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Abstract Anomaly detection techniques are growing in
importance at the Large Hadron Collider (LHC), motivated
by the increasing need to search for new physics in a model-
agnostic way. In this work, we provide a detailed comparative
study between a well-studied unsupervised method called the
autoencoder (AE) and a weakly-supervised approach based
on the Classification Without Labels (CWoLa) technique.
We examine the ability of the two methods to identify a new
physics signal at different cross sections in a fully hadronic
resonance search. By construction, the AE classification per-
formance is independent of the amount of injected signal. In
contrast, the CWoLa performance improves with increasing
signal abundance. When integrating these approaches with
a complete background estimate, we find that the two meth-
ods have complementary sensitivity. In particular, CWoLa is
effective at finding diverse and moderately rare signals while
the AE can provide sensitivity to very rare signals, but only
with certain topologies. We therefore demonstrate that both
techniques are complementary and can be used together for
anomaly detection at the LHC.
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1 Introduction

The LHC has the potential to address many of the most fun-
damental questions in physics. Despite all the searches for
physics beyond the Standard Model (BSM) conducted by
ATLAS [1,2] and CMS [3–5], no significant evidence of new
physics has been found so far. These searches are designed
to target specific new physics signals that would be produced
by particular, well-motivated theoretical models. However, it
is not feasible to perform a dedicated analysis for every pos-
sible topology and therefore some potential signals may be
missed. This motivates the introduction of new methods that
are less reliant on model assumptions and that are sensitive
to a broad spectrum of new physics signatures.

A variety of machine-learning assisted anomaly detec-
tion techniques have been proposed that span the spectrum
from completely supervised to completely unsupervised1

[23–63] (see Refs. [60,64] for an overview). Two promising
approaches are CWoLa Hunting [24,25] and deep autoen-
coders (AE) [27–32]:

• CWoLa Hunting is a weakly-supervised anomaly detec-
tion technique that uses the idea of Classification With-
out Labels (CWoLa) [65] and trains a classifier to dis-
tinguish two statistical mixed samples (typically a signal

1 Citation block taken from the Living Review [6]. Background model
dependent, non-machine learning models have also been studied exper-
imentally - see Refs. [7–22].
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region and a sideband region when used to search for
new physics [24,25]) with different amounts of (poten-
tial) signal. The output of this classifier can then be used
to select signal-like events. This method has already been
tested in a real search by the ATLAS collaboration [44].

• Autoencoders are the basis for a fully-unsupervised
anomaly detection technique that has been widely
explored and used in many real-world scenarios. A deep
autoencoder is a neural network that learns to compress
data into a small latent representation and then recon-
struct the original input from the compressed version.
The AE can be trained directly on a background-rich
sample to learn the features of background events and
reconstruct them well. By contrast, it will struggle to
reconstruct anomalous (e.g. signal) events. The recon-
struction loss, defined by some chosen distance measure
between the original and reconstructed event, can then
be used as a classification score that selects anomalous
events.

To date, there has not been a direct and detailed comparison
between these two methods.2 The goal of this paper will
be to provide such a comparison, describe the strengths and
weaknesses of the two approaches, and highlight their areas
of complementarity.

We will focus on the new physics scenario where a signal
is localized in one known dimension of phase space (in this
case, the dijet invariant mass) on top of a smooth background.
While CWoLa Hunting explicitly requires a setup like this
to generate mixed samples, AEs technically do not, as they
can function as anomaly detectors in a fully unsupervised
setting. However, even for AEs one generally needs to assume
something about the signal and the background in order to
enable robust, data-driven background estimation.

In this scenario, both models can be trained to exploit the
information in the substructure of the two jets to gain discrim-
inating power between the signal and background events.
CWoLa Hunting, being able to take advantage of the weak
labels, should excel in the limit of moderately high signal rate
in the sample because it is able to take advantage of learnt
features of the signal. It should fail however in the limit of
no signal. On the other hand, an unsupervised approach like
the AE is fully agnostic to the specific features of the signal,
and thus should be robust in the limit of low signal statistics.
While the behaviour of these strategies in the high and low
signal statistics limits can be understood on general grounds,
it is the intermediate regime in which the two strategies might
have a ‘cross-over’ in performance that is of most interest for

2 Recently, the authors of the Tag N’ Train method [47] also made com-
parisons between these approaches with the aim of combining them. Our
study has the orthogonal goal of directly comparing the two approaches
in detail as distinct methods to understand their complementarity.

realistic searches. It is therefore worth analyzing in detail for
some case studies the nature of this crossover and the degree
of complementary of the strategies.

In this work, we provide a detailed comparative analysis
of the performance of CWoLa Hunting and AEs at anomaly
detection on a fully hadronic resonance search. After evalu-
ating the ability of both methods to identify the signal events
for different cross sections, we test whether they are able to
increase the significance of the signal region excess. Here
we emphasize the importance of going beyond the AUC
metric and consider more meaningful performance metrics
such as the Significance Improvement Characteristic (SIC).
Furthermore, a realistic fit procedure based on ATLAS and
CMS hadronic diboson searches is implemented. We will
confirm the general behavior of AE and CWoLa Hunting
approaches at large and small signal strengths described in
the previous paragraph, and we will demonstrate quantita-
tively the existence of a cross-over region in a part of param-
eter space that could be of practical relevance. We conclude
that the approaches have complementary sensitivity to dif-
ferent amounts or types of signals.

This paper is organized as follows. In Sect. 2, we describe
the resonant hadronic new physics signal that we consider
and the simulation details for the generated events. In Sect. 3,
we introduce the details of CWoLa Hunting and the AE and
explain how they can be successfully implemented in this
type of new physics searches. We present results for the two
models in Sect. 4 and discuss their performance at anomaly
detection. Finally, the conclusions are presented in Sect. 5.

2 Simulation

In order to investigate the performance of CWoLa Hunting
and AEs in a generic hadronic resonance search, we con-
sider a benchmark new physics signal pp → Z ′ → XY ,
with X → j j j and Y → j j j . There is currently no ded-
icated search to this event topology. The mass of the new
heavy particle is set to mZ ′ = 3.5 TeV, and we consider two
scenarios for the masses of the new lighter particles: mX ,
mY = 500 GeV and mX , mY = 300 GeV. These signals
typically produce a pair of large-radius jets J with invariant
mass mJJ � 3.5 TeV, with masses of mJ = 500, 300 GeV
and a three-prong substructure. These signals are generated
in the LHC Olympics framework [60].

For both signal models, we generated 104 events. One
million QCD dijet events serve as the background and are
from the LHC Olympics [60] dataset. All the events were
produced and showered usingPythia 8.219 [66] and the
detector simulation was performed usingDelphes 3.4.1
[67], with no pileup or multiparton interactions included.
All jets are clustered with FastJet 3.3.2 [68] using
the anti-kt algorithm [69] with radius parameter R = 1.
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We require events to have at least one large-radius jet with
pT > 1.2 TeV and pseudo-rapidity |η| < 2.5. The two
hardest jets are selected as the candidate dijet and a set of
substructure variables are calculated for these two jets as
shown in Fig. 1. In particular, the N -subjettiness variables
τ

β
i were first proposed in Refs. [70,71] and probe the extent

to which a jet has N subjets. All N -subjettiness variables
are computed using FastJet 3.3.2 and angular expo-
nent β = 1 unless otherwise specified in the superscript. The
observable ntrk denotes the number of constituents in a given
jet. Jets are ordered by mass in descending order.

3 Machine learning setup

In this section, we describe the machine learning setup and
the strategies that we follow to train CWoLa Hunting and the
AE approaches.

3.1 Classification without labels (CWoLa)

The strategy closely follows Refs. [24,25]. To begin, we use
a set of high-level observables computed from the two lead-
ing jets. In particular, we consider the following set of input
features for each jet:

Yi =
{
mJ ,

√
τ

(2)
1 /τ

(1)
1 , τ21, τ32, τ43, ntrk

}
. (3.1)

A reduced set of input features is shown in Fig. 1. Importantly,
the correlation between this set of input features and mJ J is
minimal and not sufficient to sculpt artificial bumps in the
absence of signal, as we will demonstrate in Sect. 4.

We select all of the events in the rangemJ J ∈ [2800, 5200]
GeV and split them uniformly in log(mJ J ) in 30 bins. After
selecting this range, 537304 background events remain in
our sample. In order to test for a signal hypothesis with mass
mJ J = mpeak, where mpeak is the mean mass of the injected
signal, we build a signal region and a sideband region. The
former contains all of the events in the four bins centered
around mpeak, while the latter is built using the three bins
below and above the signal region. By doing this, we obtain
a signal region in the range mJ J ∈ (3371, 3661) GeV with a
width of 290 GeV, and a lower and upper sidebands that are
202 GeV and 234 GeV wide, respectively. The size of the
signal region window depends on the signal width3 and can
be scanned for optimal performance. In Fig. 2, we show the
binned distribution of a fraction of signal and all background
events, with a signal-to-background ratio of S/B = 6×10−3

3 This is dominated by detector effects; for models with a non-trivial
off-shell width, this may not be optimal.

and a naive expected significance S/
√
B = 1.8σ in the sig-

nal region. Note that if a signal is present in data, the signal
region will have a larger density of signal events than the
mass sidebands, which are mainly populated by background
events by construction. In a real search the location of the
mass peak of any potential signal would be unknown, and
thus the mass hypothesis must be scanned, as described in
Ref. [25].

After defining the signal and sideband regions, a CWoLa
classifier is trained to distinguish the events of the signal
region from the events of the sideband using the set of twelve
input features that describe the jet substructure of each event,
presented in Eq. (3.1). In this way, the CWoLa classifier will
ideally learn the signal features that are useful to discrimi-
nate between both regions. It is important to remark that the
classifier performance should be very poor when no signal
is present in the signal region, but if a signal is present with
anomalous jet substructure then the classifier should learn
the information that is useful to distinguish the signal and
sideband regions.

In this work, the classifiers that we use are fully connected
neural networks with four hidden layers. The first layer has
64 nodes and a leaky Rectified Linear Unit (ReLU) [72] acti-
vation [73] (with an inactive gradient of 0.1), and the second
through fourth layers have 32, 16 and 4 nodes respectively,
with Exponential Linear Unit (ELU) activation [74]. The out-
put layer has a sigmoid activation. The first three hidden lay-
ers are followed by dropout layers with a 20% dropout rate
[75]. We use the binary cross-entropy loss function and the
Adam optimizer [76] with learning rate of 0.001 and learning
rate decay of 5×10−4, batch size of 20480 and first and sec-
ond moment decay rates of 0.8 and 0.99, respectively. The
training data is reweighted such that the low and high side-
bands have equal total weight, the signal region has the same
total weight as the sum of the sidebands, and the sum of all
events weights in the training data is equal to the total num-
ber of training events. This reweighting procedure ensures
that the two sideband regions have the same contribution to
the training process in spite of their different event rates, and
results in a classifier output peaked around 0.5 in the absence
of any signal. All classifiers are implemented and trained
using Keras [77] with TensorFlow [78] backend.

We implement a nested cross-validation procedure with
five k-folds and therefore all data are used for training, vali-
dation and testing. We standardize all the input features from
the training and validation sets using training information,
and those from the test set using training and validation infor-
mation. The full dataset is divided randomly, bin by bin, in
five event samples of identical size. We set one of the sam-
ples aside for testing and perform four rounds of training
and validation with the other four, using one of the subsets
for validation each time. For each round, we train ten neural
networks for 700 epochs on the same training and validation
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Fig. 1 A reduced set of the input features that we use for training the
models are shown for Jet 1 (first and second rows) and Jet 2 (third
and fourth rows) for the signals with (m j1 ,m j2 ) = (500, 500) GeV

(red) and (m j1 ,m j2 ) = (300, 300) GeV (blue), and the background
(green). We plot the same number of signal and background events for
visualization purpose

data, using a different initialization each time. We measure
the performance of each classifier on validation data using
the metric εval, defined as the true positive rate for the correct
classification of signal region events, evaluated at a threshold

with a false positive rate f = 1% for incorrectly classifying
events from the sideband region. Only the best out of the ten
models is saved. We use an early stopping criterion to stop
training if the validation performance has not improved for
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Fig. 2 Distribution of a fraction of signal and all background events
on the mJ J plane. Events are divided in 30 bins and a signal region and
a sideband region are defined, as described in the text in Sect. 3.1. The
amount of signal that has been injected corresponds to S/B = 6×10−3

and S/
√
B = 1.8σ in the signal region

300 epochs. At the end of the four rounds, we use the mean of
the outputs of the four selected models to build an ensemble
model which is more robust on average than any individual
model. This ensemble model is used to classify the events in
the test set, and the x% most signal-like events are selected
by applying a cut on the classifier output. This procedure is
repeated for all five choices of test set, and the selected most
signal-like events from each are combined into a signal-like
sample. If a signal is present in data and CWoLa Hunting is
able to find it, it will show as a bump in the signal region
of the signal-like sample on the mJ J plane, and standard
bump-hunting techniques can be used to locate the excess.

It is worth mentioning that using an averaged model
ensemble is important to reduce any potential overfitting. The
cross-validation procedure ensures that even if an individ-
ual classifier learns any statistical fluctuations in the training
data, each model will tend to overfit different regions of the
phase space. As a result, the models will disagree in regions
where overfitting has occurred, but will tend to agree in any
region where a consistent excess is found.

3.2 Autoencoder

In this subsection we describe the strategy followed for the
AE implementation. In the first place, we take the two lead-
ing jets in each event, ordered by mass, and consider the
following set of input features for each jet:

Yi = {mJ , τ21, τ32, ntrk, pT } . (3.2)

After analyzing different sets of input features, we found
that the collection of 10 features presented in Eq. (3.2) led to

optimal performance. All the input features are standardized
for the analysis.

Unlike the CWoLa method, the AE is trained on all the
available background events in the full mJ J range. The AE
only requires a signal region and a background region for the
purposes of background estimation through sideband inter-
polation. For the anomaly score itself (the reconstruction
error), the AE is completely agnostic as to the mJ J range
of the signal.

In this work, the AE that we consider is a fully con-
nected neural network with five hidden layers. The AE has
an input layer with 10 nodes. The encoder has two hidden
layers of 512 nodes, and is followed by a bottleneck layer
with 2 nodes and linear activation. The decoder has two hid-
den layers of 512 nodes, and is followed by an output layer
with 10 nodes and linear activation. All of the hidden lay-
ers have ReLU activation, and the first hidden layer in the
encoder is followed by a Batch Normalization layer. We use
the Minimum Squared Error (MSE) loss function and the
Adam optimizer with learning rate of 10−4, first and sec-
ond moment decay rates of 0.9 and 0.999, respectively, and a
mini-batch size of 128. In Appendix C we describe our quasi-
unsupervised model-selection procedure. We use Pytorch
[79] for implementing and training the AE.

In order to achieve a satisfactory generalization power,
we decided to build an AE ensemble. For this purpose, we
train fifty different models (i.e. the ensemble components)
with random initialization on random subsamples of 50000
background events. Each model is trained for only 1 epoch.
It is important to note that the training sample size and num-
ber of training epochs had a significant impact in the AE
performance. When these are too large, the AE learns too
much information and losses both generalization power and
its ability to discriminate between signal and background
events. Note that if there is a sufficient overlap between the
distributions of signal and background events, then learning
more about the background will not necessarily help to find
the signal. For this reason, our training strategy gives the AE
more generalization power and makes it more robust against
overfitting.

The autoencoder ensemble is evaluated on the full dataset.
The final MSE reconstruction loss of an event is obtained by
computing the mean over the fifty different ensemble com-
ponents. The optimal anomaly score is derived from the SIC
curve as described in Appendix C. The results presented in
this paper are for an AE trained on S = 0. We have verified
that including relevant amounts of signal S do not signifi-
cantly change the results. Therefore, for the sake of compu-
tational efficiency, we choose to present the AE trained with
S = 0 everywhere.
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4 Results

4.1 Signal benchmarks

Now we are ready to test the performance of CWoLa Hunting
and the AE for different amounts of injected signal. Impor-
tantly, we will quantify the performance of CWoLa Hunting
and the AE not using the fullmJ J range, but using a narrower
slice mJ J ∈ (3371, 3661) GeV, the signal region defined
in Sect. 3.1. This way, all performance gains from the two
methods will be measured relative to the naive significance
obtained from a simple dijet resonance bump hunt.

We define a set of eight benchmarks with a different
number of injected signal events. For this purpose, to the
current sample of 537304 background events in the range
mJ J ∈ [2800, 5200] GeV, we add from 175 to 730 signal
events. This results in a set of benchmarks distributed over
the range S/B ∈ [1.5×10−3, 7×10−3] in the signal region,
corresponding to an expected naive significance in the range
S/

√
B ∈ [0.4, 2.1]. To test the consistency of both models

when no signal is present in data, we add a final benchmark
with no signal events which allows us to evaluate any pos-
sible biases. For each S/B benchmark, the performance of
CWoLa Hunting is evaluated across ten independent runs to
reduce the statistical error using a random subset of signal
events each time. After exploring a large range of cross sec-
tions, we decided to examine this range in S/B because it
is sufficient to observe an intersection in the performance of
the two methods. The observed trends continue beyond the
limits presented here.

4.2 Supervised metrics

The performance of CWoLa Hunting and the AE in the sig-
nal region for different S/B ratios as measured by the Area
Under the Curve (AUC) metric is presented in Fig. 3 for the
two signal hypotheses considered in this work. Even though
only a small fraction of signal events is used for training,
the AUC metric is computed using all the available signal
to reduce any potential overfitting. The results in both cases
show that CWoLa Hunting achieves excellent discrimination
power between signal and background events in the large
S/B region, reaching AUC scores above 0.90 and approach-
ing the 0.98 score from the fully supervised case. As the
number of signal events in the signal region decreases, the
amount of information that is available to distinguish the sig-
nal and sideband regions in the training phase becomes more
limited. As a result, learning the signal features becomes
more challenging and performance drops in testing. When
the S/B ratio in the signal region is close to zero, the signal
and sideband regions become nearly identical and the classi-
fier should not be able to discriminate between both regions.
For the benchmark with no signal events, the AUC scores

are only 0.43 and 0.59 for the signals with larger and smaller
jet masses, respectively.4 It is interesting to note that, in the
absence of signal, the AUC should converge to 0.5. However,
we will see that the presence of background events (from a
statistical fluctuation) with a feature distribution that partially
overlaps with the one from signal events, located in a region
of the phase space with low statistics, allows the classifier
to learn some information that turns out to be useful to dis-
criminate between signal and background. Importantly, this
does not imply that the information learnt by the classifier
will be useful for enhancing the signal excess, as we discuss
in detail below. By contrast, the AE performance is solid and
stable across the whole S/B range. The reason is that, once
the AE learns to reconstruct background events, its perfor-
mance is independent of the number of signal events used for
training as long as the contamination ratio is not too large.
In our analysis, this ratio is always below 0.1% so the AE is
trained on the full sample of background events with S = 0
for computational efficiency. Interestingly, the AUC curves
from CWoLa Hunting and the AE cross at S/B ∼ 3 × 10−3.

The most standard way of measuring the performance of
a given model is through the Receiver Operating Character-
istic (ROC) curve, and the area under this curve, the AUC
metric. These two metrics are useful to compare the over-
all performance of different models in many classification
tasks. However, the goal of a resonant anomaly detection
search is to find a localized signal over a large background.
For this purpose, the most important variables to consider are
the signal-to-background ratio (S/B) and the naive expected
significance (S/

√
B). With this in mind, we will consider

the Significance Improvement Characteristic (SIC) [80] to
measure the performance of CWoLa Hunting and the AE
at enhancing the significance of the signal excess. The SIC
metric measures the significance improvement after apply-
ing a cut in the classifier output. In particular, any given cut
will keep a fraction εS of signal events and a fraction εB of
background events, which are defined as the signal and back-
ground efficiencies of the cut. The significance improvement
for this cut is thus given by SIC = εS/

√
εB .

In order to find the localized signal over the large back-
ground, which we presented in Fig. 2, we will use the SIC
metric to find the optimal cut in the classifiers output that
leads to the maximal enhancement in S/

√
B in the signal

region. The SIC curves for CWoLa Hunting and the AE are
shown in Fig. 4. The SIC curves are calculated using all the
available signal and background events in the signal region.
For CWoLa Hunting, the results show that the shape and the
location of the peak of the SIC curve depend on the amount
of injected signal used during training. In order to find the
signal efficiency that leads to a maximal overall significance
improvement for all S/B benchmarks, we analyze how the

4 For visualization purpose, this benchmark is not shown in the plot.

123



Eur. Phys. J. C (2021) 81 :617 Page 7 of 20 617

Fig. 3 Performance of CWoLa Hunting (blue) and the AE (orange) as measured by the AUC metric on the signal with (m j1 ,m j2 ) = (500, 500) GeV
(left plot) and (m j1 ,m j2 ) = (300, 300) GeV (right plot). The error bars denote the standard deviation on the AUC metric from statistical uncertainties

Fig. 4 The SIC curves for CWoLa Hunting (top row) and the AE (bot-
tom row) are shown for the signals with (m j1 ,m j2 ) = (500, 500) GeV
and (m j1 ,m j2 ) = (300, 300) GeV in the left and right plots, respec-

tively. For CWoLa Hunting, a SIC curve is shown for each of the clas-
sifiers that were trained on mixed samples with different amounts of
injected signal
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Fig. 5 Top row: The SIC value as a function of S/
√
B for a set of

fixed signal efficiencies is shown for the signals with (m j1 ,m j2 ) =
(500, 500) GeV (left plot) and (m j1 ,m j2 ) = (300, 300) GeV (right
plot). The εS = 17% and εS = 13% signal efficiencies, respectively,
maximize the overall significance improvement for all S/B bench-

marks. Bottom row: The signal efficiencies are chosen such that the
SIC values are maximized for CWoLa Hunting and the AE. The SIC
values associated to the 1% and 0.1% are also shown for comparison.
These values are calculated using only the fraction of signal that defines
each S/B benchmark

SIC value changes as a function of S/
√
B for a set of fixed

signal efficiencies in the top row of Fig. 5. We find that the
signal efficiencies that yield the maximum overall signifi-
cance improvement for CWoLa Hunting are εS = 17% and
εS = 13% for the high and low jet mass signals, respectively.
For the AE, the optimal signal efficiencies are εS = 16% and
εS = 18%, respectively. Now we will use these optimal sig-
nal efficiencies to set an anomaly score threshold that max-
imizes the significant improvement in the signal region for
each model. In practice, model independence would prevent
picking a particular value and so we will later compare these
optimized values with fixed values at round logarithmically
spaced efficiencies.

4.3 Sideband fit and p-values

After evaluating the quality of the two methods at identify-
ing the signal events among the background, we compare

how they perform at increasing the significance of the signal
region excess. For this purpose, we performed a parametrized
fit to the mJ J distribution in the sideband region. We then
interpolate the fitted background distribution into the signal
region and evaluate the p-value of the signal region excess.

For the CWoLa method, we used the following 4-
parameter function to fit the background:

dσ

dmJ J
= p0(1 − x)p1

x p2+p3 ln(x)
, (4.1)

where x = mJ J/
√
s. We use the previous function to esti-

mate the background in the range mJ J ∈ [2800, 5200] GeV.
This function has been previously used by both ATLAS [81]
and CMS [82] collaborations in hadronic heavy resonance
searches.

For the AE, we find that this function does not fit well
the distribution of surviving events on mJ J after applying
a cut on the reconstruction error. Instead, we found that a
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Fig. 6 Significance of the signal region excess after applying different
cuts using the classifier output for CWoLa Hunting (left plots) and the
AE (right plots), for one of the runs corresponding to the benchmarks
with S/B � 4 × 10−3 (top row) and S/B � 2.4 × 10−3 (bottom
row) on the signal with (m j1 ,m j2 ) = (500, 500) GeV. For CWoLa,
we show the 100%, 10%, 1%, 0.04% most signal-like events. For the
AE, we show the 100% and 0.6% event selections. In both cases, the

smallest cut corresponds to the optimal cut according to the SIC curve.
The blue crosses denote the event selection in each signal region bin,
while the blue circles represent the event selection in each bin outside
of the signal region. The dashed red lines indicate the fit to the events
outside of the signal region, the grey band indicates the fit uncertainty
and the injected signal is represented by the green histogram

simple linear fit (on a narrower sideband region) is able to
describe the background distribution on the sideband with
good accuracy and it is sensitive to an excess on the signal
region for the cuts that we considered. For the cut based
on the SIC curve and the 1% cut, the fit is implemented on
the range mJ J ∈ [3000, 4000] GeV. For the 0.1% cut, we
need to extend this range to mJ J ∈ [2800, 4400] GeV. This
range extension produces a better fit χ2 in the sideband and
mitigates a small bias in the predicted signal at S = 0.5

The validity of sideband interpolation relies on the
assumption that the mJ J distribution for background events
surviving a cut can still be well modelled by the chosen func-
tional forms. This is likely to be the case so long as the selec-

5 As we tighten the cut, we will see that the fraction of events that
survive at the lower end of the mJ J distribution is significantly smaller
than for higher invariant masses. This extends the linear behaviour to
the range mJ J ∈ [2800, 4400] GeV for the 0.1% cut.

tion efficiency of the tagger on background events is smooth
and monotonic in mJ J , and most simply6 if it is constant in
mJ J (which would require signal features uncorrelated with
mJ J ).

In Fig. 6, we show the fit results for CWoLa Hunting and
the AE for one of the runs corresponding to the benchmarks
with S/B � 4 × 10−3 and S/B � 2.4 × 10−3 on the signal
with (m j1,m j2) = (500, 500) GeV. After applying different
cuts using the classifiers outputs, the significance of signal
region bump is significantly increased. For the benchmark
with more injected signal, CWoLa Hunting yields a sub-
stantial significance increase of up to 7.6σ , while the AE is
able to increase the bump significance by up to 4.1σ . When
the amount of injected signal is reduced, the results show
that CWoLa Hunting becomes weaker and it rises the excess

6 Complete decorrelation is sufficient, but not necessary to prevent
bump-sculpting [83].
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Fig. 7 The significance of the signal region excess after applying
different cuts for CWoLa Hunting and the AE, for the signals with
(m j1 ,m j2 ) = (500, 500) GeV and (m j1 ,m j2 ) = (300, 300) GeV, is
shown in the left and right plots, respectively. The plots in the top row
show the cuts that maximize the overall significance improvement for
all benchmarks according to the SIC curve, while the bottom row plots
show results for fixed, predetermined cuts. The best cuts for CWoLa

Hunting (blue) correspond to the 17% and 13% signal efficiencies for the
signals with high and low jet masses, respectively. For the AE (orange),
the best cuts correspond to the 16% and 18% signal efficiencies, respec-
tively. The dotted lines denote the naive expected significance, S/

√
B.

The round cuts from the bottom plots show the 1% and 0.1% event
selections for CWoLa Hunting and the AE. The initial significance of
the bump (100% selection) is shown in green

significance up to only 2.6σ . However, in this case the AE
performs better than CWoLa Hunting, increasing the bump
significance up to 3.1σ . This is an important finding because
it suggests that CWoLa Hunting and the AE may be com-
plementary techniques depending on the cross section. Note
that the event distribution from the AE is clearly shaped due
to some correlations between the input features and mJ J . In
particular, since the jet pT is very correlated withmJ J . How-
ever, the average jet pT scales monotonically (and roughly
linearly) with mJ J , which means that no artificial bumps are
created and the distribution post-selection is still well mod-
elled by the chosen fit function. Finally, note that the fit to the
raw distribution (i.e. no cut applied) is lower than the naive
expected significance S/

√
B due to a downward fluctuation

in the number of background events in the signal region, as
discussed in Appendix A.

In order to systematically study if CWoLa Hunting and
the AE could be complementary techniques depending on
the cross section, we analyze their performance at increasing
the significance of the signal region excess for different S/B
benchmarks and the two signal hypotheses in Fig. 7. The
top two plots show the cuts on the classifier output that lead
to the largest overall significance improvement according to
the SIC curve. For CWoLa Hunting, we show the median
p-values from the ten independent runs for every benchmark
corresponding to the 17% (top left) and 13% (top right) sig-
nal efficiencies, which correspond to fractions of signal-like
events between 0.04% and 1.7% depending on the bench-
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Fig. 8 Density of events on the (m j1 ,m j2 ) plane for the most signal-
like events selected by CWoLa Hunting for the signal hypothe-
sis (m j1 ,m j2 ) = (500, 500) GeV (top row) and (m j1 ,m j2 ) =
(300, 300) GeV (bottom row). From left to right, we show results for

three benchmarks with S/B � 4×10−3, 2.8×10−3, 0. The location of
the injected signal is indicated by a green cross. Note that the upper right
plot shows a small statistical fluctuation that disappears when averaging
over a larger number of simulations

mark. The error bars represent the Median Absolute Devia-
tion. Note that the fit result does not always agree with the
naive expected significance, S/

√
B, due to the high uncer-

tainties among the ten independent classifiers and the small
fractions of events considered in some cases. For the AE, we
show the p-values associated to the 16% (top left) and 18%
(top right) signal efficiencies, which correspond to the 0.36%
and 0.63% most signal-like events, respectively.

Importantly, there are other cuts that enhance the signif-
icance of the signal region excess, as shown in the bottom
plots of Fig. 7. In a real experimental search, with no previ-
ous knowledge about any potential new physics signal, the
two models would be able to find the signal for fixed round
cuts of 1% and 0.1%. For the AE, these cuts are applied in
the signal region to derive an anomaly score above which all
the events in the full mJ J range are selected.

The statistical analysis demonstrates two things. First,
CWoLa Hunting is able to increase the significance of the
signal region excess up to 3σ − 8σ for S/B ratios above
∼ 3 × 10−3 for both signal hypotheses, even when the origi-
nal fit shows no deviation from the background-only hypoth-
esis. By contrast, the AE shows a superior performance below

this range for the signal with (m j1,m j2) = (500, 500) GeV,
boosting the significance of the excess up to 2σ − 3σ in the
low S/B region where CWoLa Hunting is not sensitive to the
signal. Importantly, there is again a crossing point in the per-
formance of the two methods as measured by their ability to
increase the significance of the excess. Therefore, our results
show that the two methods are complementary for less-than-
supervised anomaly detection. Second, it is clear that the AE
is not able to increase the bump excess for the signal with
(m j1,m j2) = (300, 300) GeV below S/B ∼ 3 × 10−3,
even when it reaches a fairly solid AUC score, as shown in
Fig. 3. This means that even though the AE is able to clas-
sify a sizeable fraction of signal events correctly, there is a
significant fraction of background events that yield a larger
reconstruction error than the signal events. In other words,
the AE does not consider the signal events as sufficiently
anomalous and finds more difficult to reconstruct part of the
background instead. Therefore, cutting on the reconstruc-
tion error does not result in a larger fraction of signal in the
selected events. By construction, this is the main limitation
of the AE: it focuses its attention in anything that seems
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Fig. 9 Density of events on the (m j1 ,m j2 ) plane for the most signal-
like events selected by the AE for the signal hypothesis (m j1 ,m j2 ) =
(500, 500) GeV (top row) and (m j1 ,m j2 ) = (300, 300) GeV (bottom

row). From left to right, we show results for three benchmarks with
S/B � 4 × 10−3, 2.8 × 10−3, 0. The location of the injected signal is
indicated by a green cross

anomalous, whether it is an exciting new physics signal or
something that we consider less exotic.

Finally, it is important to analyze the performance of
CWoLa Hunting and the AE when training on no signal.
For consistency, both models should not sculpt any bumps
on themJ J distribution when no signal is present on data. For
CWoLa Hunting, the expected significance at S/B = 0 is 0σ

for all cuts. For the AE, we find that the excess significance at
S/B = 0 is 0.89σ , 0.56σ and 1.06σ for the SIC-based, 1%
and 0.1% cuts, respectively. We checked that this is caused
by the shaping of the mJ J distribution and the small statis-
tical fluctuations that appear for such tight cuts. We remark
that this effect is not produced by the signal.

4.4 What did the machine learn?

In order to illustrate this point, we can examine what the clas-
sifiers have learnt by looking at the properties of the events
which have been classified as signal-like for three bench-
marks with S/B � 4 × 10−3, 2.8 × 10−3, 0. In Figs. 8 and 9
we show the density of events on the (m j1,m j2) plane for the
most signal-like events selected by CWoLa Hunting and the

AE, respectively. The cuts applied in each case correspond
to the 0.1% cut. For CWoLa Hunting, it is clear that the clas-
sifier is able to locate the signal for the two mass hypotheses.
In addition, note that the upper and lower right plots show
a small statistical fluctuation that is produced by the differ-
ent fractions of signal-like events represented in each plot,
which disappears when averaging over a larger number of
simulations.

The AE similarly identifies the high mass signal point, but
fails to identify the low mass one. This can be most easily
understood by observing the selection efficiency as a function
of the two jet masses for the trained AE, shown in Fig. 10.
In the left plot, we show the total number of events on the
(m j1,m j2) plane. In the middle and right plots, we show
the selection efficiencies for the 1% and 0.1% cuts. These
results illustrate that the AE has learnt to treat high mass
jets as anomalous (since these are rare in the training sam-
ple), and so the (m j1,m j2) = (300, 300) GeV signal is more
easily reconstructed than high mass QCD events. In other
words, high mass QCD events are regarded as more anoma-
lous than signal events, and a sufficiently high selection cut
on the AE reconstruction error will eliminate the signal. We
remark again that this is one of the main limitations of the

123



Eur. Phys. J. C (2021) 81 :617 Page 13 of 20 617

Fig. 10 The total density of events on the (m j1 ,m j2 ) plane is plot-
ted on the left. The 1% and 0.1% selection efficiencies for the AE
and CWoLa are plotted on the middle and right images, respectively.
The top row shows results for the AE, while the bottom row shows

results for CWoLa. The selection efficiency in a given bin is defined
as the number of events passing the x% cut divided by the total num-
ber of events in that bin. These results correspond to the signal with
(m j1 ,m j2 ) = (300, 300) GeV and S/B � 4 × 10−3

AE. Therefore, it is crucial to find the cut that maximizes
the fraction of signal within the most anomalous events. As
shown in Fig. 13 in Appendix B, that cut corresponds to the
anomaly score that maximizes the SIC curve in the signal
region. In contrast, the bottom row of Fig. 10 shows that
CWoLa is able to learn the signal features.

5 Conclusions

In this article, we have compared weakly-supervised and
unsupervised anomaly detection methods, using Classifica-
tion without Labels (CWoLa) Hunting and deep autoencoders
(AE) as representative of the two classes. The key difference
between these two methods is that the weak labels of CWoLa
Hunting allow it to utilize the specific features of the signal
overdensity, making it ideal in the limit of large signal rate,
while the unsupervised AE does not rely on any information
about the signal and is therefore robust to small signal rates.

We have quantitatively explored this complimentarity in
a concrete case study of a search for anomalous events in
fully hadronic dijet resonance searches, using as the target a
physics model of a heavy resonance decaying into a pair of

three-prong jets. CWoLa Hunting was able to dramatically
raise the significance of the signal in our benchmark points in
order to breach 5σ discovery, but only if a sizeable fraction
of signal is present (S/B � 4 × 10−3). The AE maintained
classification performance at low signal rates and had the
potential to raise the significance of of one of our benchmark
signals to the level of 3σ in a region where CWoLa Hunting
lacked sensitivity.

Crucially, our results demonstrate that CWoLa Hunting is
effective at finding diverse and moderately rare signals and
the AE can provide sensitivity to rare signals, but only with
certain topologies. Therefore, both techniques are comple-
mentary and can be used together for anomaly detection.
A variety of unsupervised, weakly supervised, and semi-
supervised anomaly detection approaches have been recently
proposed (see e.g. Ref. [60]), including variations of the
methods we have studied. It will be important to explore
the universality of our conclusions across a range of models
for anomaly detection at the LHC and beyond.
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Appendix A: Background fit

In this appendix, we briefly describe the details about the fit
procedure and discuss results from the fit to the background
events. In order to evaluate the significance of any poten-
tial excess in the signal region, the total number of predicted
signal region events is calculated by summing the individ-
ual predictions from each signal region bin. The systematic
uncertainty of the fit in the signal region prediction is esti-
mated by propagating the uncertainties in the fit parameters.
We test the validity of the fit using a Kolmogorov–Smirnov
test.

In Fig. 11 we show the fit to the background distribu-
tion using the 4-parameter function presented in Eq. (4.1).
First, the Kolmogorov–Smirnov test yields a p-value of 0.99,
which means that the fit describes the background distribu-
tion well outside of the signal region. In addition, the fit

Fig. 11 Fit to the background distribution of dijet events and residuals
from the fit. The signal region events are indicated by blue crosses

result produces a p-value of 0.5. However, the residuals indi-
cate that the number of predicted events in the signal region
is overestimated due to a local negative fluctuation of size
n = 123 events.7 As a result, the fit will always underesti-
mate the excess significance when a signal is injected in the
signal region. For example, if we introduce a number n of
signal events in the signal region, the fit prediction will match
the number of observed events and therefore the excess sig-
nificance will be exactly zero, even when a signal has been
injected.

Appendix B: Density of events for the optimal cut

See Figs. 12 and 13.

7 This has been validated as a fluctuation with an independent sample.
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Fig. 12 Density of events on the (m j1 ,m j2 ) plane for the most signal-
like events selected by CWoLa for the signal hypothesis (m j1 ,m j2 ) =
(500, 500) GeV (top row) and (m j1 ,m j2 ) = (300, 300) GeV (bot-
tom row). The optimal cut is derived from the signal efficiency that
maximizes the SIC curve. From left to right, we show results for three

benchmarks with S/B � 4 × 10−3, 2.8 × 10−3, 0. The location of the
injected signal is indicated by a green cross. Note that the upper right
plot shows a small statistical fluctuation that disappears when averaging
over a larger number of simulations

Fig. 13 Density of events on the (m j1 ,m j2 ) plane for the most signal-
like events selected by the AE for the signal hypothesis (m j1 ,m j2 ) =
(500, 500) GeV (top row) and (m j1 ,m j2 ) = (300, 300) GeV (bot-
tom row). The optimal cut is derived from the signal efficiency that

maximizes the SIC curve. From left to right, we show results for three
benchmarks with S/B � 4 × 10−3, 2.8 × 10−3, 0. The location of the
injected signal is indicated by a green cross
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Appendix C: Autoencoder model selection

Here we will motivate the selection of the AE model used
in the main body of the paper. In general, the challenge or
central tension of AE model selection for anomaly detection
is to choose a model that strikes a good balance between
compression and expressivity, between describing the bulk
of the data just well enough (i.e. with the right size latent
space) without swallowing up all the anomalies as well. Here
we will put forth some guidelines that could be used to find
this balance in an unsupervised way. While a complete study
is well beyond the scope of this work, the two signals provide
some evidence for the usefulness of these guidelines.

To begin, it is useful to consider the AE as consisting of
three components:

1. Choice of input features.
2. Latent space dimension.
3. Rest of the architecture.

Our philosophy is that item 1 defines the type of anomaly we
are interested in, and so cannot be chosen in a fully unsuper-
vised way. In this paper, we chose the input features to be
(mJ , pT , τ21, τ32, ntrk) because we observed they did well
in finding the 3-prong qqq signals. In contrast, item 2 and
item 3 can be optimized to some extent independent of the
anomaly (i.e. just from considerations of the background).

Our main handle for model selection will be the concept
of FVU: fraction of variance unexplained. This is a com-
monly used statistical measure of how well a regression task
is performing at describing the data. Let the input data be
�xi , i = 1, . . . , N and the (vector-valued) regression function
being

�yi = f (xi ) . (C.1)

Let the data to be described be �Yi . (So, for an AE, �xi = �Yi .)
Then the FVU F is

F =
1
N

∑N
i=1(

�Yi − �yi )2

1
N

∑N
i=1(

�Yi − 〈 �Y 〉)2
, (C.2)

i.e. it is the MSE of the regression divided by the sample
variance of the data. In the following, we will be working
with features standardized to zero mean and unit variance, in
which case the denominator (the sample variance) is just n,
the number of input features, and F becomes

F = 1

N

N∑
i=1

1

n

n∑
a=1

(Yia − yia)
2 , (C.3)

i.e. it is the MSE of the regression normalized to the number
of input features.

Our criteria for whether it is worth adding another latent
space dimension to the AE is whether it substantially reduces
the FVU. Here the measure of “substantially reduces” is
whether it decreases the FVU by significantly more than 1/n.
A decrease of 1/n (or less) suggests that the AE is merely
memorizing one of the input features via the extra latent
space dimension. In that case, adding the latent space dimen-
sion should not help with anomaly detection. Meanwhile, a
decrease in FVU of significantly more than 1/n suggests that
the latent space dimension is learning something nontrivial
about the inner workings of the data, capturing one of the
underlying correlations. In this case adding the latent space
dimension may help with anomaly detection performance.

We will demonstrate the effectiveness of this model selec-
tion criteria using the two signals considered in this paper,
Z ′(3500) → X (m)X (m), X → qqq events with m =
500 GeV and m = 300 GeV.

We scan over the size of the latent space and hidden lay-
ers, nlatent = 1, 2, 3, 4, . . . and nhidden = 128, 256, 512,
respectively. For each architecture and choice of input fea-
tures we train 10 models with random initializations on a
random subset of 50000 background jets.

For evaluation, we feed all 1M QCD events and all the
signal events to the trained models. We compute the follow-
ing metrics for each model: 〈MSE〉bg , σ(MSE)bg , max(SIC)
where the SIC is computed by cutting on the MSE distribu-
tion. For all three metrics, we only compute them using the
MSE distribution in a window (3300, 3700) GeV in mJ J .

Shown in Fig. 14 is the FVU versus the number of latent
dimensions, for 5 input features and different AE archi-
tectures. Each point represents the average MSE obtained
from 10 independent trainings. We see that the FVU ver-
sus nlatent plot has a characteristic shape, with faster-than-

Fig. 14 FVU vs number of latent dimensions, for 10 input features
and different AE architectures. The diagonal line is 1 − nlatent/n =
1 − nlatent/10 indicating the nominal case of a latent dimension just
memorizing one of the input features
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Fig. 15 Decrease in FVU from adding one more latent dimension vs
number of latent dimensions, for 10 input features and different AE
architectures. The horizontal line is 1/n = 1/10 indicating the nominal
case of a latent dimension just memorizing one of the input features

nominal decrease for small nlatent (the AE is learning non-
trivial correlations in the data) and then leveling out for larger

nlatent (the AE is not learning as much and is just starting to
memorize input features).

In Fig. 15 we show the decrease in FVU with each added
latent dimension, versus the number of latent dimensions.
From this we see that nlatent = 1, 2, 3 add useful informa-
tion to the AE but beyond that the AE may not be learning
anything useful.

We also see from these plots that the FVU decreases with
more nhidden as expected, although it seems to be levelling
off by the time we get to nhidden = 512. This makes sense –
for fixed nlatent the bottleneck is fixed, so increasing nhidden
just increases the complexity of the correlations that the AE
can learn, with no danger of becoming the identity map. This
suggests that the best AE anomaly detector will be the largest
nhidden that we can take for fixed nlatent , although the gains
may level off for nhidden sufficiently large.

Now we examine the performance of the various AE mod-
els on anomaly detection of the 300 GeV and 500 GeV
3-prong signals. The max(SIC) versus nlatent is shown in
Fig. 16. We see that there is decent performance on both sig-
nals for nlatent = 2, 3, 4, 5 with nlatent = 2 being especially

Fig. 16 max(SIC) vs. nlatent for the 500 GeV signal (left) and 300 GeV signal (right), 5 input features, and nhidden = 512. The blue dots are the
maxSICs for each of the 10 independent trainings, while the orange dot is the max(SIC) obtained from the average of the 10 MSE distributions

Fig. 17 max(SIC) of the averaged MSE distributions vs. nhidden for the 500 GeV signal (left) and 300 GeV signal (right), 5 input features, and
nlatent = 2, 3, 4
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good for both.8 This is roughly in line with the expecta-
tions from the FVU plots. Importantly, if we restricted to
nlatent = 2, 3 which have the larger decreases in FVU, we
would not miss out on a better anomaly detector.

Finally in Fig. 17, we show the max(SIC) for the MSE dis-
tributions averaged over 10 trainings vs nhidden , for nlatent =
2, 3, 4. We see that generally the trend is rising or flat with
increasing nhidden , which is more or less consistent with
expectations.

To summarize, we believe we have a fairly model-
independent set of criteria for AE model selection, based
on the FVU, which empirically works well on our two sig-
nals. Admittedly this is too small of a sample size to conclude
that this method really works; it would be interesting to con-
tinue to study this in future work. Based on these criteria,
we fix the AE model in this paper to have nlatent = 2 and
nhidden = 512.
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