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Abstract We construct new classes of cosmological solu-
tion to the five dimensional Einstein–Maxwell-dilaton the-
ory, that are non-stationary and almost conformally regu-
lar everywhere. The base geometry for the solutions is the
four-dimensional Bianchi type IX geometry. In the theory,
the dilaton field is coupled to the electromagnetic field and
the cosmological constant term, with two different coupling
constants. We consider all possible solutions with different
values of the coupling constants, where the cosmological
constant takes any positive, negative or zero values. In the
ansatzes for the metric, dilaton and electromagnetic fields,
we consider dependence on time and two spatial directions.
We also consider a special case of the Bianchi type IX geome-
try, in which the geometry reduces to that of Eguchi–Hanson
type II geometry and find a more general solution to the the-
ory.

1 Introduction

One of the main aims of gravitational physics is to find the
exact solutions to the Einstein gravity in the presence of mat-
ter fields in different dimensions. The ideas of higher dimen-
sional gravity and dimensional compactification have been
explored extensively in different articles [1,2]. Moreover,
a better insight about the holography requires to construct
and understand the exact solutions to the Einstein gravity in
asymptotically de-Sitter and Anti-de-Sitter spacetimes [3].
The solutions to the Einstein theory in the background of
different matter fields such as Maxwell field, dilaton field
and NUT charges are explored in [4–6]. The relevant solu-
tions can be found in the compactification of M-theory in
generalized Freund–Rubin theory [7]. The applications and
properties of the Einstein–Maxwell-dilaton theory can be
found in different areas such as slowly rotation black holes
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[8,9], topological charged hairy black holes [10], cosmic
censorship [11], gravitational radiation [12] and hyperscal-
ing violation [13]. Moreover, the variation of the stan-
dard Einstein–Maxwell-dilaton theory with two extra vector
fields, where one field supports the non-trivial topology, and
the second field supports states with the finite charge den-
sity, was considered in [14]. In the context of the generalized
Einstein–Maxwell-dilaton theory, the authors found a new
class of charged black holes with hyper-scaling violating
asymptotics and non-trivial horizon topology, for arbitrary
Lifshitz exponent and a hyper-scaling violation parameter
[14].

In this article, we explore the exact solutions to the five-
dimensional Einstein–Maxwell-dilaton theory with two cou-
pling constants and a cosmological constant. We find the
exact solutions to the five-dimensional Einstein–Maxwell-
dilaton theory where the dilaton field is coupled to both the
electromagnetic field and the cosmological constant with
two different coupling constants. We find expressions for
the Maxwell field and dilaton field. We also find the cos-
mological constant in terms of the coupling constant and
show that it can only take specific numbers. We find a rela-
tion between the coupling constants and an extra constraint
which limits the coupling constant to certain numbers. We
show that the solutions cannot be uplifted to a higher dimen-
sional Einstein gravity or Einstein–Maxwell theory with the
cosmological constant. We also find the exact solutions to
the theory for the case where the coupling constants are
equal and non-zero, and where the coupling constants are
both equal to zero. Considering the latter case, the Einstein–
Maxwell-dilaton theory reduces to the Einstein–Maxwell
theory in the presence of the cosmological constant. We dis-
cuss the properties of the non-stationary spacetimes and show
that our exact non-trivial solutions satisfy all the field equa-
tions.

We should emphasize our exact solutions exist only
in five dimensional Einstein–Maxwell-dilaton theory with
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two coupling constants and a cosmological constant. We
consider ansatzes for the metric, the Maxwell field and
the dilaton which perfectly lead to exact solutions in
three different cases: (I) the coupling constants are dif-
ferent, (II) the coupling constants are non-zero and equal
and (III) the coupling constants are zero. We explicitly
show in Appendix A, that our ansatzes work only in five
dimensions. To find the higher dimensional solutions to
the Einstein–Maxwell-dilaton theory, we might consider
adding other fields, such as extra vector fields to the
standard Einstein–Maxwell-dilaton theory [14], to support
the existence of the solutions, in dimensions greater than
five.

The article is organized as follows:
In Sect. 2, we find the exact solutions to the Einstein–
Maxwell-dilaton theory based on the Bianchi type IX metric.
The dilaton field is coupled to the electromagnetic field and
the cosmological constant with two different coupling con-
stants. We consider specific ansatzes for the five-dimensional
spacetime, Maxwell field and the dilaton field. We solve
all the equations of motion and find the metric functions
for the five-dimensional spacetime. We find the c-function
for the spacetime and discuss the properties of the space-
time. Moreover, we find a relation between the coupling con-
stants.

In Sect. 3, we consider the coupling constants to be equal
to each other and find the exact solutions to the Einstein–
Maxwell-dilaton theory. We consider two different cases,
where the coupling constant are equal to each other and are
non-zero, and where the coupling constants are zero. Each
case needs a different ansatz for the metric functions.

In Sect. 4 we present a combination of the solutions based
on the four-dimensional Eguchi–Hanson space, which is a
subspace of the Bianchi type IX geometry. We verify the
ansatzes and show that our assumptions satisfy all the equa-
tions of Einstein, Maxwell and dilaton.

In Sect. 5, we discuss the uplifting of the exact solutions
to higher dimensional theories such as Einstein gravity in a
higher dimension and Einstein–Maxwell theory with a cos-
mological constant. We show that our solutions cannot be
found from the compactification of these theories. Moreover,
we calculate the Kretschmann invariant and discuss the sin-
gularities of the spacetime.

We end the article with concluding remarks and three
appendices. In Appendix A, we show that the exact solutions
exist only in five dimensions. In Appendix B, we present the
classification of the Bianchi spaces and show Bianchi type IX
possess the maximal symmetry between all types of Bianchi
spaces. Hence Bianchi type IX is the best space to be uplifted
to the higher dimensional Einstein–Maxwell-dilaton theory.
In Appendix C, we present explicitly the Maxwell field equa-
tions and their solutions.

2 Exact solutions to the Einstein–Maxwell-dilaton
theory, based on Bianchi type IX geometry, with two
different coupling constants a and b

We consider the cosmological Einstein–Maxwell-dilaton
(EMD) theory, where the dilaton field interacts with both the
cosmological constant and the electromagnetic field, with
two different coupling constants. The action for the theory in
presence of the cosmological constant � is given in N + 1
dimensions by [15],

S =
∫

dN+1x
√−g

{
R − 4

N − 1
(∇φ)2

−e−4/(N−1)aφF2 − e4/(N−1)bφ�
}

, (1)

where R represents the curvature scalar, g = det[gμν] and
Fμν is the electromagnetic field strength [16,17]. Moreover,
in Eq. (1), φ is the dilaton field and a and b are two arbitrary
coupling constants.

We find the Maxwell field equations in N +1 dimensions,
by varying the given action in Eq. (1) with respect to the
electromagnetic gauge field Aμ [15],

Mμ ≡ ∇ν(e−4/(N−1)aφFμν) = 0. (2)

By varying the action (1) with respect to the dilaton field,
we find the dilaton field equations in N + 1 dimensions as,

D ≡ ∇2φ − b

2
e4/(N−1)bφ� + a

2
e−4/(N−1)aφF2 = 0. (3)

Moreover, varying the Einstein–Maxwell-dilaton action
(1) with respect to the metric tensor gμν leads to the Einstein
field equations in N + 1 dimensions [15],

εμν ≡ Rμν − 1

2
gμνR − 4

N − 1

{
∇μφ∇νφ − 1

2
gμν(∇φ)2

}

− e
−4aφ
N−1

{
2FμλF

λ
ν − 1

2
gμνF

2
}

− 1

2
e

4bφ
N−1 gμν�= 0.

(4)

In this article, we consider the four-dimensional Bianchi type
IX geometry, as the background metric to be uplifted to
the Einstein–Maxwell-dilaton theory. The Bianchi type IX
geometry is included in the classification of the homogeneous
spaces, which was done in 1897 by Bianchi, and later on used
in cosmology by Lifschitz, Belinski and Khalatnikov [18].
In Appendix B, we present the classification of the homoge-
neous spaces, which leads to choosing the Bianchi type IX
geometry (between all Bianchi type I, . . ., IX geometries)
possessing the maximal symmetry.

Among all the different four-dimensional Bianchi type
geometries, we consider the Bianchi type IX geometry, which
not only posses the maximal symmetry (between all Bianchi
type I, . . ., IX geometries), but also is a self-dual and asymp-
totically locally Euclidean space. The self-duality and max-
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imal symmetry of the Bianchi type IX, enable us to find the
exact solutions by uplifting the Bianchi type IX geometry
into the Einstein–Maxwell-dilaton theory.

Moreover, the other reason for choosing Bianchi type IX
is that only this space (between all Bianchi type I, . . ., IX
spaces) reduces exactly to the well-known spaces, such as
Taub-NUT, Eguchi–Hanson type I and type II and Atiyah–
Hitchin geometries, in some appropriate limits.

The latter spaces have been studied extensively in differ-
ent theories of the gravitational physics, including uplifting
them to the higher-dimensional extensions of gravity, such as
string cosmological model in string theory [19], loop quan-
tum cosmology [20], supergravity [21], and M-branes [22]. In
fact, the exact solutions to the Einstein–Maxwell-dilaton the-
ory have been constructed for the embedded Eguchi–Hanson
type II geometry [23]. In this article, we even find more gen-
eral exact solutions for uplifting the Eguchi–Hanson type II
into the Einstein–Maxwell-dilaton theory, by using the exact
solutions for the embedded Bianchi type IX geometry and
then reducing them to the Eguchi–Hanson type II geometry.

The triaxial Bianchi type IX metric is given by [21],

ds2
tr.BI X = dr2

√
J (r)

+ r2

4

√
J (r)

⎧⎨
⎩

(dψ + cos θdφ)2

1 − a4
1
r4

+ (− sin ψdθ + cos ψ sin θdφ)2

1 − a4
2
r4

+ (cos ψdθ + sin ψ sin θdφ)2

1 − a4
3
r4

⎫⎬
⎭ . (5)

The metric function J (r) in the triaxial Bianchi type IX met-
ric (5) is,

J (r) =
(

1 − a4
1

r4

)(
1 − a4

2

r4

)(
1 − a4

3

r4

)
, (6)

where a1, a2 and a3 are three parameters. We choose these
parameters to be a1 = 0, a2 = 2kc and a3 = 2c, where
c > 0 is a constant and k belongs to the interval 0 ≤ k ≤
1 [21]. The periodicity for the angles θ , ψ and φ are π ,
4π and 2π , respectively. We note the coordinate r should
be r ≥ a3, otherwise the metric function J (r) in Eq. (6)
becomes negative and therefore the metric (5) would contain
imaginary parts. We rewrite the Bianchi type IX metric in a
more compact way in terms of the Maurer–Cartan one-forms
σi ,

ds2
B.I X = dr2

J (r)1/2 + r2

4
J (r)1/2

⎛
⎜⎝ σ 2

1

1 − a2
1
r4

+ σ 2
2

1 − a2
2
r4

+ σ 2
3

1 − a2
3
r4

⎞
⎟⎠ . (7)

The Maurer–Cartan one-forms are given by,

σ1 = dψ + cos θdφ, (8)

σ2 = − sin ψdθ + cos ψ sin θdφ, (9)

σ3 = cos ψdθ + sin ψ sin θdφ. (10)

We note that the Bianchi type IX geometry contains two
well-known spaces, namely Eguchi–Hanson type I and type
II in some appropriate limits. Considering k = 0 in Eq. (5),
the Bianchi type IX metric reduces to the Eguchi–Hanson
type I metric, which is given by [21],

ds2
EH.I = dr2

f (r)
+ r2

4
f (r)

{
dθ2 + sin2 θdφ2

}

+ r2

4 f (r)
(dψ + cos θdφ)2, (11)

where the metric function f (r) is,

f (r) =
√

1 − 16c4

r4 . (12)

Moreover, by choosing k = 1 in Eq. (5), the Bianchi type IX
metric reduces to the Eguchi–Hanson type II metric, which
is given by [24],

ds2
EH.I I = dr2

f (r)2 + r2 f (r)2

4
(dψ + cos θdφ)2

+r2

4
(dθ2 + sin2 θdφ2), (13)

where f (r) is given in (12). The exact solutions to the
Einstein–Maxwell-dilaton theory based on the latter metric,
are reviewed later in Sect. 4.

To embed the four-dimensional Bianchi type IX met-
ric into the Einstein–Maxwell-dilaton theory, N should be
greater than or equal to 4 in Eq. (1). Of course, not only
N = 4 gives the simplest theory to be explored, but also we
can not find any exact solutions, where N ≥ 5. In fact, as
we show in Appendix A, for N = 5, we can not consistently
satisfy all the field equations, except by choosing trivial met-
ric functions. So, though we presented the action (1) for the
Einstein–Maxwell-dilaton theory in N + 1-dimensions, we
only consider N = 4 in what follows. The action for the
Einstein–Maxwell-dilaton theory in presence of the cosmo-
logical constant, can be written in five-dimensions (4 + 1
dimensions) as,

S =
∫

d5x
√−g{R − 4

3
(∇φ)2 − e−4/3aφF2 − e4/3bφ�},

(14)

where the dilaton field is coupled to the Maxwell field (by the
coupling constant a) and to the cosmological constant (by the
coupling constant b). In the action (14), R is the Ricci scalar,
φ is the massless dilaton field, Fμν is the electromagnetic
tensor and � represents the cosmological constant.

First, we consider the most general case, where the cou-
pling constants are a �= b and non-zero. The application
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of this case can be found in the generalized Freund–Rubin
compactification [7].

Varying the Einstein–Maxwell-dilaton action (14) with
respect to the electromagnetic gauge field Aμ leads to the
Maxwell field equations in five-dimensions,

Mμ = ∇ν(e−4/3aφFμν) = 0. (15)

Moreover, we find the dilaton field equation in five-dime-
nsions, by varying the action (14) with respect to the dilaton
field,

D = ∇2φ + a

2
e−4/3aφF2 − b

2
e4/3bφ� = 0. (16)

The Einstein field equations can be found in five-dimensions,
by varying the action (14) with respect to the metric tensor
gμν [6],

εμν = Rμν − 2

3
�gμνe

4/3bφ

−
(
Fλ

μFνλ − 1

6
gμνF

2
)
e−4/3aφ − 4

3
∇μφ∇νφ = 0.

(17)

We consider an ansatz for the five-dimensional metric as,

ds2
5 = − 1

H2(r, θ)
dt2 + R2(t)H(r, θ)ds2

B.I X . (18)

In the ansatz (18), ds2
B.I X represents the four-dimensional

Bianchi type IX metric given by Eq. (5), and H(r, θ) and
R(t) are two metric functions. We consider the electromag-
netic gauge field and the dilaton field in terms of the metric
functions H(r, θ) and R(t) as,

At (t, r, θ) = αRM (t)HE (r, θ), (19)

φ(t, r, θ) = − 3

4a
ln (HL(r, θ)RW (t)), (20)

where α, M , E , L and W are arbitrary constants. According
to the considered ansatz (19), the only non-zero component
of the electromagnetic gauge field is the t component, which
is a function of time and spatial coordinates r and θ . We find
the electromagnetic field strength Fμν , as given by,

Fμν =

⎡
⎢⎢⎢⎢⎣

0 αHE E
(

∂H
∂r

)
RM/H αHE E

(
∂H
∂θ

)
RM/H 0 0

−αHE E
(

∂H
∂r

)
RM/H 0 0 0 0

−αHE E
(

∂H
∂θ

)
RM/H 0 0 0 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

(21)

Based on the considered ansatzes (18), (19) and (20), the r
component of the Maxwell field equations Mr becomes,

Mr = −1

4a

√
(2ck−r)(2ck+r)(4c2k2+r2)(2c−r)(2c+r)(4c2+r2)

r8

× HE (r, θ)

(
∂H

∂r

)
RM (t)Eα

(
∂R

∂t

)
(4aW + 4Ma + 8a), (22)

where c and k are the constants that appear in the Bianchi
type IX metric (5). From (22), we find that the constants M
and W satisfy,

M + W = −2. (23)

In Appendix C, we show that the Maxwell’s components Mφ ,
Mψ and Mθ , lead to the same constraint on the constants M
and W , as in Eq. (23). Moreover, from the Einstein’s field
equation εtr ,

εtr = −3

4

(
∂R
∂t

) (
∂H
∂r

)
(LW + 4a2)

H(r, θ)a2R(t)
, (24)

we find the following relation between the constants L and
W ,

LW + 4a2 = 0. (25)

From the εrθ component of Einstein equations,

εrθ = 4α2(HE (r, θ))2E2(RM (t))2H2(r, θ)a2RW (t)

×HL(r, θ) − 3L2 − 6a2 = 0, (26)

and comparing it with other equations, we find the constants
M , E and α in (19) as M = 2, E = −1− a2

2 , and α2 = 3
a2+2

.

The constants L and W in (20) are found to be L = a2

and W = −4. Therefore, Eq. (26) satisfies as εrθ = 0. We
present the t component of the Maxwell’s equation Mt in
Appendix C. Analyzing the equation, we find the solutions
for the metric function H(r, θ) as follow,

H(r, θ) = ( j+r2 cos θ + j−)
2

a2+2 , (27)

where j± are two arbitrary constants. We present the
behaviour of the metric function H(r, θ) with respect to the
coordinates r and θ in Fig. 1, where we set j+ = 0.5, j− = 15
and a = 1.

Through the other Einstein and Maxwell field equations,
we find the solutions for the metric function R(t) and the
cosmological constant �, as,
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Fig. 1 The behaviour of the metric function H(r, θ) with respect to
the coordinates r and θ , where we consider the constants as j+ = 0.5,
j− = 15, c = 1 and a = 1

R(t) = (ηt + ϑ)a
2/4, (28)

� = 3

8
η2a2(a2 − 1), (29)

where η and ϑ are arbitrary constants and a is the coupling
constant. We find a relation between the coupling constants
as,

ab = −2. (30)

Moreover, according to the five-dimensional metric in
Eq. (18), we notice that the metric function H(r, θ) should be
a real and positive function. Therefore, we find the following
constraint on the coupling constant a,

a2 + 2 = 2n + 1, (31)

where n ∈ N. We notice that by choosing the coupling con-
stant a = 1 and a = √

3, the Einstein–Maxwell-dilaton
action (1) leads to the low-energy effective action for het-
erotic string theory and Kaluza–Klein reduction of five-
dimensional Einstein gravity, respectively [25].

Furnished with all the results in Eq. (18), by calculating the
Ricci scalar and the Kretschmann invariant, we find that they
diverge on the hyper-surfaces H(r, θ) = 0 and R(t) = 0.
We should note that the same type of singularities exists for
the supergravity solutions (in more than four-dimensions)
[22], which can be avoided with considering more spatial
coordinates in the metric functions.

Moreover, by restricting the constantsη andϑ in the metric
function (28), the singularity at R(t) = 0 can be removed,

η ≥ 0, (32)

Fig. 2 The behaviour of the c-function for the five-dimensional space-
time, where the coupling constants are not equal

ϑ > 0. (33)

Considering the found relation between the coupling con-
stants (30), we rewrite the action (14) as,

S =
∫

d5x
√−g

{
R − 4

3
(∇φ)2 − e

−4a
3 φF2 − e

−8
3a φ�

}
.

(34)

According to the action (34), as the coupling constant a
increases, the strength of the interaction between the dila-
ton field and the electromagnetic field decreases, while the
strength of the interaction between the dilaton and the cos-
mological constant increases. Moreover, based on Eq. (29),
the cosmological constant � can take negative, positive or
zero values depending on the coupling constant a. It is known
that in asymptotically AdS/dS spacetimes, the near bound-
ary or the deep events are holographically dual to the con-
formal field theory [26]. We can interpret the holography in
terms of renormalization group flows in the context of the
c-theorem in asymptotically dS spacetimes [27]. Based on
the c-theorem, the renormalization group flows the ultravio-
let for any expanding dS spacetime and to the infrared in any
contracting dS spacetime [28,29]. The c-function is given
by [6],

c ∼ 1

Gtt
3/2 . (35)

We plot the c-function and show its behaviour with respect to
the time coordinate, in order to infer the dS spacetime as an
expanding or contracting. We present the c-function in Fig. 2
for the five-dimensional spacetime (18), where the coupling
constant a > 1. We note that our five-dimensional spacetime
extends by time.
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Fig. 3 The behaviour of the dilaton field φ(t, r, θ) for two different
time slices, t = 1 and t = 3 (which are the lower and the upper surface,
respectively), as a function of the coordinates r and θ . We consider
specific values for the set the constants j+ = 0.5, j− = 15, a = 1,
η = 1 and ϑ = 2

It is noteworthy that our solutions to the Einstein–
Maxwell-dilaton theory based on the four-dimensional Bia-
nchi type IX metric, are completely independent of the con-
stant k (which appears in the Bianchi type IX geometry and
belongs to the interval 0 ≤ k ≤ 1). Moreover, we present the
behaviour of the dilaton field with respect to the coordinates
r and θ for two different time slices in Fig. 3.

According to our solutions, we show the components of
the electric field in Figs. 4 and 5, with respect to the coordi-
nates r and θ .

3 Exact solutions to the Einstein–Maxwell-dilaton
based on the Bianchi type IX geometry with equal
coupling constants a and b

We find and analyze the exact solutions to the five-dimen-
sional Einstein–Maxwell-dilaton theory based on the four-
dimensional Bianchi type IX geometry. In this section, we
consider the coupling constants a and b to be equal to each
other. For this case, a new set of ansatzes for the five-
dimensional metric, the electromagnetic field and the dilaton
field is needed, as the considered ansatzes (18)–(20) leads to
the following constraint on the coupling constants ab = −2,
which cannot be satisfied for a = b. First, we consider the
case where the coupling constants are equal to each other and
non-zero, and then, we consider the case where the coupling
constants are both zero. The second case leads to the solu-
tions for the Einstein–Maxwell theory in the presence of the
cosmological constant.

Fig. 4 The behaviour of the r -component of the electric field for t = 1,
as a function of the coordinates r and θ , where we set j+ = 0.5,
j− = 15, a = 1, η = 1, ϑ = 2, c = 1

Fig. 5 The θ-component of the electric field for t = 1, as a function
of the coordinates r and θ , where we set the constants as j+ = 0.5,
j− = 15, a = 1, η = 1, ϑ = 2, c = 1

3.1 Exact solutions where the non-zero coupling constants
are equal

We consider the following ansatzes for the five-dimensional
metric, the electromagnetic field and the dilaton field as,

ds2
5 = − 1

H2(t, r, θ)
dt2 + R2(t)H(t, r, θ)ds2

B.I X , (36)

At (t, r, θ) = αRM (t)HE (t, r, θ), (37)
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φ(t, r, θ) = − 3

4a
ln (HL(t, r, θ)RW (t)), (38)

where ds2
B.I X is the Bianchi type IX geometry given in (5)

and M , E , L andW are constants. In these new set of ansatzes,
the metric function H(t, r, θ) depends on time coordinate, as
well as the spatial coordinates r and θ . We find the constants
M and E through the Einstein and Maxwell field equations,
as M = −a2 and E = −a2

2 − 1. Moreover, the constants
L and W in dilaton field are found to be L = a2 and W =
2a2. By analyzing the εrr component of the Einstein field
equations, we find the solutions to the metric function R(t),
as given by,

R(t) = (εt + μ)1/a2
. (39)

In Eq. (39), ε and μ are arbitrary constants. Solving the other
Einstein equations, we find the metric function H(t, r, θ) as,

H(t, r, θ) = (Ra2+2(t) + G(r, θ))
2

a2+2 R−2(t), (40)

where R(t) is given by Eq. (39) and the metric function
G(r, θ) has the following form,

G(r, θ) = g+r2 cos θ + g−, (41)

In Eq. (41), g+ and g− are arbitrary constants. Moreover, we
find the cosmological constant � as,

� = 3ε2(4 − a2)

2a4 . (42)

According to the Eq. (42), the cosmological constant can
take positive, negative or zero values based on the coupling
constant a. We verify that all the components of the Ein-
stein, Maxwell and dilaton field equations, satisfy with our
solutions (39)–(42). The behaviour of the metric function
H(t, r, θ) as a function of coordinates r and θ is shown in
Fig. 6. In this figure, we set the constants as ε = 1, μ = 2,
g+ = 0.5, g− = 15 and a = 1.

We present the changes of the c-function with respect
to the time coordinate, in Fig. 7, where we considered the
cosmological constant to be positive. We infer that the five-
dimensional spacetime (36) expands in time for t = constant
slices. We note that the cosmological constant (42) and the
dilaton field (38) diverge when the coupling constants a and
b are equal to zero. Therefore, we need another way to find
the exact solutions to the Einstein–Maxwell-dilaton theory,
where the two coupling constants are equal to zero. Figure 8
indicates the behaviour of the dilaton field φ(t, r, θ) for two
different time slices. Moreover, we show the behaviour of
the r and θ components of the electric field in Figs. 9 and 10,
respectively.

Fig. 6 The behaviour of the metric function H(t, r, θ) with respect
to the coordinates r and θ , where we consider specific values for the
constants ε = 1, μ = 2, g+ = 0.5, g− = 15 and a = 1

Fig. 7 The behaviour of the c-function for the five-dimensional space-
time, where the coupling constants are equal to each other

3.2 Exact solutions where the coupling constant are equal
to zero

By considering the coupling constants a and b to be equal
to zero, the dilaton field in the action (14) would decouple
from the Einstein–Maxwell-dilaton theory, and the theory
reduces to the Einstein–Maxwell theory with a cosmological
constant. As we noted, since the dilaton field (38) and the
cosmological constant (42) diverge in the limit of a → 0, the
exact solutions to the theory, for this case, cannot be obtained
as a limit of the previous case, where a = b �= 0. Therefore,
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Fig. 8 The dilaton field φ(t, r, θ) for two different time slices t = 1
and t = 2 (upper and lower hypersurfaces respectively), where we set
the constants g+ = 0.5, g− = 15, a = 1, ε = 1 and μ = 2

Fig. 9 The behaviour of the r -component of the electric field with
respect to the coordinates r and θ , for t = 1. We consider the constants
as g+ = 0.5, g− = 15, a = 1, ε = 1, μ = 2, c = 1

we consider an ansatz for the electromagnetic gauge field as,

At (t, r, θ) = α

H(t, r, θ)
, (43)

where α is an arbitrary constant. We also consider the same
ansatz for the five-dimensional metric as in Eq. (36).

Through the Einstein field equations, we find the metric
function R(t), is given by,

R(t) = νeγ R0t , (44)

where γ = ±1, R2
0 = �/6 and ν is a constant. Also, from

the εt t component of the Einstein equation, the constant α

Fig. 10 The behaviour of the θ-component of the electric field with
respect to the coordinates r and θ , where t = 1. We consider specific
values for the constants g+ = 0.5, g− = 15, a = 1, ε = 1, μ = 2,
c = 1

in the electromagnetic ansatz is found to be α = (3/2)1/2.
Moreover, we find the metric function H(t, r, θ),

H(t, r, θ) = 1 + ( f+r2 cos θ + f−)e
−γ

√
6�t

3 . (45)

In Eq. (45), f± are arbitrary constants. We verify explicitly
that all the other Einstein and Maxwell equations are satisfied.

We represent the behaviour of the metric function H(t, r, θ)

in Figs. 11 and 12, with respect to the coordinates r and θ ,
where we set the constants γ = +1 and γ = −1, respec-
tively. According to the figures, the metric function decreases
monotonically with time where γ = +1, and increases
monotonically where γ = −1.

By presenting the c-function in Fig. 13 for two different
values of γ = +1 and γ = −1, we notice that the t =
constant slices of the spacetime are expanding where γ =
−1, and contracting where γ = +1. The behaviour of the r
and θ components of the electric field, is presented in Figs. 14
and 15, respectively.

4 More general solutions for the
Einstein–Maxwell-dilaton theory based on
Eguchi–Hanson type II geometry

The exact solutions to the Einstein–Maxwell-dilaton theory
(14) based on the four-dimensional Eguchi–Hanson type II
geometry are well-know [23]. The Eguchi–Hanson type II
geometry is an important subspace of the Bianchi type IX
geometry. Hence, we present a more general class of solu-
tions to the Einstein–Maxwell-dilaton theory based on this
geometry, for three different cases, where the coupling con-
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Fig. 11 The metric function H(t, r, θ) as a function of the spatial coor-
dinates r and θ for two different time slices t = 1 and t = 2 (upper and
lower surfaces, respectively), where we consider specific values for the
constants f+ = 0.5, f− = 15 and � = 2 and we consider γ = +1

stants a and b are non-zero and not equal to each other, where
a = b �= 0 and where a = b = 0.

4.1 More general solutions where the coupling constants
are not equal

We consider an ansatz for the five-dimensional spacetime as
[23,30],

Fig. 12 The behaviour of the metric function H(t, r, θ) as a function
of the coordinatesr and θ for two different time slices t = 1 and t = 2
(lower and upper surfaces, respectively), where γ = −1 and we set the
constants as f+ = 0.5, f− = 15 and � = 2

ds2
5 = − 1

H2
EH (r, θ)

dt2 + R2(t)HEH (r, θ)ds2
EH.I I , (46)

where ds2
EH.I I represents the Eguchi–Hanson type II geome-

try (given in Eq. (13)). We consider the same ansatzes for the
electromagnetic gauge field and the dilaton field, as given in
Eqs. (19) and (20), respectively. The solutions for the metric
function HEH (r, θ) is given by [23],

HEH (r, θ) =
(

1 + g+
r2 + h2 cos θ

+ g−
r2 − h2 cos θ

) 2
2+a2

,

(47)

Fig. 13 The c-functions with γ = +1 (left) and γ = −1 (right)
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Fig. 14 The behaviour of the r -component of electric field with respect
to r and θ coordinates for t = 1. The constants are set as f+ = 0.5,
f− = 15, � = 2, ν = 3 and c = 1

Fig. 15 The behaviour of the θ-component of electric field with respect
to r and θ coordinates for t = 1. The constants are set as f+ = 0.5,
f− = 15, � = 2, ν = 3 and c = 1

where g+ and g− are arbitrary constants. We note that the
solution (47) for the metric function, is not a solution for the
Einstein–Maxwell-dilaton theory based on the Bianchi type
IX space, unless the constant k in the Bianchi metric (5) is
equal to one. It is worth noting that as the field equations
are nonlinear, the linear summation of (27) and (47), is not a
solution to the theory.

We find a general solution to the Einstein–Maxwell-
dilaton theory, where the dilaton field is coupled to both the
electromagnetic field and the cosmological constant, based

on the four-dimensional Eguchi–Hanson type II space, which
is given by the metric function as,

HEH (r, θ)=
(
j+r2 cos θ + j− + g+

r2 + 4c2 cos θ
+ g−
r2 − 4c2 cos θ

) 2
2+a2

,

(48)

wherea is the coupling constant and g±, j± and c are arbitrary
constants. The metric function R(t) and the cosmological
constant are still given by (28) and (29). Moreover, we get
the same constraint on the coupling constant a and b, as given
by Eq. (30).

4.2 More general solutions where the non-zero coupling
constants are equal

We consider the following ansatz for the five-dimensional
metric,

ds2
5 = − 1

H2
EH (t, r, θ)

dt2 + R2(t)HEH (t, r, θ)ds2
EH.I I ,

(49)

where the two coupling constants are non-zero and equal to
each other. We consider the same ansatzes for the electro-
magnetic field and the dilaton field, as in Eqs. (37) and (38),
respectively.

The metric function HEH (t, r, θ) is found in [23], and is
given by,

HEH (t, r, θ) = (Ra2+2(t) + K (r, θ))
2

a2+2 R−2(t), (50)

where the function R(t) is given by,

R(t) = (εt + μ)1/a2
, (51)

and the function K (r, θ) is,

K (r, θ) = 1 + k+
r2 + h2 cos θ

+ k−
r2 − h2 cos θ

. (52)

In Eqs. (51) and (52), ε, μ and k± are arbitrary constants
[23]. We note that the linear summation of (40) and (50) is
not a general solution to the theory.

We find a combined solution for the metric function
for the Einstein–Maxwell-dilaton theory, based on the four-
dimensional Eguchi–Hanson type II geometry, as given by,

H(t, r, θ) = 1

(R (t))2

(
(R (t))a

2+2 + K (r, θ) + G(r, θ)
) 2

2+a2
,

(53)

where G(r, θ) is given in Eq. (41). We also find that the
cosmological constant, is still given by Eq. (42), which can
take positive, negative or zero values, based on the coupling
constant.
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4.3 More general solutions where the coupling constants
are zero

We consider ansatzes for the five-dimensional metric and the
electromagnetic field as in (49) and (43), respectively. The
metric functions HEH (t, r, θ) is found to be as [23],

HEH (t, r, θ) = 1 + exp

(
−γ

√
6�t

3

)

×
{

a+
r2 + 4c2 cos θ

+ a−
r2 − 4c2 cos θ

}
,

(54)

where a± are two constants and γ = ±1. The metric function
R(t) is given the same as (44). We find a general solution for
the Einstein–Maxwell-dilaton theory based on the Eguchi–
Hanson type II space, given by the metric function H(t, r, θ)

as,

H(t, r, θ) = 1 + exp

(
−γ

√
6�t

3

)

×
{

a+
r2 + 4c2 cos θ

+ a−
r2 − 4c2 cos θ

+ j+r2 cos θ + j−
}

, (55)

where j+ and j− are constants. It is worth noting that by
choosing γ = +1, the metric function H(t, r, θ) decreases
monotonically in time, while choosing γ = −1 makes the
metric function H(t, r, θ) increases monotonically in time.

5 Uplifting to higher dimensions

In this section, we study three different uplifting process
for the solutions to the five-dimensional Einstein–Maxwell-
dilaton theory.

First, we consider the uplifting of the solutions to higher
than five-dimensional theories, for the case where the cou-
pling constants are not equal. Uplifting the solutions of
the five-dimensional Einstein–Maxwell-dilaton theory to the
Einstein–Maxwell theory in higher than five dimensions
(5 + D dimensions) is possible only if D satisfies the fol-
lowing equation [4,23,31],

D = 3a2

1 − a2 . (56)

Moreover, the uplifting is only possible if the coupling con-
stants a and b are equal. The latter condition violates the con-
strain that we found for the coupling constants (30). There-
fore, the solutions to the Einstein–Maxwell-dilaton theory
cannot be uplifted to higher than five-dimensional Einstein–
Maxwell theory.

The other uplifting process is to uplift the solutions to
the five-dimensional Einstein–Maxwell-dilaton theory to the

solutions of the six-dimensional Einstein gravity in the pres-
ence of the cosmological constant. In order to uplift the solu-
tions in this case, the coupling constants have to be a = ±2
and b = ± 1

2 [32]. Hence, the coupling constants satisfy
ab = 1, which is in contrast to the Eq. (30).

We conclude that the solutions to the Einstein–Maxwell-
dilaton theory where the coupling constants are not equal,
cannot be uplifted to those of the Einstein–Maxwell theory
or the Einstein gravity in higher dimensions.

We analyze another approach for the uplifting process,
based on the reference [31]. We consider the action for the
Einstein gravity in presence of a cosmological constant �D

in D-dimensions as [23],

SD =
∫

dDx
√−g(R − 1

2(q + 2)!F
2[q+2] + 2�D), (57)

where D = p + q + 1 and B[q+1] is a q + 1-potential.
Moreover, in Eq. (57), R represents the Ricci scalar for the
D-dimensional spacetime and F[q+2] is given as,

F[q+2] = dB[q+1], (58)

where F[q+2] is a q + 2-field strength form and dB[q+1] is
the exterior derivation of the B[q+1] potential.

We consider the dimensional reduction from D-dimensions
to p + 1-dimensions on an internal curved q-dimensional
space, where we show the line element of the internal q-
dimensional space bydK2

q [23]. By considering the following
ansatzes for the D-dimensional metric and the q+1-potential
B[q+1],

ds2
D = e−δφ′

ds2
p+1 + e

φ′
(

2
δ(p−1)

−δ
)
dK2

q , (59)

B[q+1] = A[1] ∧ dKq . (60)

We consider the Einstein–Maxwell-dilaton theory in p + 1
dimensions with a potential as [23],

Sp+1 =
∫

d p+1x

(
R′ − 1

2
(∇φ′)2 − 1

4
eγφ′F2[2] + 2�De

−δφ′

+2�′e− 2
δ(p−1)

φ′
)

. (61)

In Eq. (61), R′ represents the Ricci scalar for the p + 1-
dimensional spacetime and �′ = R′′/2, where R′′ is the
Ricci scalar of the internal space. In action (61), δ and γ

are the dilaton coupling constants, which have the following
relations [31],

δ =
(

2q

(p − 1)(p + q − 1)

)1/2

, (62)

γ = δ(2 − p). (63)

By comparing the action in Eqs. (61) and (14) and redefining
the dilaton field and considering the following relations for
the coupling constants, we note that our solutions for the
five-dimensional metric, electromagnetic field and dilaton
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field can be uplifted to a higher dimensional theory in the
absence of the cosmological constant �D = 0,

φ′ = 2

√
2

3
φ, (64)

δ = −3

4

√
3

2

1

(p − 1)b
, (65)

γ = −2

3

√
3

2
a. (66)

By considering the constraint that we found on the coupling
constants ab = −2, we find that p = 4. Moreover, for having
the exact same action as (14), we consider,

A[1] = 2Atdt, (67)

2�′ = −�. (68)

Therefore, we can uplift our solutions to a higher dimensional
theory without a cosmological constant.

Now we study the uplifting of the solutions to the
five-dimensional Einstein–Maxwell-dilaton theory to higher
than five-dimensional theories, where the non-zero coupling
constants are equal.The solutions to the five-dimensional
Einstein–Maxwell-dilaton theory to higher (5 + D) dimen-
sional Einstein–Maxwell theory with a cosmological con-
stant, is possible only if Eq. (56) holds. In order to have
D ≥ 1, we find the coupling constant a satisfies,

1

2
≤ a < 1. (69)

The range of coupling constant a as given by (69), is in con-
trast to the condition (31) for the coupling constant. There-
fore, the uplifting of solutions to the Einstein–Maxwell-
dilaton theory to a higher dimensional Einstein–Maxwell
theory with a cosmological constant is not possible.

6 Conclusions

We found a class of exact solutions to the five-dimensional
Einstein–Maxwell-dilaton theory based on the Bianchi type
IX geometry, where the dilaton field is coupled to both the
electromagnetic field and the cosmological constant, with
two different coupling constants. We considered ansatzes for
the five-dimensional metric, electromagnetic field and the
dilaton field. We solved all the field equations and deter-
mined the metric functions. Through the field equations, we
found a relation between the coupling constants. Moreover,
we obtained an extra constraint on the coupling constant,
which indicates that it only takes some specific values. By
calculating the cosmological constant, we noted that it can
be positive, zero or negative. We studied the c-function for
the five-dimensional metric. By calculating the Kretschmann
invariant, we discussed the singularities of the spacetime.

Moreover, we showed that the solutions cannot be uplifted
to a higher dimensional Einstein gravity or a higher dimen-
sional Einstein–Maxwell theory in the presence of a cosmo-
logical constant. We also found another class of the exact
solutions to the Einstein–Maxwell-dilaton theory where the
coupling constants are equal. We then considered the limit
where both the coupling constants are zero and found a new
class of exact solutions to the theory. Based on the differ-
ent classes of the exact solutions, we found a more gen-
eral class of solutions to the Einstein–Maxwell-dilaton the-
ory on the transverse Eguchi–Hanson type II geometry. We
also mention that the class of exact solutions, in this arti-
cle, is unique and exists only in five dimensional Einstein–
Maxwell-dilaton theory. Extending the solutions to six and
higher dimensions (N ≥ 5), by including an Euclidean space
to the existing Bianchi type IX geometry (such as Eq. (A1)
in N = 5) lead to trivial solutions for the metric functions
H(r, θ) and R(t). One remedy to find the higher dimensional
solutions to the Einstein–Maxwell-dilaton theory might be
considering additional fields, such as extra vector fields to the
standard Einstein–Maxwell-dilaton theory [14]. The added
fields may support the existence of the solutions, in dimen-
sions greater than five.

We conclude with the observation that the well-known
holography between the rotating black holes and the confor-
mal field theories (CFTs) enjoys the independence of the cen-
tral charges of the CFT on the non-gravitational matter fields
[33,34]. In this article, we found some exact solutions to the
five-dimensional gravity coupled to non-gravitational fields.
Using the Janis–Newman algorithm, we can find the rotat-
ing versions of the exact solutions, presented in the article.
The rotating solutions provide a treasure trove of solutions,
including black holes, where we can find and study their holo-
graphic dual CFTs. Moreover, we can test the independence
of the central charges of the CFT on the non-gravitational
fields, for a broader class of gravitational theories. One other
interesting line of research is to seek the possible hidden
symmetry in the solutions space of a probe field, in the back-
ground of rotating versions of the exact solutions, presented
in the article. These symmetries, in general, lead to finding the
possible dual hidden CFT to the black holes [35]. Moreover
extending the dual hidden CFT by introducing a deformation
parameter in the radial equation of the probe field, as well as
finding the different pictures for the dual hidden CFT [36],
are some of other applications of the rotating versions of the
exact solutions, presented in the article. We leave studying
the rotating versions of the exact solutions and their above-
mentioned applications in holography for a future article.
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Appendix A: The Einstein–Maxwell-dilaton theory in six
and higher dimensions (N ≥ 5)

In this appendix, we first consider the Einstein–Maxwell-
dilaton theory (1) in six dimensions, where N = 5. We con-
sider an ansatz for the six-dimensional metric as,

ds2
6 = − 1

H2(r, θ)
dt2 + R2(t)H(r, θ)(ds2

B.I X + dy2). (A1)

In the ansatz (A1), ds2
B.I X represents the four-dimensional

Bianchi type IX metric given by Eq. (5), and H(r, θ) and
R(t) are two metric functions, and y is the sixth coordinate.

We consider the electromagnetic gauge field and the dila-
ton field in terms of the metric functions H(r, θ) and R(t)
as,

At (t, r, θ) = α6R
M6(t)HE6(r, θ), (A2)

φ(t, r, θ) = −1

a
ln (HL6(r, θ)RW6(t)), (A3)

whereα6, M6, E6, L6 andW6 are arbitrary constants. Accord-
ing to the considered ansatz (A2), the only non-zero compo-
nent of the electromagnetic gauge field is the t component,
which is a function of time and spatial coordinates r and θ .
We find all the field Eqs. (2)–(4), where N = 5. We get the
following non-zero Einstein equations,

εrφ = 16
c4 sin (ψ) cos (ψ) sin (θ) r3

(
∂
∂θ

H (r, θ)
) (
k4 − 1

)
H (r, θ)

(
256 k4c8 − 16 k4c4r4 − 16 c4r4 + r8

) , (A4)

εψθ = −4
z(r, ψ)c4 sin (ψ) cos (ψ) ∂

∂θ
H (r, θ)

r4H (r, θ)
(
16 c4 − r4

) (
16 c4k4 − r4

) , (A5)

where,

z(r, ψ) = 16(cos2 ψ)c4(k8 − 1)r4 + 16(sin2 ψ)c4(k8 − 1)r4

+256 k8c8 − 16 r4(k8 − 1)c4

−2(cos2 ψ)(k4 − 1)r8 − 2 (sin2 ψ)(k4 − 1)r8

−256 k4c8 + r8(k4 − 1). (A6)

Equations (A4) and (A5) imply that H(r, θ) = h(r). Plug-
ging the latter equation for the metric function in the other
Einstein equations εr t , εrr , εt t and εφφ , yields,

h(r) = h0, R(t) = R0, � = 0, (A7)

where h0 and R0 are constants. So, we can not find any
non-trivial metric function H(r, θ) for the six-dimensional
Einstein–Maxwell-dilaton theory. Comparing the Einstein
equations for N = 4 and N = 5, we find the interesting
point that, in the former theory the above-mentioned Ein-
stein equations εrφ and εψθ are identically zero, while in the
latter theory, they are not zero, where ultimately lead to trivial
metric functions.

Moreover, in general, we consider the Einstein–Maxwell-
dilaton theory (1) in equal or higher than six dimensions,
where N ≥ 5. We consider an ansatz for the metric as,

ds2
N = − 1

H2(r, θ)
dt2

+R2(t)H(r, θ)(ds2
B.I X + ds2

Euc.), (A8)

where ds2
Euc. is the (N − 4)-dimensional Euclidean metric,

with the coordinates (y1, . . . , yN−4). A similar analysis of
the field equations shows that the metric functions H(r, θ)

and R(t) can be only trivial, to satisfy all the field equations.
We also mention to find the higher dimensional solutions

to the Einstein–Maxwell-dilaton theory, we might consider
adding other fields, such as extra vector fields to the stan-
dard Einstein–Maxwell-dilaton theory [14], to support the
existence of the solutions, in dimensions greater than five.

Appendix B: The Bianchi classification of the homoge-
neous spaces

In this appendix, following Bianchi’s procedure, we represent
the classification of the homogeneous Bianchi type spaces.
We start with the group of transformations:

xμ → x ′μ = Tμ(x, ζ ), (B1)

where the set of {ζ a |a ∈ 1, . . . , r} are r independent vari-
ables that parameterize the group. We consider an infinitesi-
mal transformation:

xμ → x ′μ = Tμ(x, ζ0 + δζ ) ≈ xμ + ξ
μ
a (x)δζ a = (1 + δζ aξa)xμ,

(B2)

where ζ0 corresponds to the identical transformation,
Tμ(x, ζ0) = xμ. In Eq. (B2) we consider [37]:(

∂Tμ

∂ζ a

)
(x, ζ0) ≡ ξμ

a (x). (B3)

We define the r first order differential operators {ξa} in
Eq. (B2) in correspondence with the r vectorial fields with
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components {ξμ
a } with the relation ξa = ξ

μ
a

∂
∂xμ , which are

the killing generating vectors. The Lie algebra that applies to
the killing vectors in the commutation relation form is given
by:

[ξa, ξb] = Cc
abξc, (B4)

where Cc
ab is the structure constant. By extending this for-

malism, we introduce the basis {eα} for the Lie algebra with
the commutation relation as:

[eα, eβ ] = Cγ
αβeγ , (B5)

and define the symmetric quantity as γαβ = γβα = Cγ
ασCσ

βγ .
The relation in Eq. (B5) defines a group of transformation
(non-Abelian) which represents the spatially homogeneous
part of the spacetime. The metric tensor can be defined with
respect to the bases {eα} as:

gαβ = eαeβ, (B6)

where {α, β ∈ {0, 1, 2, 3}}. Each class of the equivalence Lie
group needs to be indicated by only one representative group.
We show the tetradic basis of the four linearly independent
vectors on each point as ei(a), where a ∈ {1, . . . , 4} indicates
the tetradic and i represents the tensorial part. These bases
satisfy the orthogonality condition:

e(a)
i ek(a) = δki . (B7)

Moreover, the metric tensor in terms of the tetradic bases
is gi j = e(a)i e

(a)
k = η(ab)e

(a)
i e(b)

k . Hence, the line element
becomes [37]:

ds2 = ηab(e
(a)
i dxi )(e(b)

k dxk). (B8)

It is worth noting that dx (a) = e(a)
i dxi are not exact differ-

entials of functions of the coordinates in general. The next
step is to find the structure constants in a way that the met-
ric becomes invariant under the homogeneity constraint. The
Lie algebra in the tetradic bases is:

[ea, eb] = Cc
abec. (B9)

In order to have an invariant line element γαβ under the trans-
formation of its group of motion, γαβ must be the same under
the homogeneity constraint. We write the spatial part of the
line element as:

dl2 = ηab(e
(a)
μ dxμ)(e(b)

ν dxν), (B10)

which makes γμν to be γμν = ηabe
(a)
μ e(b)

ν . Equation (B10)

also implies that e(a)
μ dxμ is invariant under such a transfor-

mation. Hence [38]:

e(a)
μ (x)dxμ = e(a)

μ (x ′)dx ′μ. (B11)

A system of differential equations for determining x ′ν(x) can
be obtained from (B11) as:

∂x ′ν

∂xμ
= eν

(a)(x
′)e(a)

μ (x). (B12)

The Eq. (B12) is integrable if:

∂2x ′ν

∂xμ∂xγ
= ∂2x ′ν

∂xγ ∂xμ
, (B13)

which is called the Schwartz’s condition [39]. Substituting
(B12) in (B13) we find:

e(b)
γ (x)e(a)

μ (x)

eν
(a)(x

′)

(
∂eν

(a)(x
′)

∂x ′σ eσ
(b)(x

′) − ∂eν
(b)(x

′)
∂x ′σ eσ

(a)(x
′)
)

=
(

∂e(a)
γ (x)

∂xμ
− ∂e(a)

μ (x)

∂xγ

)
. (B14)

After using the properties of the tetradic base and some
algebra, we force both sides of the Eq. (B14) to be equal to
each other and equal to the same constant:
(

∂e(c)
μ

∂xν
− ∂e(c)

ν

∂xμ

)
eμ

(a)e
ν
(b) = Cc

ab, (B15)

whereCc
ab is the structure constant. The uniformity condition

is obtained by multiplying (B15) by eγ

(c) [37]:

eμ

(a)

∂eγ

(b)

∂xμ
− eν

(a)

∂eγ

(a)

∂xν
= Cc

abe
γ

(c). (B16)

By defining a linear operator as Xa = eμ

(a)
∂

∂xμ , we rewrite
the Eq. (B16):

[Xa, Xb] = Cc
abXc, (B17)

where the commutation [Xa, Xb] implies [Xa, Xb] =
XaXb − XbXa . We use the Jacobi identity to express the
homogeneity:

[[Xa, Xb], Xc] + [[Xb, Xc], Xa] + [[Xc, Xa], Xb] = 0.

(B18)

We can write Eq. (B18) in terms of the structure constants:

(Ch
abC

d
ch + Ch

bcC
d
ah + Ch

caC
d
bh)Xd = 0, (B19)

where the two index structure constant is defined as the dual
of Cc

ab as follow:

Cc
ab = εabcC

dc. (B20)

In Eq. (B20) ε is the Levi-Civita pseudo tensor and Eq. (B18)
can be written as:

εabcC
cdCba = 0. (B21)
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This mathematical tools and their relations enable us to clas-
sify the non-equivalent homogeneous spaces by using non-
equivalent combinations of the constants Cab [38],

[X1, X2] = −aX2 + n3X3, (B22)

[X2, X3] = n1X1, (B23)

[X3, X1] = n2X2 + aX3. (B24)

The constants (n1, n2, n3) and a in Eqs. (B22)–(B24)
are related to the structure constants. Non-equivalent struc-
ture constants that lead to the non-equivalent homogeneous
spaces is classified in Bianchi classification as follow [38]:

Type I: a = 0 and (n1, n2, n3) = (0, 0, 0),
Type II: a = 0 and (n1, n2, n3) = (1, 0, 0),
Type III: a = 1 and (n1, n2, n3) = (0, 1,−1),
Type IV: a = 1 and (n1, n2, n3) = (0, 0, 1),
Type V: a = 1 and (n1, n2, n3) = (0, 0, 0),
Type VI: a = 0 and (n1, n2, n3) = (1,−1, 0),
Type VII: a = 0 and (n1, n2, n3) = (1, 1, 0),
Type VIII: a = 0 and (n1, n2, n3) = (1, 1,−1),
Type IX: a = 0 and (n1, n2, n3) = (1, 1, 1).

Each type of the Bianchi spaces has its own properties and
applications in different theories. Among all of these Bianchi
type spaces, we focus on the Bianchi type IX geometry, as it
is the most symmetric space (due to (n1, n2, n3) = (1, 1, 1)),
between all different types of the Bianchi geometry.

The Bianchi type IX geometry has essential properties
and has been used in different areas of gravitational physics.
This metric can be written with an SO(3) or SU (2) isometry
group as [21]:

ds2
B.I X = e2 f (η)σ 2

1 + e2h(η)σ 2
2 + e2g(η)σ 2

3 + e2( f (η)+h(η)+g(η))dη2.

(B25)

In Eq. (B25), σi ’s are a basis of SO(3) one-forms which
satisfy dσi = 1

2εi jkσ jσk [40]. Self-duality of the curvature
gives first order differential equations for f (η), h(η) and g(η)

[21]:

2
d f

dη
= e2h + e2g − e2 f − 2λ1e

h+g, (B26)

2
dh

dη
= e2g + e2 f − e2h − 2λ2e

f+g, (B27)

2
dg

dη
= e2 f + e2h − e2g − 2λ3e

f +h . (B28)

In Eqs. (B26)–(B28), the constants {λi |i ∈ 1, 2, 3} satisfy
the relation λiλ j = εi jkλk , which leads to five different
choices for the set (λ1,λ2,λ3) [22]. By choosing the constants
as (λ1, λ2, λ3) = (0, 0, 0), the Eqs. (B26)–(B28) become:

2
d f

dη
= e2h + e2g − e2 f , (B29)

2
dh

dη
= e2g + e2 f − e2h, (B30)

2
dg

dη
= e2 f + e2h − e2g, (B31)

which can be solved exactly and yield [21]:

f (η) = 1

2
ln

(
c2 cn(c2η, k2)dn(c2η, k2)

sn(−c2η, k2)

)
, (B32)

h(η) = 1

2
ln

(
c2 cn(c2η, k2)

dn(c2η, k2)sn(−c2η, k2)

)
, (B33)

g(η) = 1

2
ln

(
c2 dn(c2η, k2)

cn(c2η, k2)sn(−c2η, k2)

)
, (B34)

in terms of the standard Jacobi elliptic functions sn, cn and
dn [41]. By changing the coordinate η to r = 2c

(cn(c2η,k2))1/2 ,
the triaxial Bianchi type IX metric can be written as [21]:

ds2
tr.BI X = dr2

J (r)1/2

+r2

4
J (r)1/2

⎛
⎝ σ 2

1

1 − a2
1
r4

+ σ 2
2

1 − a2
2
r4

+ σ 2
3

1 − a2
3
r4

⎞
⎠ , (B35)

where

J (r) =
(

1 − a4
1

r4

)(
1 − a4

2

r4

)(
1 − a4

3

r4

)
. (B36)

In Eq. (B36), ai ’s are three constant parameters.

Appendix C: The explicit expressions for the Maxwell
field equations where N = 4

The Maxwell field equations Mφ , Mψ and Mθ are given as,

Mφ = −64

a
r2

√
r8 − 16c4(k4 + 1)r4 + 256c8k4

r8 cos ψ sin ψ

× c4αHE E

(
∂H

∂θ

)
RM

(
∂R

∂t

)
(4aW + 4Ma + 8a), (C1)

Mψ = −16

a
r2

√
r8 − 16c4(k4 + 1)r4 + 256c8k4

r8 cos ψ sin ψ

× c4 cos θαHE E

(
∂H

∂θ

)
RM

(
∂R

∂t

)
× (aW + Ma + 2a)(k4 − 1),

(C2)

and

Mθ = −1

α

[
(−16 sin2 ψc4k4 − 16 cos2 ψc4 + r4)(aW + Ma + 2a)

×αHE E

(
∂H

∂θ

)
RM

(
dR

dt

)]
. (C3)

The Eqs. (C1)–(C3) lead to the same relation for the constants
W and M , as W + M = −2.
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The Maxwell field equation Mt gives a partial differential
equation for the metric function H(r, θ), and is given by,

Mt = 1

4a
(EαRMHE (−1024 sin θH

(
∂H

∂r

)
c8k4a

+1024r sin θ

(
∂H

∂r

)2

c8k4a − 256 cos2 ψ cos θ

×
(

∂H

∂θ

)
c4k4r3Ha − 64r5 sin θ

(
∂H

∂r

)2

c4k4a

−256 cos2 psi

(
∂H

∂θ

)2

c4 sin θr3a − 64E

×
(

∂H

∂r

)2

sin θc4r5a − 64r4 sin θH

(
∂H

∂r

)
c4a

−36a

(
∂H

∂r

)2

sin θc4r5L + 256 cos2 ψ

(
∂H

∂θ

)2

× sin θac4k4r3 + 256 cos2 ψH

(
∂H

∂θ

)
cos θac4r3

−64r5 sin θ

(
∂H

∂θ

)2

× c4a + 12r8 sin θH

(
∂H

∂r

)
a

+16a

(
∂H

∂θ

)2

sin θr7L + 16 cos θH

(
∂H

∂θ

)
r7a

+16E

(
∂H

∂θ

)2

sin θr7a + 4E

(
∂H

∂r

)2

sin θr9a

+4a

(
∂H

∂r

)2

sin θr9L − 256E cos2 ψ

(
∂H

∂θ

)2

×c4 sin θr3a − 256a cos2 ψ

(
∂H

∂θ

)2

sin θc4r3L

+4r9 sin θH

(
∂2H

∂r2

)
a + 16 sin θH

(
∂2H

∂θ2

)
r7a

−256 cos2 ψ

(
∂2H

∂θ2

)
c4 sin θr3Ha

−256H

(
∂2H

∂θ2

)
c4k4r3a

+1024r sin θH

(
∂2H

∂r2

)
c8k4a

−64r5 sin θH

(
∂2H

∂r2

)
c4k4a + 256a cos2 ψ

(
∂H

∂θ

)2

× sin θLc4k4r4 + 256 cos2 ψ

(
∂H

∂θ

)2

sin θEac4k4r3

−256a

(
∂H

∂θ

)2

sin θc4k4r3L

−64a

(
∂H

∂r

)2

sin θc4k4r5L + 1024a

(
∂H

∂r

)2

× sin θc8k4r L − 64r4 sin θH

(
∂H

∂r

)
c4k4a

−64r5 sin θH

(
∂2H

∂r2

)
c4a − 256E

(
∂H

∂θ

)2

× sin θc4k4r3a + 1024E

(
∂H

∂r

)2

sin θc8k4ra

−64E

(
∂H

∂r

)2

sin θc4k4r5a + 256 cos2 ψ

×H

(
∂2H

∂θ2

)
sin θac4k4r3 − 256 sin θ

(
∂H

∂θ

)2

×c4k4r3a − 256 cos θr3H

(
∂H

∂θ

)
c4a + 16 sin θ

(
∂H

∂θ

)2

r7a

+4r9 sin θ

(
∂H

∂θ

)2

a. (C4)

We find that solutions to Eq. (C4) is given by,

H(r, θ) = ( j+r2 cos θ + j−)
2

a2+2 , (C5)

where j+ and j− are two constants of integration.
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