v2

5〉 − 〈v2
2〉〈v4

5〉 + 4〈v2
2〉〈v2

5〉2

{4, 2} {0} 〈v4
2v2

5〉 − 〈v4
2〉〈v2

5〉 − 4〈v2
2〉〈v2

2v2
5〉 + 4〈v2

2〉2〈v2
5〉

{5, 2} {10} 〈v5
2v2

5 cos (10 (ψ2 − ψ5))〉
{2, 6} {0} 〈v2

2v6
5〉 − 9〈v2

2v2
5〉〈v4

5〉 − 9〈v2
5〉〈v2

2v4
5〉 − 〈v2

2〉〈v6
5〉 + 36〈v2

5〉2〈v2
2v2

5〉 + 18〈v2
2〉〈v2

5〉〈v4
5〉 − 36〈v2

2〉〈v2
5〉3

{4, 4} {0} 〈v4
2v4

5〉 − 8〈v2
2v2

5〉2 − 4〈v2
5〉〈v4

2v2
5〉 − 〈v4

2〉〈v4
5〉 − 4〈v2

2〉〈v2
2v4

5〉 + 4〈v4
2〉〈v2

5〉2 + 32〈v2
2〉〈v2

5〉〈v2
2v2

5〉 + 4〈v2
2〉2〈v4

5〉 − 24〈v2
2〉2〈v2

5〉2

{6, 2} {0} 〈v6
2v2

5〉 − 〈v6
2〉〈v2

5〉 − 9〈v4
2〉〈v2

2v2
5〉 − 9〈v2

2〉〈v4
2v2

5〉 + 18〈v2
2〉〈v4

2〉〈v2
5〉 + 36〈v2

2〉2〈v2
2v2

5〉 − 36〈v2
2〉3〈v2

5〉
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{m1,m2} {α} c{α}
2,6{m1,m2}

{3, 1} {6} 〈v3
2v6 cos (6 (ψ2 − ψ6))〉

{2, 2} {0} 〈v2
2v2

6〉 − 〈v2
2〉〈v2

6〉
{3, 3} {6} 〈v3

6v3
2 cos (6 (ψ2 − ψ6))〉 − 2〈v3

2v6 cos (6 (ψ2 − ψ6))〉〈v2
6〉

{5, 1} {6} 〈v5
2v6 cos (6 (ψ2 − ψ6))〉 − 4〈v2

2〉〈v3
2v6 cos (6 (ψ2 − ψ6))〉

{2, 4} {0} 〈v2
2v4

6〉 − 4〈v2
6〉〈v2

2v2
6〉 − 〈v2

2〉〈v4
6〉 + 4〈v2

2〉〈v2
6〉2

{4, 2} {0} 〈v4
2v2

6〉 − 〈v4
2〉〈v2

6〉 − 4〈v2
2〉〈v2

2v2
6〉 + 4〈v2

2〉2〈v2
6〉

{6, 2} {12} 〈v6
2v2

6 cos (12 (ψ2 − ψ6))〉 − 20〈v3
2v6 cos (6 (ψ2 − ψ6))〉2

{3, 5} {6} 〈v3
2v5

6 cos (6 (ψ2 − ψ6))〉 − 6〈v2
6〉〈v3

6v3
2 cos (6 (ψ2 − ψ6))〉 − 3〈v3

2v6 cos (6 (ψ2 − ψ6))〉〈v4
6〉 + 12〈v3

2v6 cos (6 (ψ2 − ψ6))〉〈v2
6〉2

{5, 3} {6} 〈v5
2v3

6 cos (6 (ψ2 − ψ6))〉 − 4〈v2
2〉〈v3

6v3
2 cos (6 (ψ2 − ψ6))〉 − 2〈v5

2v6 cos (6 (ψ2 − ψ6))〉〈v2
6〉 − 8〈v3

2v6 cos (6 (ψ2 − ψ6))〉〈v2
2v2

6〉
+ 16〈v2

2〉〈v3
2v6 cos (6 (ψ2 − ψ6))〉〈v2

6〉
{2, 6} {0} 〈v2

2v6
6〉 − 9〈v2

2v2
6〉〈v4

6〉 − 9〈v2
6〉〈v2

2v4
6〉 − 〈v2

2〉〈v6
6〉 + 36〈v2

6〉2〈v2
2v2

6〉 + 18〈v2
2〉〈v2

6〉〈v4
6〉 − 36〈v2

2〉〈v2
6〉3

{7, 1} {6} 〈v7
2v6 cos (6 (ψ2 − ψ6))〉 − 10〈v4

2〉〈v3
2v6 cos (6 (ψ2 − ψ6))〉 − 10〈v2

2〉〈v5
2v6 cos (6 (ψ2 − ψ6))〉 + 40〈v2

2〉2〈v3
2v6 cos (6 (ψ2 − ψ6))〉

{4, 4} {0} 〈v4
2v4

6〉 − 8〈v2
2v2

6〉2 − 4〈v2
6〉〈v4

2v2
6〉 − 〈v4

2〉〈v4
6〉 − 4〈v2

2〉〈v2
2v4

6〉 + 4〈v4
2〉〈v2

6〉2 + 32〈v2
2〉〈v2

6〉〈v2
2v2

6〉 + 4〈v2
2〉2〈v4

6〉 − 24〈v2
2〉2〈v2

6〉2

{6, 2} {0} 〈v6
2v2

6〉 − 〈v3
2v6 cos (6 (ψ2 − ψ6))〉2 − 〈v6

2〉〈v2
6〉 − 9〈v4

2〉〈v2
2v2

6〉 − 9〈v2
2〉〈v4

2v2
6〉 + 18〈v2

2〉〈v4
2〉〈v2

6〉 + 36〈v2
2〉2〈v2

2v2
6〉 − 36〈v2

2〉3〈v2
6〉

{m1,m2} {α} c{α}
3,4{m1,m2}

{2, 2} {0} 〈v2
3v2

4〉 − 〈v2
3〉〈v2

4〉
{2, 4} {0} 〈v2

3v4
4〉 − 4〈v2

4〉〈v2
3v2

4〉 − 〈v2
3〉〈v4

4〉 + 4〈v2
3〉〈v2

4〉2

{4, 2} {0} 〈v4
3v2

4〉 − 〈v4
3〉〈v2

4〉 − 4〈v2
3〉〈v2

3v2
4〉 + 4〈v2

3〉2〈v2
4〉

{4, 3} {12} 〈v4
3v3

4 cos (12 (ψ3 − ψ4))〉
{2, 6} {0} 〈v2

3v6
4〉 − 9〈v2

3v2
4〉〈v4

4〉 − 9〈v2
4〉〈v2

3v4
4〉 − 〈v2

3〉〈v6
4〉 + 36〈v2

4〉2〈v2
3v2

4〉 + 18〈v2
3〉〈v2

4〉〈v4
4〉 − 36〈v2

3〉〈v2
4〉3

{4, 4} {0} 〈v4
3v4

4〉 − 8〈v2
3v2

4〉2 − 4〈v2
4〉〈v4

3v2
4〉 − 〈v4

3〉〈v4
4〉 − 4〈v2

3〉〈v2
3v4

4〉 + 4〈v4
3〉〈v2

4〉2 + 32〈v2
3〉〈v2

4〉〈v2
3v2

4〉 + 4〈v2
3〉2〈v4

4〉 − 24〈v2
3〉2〈v2

4〉2

{6, 2} {0} 〈v6
3v2

4〉 − 〈v6
3〉〈v2

4〉 − 9〈v4
3〉〈v2

3v2
4〉 − 9〈v2

3〉〈v4
3v2

4〉 + 18〈v2
3〉〈v4

3〉〈v2
4〉 + 36〈v2

3〉2〈v2
3v2

4〉 − 36〈v2
3〉3〈v2

4〉

{m1,m2} {α} c{α}
3,5{m1,m2}

{2, 2} {0} 〈v2
3v2

5〉 − 〈v2
3〉〈v2

5〉
{2, 4} {0} 〈v2

3v4
5〉 − 4〈v2

5〉〈v2
3v2

5〉 − 〈v2
3〉〈v4

5〉 + 4〈v2
3〉〈v2

5〉2

{4, 2} {0} 〈v4
3v2

5〉 − 〈v4
3〉〈v2

5〉 − 4〈v2
3〉〈v2

3v2
5〉 + 4〈v2

3〉2〈v2
5〉

{5, 3} {15} 〈v5
3v3

5 cos (15 (ψ3 − ψ5))〉
{2, 6} {0} 〈v2

3v6
5〉 − 9〈v2

3v2
5〉〈v4

5〉 − 9〈v2
5〉〈v2

3v4
5〉 − 〈v2

3〉〈v6
5〉 + 36〈v2

5〉2〈v2
3v2

5〉 + 18〈v2
3〉〈v2

5〉〈v4
5〉 − 36〈v2

3〉〈v2
5〉

{4, 4} {0} 〈v4
3v4

5〉 − 8〈v2
3v2

5〉2 − 4〈v2
5〉〈v4

3v2
5〉 − 〈v4

3〉〈v4
5〉 − 4〈v2

3〉〈v2
3v4

5〉 + 4〈v4
3〉〈v2

5〉2 + 32〈v2
3〉〈v2

5〉〈v2
3v2

5〉 + 4〈v2
3〉2〈v4

5〉 − 24〈v2
3〉2〈v2

5〉2

{6, 2} {0} 〈v6
3v2

5〉 − 〈v6
3〉〈v2

5〉 − 9〈v4
3〉〈v2

3v2
5〉 − 9〈v2

3〉〈v4
3v2

5〉 + 18〈v2
3〉〈v4

3〉〈v2
5〉 + 36〈v2

3〉2〈v2
3v2

5〉 − 36〈v2
3〉3〈v2

5〉

123
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{m1,m2}{α} c{α}
3,6{m1,m2}

{2, 1} {6} 〈v2
3v6 cos (6 (ψ3 − ψ6))〉

{2, 2} {0} 〈v2
3v2

6〉 − 〈v2
3〉〈v2

6〉
{2, 3} {6} 〈v2

3v3
6 cos (6 (ψ3 − ψ6))〉 − 2〈v2

3v6 cos (6 (ψ3 − ψ6))〉〈v2
6〉

{4, 1} {6} 〈v4
3v6 cos (6 (ψ3 − ψ6))〉 − 3〈v2

3〉〈v2
3v6 cos (6 (ψ3 − ψ6))〉

{4, 2} {12}〈v4
3v2

6 cos (12 (ψ3 − ψ6))〉 − 6〈v2
3v6 cos (6 (ψ3 − ψ6))〉2

{2, 4} {0} 〈v2
3v4

6〉 − 4〈v2
6〉〈v2

3v2
6〉 − 〈v2

3〉〈v4
6〉 + 4〈v2

3〉〈v2
6〉2

{4, 2} {0} 〈v4
3v2

6〉 − 〈v2
3v6 cos (6 (ψ3 − ψ6))〉2 − 〈v4

3〉〈v2
6〉 − 4〈v2

3〉〈v2
3v2

6〉 + 4〈v2
3〉2〈v2

6〉
{2, 5} {6} 〈v2

3v5
6 cos (6 (ψ3 − ψ6))〉 − 6〈v2

6〉〈v2
3v3

6 cos (6 (ψ3 − ψ6))〉 − 3〈v2
3v6 cos (6 (ψ3 − ψ6))〉〈v4

6〉 + 12〈v2
3v6 cos (6 (ψ3 − ψ6))〉〈v2

6〉2

{4, 3} {6}
〈v4

3v3
6 cos (6 (ψ3 − ψ6))〉 − 3〈v2

3〉〈v2
3v3

6 cos (6 (ψ3 − ψ6))〉 − 2〈v4
3v6 cos (6 (ψ3 − ψ6))〉〈v2

6〉 − 6〈v2
3v6 cos (6 (ψ3 − ψ6))〉〈v2

3v2
6〉

+ 12〈v2
3〉〈v2

3v6 cos (6 (ψ3 − ψ6))〉〈v2
6〉

{6, 1} {6} 〈v6
3v6 cos (6 (ψ3 − ψ6))〉 − 6〈v4

3〉〈v2
3v6 cos (6 (ψ3 − ψ6))〉 − 8〈v2

3〉〈v4
3v6 cos (6 (ψ3 − ψ6))〉 + 24〈v2

3〉2〈v2
3v6 cos (6 (ψ3 − ψ6))〉

{4, 4} {12} 〈v4
6v4

3 cos (12 (ψ3 − ψ6))〉 − 18〈v2
3v6 cos (6 (ψ3 − ψ6))〉〈v2

3v3
6 cos (6 (ψ3 − ψ6))〉 − 3〈v2

6〉〈v4
3v2

6 cos (12 (ψ3 − ψ6))〉
+ 36〈v2

3v6 cos (6 (ψ3 − ψ6))〉2〈v2
6〉

{6, 2} {12} 〈v6
3v2

6 cos (12 (ψ3 − ψ6))〉 − 20〈v2
3v6 cos (6 (ψ3 − ψ6))〉〈v4

3v6 cos (6 (ψ3 − ψ6))〉 − 5〈v2
3〉〈v4

3v2
6 cos (12 (ψ3 − ψ6))〉

+ 60〈v2
3〉〈v2

3v6 cos (6 (ψ3 − ψ6))〉2

{2, 6} {0} 〈v2
3v6

6〉 − 9〈v2
3v2

6〉〈v4
6〉 − 9〈v2

6〉〈v2
3v4

6〉 − 〈v2
3〉〈v6

6〉 + 36〈v2
6〉2〈v2

3v2
6〉 + 18〈v2

3〉〈v2
6〉〈v4

6〉 − 36〈v2
3〉〈v2

6〉3

{4, 4} {0} 〈v4
3v4

6〉 − 8〈v2
3v2

6〉2 − 4〈v2
6〉〈v4

3v2
6〉 − 〈v4

3〉〈v4
6〉−4〈v2

3〉〈v2
3v4

6〉 + 4〈v4
3〉〈v2

6〉2 + 32〈v2
3〉〈v2

6〉〈v2
3v2

6〉 + 4〈v2
3〉2〈v4

6〉 − 24〈v2
3〉2〈v2

6〉2

− 4〈v2
3v6 cos (6 (ψ3 − ψ6))〉〈v2

3v3
6 cos (6 (ψ3 − ψ6))〉 + 8〈v2

3v6 cos (6 (ψ3 − ψ6))〉2〈v2
6〉

{6, 2} {0} 〈v6
3v2

6〉 − 〈v6
3〉〈v2

6〉 − 9〈v4
3〉〈v2

3v2
6〉 − 9〈v2

3〉〈v4
3v2

6〉 + 18〈v2
3〉〈v4

3〉〈v2
6〉 + 36〈v2

3〉2〈v2
3v2

6〉 − 36〈v2
3〉3〈v2

6〉
− 6〈v2

3v6 cos (6 (ψ3 − ψ6))〉〈v4
3v6 cos (6 (ψ3 − ψ6))〉 + 18〈v2

3〉〈v2
3v6 cos (6 (ψ3 − ψ6))〉2

{m1,m2} {α} c{α}
4,5{m1,m2}

{2, 2} {0} 〈v2
4v2

5〉 − 〈v2
4〉〈v2

5〉
{2, 4} {0} 〈v2

4v4
5〉 − 4〈v2

5〉〈v2
4v2

5〉 − 〈v2
4〉〈v4

5〉 + 4〈v2
4〉〈v2

5〉2

{4, 2} {0} 〈v4
4v2

5〉 − 〈v4
4〉〈v2

5〉 − 4〈v2
4〉〈v2

4v2
5〉 + 4〈v2

4〉2〈v2
5〉

{2, 6} {0} 〈v2
4v6

5〉 − 9〈v2
4v2

5〉〈v4
5〉 − 9〈v2

5〉〈v2
4v4

5〉 − 〈v2
4〉〈v6

5〉 + 36〈v2
5〉2〈v2

4v2
5〉 + 18〈v2

4〉〈v2
5〉〈v4

5〉 − 36〈v2
4〉〈v2

5〉3

{4, 4} {0} 〈v4
4v4

5〉 − 8〈v2
4v2

5〉2 − 4〈v2
5〉〈v4

4v2
5〉 − 〈v4

4〉〈v4
5〉 − 4〈v2

4〉〈v2
4v4

5〉 + 4〈v4
4〉〈v2

5〉2 + 32〈v2
4〉〈v2

5〉〈v2
4v2

5〉 + 4〈v2
4〉2〈v4

5〉 − 24〈v2
4〉2〈v2

5〉2

{6, 2} {0} 〈v6
4v2

5〉 − 〈v6
4〉〈v2

5〉 − 9〈v4
4〉〈v2

4v2
5〉 − 9〈v2

4〉〈v4
4v2

5〉 + 18〈v2
4〉〈v4

4〉〈v2
5〉 + 36〈v2

4〉2〈v2
4v2

5〉 − 36〈v2
4〉3〈v2

5〉

{m1,m2} {α} c{α}
4,6{m1,m2}

{2, 2} {0} 〈v2
4v2

6〉 − 〈v2
4〉〈v2

6〉
{3, 2} {12} 〈v3

4v2
6 cos (12 (ψ4 − ψ6))〉

{2, 4} {0} 〈v2
4v4

6〉 − 4〈v2
6〉〈v2

4v2
6〉 − 〈v2

4〉〈v4
6〉 + 4〈v2

4〉〈v2
6〉2

{4, 2} {0} 〈v4
4v2

6〉 − 〈v4
4〉〈v2

6〉 − 4〈v2
4〉〈v2

4v2
6〉 + 4〈v2

4〉2〈v2
6〉

{3, 4} {12} 〈v3
4v4

6 cos (12 (ψ4 − ψ6))〉 − 3〈v2
6〉〈v3

4v2
6 cos (12 (ψ4 − ψ6))〉

{5, 2} {12} 〈v5
4v2

6 cos (12 (ψ4 − ψ6))〉 − 4〈v2
4〉〈v3

4v2
6 cos (12 (ψ4 − ψ6))〉

{2, 6} {0} 〈v2
4v6

6〉 − 9〈v2
4v2

6〉〈v4
6〉 − 9〈v2

6〉〈v2
4v4

6〉 − 〈v2
4〉〈v6

6〉 + 36〈v2
6〉2〈v2

4v2
6〉 + 18〈v2

4〉〈v2
6〉〈v4

6〉 − 36〈v2
4〉〈v2

6〉3

{4, 4} {0} 〈v4
4v4

6〉 − 8〈v2
4v2

6〉2 − 4〈v2
6〉〈v4

4v2
6〉 − 〈v4

4〉〈v4
6〉 − 4〈v2

4〉〈v2
4v4

6〉 + 4〈v4
4〉〈v2

6〉2 + 32〈v2
4〉〈v2

6〉〈v2
4v2

6〉 + 4〈v2
4〉2〈v4

6〉 − 24〈v2
4〉2〈v2

6〉2

{6, 2} {0} 〈v6
4v2

6〉 − 〈v6
4〉〈v2

6〉 − 9〈v4
4〉〈v2

4v2
6〉 − 9〈v2

4〉〈v4
4v2

6〉 + 18〈v2
4〉〈v4

4〉〈v2
6〉 + 36〈v2

4〉2〈v2
4v2

6〉 − 36〈v2
4〉3〈v2

6〉

123



652 Page 22 of 32 Eur. Phys. J. C (2021) 81 :652

{m1,m2} {α} c{α}
5,6{m1,m2}

{2, 2} {0} 〈v2
5v2

6〉 − 〈v2
5〉〈v2

6〉
{2, 4} {0} 〈v2

5v4
6〉 − 4〈v2

6〉〈v2
5v2

6〉 − 〈v2
5〉〈v4

6〉 + 4〈v2
5〉〈v2

6〉2

{4, 2} {0} 〈v4
5v2

6〉 − 〈v4
5〉〈v2

6〉 − 4〈v2
5〉〈v2

5v2
6〉 + 4〈v2

5〉2〈v2
6〉

{2, 6} {0} 〈v2
5v6

6〉 − 9〈v2
5v2

6〉〈v4
6〉 − 9〈v2

6〉〈v2
5v4

6〉 − 〈v2
5〉〈v6

6〉 + 36〈v2
6〉2〈v2

5v2
6〉 + 18〈v2

5〉〈v2
6〉〈v4

6〉 − 36〈v2
5〉〈v2

6〉3

{4, 4} {0} 〈v4
5v4

6〉 − 8〈v2
5v2

6〉2 − 4〈v2
6〉〈v4

5v2
6〉 − 〈v4

5〉〈v4
6〉 − 4〈v2

5〉〈v2
5v4

6〉 + 4〈v4
5〉〈v2

6〉2 + 32〈v2
5〉〈v2

6〉〈v2
5v2

6〉 + 4〈v2
5〉2〈v4

6〉 − 24〈v2
5〉2〈v2

6〉2

{6, 2} {0} 〈v6
5v2

6〉 − 〈v6
5〉〈v2

6〉 − 9〈v4
5〉〈v2

5v2
6〉 − 9〈v2

5〉〈v4
5v2

6〉 + 18〈v2
5〉〈v4

5〉〈v2
6〉 + 36〈v2

5〉2〈v2
5v2

6〉 − 36〈v2
5〉3〈v2

6〉

Table 5 Three-harmonic cumulants up to order six

{m1,m2,m3} {α1, α2} c{α1,α2}
2,3,4 {m1,m2,m3}

{1, 2, 1} {6,−4} 〈v2
3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉

{1, 2, 2} {−6, 8} 〈v2
4v2

3v2 cos (2 (ψ2 + 3ψ3 − 4ψ4))〉
{2, 2, 1} {0, 4} 〈v2

3v2
2v4 cos (4 (ψ2 − ψ4))〉 − 〈v2

3〉〈v2
2v4 cos (4 (ψ2 − ψ4))〉

{1, 2, 3} {6,−4} 〈v2
3v3

4v2 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉 − 2〈v2
3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉〈v2

4〉
{1, 4, 1} {6,−4} 〈v4

3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉 − 3〈v2
3〉〈v2

3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉
{2, 2, 2} {0, 0} 〈v2

2v2
3v2

4〉 − 〈v2
2v2

3〉〈v2
4〉 − 〈v2

3〉〈v2
2v2

4〉 − 〈v2
2〉〈v2

3v2
4〉 + 2〈v2

2〉〈v2
3〉〈v2

4〉
{3, 2, 1} {6,−4} 〈v3

2v2
3v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉 − 2〈v2

2〉〈v2
3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉

{m1,m2,m3} {α1, α2} c{α1,α2}
2,3,5 {m1,m2,m3}

{1, 1, 1} {−3, 5} 〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉
{1, 1, 3} {−3, 5} 〈v3

5v2v3 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 2〈v2
5〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉

{1, 3, 1} {−3, 5} 〈v3
3v2v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 2〈v2

3〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉
{3, 1, 1} {−3, 5} 〈v3

2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 2〈v2
2〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉

{2, 2, 2} {−6, 10} 〈v2
5v2

3v2
2 cos (4ψ2 + 6ψ3 − 10ψ5)〉 − 4〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉2

{4, 1, 1} {3, 5} 〈v4
2v3v5 cos (8ψ2 − 3ψ3 − 5ψ5)〉

{2, 3, 1} {9,−5} 〈v2
2v3

3v5 cos (4ψ2 − 9ψ3 + 5ψ5)〉
{2, 2, 2} {0, 0} 〈v2

2v2
3v2

5〉 − 〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉2 − 〈v2
2v2

3〉〈v2
5〉 − 〈v2

3〉〈v2
2v2

5〉 − 〈v2
2〉〈v2

3v2
5〉 + 2〈v2

2〉〈v2
3〉〈v2

5〉

{m1,m2,m3} {α1, α2} c{α1,α2}
2,3,6 {m1,m2,m3}

{2, 2, 1} {−6, 6} 〈v2
3v2

2v6 cos (6 (ψ3 − ψ6))〉 − 〈v2
2〉〈v2

3v6 cos (6 (ψ3 − ψ6))〉
{3, 2, 1} {0, 6} 〈v3

2v2
3v6 cos (6 (ψ2 − ψ6))〉 − 〈v2

3〉〈v3
2v6 cos (6 (ψ2 − ψ6))〉

{2, 2, 2} {0, 0} 〈v2
2v2

3v2
6〉 − 〈v2

2v2
3〉〈v2

6〉 − 〈v2
3〉〈v2

2v2
6〉 − 〈v2

2〉〈v2
3v2

6〉 + 2〈v2
2〉〈v2

3〉〈v2
6〉

{m1,m2,m3} {α1, α2} c{α1,α2}
2,4,5 {m1,m2,m3}

{1, 2, 2} {−8, 10} 〈v2
5v2

4v2 cos (2 (ψ2 + 4ψ4 − 5ψ5))〉
{2, 1, 2} {4, 0} 〈v2

5v2
2v4 cos (4 (ψ2 − ψ4))〉 − 〈v2

2v4 cos (4 (ψ2 − ψ4))〉〈v2
5〉

{3, 1, 2} {−4, 10} 〈v2
5v3

2v4 cos (6ψ2 + 4ψ4 − 10ψ5)〉
{1, 3, 2} {12,−10} 〈v2

5v3
4v2 cos (2 (ψ2 − 6ψ4 + 5ψ5))〉

{2, 2, 2} {0, 0} 〈v2
2v2

4v2
5〉 − 〈v2

2v2
4〉〈v2

5〉 − 〈v2
4〉〈v2

2v2
5〉 − 〈v2

2〉〈v2
4v2

5〉 + 2〈v2
2〉〈v2

4〉〈v2
5〉

123
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{m1,m2,m3} {α1, α2} c{α1,α2}
2,4,6 {m1,m2,m3}

{1, 1, 1} {−4, 6} 〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
{1, 2, 1} {8,−6} 〈v2

4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉
{1, 1, 3} {−4, 6} 〈v3

6v2v4 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉 − 2〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉〈v2
6〉

{1, 3, 1} {−4, 6} 〈v3
4v2v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉 − 2〈v2

4〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
{2, 1, 2} {4, 0} 〈v2

6v2
2v4 cos (4 (ψ2 − ψ4))〉 − 〈v2

2v4 cos (4 (ψ2 − ψ4))〉〈v2
6〉

{3, 1, 1} {−4, 6} 〈v3
2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉 − 2〈v2

2〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
{2, 2, 2} {−8, 12} 〈v2

6v2
4v2

2 cos (4 (ψ2 + 2ψ4 − 3ψ6))〉 − 4〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉2

{3, 2, 1} {0, 6} 〈v3
2v2

4v6 cos (6 (ψ2−ψ6))〉−3〈v2
2v4 cos (4 (ψ2−ψ4))〉〈v2v4v6 cos (2 (ψ2+2ψ4−3ψ6))〉−〈v2

4〉〈v3
2v6 cos (6 (ψ2 − ψ6))〉

{1, 2, 3} {8,−6} 〈v2
4v3

6v2 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉 − 2〈v2
4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉〈v2

6〉
{1, 4, 1} {8,−6} 〈v4

4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉 − 3〈v2
4〉〈v2

4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉
{2, 2, 2} {0, 0} 〈v2

2v2
4v2

6〉 − 〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉2 − 〈v2
2v2

4〉〈v2
6〉 − 〈v2

4〉〈v2
2v2

6〉 − 〈v2
2〉〈v2

4v2
6〉 + 2〈v2

2〉〈v2
4〉〈v2

6〉

{3, 2, 1} {8,−6} 〈v3
2v2

4v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉 − 2〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉

− 2〈v2
2〉〈v2

4v2v6 cos (2 (ψ2−4ψ4+3ψ6))〉

{m1,m2,m3} {α1, α2} c{α1,α2}
2,5,6 {m1,m2,m3}

{1, 2, 2} {−10, 12} 〈v2
6v2

5v2 cos (2 (ψ2 + 5ψ5 − 6ψ6))〉
{2, 2, 1} {10,−6} 〈v2

5v2
2v6 cos (4ψ2 − 10ψ5 + 6ψ6)〉

{3, 2, 1} {0, 6} 〈v3
2v2

5v6 cos (6 (ψ2 − ψ6))〉 − 〈v2
5〉〈v3

2v6 cos (6 (ψ2 − ψ6))〉
{2, 2, 2} {0, 0} 〈v2

2v2
5v2

6〉 − 〈v2
2v2

5〉〈v2
6〉 − 〈v2

5〉〈v2
2v2

6〉 − 〈v2
2〉〈v2

5v2
6〉 + 2〈v2

2〉〈v2
5〉〈v2

6〉

{m1,m2,m3} {α1, α2} c{α1,α2}
3,4,5 {m1,m2,m3}

{1, 2, 1} {8,−5} 〈v2
4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉

{2, 1, 2} {−4, 10} 〈v2
5v2

3v4 cos (6ψ3 + 4ψ4 − 10ψ5)〉
{3, 1, 1} {4, 5} 〈v3

3v4v5 cos (9ψ3 − 4ψ4 − 5ψ5)〉
{1, 2, 3} {8,−5} 〈v2

4v3
5v3 cos (3ψ3 − 8ψ4 + 5ψ5)〉 − 2〈v2

4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉〈v2
5〉

{1, 4, 1} {8,−5} 〈v4
4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉 − 3〈v2

4〉〈v2
4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉

{2, 2, 2} {0, 0} 〈v2
3v2

4v2
5〉 − 〈v2

3v2
4〉〈v2

5〉 − 〈v2
4〉〈v2

3v2
5〉 − 〈v2

3〉〈v2
4v2

5〉 + 2〈v2
3〉〈v2

4〉〈v2
5〉

{3, 2, 1} {8,−5} 〈v3
3v2

4v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉 − 2〈v2
3〉〈v2

4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉

{m1,m2,m3} {α1, α2} c{α1,α2}
3,4,6 {m1,m2,m3}

{2, 2, 1} {0, 6} 〈v2
4v2

3v6 cos (6 (ψ3 − ψ6))〉 − 〈v2
4〉〈v2

3v6 cos (6 (ψ3 − ψ6))〉
{2, 3, 1} {12,−6} 〈v2

3v3
4v6 cos (6 (ψ3 − 2ψ4 + ψ6))〉

{2, 2, 2} {0, 0} 〈v2
3v2

4v2
6〉 − 〈v2

3v2
4〉〈v2

6〉 − 〈v2
4〉〈v2

3v2
6〉 − 〈v2

3〉〈v2
4v2

6〉 + 2〈v2
3〉〈v2

4〉〈v2
6〉

{m1,m2,m3} {α1, α2} c{α1,α2}
3,5,6 {m1,m2,m3}

{2, 2, 1} {0, 6} 〈v2
5v2

3v6 cos (6 (ψ3 − ψ6))〉 − 〈v2
5〉〈v2

3v6 cos (6 (ψ3 − ψ6))〉
{1, 3, 2} {15,−12} 〈v2

6v3
5v3 cos (3 (ψ3 − 5ψ5 + 4ψ6))〉

{2, 2, 2} {0, 0} 〈v2
3v2

5v2
6〉 − 〈v2

3v2
5〉〈v2

6〉 − 〈v2
5〉〈v2

3v2
6〉 − 〈v2

3〉〈v2
5v2

6〉 + 2〈v2
3〉〈v2

5〉〈v2
6〉
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{m1,m2,m3} {α1, α2} c{α1,α2}
4,5,6 {m1,m2,m3}

{1, 2, 1} {10,−6} 〈v2
5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉

{1, 2, 3} {10,−6} 〈v2
5v3

6v4 cos (4ψ4 − 10ψ5 + 6ψ6)〉 − 2〈v2
5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉〈v2

6〉
{1, 4, 1} {10,−6} 〈v4

5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉 − 3〈v2
5〉〈v2

5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉
{2, 2, 2} {0, 0} 〈v2

4v2
5v2

6〉 − 〈v2
4v2

5〉〈v2
6〉 − 〈v2

5〉〈v2
4v2

6〉 − 〈v2
4〉〈v2

5v2
6〉 + 2〈v2

4〉〈v2
5〉〈v2

6〉
{3, 2, 1} {10,−6} 〈v3

4v2
5v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉 − 2〈v2

4〉〈v2
5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉

{2, 2, 3} {−10, 18} 〈v3
6v2

5v2
4 cos (2 (4ψ4 + 5ψ5 − 9ψ6))〉

{3, 2, 2} {0, 12} 〈v2
6v2

5v3
4 cos (12 (ψ4 − ψ6))〉 − 〈v2

5〉〈v3
4v2

6 cos (12 (ψ4 − ψ6))〉
{4, 2, 1} {10, 6} 〈v4

4v2
5v6 cos (2 (8ψ4 − 5ψ5 − 3ψ6))〉

{m1,m2,m3,m4} {α1, α2, α3} c{α1,α2,α3}
2,3,4,6 {m1,m2,m3,m4}

{1, 2, 1, 1} {0,−4, 6} 〈v2
3v2v6v4 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉 − 〈v2

3〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
{1, 2, 1, 2} {−6,−4, 12} 〈v2

6v2
3v2v4 cos (2 (ψ2 + 3ψ3 + 2ψ4 − 6ψ6))〉 − 2〈v2

3v6 cos (6 (ψ3 − ψ6))〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
{2, 2, 1, 1} {−6, 4, 6} 〈v2

3v2
2v6v4 cos (4ψ2 + 6ψ3 − 4ψ4 − 6ψ6)〉 − 〈v2

2v4 cos (4 (ψ2 − ψ4))〉〈v2
3v6 cos (6 (ψ3 − ψ6))〉

{1, 2, 2, 1} {0, 8,−6} 〈v2
4v2

3v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉 − 〈v2
3〉〈v2

4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉

{1, 2, 1, 2} {6,−4, 0}
〈v2

6v2
3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉 − 〈v2

3v6 cos (6 (ψ3 − ψ6))〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
− 〈v2

3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉〈v2
6〉

{2, 2, 1, 1} {6, 4,−6} 〈v2
3v2

2v6v4 cos (4ψ2 − 6ψ3 − 4ψ4 + 6ψ6)〉 − 〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2

3v6 cos (6 (ψ3 − ψ6))〉

Table 6 Four-harmonic cumulants up to order six

{m1,m2,m3,m4} {α1, α2, α3} c{α1,α2,α3}
2,3,4,5 {m1,m2,m3,m4}

{1, 1, 1, 1} {3, 4,−5} 〈v2v3v4v5 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉
{1, 1, 2, 1} {−3, 0, 5} 〈v2

4v2v5v3 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 〈v2
4〉〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉

{2, 1, 1, 1} {3,−4, 5} 〈v2
2v3v4v5 cos (4ψ2 − 3ψ3 + 4ψ4 − 5ψ5)〉

{3, 1, 1, 1} {−3, 4, 5} 〈v3
2v3v4v5 cos

(
6ψ2 + 3ψ3 − 4ψ4 − 5ψ5

)〉 − 3〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2v3v5 cos

(
2ψ2 + 3ψ3 − 5ψ5

)〉
{1, 1, 1, 3} {3, 4,−5} 〈v3

5v2v4v3 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉 − 2〈v2v3v4v5 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉〈v2
5〉

{1, 1, 3, 1} {3, 4,−5} 〈v3
4v2v5v3 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉 − 2〈v2

4〉〈v2v3v4v5 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉
{1, 2, 1, 2} {6,−4, 0} 〈v2

5v2
3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉 − 〈v2

3v2v4 cos (2 (ψ2 − 3ψ3 + 2ψ4))〉〈v2
5〉

{1, 3, 1, 1} {3, 4,−5} 〈v3
3v2v5v4 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉 − 2〈v2

3〉〈v2v3v4v5 cos (2ψ2 − 3ψ3 − 4ψ4 + 5ψ5)〉
{2, 1, 2, 1} {−3, 8,−5} 〈v2

4v2
2v5v3 cos (3ψ3 − 8ψ4 + 5ψ5)〉 − 〈v2

2〉〈v2
4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉

{3, 1, 1, 1} {3, 4,−5} 〈v3
2v3v4v5 cos

(
2ψ2 − 3ψ3 − 4ψ4 + 5ψ5

)〉 − 〈v2
2v4 cos (4 (ψ2 − ψ4))〉〈v2v3v5 cos

(
2ψ2 + 3ψ3 − 5ψ5

)〉
− 2〈v2

2 〉〈v2v3v4v5 cos
(
2ψ2 − 3ψ3 − 4ψ4 + 5ψ5

)〉

{m1,m2,m3,m4} {α1, α2, α3} c{α1,α2,α3}
2,3,5,6 {m1,m2,m3,m4}

{1, 1, 1, 1} {3, 5,−6} 〈v2v3v5v6 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉
{1, 1, 1, 2} {−3, 5, 0} 〈v2

6v2v5v3 cos (2ψ2 + 3ψ3 − 5ψ5)〉 − 〈v2v3v5 cos (2ψ2 + 3ψ3 − 5ψ5)〉〈v2
6〉

{2, 1, 1, 1} {3,−5, 6} 〈v2
2v3v5v6 cos (4ψ2 − 3ψ3 + 5ψ5 − 6ψ6)〉

{2, 1, 1, 2} {−3,−5, 12} 〈v2
6v2

2v5v3 cos (4ψ2 + 3ψ3 + 5ψ5 − 12ψ6)〉
{1, 3, 1, 1} {−9, 5, 6} 〈v3

3v2v6v5 cos
(
2ψ2 + 9ψ3 − 5ψ5 − 6ψ6

)〉 − 3〈v2v3v5 cos
(
2ψ2 + 3ψ3 − 5ψ5

)〉〈v2
3v6 cos (6 (ψ3 − ψ6))〉

{1, 1, 1, 3} {3, 5,−6} 〈v3
6v2v5v3 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉 − 2〈v2v3v5v6 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉〈v2

6〉
{1, 1, 3, 1} {3, 5,−6} 〈v3

5v2v6v3 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉 − 2〈v2
5〉〈v2v3v5v6 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉

{1, 2, 2, 1} {6,−10, 6} 〈v2
5v2

3v2v6 cos (2 (ψ2 − 3ψ3 + 5ψ5 − 3ψ6))〉

{1, 3, 1, 1} {3, 5,−6} 〈v3
3v2v6v5 cos

(
2ψ2 − 3ψ3 − 5ψ5 + 6ψ6

)〉 − 〈v2v3v5 cos
(
2ψ2 + 3ψ3 − 5ψ5

)〉〈v2
3v6 cos (6 (ψ3 − ψ6))〉

− 2〈v2
3 〉〈v2v3v5v6 cos

(
2ψ2 − 3ψ3 − 5ψ5 + 6ψ6

)〉
{3, 1, 1, 1} {3, 5,−6} 〈v3

2v3v5v6 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉 − 2〈v2
2〉〈v2v3v5v6 cos (2ψ2 − 3ψ3 − 5ψ5 + 6ψ6)〉
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{m1,m2,m3,m4} {α1, α2, α3} c{α1,α2,α3}
2,4,5,6 {m1,m2,m3,m4}

{1, 1, 2, 1} {−4, 0, 6} 〈v2
5v2v6v4 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉 − 〈v2

5〉〈v2v4v6 cos (2 (ψ2 + 2ψ4 − 3ψ6))〉
{1, 1, 2, 2} {4, 10,−12} 〈v2

6v2
5v2v4 cos (2 (ψ2 − 2ψ4 − 5ψ5 + 6ψ6))〉

{1, 2, 2, 1} {8, 0,−6} 〈v2
5v2

4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉 − 〈v2
5〉〈v2

4v2v6 cos (2 (ψ2 − 4ψ4 + 3ψ6))〉
{2, 1, 2, 1} {−4, 10,−6} 〈v2

5v2
2v6v4 cos (4ψ4 − 10ψ5 + 6ψ6)〉 − 〈v2

2〉〈v2
5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉

{m1,m2,m3,m4} {α1, α2, α3} c{α1,α2,α3}
3,4,5,6 {m1,m2,m3,m4}

{1, 1, 1, 1} {4, 5,−6} 〈v3v4v5v6 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉
{1, 1, 1, 2} {−4,−5, 12} 〈v2

6v3v5v4 cos (3ψ3 + 4ψ4 + 5ψ5 − 12ψ6)〉
{1, 2, 1, 1} {−8, 5, 6} 〈v2

4v3v6v5 cos (3ψ3 + 8ψ4 − 5ψ5 − 6ψ6)〉
{1, 1, 1, 3} {4, 5,−6} 〈v3

6v3v5v4 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉 − 2〈v3v4v5v6 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉〈v2
6〉

{1, 1, 3, 1} {4, 5,−6} 〈v3
5v3v6v4 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉 − 2〈v2

5〉〈v3v4v5v6 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉
{1, 2, 1, 2} {8,−5, 0} 〈v2

6v2
4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉 − 〈v2

4v3v5 cos (3ψ3 − 8ψ4 + 5ψ5)〉〈v2
6〉

{1, 3, 1, 1} {4, 5,−6} 〈v3
4v3v6v5 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉 − 2〈v2

4〉〈v3v4v5v6 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉
{2, 1, 2, 1} {−4, 10,−6} 〈v2

5v2
3v6v4 cos (4ψ4 − 10ψ5 + 6ψ6)〉 − 〈v2

3〉〈v2
5v4v6 cos (4ψ4 − 10ψ5 + 6ψ6)〉

{3, 1, 1, 1} {4, 5,−6} 〈v3
3v4v5v6 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉 − 2〈v2

3〉〈v3v4v5v6 cos (3ψ3 − 4ψ4 − 5ψ5 + 6ψ6)〉

Appendix B: A comprehensive study for multiparticle
correlations at the presence of flow fluctuation

This appendix reviews the role of multiparticle correlations
in Eq. (28) in extracting information about flow fluctuations
with more mathematical details. Although the whole pic-
ture is already well understood, few intermediate steps are
not mentioned explicitly over the past years. A consequence
of this study is a direct algorithm to compute the statistical
uncertainty of a generic multiparticle correlation. The final
result is equivalent to the computations in Sect. 3.2. This
algorithm is implemented into the function Nsigma2P in
the Mathematica package.

Before studying the statistical properties of flow fluctua-
tion, we start with a simple one-dimensional example which
typically happens in many experimental measurements (see
Ref. [63]). Assume we have an experiment with a measur-
able variable x , and suppose a theory provides us a p.d.f. for
the variable x , namely p(x). We aim to test our theoretical
prediction by comparing the moments of p(x),

〈xn〉 =
∫

dx xn p(x), (67)

with the measurements. Consider we setup several measure-
ments of the variable x in which the first measurement leads
to an outcome x1, the second measurement to x2, and so on.
If we repeat this process N times, and assume all measure-
ments are independent, the p.d.f. of the measured sequence
(x1, . . . , xN ) is given by

P(x1, . . . , xN ) = p(x1) · · · p(xN ). (68)

Now, we show that the quantities μn ,

μn = 1

N

N∑
i=1

xni , (69)

is an estimator for 〈xn〉. To this end, we compute the mean
value of μn using p.d.f. in Eq. (68),

μn =
∫

dx1 · · · dxN
(

1

N

N∑
i=1

xni

)
P(x1, . . . , xN ). (70)

By substituting Eq. (68) into the above relation, one finds
μn = 〈xn〉. The equality is exact if we redo the series of
measurements (x1, . . . , xN ) infinite times and at each time
compute the summation in Eq. (69), and finally compute the
average over the results. Given that measuring a quantity
infinite times is not practical, we would like to estimate the
actual 〈xn〉 by doing the summation in Eq. (69) once with
a reasonable number of measurements N . With the finite
number of measurements, we get the following estimation
〈xn〉 = μn + σμn , where σμn is the statistical uncertainty,
sourced by the finite number of measurements. To calculate
the statistical error of μn , we compute μ2

n as follows:

μ2
n =

∫
dx1 · · · dxN

(
1

N

N∑
i=1

xni

)2

P(x1, . . . , xN )

= 1

N 2

N∑
i=1

[∫
dxx2n p(x)

]
+ 1

N 2

∑
i �= j

[∫
dxxn p(x)

]2

= N

N 2 〈x2n〉 + N (N − 1)

N 2 〈xn〉2. (71)
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Consequently, we obtain the variance of the random variable
as

σ 2
μn

= μ2
n − μn

2 = 1

N

(
〈x2n〉 − 〈xn〉2

)

 1

N

(
μ2n − μ2

n

)
, (72)

where in the last line, we substitute 〈xn〉 with the estimation
μn . In summary, by doing N measurements, we estimate
the true value of 〈xn〉 with statistical uncertainty σμn . There
are similarities and differences between the above simple
example and that we are looking for in heavy-ion physics, as
we will explain in the following.

The features of the collective models in heavy-ion physics
can be categorized into two different parts. First one is the
collective evolution part, which leads to a deterministic one-
particle distribution function f (ϕ) (Eq. (1)) for a given initial
state.12 And the second one is the initial state, which is funda-
mentally stochastic due to the quantum nature of the nucleus
wave function. For that reason, we rewrite the Eq. (1) as
follows:

f{v̂}(ϕ) = 1

2π

∞∑
n=−∞

v̂ne
−inϕ, (73)

where v̂n = vneinψn , v̂0 = 1, {v̂} ≡ {v̂1, v̂2, . . .}, and
v̂−n = v̂∗

n . The main difference between the above equa-
tion and that in Eq. (1) is the subscript {v̂} in f{v̂}(ϕ) to label
the one-particle distribution function for different events with
different flow harmonics in the final state.

Our physics of interest is encoded in f{v̂}(ϕ), and we would
like to measure its Fourier coefficients v̂n experimentally.
Theoretically, the Fourier coefficients can be obtained by

〈einϕ〉 f =
∫

f{v̂}(ϕ)einϕ = v̂n . (74)

Experimentally, we have a distribution of M particles (M
is the multiplicity) in the azimuthal direction, and we need
to estimate the true value of v̂n from the finite number of
particles. This can be done by replacing the integral in Eq (74)
with the following summation,

qn = 1

M

M∑
i=1

einϕi , (75)

where qn is called normalized flow vector. Focusing on a
single event, we can skip subscript {v̂} for the moment. Then
the probability of finding a specific configuration of particles
(ϕ1, . . . , ϕM ) in the final state is given by

F(ϕ1, . . . , ϕM ) = f (ϕ1) · · · f (ϕM ), (76)

12 The function f (ϕ)dϕ returns the probability of finding one particle
in the interval (ϕ, ϕ + dϕ) in the azimuthal direction.

similar to Eq. (68). In an event, the multiplicity M is a param-
eter related to our model’s physical parameters. For instance,
in hydrodynamic models, the multiplicity is related to hydro-
dynamic initial time and the initial energy density deposited
into a given region in the transverse direction. As a result,
there are cases with low multiplicity and interesting physics
which normalized flow vectors are not helpful because of
high statistical uncertainty.

We could overcome this problem, by using many event
averages. However, as we explained earlier, two different
events have two different one-particle distribution function
f{v̂}(ϕ), and consequently two different values for v̂n . It
means we cannot simply increase the statistics by collecting
many events. However, we are still able to extract statisti-
cally stable information about flow harmonics fluctuation.
Referring to Eq. (73), the function f{v̂}(ϕ) is fully charac-
terized by its Fourier coefficients v̂n . As a result, the fluc-
tuating f{v̂}(ϕ) can be encoded in an infinite dimensional
p.d.f. shown by p(v̂±1, v̂±2, . . .). Besides, the multiplicity
M is different from one event to the other generally. To con-
sider this point, we generalize the flow harmonic p.d.f. to
p(M, v̂±1, v̂±2, . . .) where∫

(M,v̂)

p(M, v̂±1, v̂±2, . . .) = 1. (77)

In the above, we have used the following short notation,∫
(M,v̂)

≡
∞∑

M=0

∫ [ ∞∏
n=−∞

d v̂n

]
. (78)

Considering the flow and multiplicity fluctuations, we should
modify the joint p.d.f. in Eq. (76) into the following form:

F({ϕ}) =
∫

(M,v̂)

p(M, v̂±1, v̂±2, . . .)

× f{v̂}(ϕ1) · · · f{v̂}(ϕM ) f{v̂}(0) f{v̂}(0) · · · , (79)

where F({ϕ}) is an infinite dimensional p.d.f. of particle
azimuthal angles (ϕ1, ϕ2, . . .). Note that with present inter-
pretation, each event has infinite multiplicity. In practice,
however, the events have finite values of multiplicity, which
means the p.d.f. p(M, v̂±1, v̂±2, . . .) is (approach to) zero at
large M . In case the multiplicity is not fluctuating, we can
rewrite p(M, v̂±1, v̂±2, . . .) = δM,M0 p(M0, v̂±1, v̂±2, . . .),
which consequently leads to

F(ϕ1, . . . , ϕM0) =
∫ [ ∞∏

n=−∞
d v̂n

]

×p(M0, v̂±1, v̂±2, . . .) f{v̂}(ϕ1) · · · f{v̂}(ϕM0). (80)

The infinite dimensional function p(M0, v̂±1, v̂±2, . . .) in the
Cartesian coordinate reads as p(v1,x , v1,y, v2,x , v2,y, . . .).
By keeping k harmonics in the argument, we reach the flow
harmonics fluctuation p.d.f. (2). If we ignore the flow fluc-
tuations, p(M0, v̂±1, v̂±2, . . .) should be replaced by delta
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functions as well. Then we obtain the simpler case for F men-
tioned in Eq. (76). As we will see in the following subsection,
although the statistically stable values for flow harmonics v̂n
are not accessible in a single event, we can still find accurate
values for the moments of the p.d.f. p(M, v̂±1, v̂±2, . . .) by
using many events.

7.1 Statistical uncertainty of multiparticle correlations

In the present subsection, we elaborate on the algorithm’s
details behind the functions Nsigma2P. The experimental
estimator of the moment 〈v̂a1 · · · v̂ak 〉, as we will find out, is
related to the normalized flow vectors’ product qa1 · · · qak .
By referring to Eq. (75), we start with splitting this product
as the following:

Mkqa1 · · · qak =
M∑

i1,...,ik

ei(a1ϕik+···+akϕi1 )

=
M∑
i1

ei(a1+···+ak )ϕi1 +
M∑

i1 �=i2

eia1ϕi1+i(a2+···+ak )ϕi2 ,

+ · · · +
M∑

i1 �=i2

ei(a1+···+ak−1)ϕi1+iakϕi2 ϕi2

+ · · · +
M∑

i1 �=···�=ik

ei(a1ϕik+···+akϕi1 ), (81)

where in the above, we have separated summations to the
terms that all k particles are auto-correlated, k−1 particles are
auto-correlated, up to the case that all the auto-correlations
are removed.

Before proceeding, let us rewrite the above summation in
a more compact form by using set partitions. Consider that
the set of all partitions of the set X is shown by PX ,

P{i1, . . . , ik} =
{
{{i1, . . . , ik},

{{i1}, {i2, . . . , ik}}, . . . , {{i1}, . . . , {ik}}
}
. (82)

In the analogy of P , we define the operator I and A acting
on the set {i1, . . . , ik} and {a1, . . . , ak} as

I ≡ I{i1, . . . , ik} =
{
{i1 = · · · = ik},

{i1 �= i2 = · · · = ik}, . . . , {i1 �= · · · �= ik}
}
,

= {I1, . . . , IBk }, (83)

and

A ≡ A{a1, . . . , ak} =
{
{a1 + . . . + ak},

{a1, a2 + . . . + ak}, . . . , {a1, . . . , ak}
}
,

= {A1, . . . ,ABk }, (84)

where Bk is the Bell number corresponds to the number of all
partitions of a set with k elements. Although these definitions
look complicated, they help us to rewrite the Eq. (81) more
compactly,

Mkqa1 · · · qak =
Bk∑
i=1

∑
Ii

ei(a1ϕi1+···+akϕik ). (85)

Like what has been done in Eq. (70), we perform the aver-
age 〈qa1 · · · qak 〉 with respect to F({ϕ}). To this end, several
integrations have to be done. For example∫

dϕ1dϕ2 · · · f{v̂}(ϕ1) · · · f{v̂}(ϕM ) f{v̂}(0) f{v̂}(0) · · ·

×
M∑

i1 �=i2

eia1ϕi1 +i(a2+···+ak )ϕi2 = M(M − 1)v̂a1 v̂a2+···+ak .

(86)

Similarly, and by employing notations in Eqs. (83) and (84),
we obtain

〈qa1 · · · qak 〉 =
∫

dϕ1dϕ2 · · · (qa1 · · · qak ) F({ϕ}),

=
∫

(M,v̂)

∫
dϕ1dϕ2 · · · p(M, v̂±1, v̂±2, . . .)

× f{v̂}(ϕ1) · · · f{v̂}(ϕM ) f{v̂}(0) f{v̂}(0) · · ·

× 1

Mk

Bk∑
j=1

∑
I j

ei(a1ϕik+···+akϕi1 ),

=
〈

1

Mk

Bk∑
j=1

∑
I j

∏
z∈A j

v̂z

〉
. (87)

In the above, the summation on I j is trivial. To find out the
final expression, we need to calculate the number of terms in
this summation. In fact, by noting that each i j runs from 1 to
M , it is easy to see that∑
I j

1 = (M)‖I j‖, (88)

where the (M)i = M(M − 1) · · · (M − i + 1) is the falling
factorial, and ‖Ii‖ is the number of elements in the set I j .
As a result, we eventually find

〈qa1 · · · qak 〉 =
〈

1

Mk

Bk∑
j=1

(M)‖A j‖
∏
z∈A j

v̂z

〉
, (89)

where we have used the fact that ‖I j‖ = ‖A j‖.
The last expression is rather simple. To make it more clear,

we elaborate on it with two examples in the following. First
consider a1 = n and a2 = −n. In this case,

A = {{0}, {n,−n}}, (90)
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which leads to

〈qnq−n〉 =
〈

1

M2

[
M + M(M − 1)(v̂n v̂−n)

]〉
,

= 1

〈M〉 +
〈
M − 1

M
v2
n

〉
. (91)

The correlations on the right-hand side are moments of
p(M, v̂±1, v̂±2, . . .). Instead of 〈qnq−n〉, we could have
started with 〈qnq−n(M/M − 1)〉. In such a case, we would
have obtained,〈
qnq−nM

M − 1

〉
= 1

〈M − 1〉 +
〈
v2
n

〉
. (92)

By rearranging the above relation and using qn = Qn/M
(see Eq. (30)), we recover Eq. (32).

For the second example, assume a1 = 2, a2 = 3, and
a3 = −5. In this special case, we have

A = {{0}, {2,−2}, {3,−3}, {5,−5}, {2, 3,−5}} (93)

which consequently leads to

〈q2q3q−5〉
=
〈 1

M3

[
M + M(M − 1)

(
v̂2v̂−2 + v̂3v̂−3 + v̂5v̂−5

)
+M(M − 1)(M − 2)v̂2v̂3v̂−5

]〉
=
〈 1

M2 + M − 1

M2

(
v2

2 + v2
3 + v2

5

)
+ (M − 1)(M − 2)

M2 v2v3v5e
i(2ψ2+3ψ3−5ψ5)

〉
. (94)

By replacing 〈v2
n〉 from Eq. (92) and starting from

〈q2q3q−5M2/(M − 1)(M − 2)〉, we find

〈v2v3v5e
i(2ψ2+3ψ3−5ψ5)〉

=
〈M2q2q3q−5 − M(q2q−2 + q3q−3 + q5q−5) + 2

M2 − 3M + 2

〉
,

(95)

which is coincident with the result of function
cQvec[{1,1,1}, {−3,5}, {2,3,5},M,Q] with replacing
Qn = Mqn , as we expected. It means our computations so
far are compatible with the results of Refs. [36,62].

Given that the set IBk = {i1 �= · · · �= nk} with ‖IBk‖ = k
is the unique most populated set in the set of partitions I,
only the term j = Bk survives the limit M → ∞ in Eq. (89).
As a result, we obtain

lim
M→∞ 〈qa1 · · · qak 〉 = 〈v̂a1 · · · v̂ak 〉, (96)

which is manifestly correct because, in the limit M → ∞,
there is no statistical fluctuation in a single event. This indi-
cates that the true value of 〈qa1 · · · qak 〉 with no statistical
error is encoded in the sector IBk . Referring to Eq. (87), and

keep only the term j = Bk from both sides, we obtain,

〈v̂a1 · · · v̂ak 〉 =
〈

1

(M)k

∑
i1 �=···�=ik

ei(a1ϕik+···+akϕi1 )

〉
. (97)

The meaning of Eq. (97) is that by removing the auto-
correlations and averaging over many events (as it is done
in Refs. [34–36,62]) the effect of statistical fluctuations in a
single event is removed and we obtain accurate moments of
p(M, v̂±1, v̂±2, . . .) distribution.

The above statement is valid only when the average 〈· · ·〉
is performed over infinitely many numbers of events. Similar
to computations lead to Eq. (72), we compute the statistical
fluctuation of the right-hand side of Eq. (97) with the finite
number of events, N . Defining

〈k〉a1,...,ak = 1

(M)k

∑
i1 �=···�=ik

ei(a1ϕi1+···+akϕik ), (98)

and Dϕ = dϕ1dϕ2 · · · , one can compute the following inte-
grals,

〈k〉 ≡
∫

Dϕ(1)F(1)({ϕ}) · · · dϕ(N )F(N )({ϕ})

×
[

1

N

N∑
i=1

〈k〉(i)
]

,

= 〈〈k〉〉,
〈k〉〈�〉 ≡

∫
Dϕ(1)F(1)({ϕ}) · · · dϕ(N )F(N )({ϕ})

×
⎡
⎣ 1

N 2

N∑
i, j=1

〈k〉(i)〈�〉( j)
⎤
⎦ ,

= 1

N
[〈〈k〉〈�〉〉 + (N − 1)〈〈k〉〉〈〈�〉〉] . (99)

The quantity 〈〈k〉〉 has been computed in Eq. (97) while we
need to elaborate 〈〈k〉〈�〉〉.13 To this end, we need to study a
summation as∑
i1 �=···�=ik

∑
ik+1 �=···�=ik+�

· · · . (100)

Considering the set {i1, i2, . . . , ik+�}, we immediately find
that in reorganizing the summation in Eq. (100) no partition
with more than two elements is allowed. Assume a set as
{i1, x} where the element x can be any i j with j = k +
1, . . . , �. Add any third element to {i1, x} contradicts with
one of the inequalities i1 �= · · · �= ik or ik+1 �= · · · �= i� in
Eq. (100). As a result, the partitions are started from sets as

{{i1, is1}, . . . , {ik, isk }, {isk+1}, . . . , {is�}}. (101)

Here we conventionally assumed � ≥ k. The �-tuple
(s1, . . . , s�) is a permutation of (k + 1, . . . , k + �) which

13 We ignored the subscripts ai in the notation 〈k〉a1,...,ak for simplicity.
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are �! different kinds. However, (� − k) elements of the �-
tuple are placed in a set with a single element. Therefore,
the permutation of that subset does not lead to a different
partition in Eq. (101). As a result, the number of partitions
in Eq. (101) is �!/(k − �)!. We are allowed to break each set
{ir , isr } into two, and the result will be a legal partition. After
breaking all sets as {ir , isr } we reach to

{{i1}, . . . , {ik+�}}. (102)

Similar to i j partitions, the partitions of harmonics ai
quantities start from

{a1 + as′1 , . . . , ak + as′k , ak+1, . . . , a�}, (103)

where (s′
1, . . . , s

′
�) = perm(1, . . . , �) and can be continued

by splitting each summation ai + as′i into two. Defining the
set

A′ ≡ {A′
1, . . . ,A′

fk,�}, (104)

as set of all fk,� partitions of set (103), we obtain a relation
similar to Eq. (89),

〈〈k〉〈�〉〉

=
〈

1

(M)k(M)�

fk,�∑
j=1

(M)‖A′
j‖

∏
z∈A′

j

v̂z

〉
. (105)

Now, we can define the covariance matrix as follows

cov(〈k〉, 〈�〉) = 〈k〉〈�〉 − 〈k〉 〈�〉
= 1

N
[〈〈k〉〈�〉〉 − 〈〈k〉〉〈〈�〉〉] . (106)

The statistical fluctuation of 〈〈k〉〉 is given by cov(〈k〉, 〈k〉).
For clarity, let us elaborate on a simple example with a1 =

n and a2 = −n. The partition set is given by

A′ = {{2n,−2n}, {0, 0}, {n, n,−2n}, {2n,−n,−n},
{n,−n, 0}, {n, n,−n,−n}}. (107)

As a result, Eqs. (105) and (106) lead to the following relation
for the statistical uncertainty of 〈〈2〉−n,n〉,

σ 2〈〈2〉−n,n〉 = 1
N

[〈
v̂−2n v̂2n+1
M(M−1)

+ (M−2)
M(M−1)

[
v̂−2n v̂

2
n + v̂2−n v̂2n + v̂−n v̂n

]

+ (M−2)(M−3)
M(M−1)

v̂2−n v̂
2
n

〉
− 〈v̂−n v̂n〉2

]
.

(108)

Referring to Eqs. (97) and (98), one notes that v̂a1 · · · v̂ak =
〈k〉a1,...,ak . Substituting this relation into the above equation,
we obtain Eq. (45), compatible with [36,64] if we ignore the
flow fluctuation and set ψn = ψ2n .

Appendix C: Flow fluctuation and particle distribution
decomposition

This appendix introduces a generic procedure to connect
qth order cumulants to the qPC. We elaborate 3PC for
n = 2, . . . , 5 explicitly at the end of the appendix.

C.1. Nonflow correlations vs. flow-induced correlations

One of the main motivations of using cumulants in study-
ing the flow harmonic fluctuations is removing the non-
flow effects. Moreover, cumulants systematically classify the
deviation of the flow harmonic p.d.f. (2) from Gaussianity.
In this part, we would like to show how much the observed
features of these two concepts are entangled.

Ignoring the flow fluctuation, Eq. (76) should be replaced
by [34]

F(ϕ1, . . . , ϕM ) = f (ϕ1) · · · f (ϕM )

+Fnonflow(ϕ1, . . . , ϕM ), (109)

where Fnonflow(ϕ1, . . . , ϕM ) is correlation developed by non-
flow effects in a single event. One notes that Fnonflow(ϕ1, . . . ,

ϕM ) still contains products of two-particles or more joint dis-
tributions. For instance

Fnonflow(ϕ1, . . . , ϕM )

= F (2)
nonflow(ϕ1, ϕ2) f (ϕ3) · · · f (ϕM )

...

+F (M)
nonflow(ϕ1, . . . , ϕM ). (110)

A standard way to suppress the nonflow effects is using cumu-
lants. By measuring mth order cumulant we practically mea-
sure a genuine correlation among mth particles. Therefore
by measuring the mth order cumulant of the distribution,
we automatically remove any n-particle nonflow correlations
with n < m [34,35].

In the presence of flow fluctuation, the same structure as
Eq. (109) appears even if we ignore nonflow effects. In such
a case, Eq. (80) is written as the following (for the detail see
Appendix C)

F(ϕ1, . . . , ϕM ) = f (ϕ1) · · · f (ϕM )

+Fflow-fluc(ϕ1, . . . , ϕM ), (111)

where f (ϕ) is the many events average of the single-particle
distribution Eq. (1) and Fflow-fluc(ϕ1, . . . , ϕM ) is the joint cor-
relation part appears because of averaging over many fluc-
tuating events. As a result, there are two entangled parts in
genuine multiparticle correlations: nonflow effects in a single
event develop the first part, and the second part fictitiously
appears because of averaging over many fluctuating events.
To study lower-order cumulants, which contain nontrivial
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and important information about flow fluctuations, we need
to use other methods to reduce the nonflow effects [24,79].

C.2. Genuine q-particle correlation functions

By inserting Eq. (73) into Eq. (80), we find the following
expression,14

F(ϕ1, . . . , ϕM ) = 1

(2π)M

∑
a1,...,aM

〈v̂a1 · · · v̂aM 〉

×e−ia1ϕ1−···−iaMϕM . (112)

The above relation cannot be decomposed into the product
of M distinct single-particle distribution. However, we are
still able to rewrite the moment 〈v̂a1 · · · v̂aM 〉 as a summation
of all possible genuine correlations between v̂ai s (cumulants
〈· · ·〉c),
〈v̂a1 · · · v̂aM 〉 = 〈v̂a1〉c · · · 〈v̂aM 〉c

+〈v̂a1 v̂a2〉c〈v̂a3〉c · · · 〈v̂aM 〉 + · · ·
...

+〈v̂a1 v̂a2〉c · · · 〈v̂aM−1 v̂aM 〉c + · · ·
...

+〈v̂a1 · · · v̂aM 〉c. (113)

Using the above equation, we can rewrite Eq. (112) as

F(ϕ1, . . . , ϕM ) = f{〈v̂〉c}(ϕ1) · · · f{〈v̂〉c}(ϕM )

+Fflow-fluc(ϕ1, . . . , ϕM ) (114)

where

Fflow-fluc(ϕ1, . . . , ϕM )

= f〈v̂1v̂2〉c(ϕ1, ϕ2) f{〈v̂〉c}(ϕ3) · · · f{〈v̂〉c}(ϕM )

...

+ f〈v̂1···v̂M 〉c(ϕ1, . . . , ϕM ), (115)

and

f〈v̂1···v̂q 〉c (ϕ1, . . . , ϕq)

= 1

(2π)q

∑
a1,...,aq

〈v̂a1 · · · v̂aq 〉ce−ia1ϕ1−···−iaqϕq . (116)

We see from above that the apparent correlation induced by
fluctuation depends on the event by event fluctuation.

Considering the rotational symmetry, the constraint a1 +
· · · + ak = 0 should be included into the above summa-
tion. By this constraint, the cumulant 〈v̂a1 · · · v̂aq 〉c is equiv-
alent to that we have already studied in Sect. 2. Defining

14 Here, we ignore the multiplicity fluctuation.

Δϕk = ϕk+1 − ϕ1 and replacing the notation f〈v̂1···v̂q 〉c with
Cq(Δϕ1, . . . , Δϕq−1), the qPC reads as

Cq(Δϕ1, . . . , Δϕq−1)

= 1

(2π)q

[
1 + 2

∞∑
k=1

∑
n1,...,nk

α1,...,αk−1

∑
m1+···+mk=q

c{α1,...αk−1}
n1,...,nk {m1, . . . ,mk}�{α1,...αk−1}

n1,...,nk (Δϕ1, . . . , Δϕk−1)

]
.

(117)

The function �
{α1,...αk−1}
n1,...,nk (Δϕ1, . . . , Δϕk−1) can be obtained

by comparing Eqs. (116) and (117) straightforwardly. For
instance

�n(Δϕ) = cos(nΔϕ),

�
{4}
2,4(Δϕ1,Δϕ2) = cos(2Δϕ1 − 4Δϕ2)

+ cos(−4Δϕ1 + 2Δϕ2) + cos(2Δϕ1 + 2Δϕ2),

�
{−3,5}
2,3,5 (Δϕ1,Δϕ2) = cos(3Δϕ1 − 5Δϕ2)

+ cos(−5Δϕ1 + 3Δϕ2) + cos(2Δϕ1 − 5Δϕ2)

+ cos(−5Δϕ1 + 2Δϕ2) + cos(2Δϕ1 + 3Δϕ2)

+ cos(3Δϕ1 + 2Δϕ2), (118)

and so on. The above expression for two-particle distribution
leads to the following well-known result,

C2(Δϕ) = 1

(2π)2

[
1 + 2

∞∑
n=1

cn{2} cos(nΔϕ)

]
. (119)

Given that for harmonics n = 2, . . . , 5, there are only two
third-order cumulants c{4}

2,4{2, 1} and c{−3,5}
2,3,5 {1, 1, 1}, 3PC is

written as

C3(Δϕ1,Δϕ2)

= 1

(2π)3

[
1 + 2c{4}

2,4{2, 1} �
{4}
2,4(Δϕ1,Δϕ2)

+2c{−3,5}
2,3,5 {1, 1, 1} �

{−3,5}
2,3,5 (Δϕ1,Δϕ2)

]
. (120)

The other correlation functions can be obtained accordingly.

AppendixD:Rotationally symmetric generating function

We elaborate on the derivation of Eq. (16) here. We first
rewrite the distribution p(vn1,x , vn1,y, . . . , vnk ,x , , vnk ,y) as
follows:

p(Xn1,...,nk ,Yn1,...,nk ), (121)

where we have used the following notation:

X = (vn1,x , . . . , vnk ,x ),

Y = (vn1,y, . . . , vnk ,y). (122)
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The generating function of the above distribution is written
as G(P,Q) = 〈ei L〉, where

L = iX · P + iY · Q. (123)

Similar to Eq. (122), we have used the notation

P = (kn1,x , . . . , knk ,x ),

Q = (kn1,y, . . . , knk ,y). (124)

Presenting Eq. (123) in polar coordinate and in an arbitrary
reaction plane angle �RP, we find

L = i
k∑

i=1

vni kni cos
[
ni
(
ψni − φni + �RP

)]
, (125)

where we have used polar coordinate vneinψn = vn,x + ivn,y

together with

kn,x = kn cos nφn, kn,y = kn sin nφn . (126)

After changing variables δψni = ψni+1 − ψn1 and δφni =
φni+1 − φn1 , we obtain

L = i vn1kn1 cos n1(ψn1 − φn1 + �RP)

+i
k∑

i=2

vni kni

× cos
[
ni
(
ψn1 + δψni−1 − δφni−1 − φn1 + �RP

)]
.

(127)

We eventually fix our reference frame such that φn1 = �RP

to obtain Eq. (16).
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