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Abstract We study the evolution of the non-equilibrium
quantum fields from a highly excited initial state in two
approaches: the standard Keldysh–Schwinger diagram tech-
nique and the semiclassical expansion. We demonstrate
explicitly that these two approaches coincide if the coupling
constant g and the Plank constant h̄ are simultaneously small.
Also, we discuss loop diagrams of the perturbative approach,
which are summed up by the leading order term of the semi-
classical expansion. As an example, we consider shear vis-
cosity for the scalar field theory at the leading semiclassical
order. We introduce the new technique that unifies both semi-
classical and diagrammatic approaches and open the possi-
bility to perform the resummation of the semiclassical con-
tributions.

1 Introduction

Highly nonequilibrium dense quantum fields define the initial
stage of many physical problems. These include the physics
of the early stage of ultrarelativistic heavy ion collisions [1–
3], cold atomic gases [4,5] and the processes in the early
Universe [6–11]. At present, there are a variety of approaches
used for the description of the quantum field evolution from
a highly excited initial state to the quasistationary one, where
hydrodynamic equations work effectively.

One of the most advanced approaches is the Keldysh–
Schwinger diagram technique which provides a systematic
way of studying nonequilibrium phenomena in quantum field
theory [3,12–14]. With the help of this technique, one can
derive the kinetic equations that describe the evolution of
quasiparticle distribution function and observables conse-
quently. Also, this technique can be used for the systematic
evaluation of thermodynamical and transport properties of
the quantum systems at the thermal equilibrium [3,14].
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Another way to deal with the nonequilibrium initial state
comes from a physical intuition and is based on the assump-
tion that at high energies and/or high occupation numbers the
dynamics of the quantum fields is semiclassical, so the clas-
sical equations of motion can be used [15–25]. In order to
complete this approach, one should make additional assump-
tions about an ensemble which is used for the averaging of
observables. In the literature, this approach is often called the
Classical Statistical Approximation (CSA). It is very useful
for numerical simulations since it allows numerically extract
(nonperturbatively in coupling constant) results for observ-
ables [26–28] and transport coefficients [29]. In the previous
works of one of the authors [20–22], it was shown that the
CSA arises as the leading order of the semiclassical expan-
sion.

This work aims to demonstrate that the Keldysh–Schwinger
diagram technique and the classical statistical approach are
two facets of one general way to deal with nonequilib-
rium quantum fields. It seems that these two approaches are
quite different from a practical point of view. The Keldysh–
Schwinger diagram technique originates from the perturba-
tive expansion in the coupling constant g. In order to evalu-
ate the observable consistently in this approach, one should
(with the help of the Wick theorem and the diagram tech-
nique) derive the quantum kinetic equation on the distribution
function, solve it, and evaluate observable using the solution.
Conversely, the CSA comes from the h̄ expansion. In order
to find the observable there, it is necessary to solve the clas-
sical equations of motion and to average the observable on
the classical trajectories with the ensemble of the initial con-
ditions. In this work, we show that these two approaches can
be derived from one general path-integral representation. We
demonstrate which assumptions and approximations should
be made to obtain one approach or the other. We study the
case of both g and h̄ are small, where these two approaches
should be consistent, and analyse how the leading order term
of the semiclassical expansion (the CSA) sums up certain
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multi-loop diagrams of the perturbative Keldysh–Schwinger
technique.

Previously some efforts were made in this direction. In
particular, in works [30,31], the comparison between the
Keldysh–Schwinger diagram technique and the classical
approximation was performed for the thermal equilibrium,
and the agreement of the leading order contributions at high
temperatures was demonstrated.

The paper is organised as follows:
Starting from the general setup described in Sect. 2, we briefly
review the standard Keldysh–Schwinger diagram technique
in Sect. 3 and the semiclassical approximation in Sect. 4.
In Sect. 5 we perform the detailed comparison of these
approaches in the limit where g and h̄ are small simulta-
neously and analyse the loop contributions. In Sect. 6, on the
example of the shear viscosity, we show how to employ the
CSA for the calculation of the relevant physical observables
and discuss the applicability of the semiclassical approach.
Section 7 is devoted to a new diagram technique which nat-
urally combines both approaches described above. The dis-
cussion of results and conclusions are in Sect. 8.

2 Keldysh–Schwinger approach to the non-equilibrium
QFT

The standard way to deal with the non-equilibrium quantum
field theory includes the Keldysh–Schwinger technique, also
known as the closed-time path formalism [3,14,23]. In this
approach, averages are calculated as the trace with the den-
sity matrix operator. Time evolution of the density matrix is
defined by two evolution operators; that is why the doubling
of the degrees of freedom occurs. Moreover, the initial den-
sity matrix should be additionally defined from the physics
of the considered system.

In this work we consider the scalar field theory with the
action:

S[ϕ(x)] = 1

2

∫
dd x

(
∂μϕ(x)∂μϕ(x) − m2ϕ2(x) − g

2
ϕ4(x)

)
. (1)

Here and after we use mostly minus metric convention
gμν = (+,−,−,−) and xμ = (t, x). Using Eq. (1) one can
calculate the Keldysh action as a difference between actions
on the forward and the backward parts of the Keldysh con-
tour. Averages are expressed through the path integrals with
the Keldysh action as [3,14,23]:

〈Ô〉 =
∫

DϕFDϕBO[ϕF , ϕB]e i
h̄ (S[ϕF ]−S[ϕB ]). (2)

Here and after we keep h̄ explicitly in order to study the
semiclassical limit of the theory.

It is convenient to rotate the basis of ϕF , ϕB fields to the so-
called “classical” and the “quantum” fields (there are equiv-
alent notations for such rotation in the literature

φcl ≡ φr and φq ≡ φa) [3,14,23]:

ϕcl(x) = 1

2
(ϕF (x) + ϕB(x)) ,

h̄ϕq(x) = ϕF (x) − ϕB(x). (3)

This new ϕcl , ϕq basis has several advantages: the causal-
ity of the theory become explicit, the vertices look simpler,
and the semiclassical limit is transparent. Then the Keldysh
action transforms to (after integration by parts):

S[ϕF ] − S[ϕB] = Sinit [ϕcl , ϕq ] + SK [ϕcl , ϕq ],
Sinit [ϕcl , ϕq ] = h̄

∫
dd−1 x ϕq(t0, x)ϕ̇cl(t0, x),

SK [ϕcl , ϕq ] = −h̄

∞∫

t0

dt
∫

dd−1 x ϕq(t, x)

×
(
∂2
t − ∇2 + m2

)
ϕcl(t, x)

−gh̄

∞∫

t0

dt
∫

dd−1 x
(
ϕ3
cl(t, x)ϕq(t, x)

+ h̄2

4
ϕcl(t, x)ϕ3

q(t, x)
)

. (4)

We keep explicit dependence on the initial time t0 to take
into account highly non-equilibrium initial states. Usually,
the initial time moment is set to the past infinity, and the
boundary term Sinit [ϕcl , ϕq ] is dropped out. The averages
can be calculated by integration over new fields as:

〈Ô〉 =
∫

D ϕcl D ϕq O[ϕcl ] e i
h̄ SK [ϕcl ,ϕq ]. (5)

Note, if Ô contains only equal-time operators, then it is suf-
ficient to keep only the ϕcl component in the integrand of the
expression Eq. (5) due to causality.

The expressions similar to Eqs. (5) and (2) can be found in
many modern textbooks that discuss the Keldysh–Schwinger
technique. However, such representation is somewhat mis-
leading since it does not contain information about the initial
state of the theory, which makes ϕF and ϕB fields correlated.
More rigorously the Eq. (5) can be written as [20–22,32]:

〈Ô〉 =
∫

DΠ(x)Dα(x) W [α(x),Π(x)]

×
∫

i.c.

Dϕcl(t, x)
∫

Dϕq(t, x)O[ϕcl ]e i
h̄ SK [ϕcl ,ϕq ], (6)

where the integral with i.c. means the initial values for the
ϕcl field, ϕcl(t0, x) = α(x), ∂tϕcl(t0, x) = Π(x); whereas the
initial values for the ϕq are not fixed. Sinit [ϕcl , ϕq ] is then
taken into account and absorbed by the Wigner functional.

123



Eur. Phys. J. C (2021) 81 :704 Page 3 of 11 704

The Wigner functional is related to the initial value of the
density matrix operator ρ̂(t0) as:

W [α(x),Π(x)] =
∫

Dβ(x)ei
∫
dd−1 x β(x)Π(x)

×〈α(x) + h̄

2
β(x)|ρ̂(t0)|α(x) − h̄

2
β(x)〉.

(7)

This functional contains all the information about the initial
state of the system. The Eq. (6) represents the general expres-
sion from which one can deduce both the perturbative and the
semiclassical approaches which were discussed in the intro-
duction. In the next section, we derive the standard Keldysh–
Schwinger perturbation technique and discuss its limitations.

3 Standard perturbative approach

The standard Keldysh–Schwinger diagram technique follows
naturally from two major assumptions:

– The Gaussian form of the initial Wigner functional that
allows the Wick theorem to be valid.

– The possibility of the perturbative expansion.

Under these assumptions, the Eq. (6) can be rewritten as:

〈Ô〉 =
〈
O[ϕcl ]e−ig

∫
dd x

(
ϕ3
cl (x)ϕq (x)+ h̄2

4 ϕcl (x)ϕ3
q (x)

)〉
0
, (8)

where the averaging over the noninteracting fields 〈· · · 〉0

should be performed with help of the Wick’s theorem with
four basic contractions [3,14,23]:

〈ϕcl(x)ϕcl(x
′)〉0 = iG0

K (x; x ′),
〈ϕcl(x)ϕq(x

′)〉0 = iG0
R(x; x ′),

〈ϕq(x)ϕcl(x
′)〉0 = iG0

A(x; x ′) = iG0
R(x ′; x),

〈ϕq(x)ϕq(x
′)〉0 = 0. (9)

Here G0
R(A) is retarded (advanced) Green’s functions which

can be equivalently defined in the operator formalism as

G0
R(x; x ′) = G0

A(x ′; x) = − i

h̄
θ(t − t ′)〈[ϕ̂(x), ϕ̂(x ′)]〉0.

(10)

In the absence of the interactions these free correlators
Eq. (10) are independent from the initial Wigner functional
and solve the equation:

L̂0G
0
R(A)(x; x ′) = −δd(x − x ′), (11)

L̂0 = ∂μ∂μ + m2, (12)

with the corresponding boundary conditions (retarded or
advanced ones). The solution of the Eq. (11) is, for exam-
ple:

G0
R(x; x ′) = −θ(t − t ′)

∫
dd−1p

(2π)d−1

sin(ωp(t − t ′))
ωp

e−ip(x−x′),

ω2
p = p2 +m2. (13)

The Keldysh Green’s function:

G0
K (x; x ′) = − i

2
〈{ϕ̂(x), ϕ̂(x ′)}〉0 (14)

solves the equation:

L̂0G
0
K (x; x ′) = 0. (15)

This correlator depends crucially on the initial state of the
system and cannot be found without specification of the ini-
tial density operator. In the simplest case, the initial state of
the system is characterised by the one-particle distribution
function f p, which is related to the Keldysh Green’s func-
tion as: [3,14,23]

G0
K (x; x ′) = −i h̄

∫
dd−1p

(2π)d−1

cos(ωp(t − t ′))
2ωp

×(2 f p + 1)e−ip(x−x′). (16)

It is necessary to stress here that only for the Gaussian
initial state the knowledge of G0

R(x; x ′) and G0
K (x; x ′) is

enough to perturbatively evaluate the average of any product
of the free fields and build up the diagram technique.1

The basic elements of each diagram are two propagators:

iG0
R(x1; x2) x2 x1 ,

iG0
K (x1; x2) x2 x1 ,

and two vertices:

− ig, − igh̄2

4
.

Here the “black” and the “white” vertices differ by the power
of h̄2. It is specialised for the exact comparison with the
semiclassical approach later.

For example, let us draw diagrams for the first two orders
of the coupling constant expansion of the full retarded
Green’s function in the presence of interactions GR(x, x ′) =
−i〈ϕcl(x)ϕq(x ′)〉:

= +

1 Another way to include the initial conditions is to extend the Keldysh
contour onto the imaginary axis to take into account the Matsubara part
[14]. However, it works only for the special case of the thermal initial
state.
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+ +

+

+ + ...

(17)

and make some important observations. The first one is
related to causality. The zeroth-order retarded Green’s func-
tion G0

R(x; x ′) is explicitly zero if t ≤ t ′. It means that time
increases according to the direction of the arrow on the dia-
grams and each diagram in this expansion vanishes identi-
cally if t ≤ t ′. So, this diagrammatic expansion respects
causality and full Green’s function GR(x; x ′) = 0 for t ≤ t ′
as expected. The another observation, let us cut all G0

K lines
and inspect what remains. It can be seen that the number of
remaining loops exactly equal to the h̄ order of the diagram,
i.e. twice of the number of the “white” vertices. We prove
this statement Sect. 7. In this place, the Keldysh–Schwinger
technique differs drastically from the standard Feynman dia-
gram technique, where the h̄ order of any diagram coincides
with the number of the loops.2

The notation with the arrows, which is useful for the dia-
grammatic, may seem somewhat misleading in calculating
the number of legs with and without arrows in each vertex
of a diagram. The important point is that the retarded prop-
agator GR(x; x ′) connects two different fields, φcl and φq .
The arrow in the notation belongs to the φq field (that is why
arrows are moved to one end of the line in the diagrams).
In order to check a diagram, it is sufficient to calculate the
number of outgoing lines in each vertex. It should be either
one (the black vertex) or three (the white vertex). One can
find an alternative notation for this theory in the work [31].

As an example, the explicit expression for the “cactus”
diagram (the last diagram on the second line of Eq. (17)) can
be written:

G(cactus)
R (x; x ′) = −18g2

∫
dd y dd y′GR(x; y)GR(y; y′)

×GR(y; x ′)GK (y; y′)GK (y′; y′). (18)

2 For the ϕ4 theory considered here there is an additional relation
between number of the loops and number of the vertices. According
to this relation, the number of the loops equal to the power of cou-
pling constant. It comes from combinatorial arguments and valid for
the Keldysh–Schwinger technique considered here.

In the next section we demonstrate how this diagram (and
all others) originate from the coupling constant expansion of
the CSA.

4 Semiclassical approach

In order to construct the semiclassical expansion, we add an
auxiliary source J (x) to the theory described by Eq. (1):

S[ϕ(x), J (x)] = 1

2

∫
dd x

(
∂μϕ(x)∂μϕ(x) − m2ϕ2(x)

−g

2
ϕ4(x) + 2J (x)ϕ(x)

)
. (19)

The source J (x) is used for the intermediate steps only and
should be set to zero at the end of the calculations.

Let us rewrite the Keldysh action (Eq. (4)) in a more con-
venient form:

SK [ϕcl , ϕq , J ] = −h̄

∞∫

t0

dt
∫

dd−1 x

×
(
ϕq A[ϕcl ] + gh̄2

4
ϕclϕ

3
q

)
,

A[ϕcl ] = (∂μ∂μ + m2)ϕcl + gϕ3
cl − J.

(20)

There are two key features of this action:

– A[ϕcl ] = 0 corresponds to projecting onto the classical
equation of motion of the Lagrangian (Eq. (19)).

– As far as we explicitly keep h̄-dependence, it is clear that
the semiclassical approach is, in fact, the expansion of
the last term:

e
−i gh̄

2

4

∞∫
t0

dt
∫
dd−1 x ϕclϕ

3
q

= 1 − i
gh̄2

4

∞∫

t0

dt
∫

dd−1 x ϕclϕ
3
q + · · · (21)

4.1 Classical statistical approximation

The Leading Order term of the semiclassical expansion
(Eq. (21)) is also known as the Classical Statistical Approxi-
mation, or the classical approach. In this case, the integration
over ϕq and ϕcl fields can be done, and the Eq. (6) reproduce
the well-known result [15–22]:

〈Ô〉 =
∫

Dα(x)DΠ(x)W [α(x),Π(x))]O(φc), (22)

where φc is the solution of the classical equation of motion:

∂μ∂μφc + gφ3
c = J (23)
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with the initial conditions given by:

φc(t0, x) = α(x), ∂tφc(t0, x) = Π(x) (24)

and at zero axillary source J (t, x).
Hence, the recipe for the CSA is the following:

– find the classical trajectory as a function of the initial
conditions.

– calculate observables on this trajectory.
– average over the initial conditions with the Wigner func-

tional corresponding the considered problem.

Let us introduce new notation for averaging over initial
conditions with the Wigner functional as:

〈· · · 〉i.c. ≡
∫

Dα(x)DΠ(x)W [α(x),Π(x))](· · · ) (25)

Then the definition of the CSA approximation (Eq. (22)) can
be rewritten in this notation as

〈Ô〉 = 〈
O[φc]

〉
i.c. (26)

It may seem that in the semiclassical expansion there are no
linear in h̄ contributions. However, it is not the case since the
Wigner functional may depend on the h̄ explicitly and aver-
aging over the initial conditions may produce these terms
[24,25]. For example, for the initial thermal state with the
Bose distribution function and in the absence of the interac-
tions the Kedlysh Green function, which is G0

K ∼ 〈φcφc〉i.c.,
contains the combination (see Eq. (16)):

G0
K ∼ h̄

ωp
coth

(
h̄ωp

2T

)
.

In the zero temperature limit G0
K ∼ h̄/ωp which is linear

in h̄, whereas for high temperature G0
K ∼ T/ω2

p and this
contribution is purely classical and independent from h̄.

4.2 Quantum corrections

The quantum corrections to the CSA (or the next-to-leading
order of the semiclassical expansion) can be found with the
help of the second term of the expansion (Eq. (21)). The
integration over ϕq can not be performed straightforwardly
because of the new ϕ3

q term.3 However, each ϕq can be
replaced by the functional derivative over the source J due
to ϕq J term in the Keldysh action (Eq. (19)) as:

ϕq(x)e
i SK [ϕc,ϕq ,J ] = −i

δ

δ J (x)
ei SK [ϕc,ϕq ,J ]. (27)

3 The same problem arise during the calculation of the correlation func-
tion like GR(x, x ′).

Then the quantum corrections to the CSA averages are 4

〈Ô〉 =
〈
O[φc(x)] + gh̄2

4

∫
dy φc(y)

δ3O[φc(x)]
δ J (y)3

∣∣∣∣
J=0

〉
i.c

.

(28)

The recipe of Eq. (28) similar to the recipe for the CSA:

– find the classical trajectory as a function of the initial
conditions.

– perform three variations over the auxiliary source (not
really needed).

– integrate over intermediate time and average with the
Wigner functional.

It is easy to recast all terms of the semiclassical approxi-
mation to the following general form:

〈Ô〉 =
〈
T̄ e

gh̄2

4

∫
dy φc(y)

δ3

δ J 3(y) O[φc(x)]
〉
i.c.

(29)

Here T̄ denotes the anti-time ordering which is required to
recover exponential form. The Eq. (29) shows that the build-
ing block of the semiclassical expansion is the full nonpertur-
bative solution of the classical EoM φc(x) and its variations
over the additional source J (x).

It turns out that it is not necessary to calculate the vari-
ations of the classical solution explicitly. Let us define n-th
variation as:

Φn(x; x1, x2, . . . xn) = δnφc(x)

δ J (x1)δ J (x2) . . . δ J (xn)
. (30)

Φn(x; x1, x2, . . . xn) can be calculated by variation of the
classical equation of motion:

δn

δ J (x1) . . . δ J (xn)

(
∂μ∂μφc(x) + gφ3

c (x) = J (x)

)
,

(31)

L̂φΦ1(x; x1) = δ(4)(x − x1),

L̂φΦ2(x; x1, x2) = −6gφc(x)Φ1(x; x1)Φ1(x; x2),

L̂φΦ3(x; x1, x2, x3) = −6gφc(x)Φ1(x; x1)Φ2(x; x2, x3)

−6gφc(x)Φ1(x; x2)Φ2(x; x1, x3)

−6gφc(x)Φ1(x; x3)Φ2(x; x1, x2)

−6gΦ1(x; x1)Φ1(x; x2)Φ1(x; x3),

· · ·
L̂φ = ∂μ∂μ + m2 + 3gφ2

c (x) ≡ L̂0 + 3gφ2
c (x) (32)

Hence, to calculate the quantum correction to the CSA one
need to find the solution of the n coupled differential equa-

4 A similar h̄2 expansion was studied in the paper by Bödeker [24],
where h̄2 contributions both from the initial state and the dynamical evo-
lution were considered all together. In the later work [25] it was argued
that the dynamical h̄2 contribution (analogous to Eq. (28) ) dominates
at large times.
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tions without knowledge of the exact dependence of the clas-
sical solution φc(x) from the auxiliary source J (x). The ini-
tial conditions for these equations are zero because of the
causality (φc(x) depends on the source J only at the preced-
ing times).

5 Comparison g2 and h̄2 expansions

Now we are ready to compare the perturbative and the semi-
classical approaches up to two loops. For this purpose, we
perform the semiclassical expansion of the GR(x1, x2) up to
h̄2 terms and show how this result, being decomposed further
up to g2, reproduces the perturbative answer of the Sect. 3.

Let us consider the full retarded Green’s function and
expand it according to Eqs. (21), (27), and (30)

GR(x1, x2) = −i〈ϕcl(x1)ϕq(x2)〉 = − 〈Φ1(x1; x2)〉i.c.
+gh̄2

4

〈 ∫
dy

(
Φ1(y; x2)Φ3(x1; y, y, y)

+φc(y)Φ4(x1; y, y, y, x2)
)〉
i.c.

. (33)

Let us denote the Leading Order retarded Green function
as GCSA

R (x1, x2), then from Eq. (33) it is obvious that

GCSA
R (x1, x2) = −〈Φ1(x1; x2)〉i.c. , (34)

L̂φG
CSA
R (x1, x2) = −δ(d)(x1 − x2). (35)

The result of Eq. (33) presents the Leading and Next-
to-Leading orders of the semiclassical expansion; however,
it is still the full nonperturbative answer in the sense of the
coupling constant. In order to perform expansion in g we need
to express φc(x) and Φ1(x1; x2) through the non-interacting
counterparts:

φc(x) = φ0(x) + g
∫

dy G0
R(x, y)φ3

c (y),

Φ1(x1; x2) = −G0
R(x1, x2)

+3g
∫

dy G0
R(x1, y)φ

2
c (y)Φ1(y, x2), (36)

where φ0(x) and G0
R(x1, x2) are solutions of the free differ-

ential equation (Eq. (11))

L̂0φ0 = 0, (37)

L̂0G
0
R(x1, x2) = −δ(d)(x1 − x2). (38)

The iterative expansion of the Eq. (36) up to g2 is the follow-
ing:

φc(x) = φ0(x) + g
∫

dy G0
R(x, y)φ3

0(y)

+3g2
∫

dy G0
R(x, y)φ2

0(y)

×
∫

dz G0
R(y, z)φ3

0(z) + O(g3),

Φ1(x1; x2) = −G0
R(x1, x2)

−3g
∫

dy G0
R(x1, y)φ

2
0(y)G0

R(y, x2)

−9g2
∫

dy G0
R(x1, y)φ

2
0(y)

×
∫

dz G0
R(y, z)φ2

0(z)G0
R(z, x2)

−6g2
∫

dy G0
R(x1, y)φ0(y)G

0
R(y, x2)

×
∫

dz G0
R(y, z)φ3

0(z). (39)

The higher variations Φ3 and Φ4 can be rewritten through
φc and Φ1 with the help of the integration representations of
the differential equations of Eq. (31). However, it is enough
to expand the higher variation only up to g, because of the
addition power of g in the second term of the Eq. (33). More-
over, the contribution of the Φ4 vanishes, because the lowest
term in this variation proportional to g2. The remaining h2

term of the Eq. (33) is:

gh̄2

4

∫
dy Φ1(y; x2)Φ3(x1; y, y, y) →

−3g2h̄2

2

∫
dy G0

R(y, x2)

∫
dz G0

R(x1, z)[G0
R(z, y)]3.

Let us draw the contributions to the full retarded Green’s
function GR(x1, x2) pictorially.

= + 〈 〉
i.c.

+〈 〉
i.c.

+〈 〉
i.c.

+ + ...

(40)

All lines and vertices have the same meaning as in Sect. 3.
The only new element – the grey blob – denotes the free
field φ0(x). Since only φ0(x) depends on the initial condi-
tions in the above expansion, it is straightforward to perform
averaging according to the rule:

〈φ0(x)φ0(y)〉i.c. = 〈
x y

〉
i.c.

= x y = iG0
K (x; y). (41)

Since we consider the Gaussian form of the Wigner func-
tional (to satisfy the demands of the perturbative approach),

123



Eur. Phys. J. C (2021) 81 :704 Page 7 of 11 704

the Eq. (41) represents the basic element of the Wick’s theo-
rem – the contraction of two φ0(x). For example, the “cactus”
diagram, that we mention earlier in Eq. (18), is recovered
from the fourth term of the expansion (Eq. (5)), or the last
line of Eq. (39).

〈 〉
i.c. = 3

All other contributions of the expansion (17) are recovered
correspondingly.

One can see that the Leading Order semiclassical term
(the CSA) reproduces all the contributions of the g2 terms of
the perturbative approach except the last one. However, this
term is subleading for a highly occupied initial state as we
discuss in the next section.

6 Shear viscosity and the CSA applicability

In this section we consider the implementation of the semi-
classical formalism to the numerical simulation. The CSA
is useful for numerical calculations since the path-integrals
over initial conditions can be done with the help of the Monte-
Carlo approach [26,29]. Another advantage of the CSA is the
possibility to take into account the strongly correlated initial
conditions (non-Gaussian ones). Let us consider the shear
viscosity as an example. In order to evaluate it one can use
the Kubo linear response theory [29,33–39], where transport
coefficients can be expressed through the retarded correlator
Rμν

αβ of two components of the stress-energy tensor Tμν as:

Rμν
αβ (x; x ′) = − i

h̄
θ(t − t ′)〈[T̂μν(x), T̂αβ(x ′)]〉. (42)

The Kubo theory is valid if a system is in a (quasi)stationary
state when hydrodynamical description [40] is applicable and
Rμν

αβ (x; x ′) depends only on x−x ′. In the rest frame, the shear
viscosity can be expressed through the Fourier transform of
the (12–12) correlation function:

R12
12(p) =

∫
d4(x − x ′)eip

μ(xμ−x ′
μ)R12

12(x; x ′)

as:

η = i lim
p0→0

lim
pi→0

∂0R
12
12(p). (43)

However, for the real physical systems, it is useful to consider
the shear viscosity in the general frame where the energy
flow can exist. One can define the flow velocity uμ for energy
current as the only time-like eigenvector of the average stress-
energy tensor 〈T̂μν〉 with eigenvalue equal to energy density
ε. We normalize the flow velocity as uμuμ = 1. In this
case, one can rewrite the expression for shear viscosity in the

covariant form through the retarded correlator of the traceless
part of the stress tensor. The final expression is:

η(x) = − 1

10
�

μν
αβ

∫
d4y uρ yρR

αβ
μν(x + y; x), (44)

where:

�
μν
αβ = 1

2

(
�μ

α�ν
β + �ν

α�
μ
β − 2

3
�μν�αβ

)
,

�μν = gμν − uμuν .

The Eq. (44) describes the quasistationary state where the
viscosity can be a slow function of the space-time point x ,
rather than the constant value of Eq. (43). It is likely to obtain
such a physical system in the later stages of the nonequilib-
rium matter evolution. Moreover, the Eq. (44) allows evalu-
ation of the shear viscosity in the system with the nonzero
energy flow without transformation to the rest frame of the
medium.

Note that the Eq. (44) can be considered as the shear
viscosity only in the range of validity of the hydrodynamic
description. For the correlator of the Eq. (44) it means that
�

αβ
μνR

μν
αβ (x + y; x) weakly changes as a function of x and

fast decays as a function of y. In other words, all the micro-
scopic dynamics should enter into the large scale behaviour
only through the number of the transport coefficients.

For the system under consideration the stress energy tensor
equals to:

Tμν = ∂μϕ∂νϕ − gμν

(
1

2
∂ρϕ∂ρϕ − 1

2
m2ϕ2 − g

4
ϕ4

)
,

(45)

and only the first part Θμν(x) = ∂μϕ(x)∂νϕ(x) contribute to
the shear viscosity. It means that we need to evaluate retarded
correlator which is proportional to 〈Θμν

cl (x)Θαβ
q (x ′)〉 where

the definition of the “classical” and the “quantum” compo-
nents are the same as before:

Θ
μν
cl (x) = 1

2

(
Θ

μν
F (x) + Θ

μν
B (x)

)
h̄Θμν

q (x) = Θ
μν
F (x) − Θ

μν
B (x).

In terms of ϕcl(q) the result is:

R(x; x ′) ≡ �αβ
μνR

μν
αβ (x; x ′)

= −2i�αβ
μν〈∂μϕcl(x)∂

νϕcl(x)∂
′
αϕcl(x

′)∂ ′
βϕq(x

′)〉,
(46)

where ∂ ′
α = ∂

∂x ′α . Now we can apply the semiclassi-
cal approach and derive the leading order contribution for
R(x; x ′). We obtain the CSA answer:

R(x; x ′) = −4�αβ
μν〈∂μφc(x)∂

′
αφc(x

′)∂ν∂ ′
βΦ1(x; x ′)〉i.c..

(47)
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Here φc(x) is the solution of the classical EoM and Φ1(x; x ′)
– the solution of the linear differential equation (32). The
averaging over the initial conditions 〈· · · 〉i.c. is done with the
Wigner functional Eq. (25) defined by a physical problem
under consideration. The dynamics in this approximation is
classical; the only h̄ – corrections can be obtained from the
Wigner functional.

In principle, by taking variational derivatives of the
Eq. (47), one can obtain the next-to-leading order semi-
classical terms (h̄2) or the quantum corrections to the CSA.
Another way to obtain these quantum corrections is to use the
technique described in Sect. 7 below. Let us explicitly con-
sider the two similar diagrams Eq. (48) which are included
to the Eq. (46). The first diagram contributes to the leading
order shear viscosity, and it is taken into account by the CSA,
whereas the second one proportional to h̄2 and belongs to the
NLO semiclassical term.

∼ h̄0,

∼ h̄2. (48)

Here the squared vertices arise from the value we consider
- the shear viscosity Eq. (46) as:

∼ ∂ϕcl∂ϕq , ∼ ∂ϕcl∂ϕcl . (49)

One can observe that the difference in (48) comes only
from the central loop. In the first case, it contains the prod-
uct of two Keldysh Green functions ∼ G0

KG
0
K , whereas the

second one has ∼ G0
RG

0
R insertion. Every Keldysh Green

function has 2 f p + 1 multiplier in contrast to the retarded
one (see Eqs. (16), (13)). If the initial state is highly occu-
pied (i.e. the system is almost classical), then f p � 1, and
we can neglect the second contribution. This analysis can be
extended to any diagram, contributing to the viscosity or any
other observable. For each diagram ∼ h̄2n there is the dia-
gram ∼ h̄0 which differs by 2n times substitutions of G0

R by
G0

K . In other words, in this diagram n “white” vertices are
changed to the “black” ones. The resulting diagram is greater
due to 2 f p + 1 factors and is already included in the CSA.
It explains why the CSA works well for the highly excited
initial state and sums up all leading contributions. Hence, the
results of works [27,31] are clarified.

7 h̄2 diagram technique

In previous sections, we consider two different approaches.
The first one is the Keldysh–Schwinger diagram technique
with two propagators GR/K (x, x ′) and two vertices as build-
ing blocks. The other one is the semiclassical approach where
the main objects are the classical solution φc(x) and the
classical response functions Φn(x; x1, . . . , xn) for a given
initial condition. In order to obtain observables in the latter
approach, one should perform the averaging over all possible
initial conditions. In Sect. 5, we show that both approaches
are equivalent for small g and h̄. Also, we demonstrate that
the leading contributions of the semiclassical expansion (the
CSA) represent a sum of an infinite number of diagrams in
the perturbative approach. In this section, we develop a new
approach that combines the advantages of both the CSA and
the diagram technique and permits systematic improvement
of the CSA and analysis of the higher-order quantum correc-
tions. Let us start again from the general expression for the
some observable (Eq. (6)) and shift the integration variable
ϕcl(x) = φc(x) + ϕ̃cl(x), where φc(x) is the solution of the
classical equation of motion with the corresponding bound-
ary conditions. After that ϕ̃cl obeys zero boundary conditions
and all dependence of α(x) and Π(x) enters into the path
integral only through φc(x). This trick can be done for any
quantity of interest. For example, the full retarded Green’s
function can be represented as:

GR(x; x ′) = −i
〈 ∫

zero i.c.

Dϕ̃cl

∫
Dϕq ϕ̃cl(x)ϕq(x

′)

×e−i
∫
dd x

(
ϕq (x)L̂φϕ̃cl (x)+3gφc(x)ϕ̃2

cl (x)ϕq (x)+gϕ̃3
cl (x)ϕq (x)

)

×e−i gh̄
2

4

∫
dd x

(
φc(x)ϕ3

q (x)+ϕcl (x)ϕ3
q (x)

)〉
i.c.

. (50)

Now we perform the perturbative expansion of the above
expression (without averaging over the initial conditions yet).
One can check that due to the zero initial conditions for ϕ̃cl

there is only one non-zero contraction:

〈〈ϕ̃cl(x)ϕq(x
′)〉〉 = −iΦ1(x; x ′). (51)

Here, by double angle brackets 〈〈. . .〉〉 we denote the func-
tional integration without averaging over the initial condi-
tions. This contraction is represented by the dashed line in
diagrams:

x ′ x − iΦ1(x; x ′).

The “price” for the absence of the 〈〈ϕ̃cl ϕ̃cl〉〉 propagator is
the presence of four different vertices in the theory:

− ig, − 3igφc(x),

(52)
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− igh̄2

4
, − igh̄2φc(x)

4
.

(53)

With the help of the above definitions, the perturbative
expansion can be performed in a standard manner.

The advantage of this h̄2 expansion (which is absent
in the standard Keldysh–Schwinger technique) is that the
number of diagrams for a given h̄2n order is finite. More-
over, the diagrams of the h̄2n order have exactly n loops.
Let us prove these facts. Due to causality Φ1(x; x ′) is
nonzero only for t > t ′. It means that any loop of the form
Φ1(y; x1)Φ1(x1; x2) . . . Φ1(xn, y) is zero, and one can fix
the direction of a time flow for each diagram. The proof is
based on the observation that the “white” vertices Eq. (53)
increase the number of lines in time, whereas the “black” ver-
tices Eq. (52) decrease. However, for each fixed h̄2n order,
there can be only n “white” vertices, so we have only the
finite number of possibilities to insert the “black” vertices.
The statement about the number of the loops is based on the
observation that it is impossible to construct a loop using only
black vertices because there is only one outgoing leg in each
vertex and all lines should be oriented along the time direc-
tion due to causality. Hence, every white vertex is associated
with two loops in the diagram.

For example, let us consider the two-loop diagram:

x ′ x

x1

x2 x3

time

Up to a numerical prefactor it is equal to:

∼ g3h̄2
∫

dd−1 x1 d
d−1 x2 d

d−1 x3

×
t∫

t ′
dt3

t3∫

t ′
dt2

t2∫

t ′
dt1φc(x1)φc(x2)Φ1(x; x3)Φ1(x3; x2)

×Φ2
1 (x3; x1)Φ1(x2; x1)Φ1(x2, x

′).

By following the time direction of this diagram, one can
observe that from t ′ to t1 there is only one line. The “white”
vertex at t1 creates three lines and two loops, which are closed
by the “black” vertices at times t2 and t3.

The overall strategy for the usage of this new technique
consists of three main steps:

1. Consider an observable and draw all possible diagrams
according to the diagrammatic rules presented above. The
number of this diagram is finite for a given h̄2 order. For
example, at the leading order (the CSA), the expression
for the viscosity (47) is given by one diagram:

(54)

2. Solve equations for φc(x) and Φ1(x; x ′) for given ini-
tial condition and substitute them to the observable and
evaluate it.

3. Perform the averaging over all possible initial condi-
tions with the weight given by the Wigner functional
W [α(x),Π(x)].

For example, if the Wigner functional is the Gaussian one,
then the averaging of this one diagram Eq. (54) is equivalent
to the summation of the infinite series of multiloop diagrams
in the framework of standard the Keldysh–Schwinger tech-
nique:

〈 〉
i.c. =

+ + + ... (55)

Let us note that the last two steps (solution of the equations
of motion and the averaging) can be performed numerically.
Usually, the Wigner functional decays fast for the large ini-
tial values of the field and the momenta. Since the Wigner
functional is normalised:∫

DΠ(x)Dα(x) W [α(x),Π(x)] = 1, (56)

the “sign problem” does not occur for the quantum correc-
tions, like in pure CSA simulations. Moreover, the precise
form of the initial Wigner functional is not specified. Hence,
with the help of this technique, one can work with correlated
and highly nonequilibrium initial states. All complexity of
the initial state appears only on the last step – the averaging
over the initial conditions (which are included to the observ-
ables through the classical trajectory φc(x)).

It is interesting to note that the separation of the path inte-
gral evaluation and the averaging over initial conditions in
some sense are similar to the method used in work [41]. In
this work, authors attribute one Lefschetz thimble to every
initial condition and average with the Wigner function at the
end of the calculation.

It is important to mention the physical interpretation of φc

and Φ1(x; x ′). Since the initial conditions are random, then
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the value of φc(x) at a given space-time point is also random
in some sense. Therefore, one can think of φc(x) as of some
noisy background fluctuating in space and time. At the same
time the equation for Φ1(x; x ′)
(
L̂0 + 3gφ2

c (x)
)

Φ1(x; x ′) = −δ(4)(x − x ′) (57)

describes the retarded propagator for a scalar particle in that
noisy background. It looks similar to the Langevene equa-
tion for a Brownian particle interacting with the environment
(see, for example, [42] and references therein). However,
here noise is generated not by external bath as in the case
of Brownian particle but by the scalar field itself. From this
point of view, vertices in our diagrammatic technique cor-
respond to the creation or annihilation of additional scalar
particles. Contribution from each event of a particle creation
contains an additional small h̄2 factor. It means that in the
semiclassical limit, only contribution from noisy background
survives, and the CSA works well.

8 Conclusions

In this work, we compare two approaches to the descriptions
of the nonequilibrium quantum scalar fields:

– The standard Keldysh–Schwinger diagram technique,
which requires the Gaussian initial conditions and the
small coupling constant.

– The semiclassical expansion, which works with the arbi-
trary coupling constant, but valid for highly excited (or
highly occupied) initial states only.

We analyse these two expansions at the limit where the
coupling constant g and the Plank constant h̄ are simultane-
ously small. We prove the consistency of these approaches
and explicitly demonstrate that already the first term of the
semiclassical expansion (the Classical Statistical Approxi-
mation) includes almost all two loop-diagrams of the stan-
dard perturbative approach. We show that the only remaining
g2h̄2 diagram is small if the initial conditions are overoccu-
pied i.e. the one-particle distribution function f p � 1. In
practice, this condition defines the applicability of the CSA.

As an example of the usefulness of the semiclassical
approach, we evaluate the shear viscosity in a more general
case of nonzero energy flow.

Also, we present a new diagram technique that combines
both the advantages of the semiclassical and the Keldysh–
Schwinger diagrammatic approaches. We believe that this
technique allows to perform the resummation of the next-to-
leading order semiclassical contributions and to improve the
CSA.
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