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Abstract The cosmography method is a model-independent
technique used to reconstruct the Hubble expansion of the
Universe at low redshifts. In this method, using the Hub-
ble diagrams from Type Ia Supernovae (SNIa) in Pantheon
catalog, quasars and Gamma-Ray Bursts (GRB), we put
observational constraints on the cosmographic parameters
in holographic dark energy (HDE) and concordance ΛCDM
models by minimizing the error function χ2 based on the
statistical Markov Chain Monte Carlo (MCMC) algorithm.
Then, we compare the results of the models with the results
of the model-independent cosmography method. Except for
the Pantheon sample, we observe that there is a big tension
between standard cosmology and Hubble diagram obser-
vations, while the HDE model remains consistent in all
cases. Then we use different combinations of Hubble dia-
gram data to reconstruct the Hubble parameter of the model
and compare it with the observed Hubble data. We observe
that the Hubble parameter reconstructed from the model-
independent cosmography method has the smallest devia-
tion from the Hubble data and the ΛCDM (HDE) model has
the largest (middle) deviation, especially when we keep the
observational data point 226+8.0

−0.8 at redshift z = 2.36 in the
analysis. On the contrary, in the redshift z < 1, we see that the
compatibility of ΛCDM cosmology and observation is even
better than the model independent cosmography method.

1 Introduction

Observations of the distant SNIa indicate that the current
Universe has undergone an accelerated expansion phase [1–
3]. This phenomenon has been confirmed by other observa-
tions and experiments, such as the cosmic microwave back-
ground (CMB) [4–6], large-scale structure (LSS) and baryon
acoustic oscillation (BAO) [7–12], high-redshift galaxies
[13], high-redshift galaxy clusters [14,15] and weak grav-
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itational lensing [16–18]. The accelerated expansion stage
can be achieved by a large-scale modification of the stan-
dard theory of gravity, or by introducing a strange cosmic
fluid with negative pressure called dark energy (DE) [1–3].
The Einstein’s cosmological constant Λ with constant equa-
tion of state (EoS) parameter equal to −1, is the first and
simplest DE candidate. Taking into account the cosmologi-
cal constant Λ and cold dark matter (CDM), one can give a
standard cosmological model, the so-called ΛCDM model,
which is compatible with observational data. However, this
model has two basic problems: fine-tuning and cosmic coin-
cidence [19–23].

In order to solve these problems, different DE models with
time-varying EoS parameters have been proposed in the lit-
erature. One of the models is the holographic dark energy
(HDE) model (see Sect. 2) which was first proposed by [24]
based on the holographic principle. The HDE model has been
extensively studied from the perspective of theory and obser-
vation [25–33]. We refer the reader to recent review of the
HDE model [34] in which various observational and theoret-
ical aspects of the model have been investigated.

On the other hand, we can study the expansion of the
Universe without assuming a specific cosmological model.
These methods are so-called model-independent methods.
One of these methods is the Gaussian process method which
is defined on the basis of the distribution over functions. The
covariance function defined in this method connects two dif-
ferent data points. Since the data and its derivatives follow a
Gaussian function, the covariance function can predict data
values in other redshifts [35]. Another model-independent
method is the smoothing method, which can smooth the lumi-
nosity distance relative to the redshift. In smoothing method,
the best fit values of the cosmological parameters can be
determined by parameterizing the cosmological quantities
[36]. Finally, another model-independent method to study
the history of the expansion of the Universe that we used
in this work is the cosmography method (see Sect. 3). As a
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well-known method in cosmology, cosmography method has
been widely used in the literature [37–47]. This method was
first proposed by [37] and [38] to distinguish between various
dark energy models. Capozzilo and Salzano [39] used cos-
mography method to study the dynamics of galaxy clusters
in f (R) theory of gravity. They showed that cosmography
method can be used to distinguish GR from alternative the-
ories. Capozzilo and his colleagues also used cosmography
method to study the expansion history of the Universe and
showed that the results may be different from the standard
model of cosmology [40]. Their results show that despite the
deceleration parameter error, the jerk parameter has 2σ ten-
sion, and it also shows that the snap parameter has a tail for
large negative values that match the value of ΛCDM.

Recently, the authors of [44] used the cosmography tech-
nique and also the observational data related to the distance
modulus (also called Hubble diagram) of SNIa, quasars and
GRB to show a big tension between the cosmography param-
eters of ΛCDM model and those obtained from model-
independent cosmography method. In addition, using the
Hubble diagram of SNIa, quasars and GRB, the standard
ΛCDM model and some important dynamical DE models
such as CPL and Pade parametrization, have been studied in
the context of cosmography method [46]. It has been shown
that the ΛCDM model has serious problems with these obser-
vations, but CPL and Pade parameterizations may have better
consistency at least at the 2σ level.

In this article, we use different combinations of Hubble
diagrams from SNIa, quasars, and GRB to study the HDE
model in the context of cosmography method, and compare
the results with the results of standard ΛCDM cosmology.
We use the minimization of the error function χ2 in the con-
text of the Markov Chain Monte Carlo (MCMC) algorithm to
calculate the best fit values of the cosmographic parameters
in the HDE and ΛCDM models. We emphasize that in order
to calculate the best fit values of the cosmographic parame-
ters, we first use the Hubble diagram of SNIa, quasars, and
GRB to constrain the cosmological parameters of the model.
By comparing the constrained values of the cosmographic
parameters of the HDE and ΛCDM models with the values
obtained from the model-independent cosmography method,
we can check these models and their consistency with the
Hubble diagram observations. In the next step, we reconstruct
the Hubble parameter in the context of cosmography method
and compare it with the observed Hubble data, H(z). In order
to make this comparison, we calculate the error function χ2

based on the H(z) data, and evaluate the consistency of HDE,
ΛCDM, and model-independent cosmography method with
these observations.

The layout of this paper is as follows. We introduce the
HDE model in Sect. 2 and cosmography method in Sect. 3. In
Sect. 4, we put observational constrains on the cosmographic
parameters using different combinations of the Hubble dia-

gram data. In Sect. 5, we reconstruct the Hubble parameter of
the models and compare it with observed H(z) data points.
In Sect. 6, we conclude this work.

2 The HDE model

The holographic principle is one of the most important prin-
ciples of quantum gravity. Based on this principle, all the
information contained in the volume of space can be repre-
sented as a hologram, corresponding to the theory located
on the boundary of the space [48,49]. In fact, according to
the holographic principle, the number of degrees of freedom
of a finite-size system should be finite and bounded by the
corresponding area of its boundary [50]. In this regard, the
total energy of a physical system with a size of L should
not exceed the mass of a black hole of the same size, i.e.,
L3ρΛ ≤ LM2

P , where ρΛ is the quantum zero-point energy
density caused by the UV cutoff Λ and MP is the Planck
mass (M2

P = 1/8πG). In the context of cosmology, in order
to explain the accelerated expansion of the universe, Li [24]
proposed a dark energy model based on the holographic prin-
ciple, the so-called holographic dark energy (HDE) model.
In this model, the vacuum energy of the holographic princi-
ple is considered as DE. The density of DE in HDE model is
given by the following relation [24]:

ρDE = 3c2

8πGL2 , (1)

where c is the model parameter of the HDE which is positive
and constant. It should be noted that the HDE model is defined
in terms of an IR cut-off L in Eq. (1). The IR cut-off L can
be defined based on the Hubble horizon, particle horizon or
event horizon as follows:

– Hubble horizon: The first and simplest choice for IR cut-
off is the Hubble length, i.e., L = H−1. In this choice,
the density of DE will be closer to the value expected
from observations and will be proportional to the square
of the Hubble parameter, i.e., ρDE ∝ H2. Although this
choice can solve the fine-tuning problem, we will get a
wrong equation of state for the HDE model, so the current
accelerated expansion cannot be achieved [51–54].

– Particle horizon: The next option for IR cutoff is the par-
ticle horizon. This option cannot explain the accelerated
expansion of the universe [24].

– Event horizon: This option was first proposed by [24] for
the IR cutoff. The length scale L is defined by the event
horizon, which is given by:

L = Rh = a
∫ ∞

t

dt

a(t)
= a

∫ ∞

a

da

Ha(t)2 , (2)
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where a is the scale factor, t is the cosmic time and H is
the Hubble parameter. In this case we can write the energy
density of DE as:

ρDE = 3c2

8πGR2
h

. (3)

By selecting the event horizon as the IR cutoff, the HDE
model can explain the late-time acceleration consistent with
the observation [55–57]. We note that in this case, coinci-
dence and fine-tuning issues will be resolved [24].

Now, let’s start with a Freidmann–Robertson–Walker
(FRW) Universe in a flat geometry filled with pressureless
matter and HDE. Notice that we will use the third option
(event horizon) as the IR cutoff from now on. In this case,
the dynamics of the Universe is given by:

H2 = 8πG

3
(ρm + ρDE ), (4)

where ρm is the energy density of the pressureless matter,
ρDE is the energy density of DE, and H is the Hubble param-
eter. We mention that the contribution of radiation on the total
energy budget of the Universe at low redshifts is negligible.

In the non-interacting models, the different components
of the Universe evolve separately. Hence, the evolution of
the energy density of the pressureless matter and DE are
described by the following continuity equations:

ρ̇m + 3Hρm = 0, (5)

ρ̇DE + 3H(1 + wDE )ρDE = 0, (6)

where over-dot is the derivative with respect to cosmic time,
and wDE is the equation of state (EoS) parameter of DE.

Taking the time derivative of Eq. (3), using Eq. (6) and
Ṙh = 1 + HR, we can obtain the EoS parameter of DE in
HDE model as [29,58]:

wDE = −1

3

(
1 + 2

√
ΩDE

c

)
, (7)

where ΩDE is the dimensionless density parameter of the
DE component. Using Eq. (3) and the critical energy density
ρc = 3H2

8πG , we can obtain the energy density of DE in HDE
model as follow:

ΩDE = ρDE

ρc
= c2

(HRh)2 . (8)

The evolution of energy density of DE can be obtained by
taking a derivative of Eq. (8) with respect to scale factor. Then
using the relation between redshift and scale factor a = 1

1+z ,
we have

dΩDE

dz
= − 1

1 + z
ΩDE (1 − ΩDE )(1 + 2

√
ΩDE

c
). (9)

Also, using the Eq. (4) and Eqs. (5–6), the dimensionless
Hubble parameter E(z) = H(z)

H0
can be written as:

E2(z) = Ωm0(1 + z)3

1 − ΩDE
, (10)

where Ωm0 is the present value of the dimensionless mat-
ter density. Also, the evolution of ΩDE is given by Eq. (9).
Note that we study the HDE model at the late time where the
energy density of radiation is negligible. The model param-
eter c of the HDE model is a key parameter that determines
the historical evolution of the expansion of the Universe in
the context of the HDE model. A detailed study of the HDE
model and the use of cosmological data (both high redshift
CMB and low redshift data) to constrain the model parameter
c can be found in [58]. According to the value of the model
parameter c, the EoS parameter of the HDE model can be
greater or less than wΛ = −1, where wΛ is the EoS param-
eter of cosmological constant. By fixing the energy density
parameter of current DE to ΩDE,0 = 0.7, we see that for
c < 0.83 (c > 0.83) the current EoS parameter is less than
(greater than) the fiducial value wΛ = −1. In addition to the
model parameter c, the density parameter of matter Ωm0 is
another parameter on which the dynamics of the expanding
Universe depends. Note that we assume a flat FRW Universe,
so ΩDE,0 = 1−Ωm0. Hence, the main cosmological param-
eters of the HDE model are reduced to Ωm0 and c.

3 The cosmography approach

Cosmography is a model-independent way of expressing the
dynamics of the universe, without presupposing a particu-
lar cosmological model. In this way, cosmological quantities
are expanded as a Taylor series around current time, where
the coefficients of the Taylor expansion can be constrained by
observational data. The cosmographic parameters in the con-
text of the FRW Universe are defined as the time derivatives
of the cosmic scale factor as follows [59]:

H(t) = a(1)

a
,

q(t) = − a(2)

aH2 ,

j (t) = a(3)

aH3 ,

s(t) = a(4)

aH4 ,

l(t) = a(5)

aH5
, (11)

where a(n) is the nth time derivative of the scale factor. The
cosmographic parameters do not depend on the form of the
DE fluid, since they are not functions of the EoS parameter
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of DE. These parameters are introduced as Hubble param-
eter (H ), deceleration parameter (q), jerk parameter ( j),
snap parameter (s) and lerk parameter (l). The cosmographic
parameters, when calculated at the present time, are the effec-
tive observables to reconstruct the history of the expanding
Universe at low redshifts. In this context, one can reconstruct
the scale factor a(t) in terms of the cosmographic series at
the present time as follows:

a(t) � 1 + H0(t − t0) − q0

2
H2

0 (t − t0)
2

+ j0
6
H3

0 (t − t0)
3 + s0

24
H4

0 (t − t0)
4 + l0

120
H5

0 (t − t0)
5.

(12)

Note that behind each cosmographic parameter is a physical
point. The Hubble parameter H indicates the expansion or
contraction of the Universe. H > 0 stands for ȧ > 0 and indi-
cates the expansion of the Universe, and conversely H < 0
indicates the contraction of the Universe. In an expanding
Universe (H > 0), the sign of q indicates the accelerated or
decelerated phase of the expansion. A positive q means that
gravity dominates over the other species, indicating a slowed
expansion, while a negative q shows that repulsive effects
overcome gravity, indicating an accelerated expansion. The
change in the parameter q, which indicates the transition
epoch from slowed to accelerated expansion, is determined
by jerk parameter j . A positive j indicates that there is a tran-
sition time in which the expansion phase of the Universe is
changed. According to this transition, the parameter q tends
to zero and then changes the sign. The cosmographic coef-
ficients s and l become important at higher redshifts. The
variation of s is basically due to the sign of the lerk param-
eter l and indicates how the shape of the Hubble expansion
becomes smooth at higher redshifts. It is useful to obtain the
various time derivatives of the Hubble parameter H as func-
tions of the cosmographic parameters. Using the relations of
Eq. (11), we can obtain

H (1) = −H2(1 + q),

H (2) = H3(3q + j + 2),

H (3) = H4(−3q2 − 12q − 4 j + s − 6),

H (4) = H5(30q2 + 60q + 10q j + 20 j − 5s + l + 24),

(13)

where H (n) is the nth time derivative of the Hubble parameter
H . Using Taylor Series, we can now reconstruct the Hubble
expansion of the Universe at low redshifts. In this context,
the Taylor Series of the Hubble parameter up to the fourth
order in redshift z around the present time (z = 0) can be
written as

H(z) � H0 + dH

dz
(z = 0)z + d2H

dz2 (z = 0)
z2

2

+d3H

dz3 (z = 0)
z3

6
+ d4H

dz4 (z = 0)
z4

24
. (14)

Taylor series (14) is valid for small redshifts (z < 1) and
does not converge at higher redshifts. Thus, since much of
the observational data is at higher redshifts than z = 1, the
above Taylor series cannot be used to reconstruct the Hubble
expansion at z > 1. In order to solve the above convergence
problem, one can define a new redshift variable, the ζ −
redshi f t [40,46,60] as follows:

z → ζ = z

1 + z
. (15)

This definition improves the convergence problem without
changing the the Hubble expansion scenario of the Universe.
Moreover, other parameterizations such as ζ = arctan(z)
and various Pade approximations based on rational func-
tions have been proposed [45]. It has been shown that the
Pade approximation is a good parametrization to recon-
struct the Hubble parameter at very high redshifts where we
encounter the CMB data. On the other hand, the parametriza-
tion z/(1 + z), which is a simple approximation compared
to Pade polynomials is well fitted to observations at low and
middle redshifts [45]. In this work, we use the ζ = z/(1+ z)
parametrization and so we can write the Taylor expansion of
the Hubble parameter around the present time (ζ = 0) as
follows:

H(ζ ) � H0 + dH

dζ
(ζ = 0)ζ + d2H

dζ 2 (ζ = 0)
ζ 2

2

+d3H

dζ 3 (ζ = 0)
ζ 3

6
+ d4H

dζ 4 (ζ = 0)
ζ 4

24
. (16)

Now we convert the time derivatives in Eq. (13) to the
derivatives with respect to ζ , put the results in Eq. (16) and
use Eq. (11) in order to find the reconstructed dimensionless
Hubble parameter E = H/H0 as follows [46]:

E(ζ ) = H(ζ )

H(ζ = 0)
= 1 + C1ζ + C2ζ

2

2
+ C3ζ

3

6
+ C4ζ

4

24
,

(17)

where the various coefficients Ci are obtained in terms of
cosmographic parameters as:

C1 = 1 + q0,

C2 = 2 − q2
0 + 2q0 + j0,

C3 = 6 + 3q3
0 − 3q2

0 + 6q0 − 4q0 j0 + 3 j0 − s0,

C4 = −15q4
0 + 12q3

0 + 25q2
0 j0 + 7q0s0 − 4 j2

0

−16q0 j0 − 12q2
0 + l0 − 4s0 + 12 j0 + 24q0 + 24,

(18)
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in which q0, j0, s0 and l0 are the current values of the cos-
mographic parameters.

We now calculate the cosmographic parameters in the
HDE cosmology. As we saw in Sect. 2, the free parame-
ters in the HDE model are Ωm0 and c. With some simple
calculations, we can derive the cosmographic parameters in
the HDE model in terms of the free parameters of the model.
For this purpose, by deriving the Freidmann equation in (4)
in time and using the continuity relations in Eqs. (5 and 6),
we can obtain the following equations in HDE cosmology:

Ḣ

H2 = −3

2
(1 + wDEΩDE ) , (19)

Ḧ

H3 = 9

2

[
(1 − ΩDE )

(
1 − Ω

3/2
DE

wDE

3c

)
+ (1 + wDE )2 ΩDE

]
,

(20)

where the overdots represent the derivative according to cos-
mic time. Substituting Eqs. (19 and 20) into Eq. (13), we can
calculate the cosmography parameters in HDE cosmology as
follows:

q = 1

2
(1 + 3wDEΩDE ), (21)

j = 9

2
[(1 − ΩDE )

(
1 − Ω

3/2
DE

wDE

3c

)

+(1 + wDE )2ΩDE ] − 3q − 2. (22)

Note that the higher derivatives of the Hubble parameter in
the HDE model to obtain s and l are so complicated that they
lead to very costly relations. Therefore, we ignore the input
of these relations. Moreover, from the observational point of
view, we cannot make reasonable constraints on the param-
eters s0 and l0 (see [44,46]). From a mathematical point of
view, we know that associated terms of the higher deriva-
tives of the Hubble parameter in the Taylor expansion have
a smaller contribution than the first terms of the expansion.
Now we want to test Eqs. (21 and 22) in limiting cases. For
the Einstein de-Sitter (EdS) Universe (Ωm = 1.0), Eqs. (21
and 22) yield the reference values q = 0.5 and j = 1, as
expected. Setting also ΩDE,0 = 0.7 and wDE = −1, we
obtain q0 = −0.55 which is the deceleration parameter of
the concordance ΛCDM model at the present time.

4 Observational constraints on cosmographic
parameters

In this section, we put observational constraints on the cos-
mographic parameters, using the data from the Hubble dia-
gram of SNIa, quasars and GRB. We use the Pantheon cat-
alog for SNIa and refer the reader to the full discussion and
complete details of the observational data related to quasars
and GRB in [44,46]. In order to constraint the cosmographic

parameters in a model-independent way, we let the cosmo-
graphic parameters (q0, j0, s0 and l0) be free parameters in
the MCMC algorithm. We then calculate the error function
χ2 for each set of random values of the cosmographic param-
eters in the parameter space of q0, j0, s0 and l0. Here the error
function is

χ2 =
∑
i

[μt (zi ) − μobs(zi )]2

σ 2
i

, (23)

whereμt (zi ) is the theoretical prediction of the distance mod-
ulus (the difference between apparent magnitudem and abso-
lute magnitude M) at a given redshift zi and μobs(zi ) is the
observed value at zi . The theoretical distance modulus is

μt (z) = 5 log10[(1 + z)
∫ z

0

dz

E(z)
] + μ0, (24)

where μ0 = 42.384 − 5 log10(h) is the current value of the
distance modulus and h = H0/100. Note that to calculate μt

in model-independent cosmography method, we substitute
Eq. (17) into Eq. (24) and use Eq. (18). Since the absolute
magnitude M and the Hubble parameter h are degenerate in
the calculation of the distance modulus, we can marginalize
over these nuisance parameters by taking the expansion of
χ2 around μ0 as

χ2 = A + 2Bμ0 + Cμ2
0, (25)

where

A =
∑
i

[μt (zi ;μ0 = 0) − μobs(zi )]2

σ 2
i

B =
∑
i

μt (zi ;μ0 = 0) − μobs(zi )

σ 2
i

C =
∑
i

1

σ 2
i

. (26)

If we equate the differentiation of Eq. (25) with respect to μ0

with zero, we find μ0 = −B/C . Then we substitute μ0 into
Eq. (25) and obtain

χ̃2 = A − B2

C
. (27)

Note that in Eq. (27) we omit the influence of nuisance
parameters M and h. In order to find the best-fit values of the
cosmographic parameters in a model-independent cosmog-
raphy method, we minimize χ̃2 in the context of the MCMC
algorithm using the different combinations of the Hubble
diagram data. The various combinations of the Hubble dia-
gram data from SNIa (Pantheon), quasars and GRB are as
follows: (i) sample I (Pantheon), (ii) sample II (Pantheon +
GRB), (iii) sample III (Pantheon + quasars) and (iv) sam-
ple IV (Pantheon + GRB + quasars). For each sample, we
minimize the total error function, χ̃2

tot , defined as follows:
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sample I : χ̃2
tot = χ̃2

Pantheon,

sample I I : χ̃2
tot = χ̃2

Pantheon + χ̃2
GRB,

sample I I I : χ̃2
tot = χ̃2

Pantheon + χ̃2
Quasar ,

sample I V : χ̃2
tot = χ̃2

Pantheon + χ̃2
Quasar + χ̃2

GRB .

(28)

Results for the model-independent cosmography method,
which include the best-fit values of the cosmographic param-
eters within the 1−σ uncertainty were presented in Table (2)
of our previous work [46]. In order to find the best fit values
of the cosmographic parameters in the HDE cosmology, we
should first find the best-fit values of the free parameters of
the model using the various data samples discussed above.
We mention that the free parameters of the HDE model are
the model parameter c and the matter density parameter Ωm0.
Moreover, we add another column in our MCMC chain by
using Eq. (7) to obtain the best fit-value of the current EoS
parameter of DE, wDE,0, in the HDE model. Note that in this
step we use Eqs. (9 and 10) to calculate the Hubble parameter
and then Eq. (24) to calculate the distance modulus. Numer-
ical results of our analysis within 1 − σ (68% confidence
level), 2 − σ (95% confidence level) and 3 − σ (98% confi-
dence level) are shown in Table 1. First, we see that in the case
of the Pantheon sample, the current energy density of matter
is about 0.3, which implies that 30% of the energy budget of
the low-redshift flat Universe is occupied by presserless mat-
ter and the rest is in the form of DE in the HDE cosmology.
The best-fit value of the HDE model parameter is 0.74+0.11

−0.20,
which is smaller than the critical value 0.83, implying that
the current EoS parameter of the HDE model can vary in
the phantom regime. One can observe that in the case of the
Pantheon sample, the best-fit value of wDE,0 varies in the
phantom regime, but its upper bound can exceed the constant
line wΛ = −1 even in 1 −σ error. Second, in the case of the
Pantheon + GRB sample, our results show a slight increase
of the current matter density and a decrease in the value of the
model parameter c compared to previous case. In this case,
we see that the best-fit value of c is smaller than the critical
value 0.83 with an uncertainty of 1 − σ , which means that
wDE,0 varies in the phantom regime with a confidence level
of 68%. This behavior is consistent with our MCMC output
for wDE,0 in the last column of Table 1, where we obtain
the same result for 1 − σ error. Hence, adding the GRB data
to Pantheon, we conclude that the current EoS parameter of
the HDE model can be distinguished from the value of the
cosmological constant wΛ = −1 at least in the 1 − σ range.
Third, in the case of the Pantheon + quasars sample, the cur-
rent matter density is roughly 16% larger than our result in
the Pantheon sample. The model parameter c is smaller than
the critical value 0.83 in a large range of 3 − σ . We obtain
that the constrained parameter wDE,0 differs from wΛ = −1
in the 3 − σ confidence interval. Finally, we obtain the same

results in the case of Pantheon+GRB+ quasars as in the case
of Pantheon+quasars case. In Fig. 1, we show the best-fit val-
ues of the cosmological parameters Ωm0 and c within 3 − σ

uncertainty. We see that in the case of Pantheon + quasars +
GRB sample, we can constraint the cosmological parameters
more tightly than in the case of Pantheon sample.

Using the results of our MCMC analysis for the parame-
ters c, Ωm0 and wDE,0 and also Eqs. (21, 22), we can now
place constraints on the cosmographic parameters q0 and j0
in the HDE cosmology. The results are shown in the left
panel of Table 2. Note that we also perform our analysis for
the concordance ΛCDM cosmology and present the results
in the right panel of Table 2. In the following, we explain our
numerical results for each sample used in this work.

Pantheon sample In this case, we obtain q0 = −0.678 ±
0.097, j0 =1.95+0.65

−0.87 for the HDE model and q0 = −0.572±
0.019 for the standard ΛCDM cosmology (see also Table 2).
Note that in the ΛCDM model the jerk parameter is equal
to the constant value +1.00. The best-fit and also 1−, 2−
and 3 − σ confidence intervals of q0 and j0 in the model-
independent cosmography method are shown by contour
plots in Fig. 2. In the case of the Pantheon sample (top-left),
we observe that both the HDE and ΛCDM models lie in
the confidence regions of the q0 − j0 plane. We can thus
conclude that both models are consistent with the data of
Pantheon sample in the context of the cosmography method.

Pantheon+GRB sample In this case, we get q0 =
−0.708+0.10

−0.091 for HDE and q0 = −0.572 ± 0.019 for the
ΛCDM model (see also Table 2). We see that the parame-
ter q0 in the HDE model is consistent with the result of the
model-independent cosmography method in the 68% con-
fidence region and has a tension of 1.34σ with the ΛCDM
model. Moreover, we obtain the constrained value of j0 in the
HDE model as j0 = 2.20+0.67

−0.92 which lies in the confidence
regions of the cosmography method and has a 1.3σ tension
with the constant value j0 = 1.00 in the ΛCDM cosmol-
ogy. Looking at the upper-right panel of Fig. 1, we observe
that the concordance ΛCDM model has a big tension with the
confidence regions of the cosmographic parameters obtained
from the cosmography method, while the HDE model is fully
consistent.

Pantheon +Quasar In this case (see the third row of Table
2), we observe that q0 ( j0) of the HDE model differs from
the ΛCDM model value by up to 2.5σ (2.2σ ). Also, the
deceleration parameter q0 and the jerk parameter j0 in the
HDE model agree with the results of the model-independent
cosmography (Fig. 1, lower left panel). Note that the best-fit
point of the HDE model in the q0 − j0 plane is outside the
confidence regions of the cosmography method. However,
we should emphasize that by assuming the error bars of q0

and j0 for the HDE model, we can see the consistency of the
model with the cosmography method. This is not the case for
the concordance ΛCDM model where it deviates completely
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Table 1 The best-fit values of the cosmological parameters Ωm0, c and wDE,0 within the 1 − σ , 2 − σ and 3 − σ uncertainties using the Hubble
diagram data from Pantheon, quasars and GRB

Data Ωm0 c wDE,0

Pantheon 0.299+0.050,+0.081,+0.092
−0.036,−0.092,−0.14 0.74+0.11,+0.39,+0.61

−0.20,−0.30,−0.36 −1.13+0.16,+0.29,+0.37
−0.16,−0.32,−0.43

Pantheon+GRB 0.313+0.044,+0.075,+0.089
−0.035,−0.082,−0.12 0.68+0.11,+0.32,+0.48

−0.17,−0.26,−0.31 −1.18+0.17,+0.29,+0.35
−0.15,−0.32,−0.45

Pantheon+Quasars 0.352+0.027,+0.050,+0.066
−0.027,−0.055,−0.073 0.547+0.070,+0.17,+0.27

−0.092,−0.16,−0.18 −1.34+0.15,+0.25,+0.31
−0.12,−0.29,−0.40

Pantheon+Quasars+GRB 0.354+0.026,+0.049,+0.064
−0.026,−0.051,−0.068 0.540+0.069,+0.16,+0.24

−0.088,−0.15,−0.17 −1.34+0.14,+0.25,+0.29
−0.12,−0.26,−0.38

Fig. 1 The 1−σ , 2−σ and 3−σ confidence regions of the cosmological parameters Ωm0 and c in the HDE model using the various combinations
of the Hubble diagram data from Pantheon, quasars and GRB

from the confidence regions of the cosmography method in
the q0 − j0 plane even if we assume the error bars.

Pantheon + Quasar + GRB Finally, we combine all the
data from the Hubble diagram, including those from the
Pantheon, GRB and quasars. In this case, the best-fit val-
ues of deceleration and jerk parameters of the HDE model
within the uncertainty of 1 − σ are q0 = −0.799+0.089

−0.075 and

j0 = 3.09+0.61
−0.89. Also, the best-fit value of q0 for the ΛCDM

model is −0.559+0.019
−0.019 (see also Table 2). Our results show

2.63σ and 2.35σ tensions between the HDE and the ΛCDM
models, respectively for parameters q0 and j0. Same as our
results in Pantheon+Quasar case, we observe that the best-
fit value of the HDE model in the q0 − j0 plane is outside
the confidence bounds but when we accept the error bars,
we obtain agreement of the HDE model with the cosmogra-
phy method (see lower-right panel in Fig. 2). On the other
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Table 2 Left part: the best-fit values of the cosmographic parameters q0 and j0 in the HDE model calculated within the 1 − σ , 2 − σ and 3 − σ

errors obtained from the Hubble diagram of Pantheon, quasars and GRB. Right part: same as left part, but for the concordance ΛCDM model

Model HDE ΛCDM

Cosmographic parameters q0 j0 q0 j0

Pantheon −0.678+0.097,+0.18,+0.23
−0.097,−0.20,−0.27 1.95+0.65,+1.6,+2.3

−0.87,−1.4,−1.7 −0.572+0.019,+0.037,+0.050
−0.019−0.036,−0.047 1.0

Pantheon+GRB −0.708+0.10,+0.18,+0.21
−0.091,−0.20,−0.27 2.20+0.67,+1.7,+2.5

−0.92,−1.5,−1.8 −0.572+0.019,+0.037,+0.049
−0.019−0.036,−0.046 1.0

Pantheon+Quasars −0.794+0.092,+0.16,+0.20
−0.076,−0.18,−0.25 3.03+0.60,+1.7,+2.7

−0.92,−1.5,−1.6 −0.559+0.019,+0.037,+0.050
−0.019,−0.036,−0.46 1.0

Pantheon+Quasars+GRB −0.799+0.089,+0.15,+0.19
−0.075,−0.17,−0.23 3.09+0.61,+1.6,+2.5

−0.89,−1.4,−1.6 −0.559+0.019,+0.036,+0.048
−0.019,−0.036,−0.047 1.0

Fig. 2 The 1−σ , 2−σ and 3−σ confidence regions for the deceleration
parameter q0 and the jerk parameter j0 obtained from the cosmography
method. Also, the best-fit values of q0 and j0 with 1−σ error have been
shown for the HDE and ΛCDM cosmologies. The upper-left (upper-

right) panel shows the results for Pantheon (Pantheon + GRB) sample.
The bottom-left (lower-right) panel shows the results for Pantheon +
Quasars (Pantheon + Quasars + GRB) sample

hand, we observe that the ΛCDM model deviates completely
from the confidence regions in the q0 − j0 plane, implying
that this model has a big tension with the combined Hubble
diagram from Pantheon, GRB and quasars. From the above
analysis, it can be concluded that the best-fit values of the
cosmographic parameters obtained from the Pantheon sam-
ple (q0 = −0.678±0.097, j0 = 1.95+0.65

−0.87) are the minimum
values resulted from various Hubble diagram data. The dif-
ference between these values and the values of the best-fit
cosmographic parameters of the ΛCDM model is at least
in the 1σ error. We can assume q0 = −0.678 ± 0.097 &
j0 = 1.95+0.65

−0.87 as the viable condition that the lower val-
ues of them cannot be achieved in the HDE model using the
Hubble diagram observations.

We now compare our numerical results with the results
of previous studies for the HDE models. In [61], the authors
studied the HDE model from the viewpoint of cosmogra-
phy method. They used the Hubble diagram of SNIa in
the Union 2 compilation from [62] and obtained q0 =
−0.589+0.084

−0.084, j0 = 1.359+0.518
−0.518 and s0 = 0.0910.468−0.468, in

a model-independent cosmography method. Using the high
redshift CMB data and SNIa observations, they put con-
straints on the matter density parameter in the HDE model
and then obtained the best-fit values of the cosmography
parameters in the HDE cosmology. Their results for the
HDE model are consistent with the results of the model-
independent cosmography and are also consistent with the
results for the standard ΛCDM Universe. In the same study,
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the authors of [63] placed constraints on the cosmographic
parameters of the HDE model using the Hubble diagram of
supernovae from the Union 2.1 catalog [64], BAO experi-
ments [65] and H(z) data. They obtained q0 = −0.582+0.059

−0.059

and j0 = 0.96+0.17
−0.16, which cover the standard model results

with 1σ error (see also [66]). We note that our results in this
current analysis are completely different from these stud-
ies. Compared to these studies, we obtained higher values
of the cosmographic parameters for the HDE and model-
independent cosmography scenarios, while the results for
the standard ΛCDM model did not change significantly (see
Table 2). This difference is mainly due to the use of Hub-
ble diagrams of SNIa, quasars and GRB at higher redshifts
in our analysis. We conclude that the high redshifts Hub-
ble diagram data can rule out the standard ΛCDM model,
while the HDE model still agrees with these data. In [45],
Capozzielo, et. al., applied two different y parameterizations
and Pade polynomials in the cosmography method , using
both the low-redshift (H(z) and SNIa) and high-redhsift
(CMB shift parameter) data. In their analysis, the cosmogra-
phy method based on the Pade polynomials can be consistent
with the standard ΛCDM model for both H(z) + SN Ia and
H(z)+SN Ia+CMB-shift parameter samples. They showed
that the parametrization y = z/(1 + z) (the parametriza-
tion used in our work) cannot well fitted to high redhsift
CMB data as equal as the Pade parametrization. Further-
more, their results of cosmography method based on the
y = z/(1+z) parametrization at low-redshift is in agreement
with our results for the Pantheon sample in the present work.

5 Hubble parameter reconstruction

In this section, we reconstruct the Hubble parameter as
a function of redshift using the cosmographic parameters
obtained in our analysis. For this purpose, we use Eqs. (17
and 18) and the best-fit values of the cosmographic parame-
ters in the HDE and ΛCDM models presented in Table 2. We
also set the Hubble constant as H0 = 70 kms−1/Mpc based
on the recent observations of standard sirens [76]. This value
is consistent with the predicted Hubble constant form both
Planck experiments [77] at high redshifts and measurements
at low redshifts [78] within 68% confidence level. Figure 3
shows the reconstructed Hubble parameter H(z) for various
samples listed in Table 2. The upper-left (upper-right) panel
shows the reconstructed H(z) based on the best-fit values
of the cosmographic parameters obtained from the Pantheon
(Pantheon + GRB) sample. The lower-left and lower-right
panels show our results obtained from Pantheon + Quasars
and Pantheon + Quasars + GRB samples, respectively. In
all panels, the red band is the 3 − σ confidence level of the
reconstructed H(z) in the model-independent cosmography

method computed using the upper and lower bounds on the
best-fit of the cosmographic parameters from [46]. The obser-
vational data shown here are 36 different H(z) data points
collected in Table 3 with their references. Note that among
the many observational data in cosmology, the H(z) data is
the only data set that directly measures the cosmic expansion
of the Universe. Thus, by comparing with the H(z) data, we
are able to examine the reconstructed Hubble parameter of
the HDE and ΛCDM models in our analysis. We see that at
redshifts higher than z ∼ 1, the reconstructed Hubble param-
eter in the ΛCDM model deviates from the confidence band
of cosmography method. This property is valid for all cases of
the combined Hubble diagram samples. However, the devi-
ation is smallest in the case of Pantheon+GRB (top-right
panel). On the other hand, we observe that the reconstructed
H(z) in the HDE model is well within the confidence band.
Quantitatively, using the H(z) data, we can compute the error
function χ2 for each model as follows:

χ2
H =

∑
i

[Hobs(zi ) − Hrec(zi )]2

σ 2
i

, (29)

where Hobs(zi ) is the observational data point at redshift zi
and Hrec(zi ) is the reconstructed Hubble parameter at zi . The
numerical results are presented in Table 4. We observe that
in all samples the model-independent cosmography method
has the smallest value of χ2

H and the standard ΛCDM model
has the largest value. Comparing with the H(z) data in the
redshift range 0.07 < z < 2.36, we see that the model-
independent cosmography method is the best case to recon-
struct the Hubble parameter in good agreement with the
observations. On the other hand, the standard ΛCDM model
is the worst model. The HDE model is the middle model
compared to the other two scenarios. It is interesting to note
that the high value of χ2

H in the ΛCDM model is related to the
large difference between Hrec of the model and the obser-
vational data point Hobs = 226+8.0

−8.0 at redshift zi = 2.36
(pink data in Fig. 3). Since the error bar of this observed
data is very small compared, it can increase the value of
χ2
H specifically for a model with a larger deviation from

this data point at zi = 2.36. Note that the smaller value
of error bar causes the higher value of χ2

H in Eq. (5). This
observed data point was calculated by measuring the large-
scale cross-correlation of quasars with the Lyman α forest
absorption, using over 164,000 quasars from Data Release
11 of the SDSS-III Baryon Oscillation Spectroscopic Survey
[75]. While observational data for H(z) are mainly obtained
using the differential age method on luminous red galaxies
in clusters (see for example [67]). We now remove this data
point from our analysis and recompute χ2

H for each scenario.
The results are presented in Table 5. We see that for all sam-
ples, the high value of χ2

H in the ΛCDM model reported
in the previous case are now reduced to very low values.
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Fig. 3 The reconstructed Hubble parameter H(z) based on the best-
fit values of the cosmographic parameters q0 and j0 for the model-
independent approach, HDE and ΛCDM scenarios. The red band shows
the 3−σ confidence region of the reconstructed Hubble parameter in the

model-independent method. The upper left (upper right) panel shows
results obtained using the Pantheon (Pantheon + GRB) sample. The bot-
tom left (bottom right) panel shows results obtained using the Pantheon
+ quasars (Pantheon + GRB + quasars) sample

Quantitatively, we observe that in all combined samples of
Hubble diagrams from Pantheon, quasars and GRB, the χ2

H
decreases by about 68% in theΛCDM model. This decrement
for the HDE model is approximately 34%, 16%, 14%, and
16% for Pantheon, Pantheon+GRB, Pantheon+Quasars and
Pantheon+GRB+Quasars, respectively. We conclude that in
the absence of the data point Hobs = 226+8.0

−8.0 at redshift
zi = 2.36, our results are modified to obtain better agreement
of both the HDE and ΛCDM models with the H(z) observa-
tions. This result is more pronounced for the standard ΛCDM
cosmology. Note that the reconstructed Hubble parameter is
still the best case in the model-independent cosmography.
Finally, let us compare the model-independent cosmography
method, HDE and ΛCDM scenarios at redshifts z < 1. To
make this comparison, we recalculate χ2

H using 28 distinct
observed data points of H(z) data at redshifts z < 1 from
Table 3. Figure 4 shows the reconstructed Hubble parame-

ter for different combinations of Hubble diagram data and
also observational data points of H(z) at z < 1. We see that
the model-independent cosmography method, the HDE and
the ΛCDM scenarios are well fitted to the observations. The
numerical results of our analysis are given in Table 6. Inter-
estingly, we see that the best model with the minimum of χ2

H
is the ΛCDM model, which is even better than the model-
independent cosmography method. This result holds for all
combinations of Hubble diagrams from Pantheon, quasars
and GRB samples. On the other hand, the HDE model has
the largest χ2

H value, indicating that this model is the worst
compared to the other two scenarios. This result is also valid
for all Hubble diagram samples.

This behavior of the standard ΛCDM and the HDE mod-
els at redshifts z < 1 and z > 1 is related to our prediction of
the luminosity distance calculated in these models. Since the
energy density of DE in the ΛCDM model is constant, we
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Table 3 The H(z) data and their references used in our analysis

Number z H(z) [km s−1/Mpc] References

1 0.07 69 ± 19.6 [67]

2 0.09 69 ± 12 [68]

3 0.12 68.6 ± 26.2 [67]

4 0.17 83 ± 8 [68]

5 0.179 75 ± 4 [69]

6 0.199 75 ± 5 [69]

7 0.2 72.9 ± 29.6 [67]

8 0.27 77 ± 14 [68]

9 0.28 88.8 ± 36.6 [67]

10 0.35 82.7 ± 8.4 [70]

11 0.352 83 ± 14 [69]

12 0.3802 83 ± 13.5 [71]

13 0.4 95 ± 17 [68]

14 0.4004 77 ± 10.2 [71]

15 0.4247 87.1 ± 11.2 [71]

16 0.44 82.6 ± 7.8 [72]

17 0.44497 92.8 ± 12.9 [71]

18 0.4783 80.9 ± 9 [71]

19 0.48 97 ± 62 [68]

20 0.57 96.8 ± 3.4 [73]

21 0.593 104 ± 13 [69]

22 0.6 87.9 ± 6.1 [72]

23 0.68 92 ± 8 [69]

24 0.73 97.3 ± 7 [72]

25 0.781 105 ± 12 [69]

26 0.875 125 ± 17 [69]

27 0.88 90 ± 40 [68]

28 0.9 117 ± 23 [68]

29 1.037 154 ± 20 [69]

30 1.3 168 ± 17 [68]

31 1.363 160 ± 33.6 [74]

32 1.43 177 ± 18 [68]

33 1.53 140 ± 14 [68]

34 1.75 202 ± 40 [68]

35 1.965 186.5 ± 50.4 [74]

36 2.36 226 ± 8 [75]

observe that the luminosity distance calculated at the higher
redshift is different from the observed value, while the dif-
ference is not significant at lower redshift. On the contrary,
due to the dynamical behavior of DE in the HDE model,
the difference between the observed luminosity distance and
the calculated value decreases as the redshift increases from
z < 1 to z > 1.

6 Conclusions

The cosmography method is a useful key to study the DE
models in the expanding Universe. In this method, we apply
a Taylor expansion to the Hubble parameter via cosmic red-
shift. Then, we define the cosmographic parameters, namely
deceleration, jerk, snap and lerk parameters, which are
related to the derivative of the Hubble parameter at the present
time. Using the cosmological observations to constraints the
cosmographic parameters can help us reconstruct the Hub-
ble parameter and depict the expansion history of the Uni-
verse at low redshifts. Measuring the discrepancy between
the cosmographic parameters obtained in the DE model and
the parameters obtained from the model-independent cos-
mography method can be regarded as the tension between
the DE model and observations. In this work, we used the
Hubble diagram of SNIa, quasars and GRB as independent
observations over a wide range of redshifts to constraints
the cosmographic parameters of the HDE cosmology in the
context of the MCMC algorithm. We also computed the con-
strained values of the cosmographic parameters for the stan-
dard ΛCDM Universe and compared our results for both
the HDE and the standard models with the results of the
model-independent cosmography method. We have shown
that both the HDE and the ΛCDM models are consistent with
the Hubble diagram of SNIa observations. We extended our
sample by adding the Hubble diagram of quasars and GRB
and observed a big tension between the standard ΛCDM and
the model-independent cosmography method. In the case
of the HDE model, we have explicitly shown that there
is no tension between the cosmographic parameters of the
model and those from the model-independent method. This
result is valid for various combinations of the Hubble dia-
grams from SNIa, quasars and GRB. In the next step by
using the constrained values of the cosmographic parameters
obtained in our analysis, we reconstructed the Hubble param-
eter as a function of redshift and compared the result with the
observed H(z) data. We showed that the model-independent
cosmography method (ΛCDM model) has the largest con-
sistency (smallest consistency) and the HDE model has the
medium consistency with H(z) observations over a redshift
range 0.07 < z < 2.36. We obtained better consistency
of the HDE and ΛCDM cosmologies with H(z) data, by
removing the data point 226+8.0

−8.0 at zi = 2.36. However, the
model-independent cosmography method is still the best sce-
nario. Finally, we investigated the HDE and the concordance
ΛCDM models, using the H(z) data at redshifts z < 1.
We showed that the H(z) observations at z < 1 favor the
ΛCDM model rather than the HDE model. At these red-
shifts, we concluded that the ΛCDM model has the greatest
compatibility with the H(z) observations, even better than
the model-independent cosmography method.
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Table 4 The χ2
H values for

model-independent
cosmography approach, HDE
and ΛCDM scenarios resulted
from all H(z) observational data
points in Table 3

Sample combination Model-independent HDE ΛCDM

Pantheon 22.66 31.44 91.85

Pantheon + GRB 35.61 25.78 91.85

Pantheon + Quasars 21.29 46.03 86.96

Pantheon + Quasars + GRB 21.35 50.42 86.96

Table 5 The χ2
H values for

model-independent
cosmography approach, HDE
and ΛCDM scenarios resulted
from observational H(z) data
points in Table 3 except the last
one numbered 36

Sample combination Model-independent HDE ΛCDM

Pantheon 18.84 20.52 29.27

Pantheon + GRB 19.65 21.58 29.27

Pantheon + Quasars 20.72 39.64 28.12

Pantheon + Quasars + GRB 20.78 42.11 28.12

Fig. 4 Same as Fig. 3, but for z < 1
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Table 6 The χ2
H values for

model-independent
cosmography approach, HDE
and ΛCDM scenarios resulted
from 28 observational data
points at z < 1 in Table 3
numbered by 1–28

Sample combination Model-independent HDE ΛCDM

Pantheon 11.08 12.16 8.83

Pantheon + GRB 10.26 14.29 8.83

Pantheon + Quasars 12.70 28.31 8.93

Pantheon + Quasars + GRB 12.76 29.92 8.93
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or the data will not be deposited. [Authors’ comment: There are no
external data associated with the manuscript.]
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