
Eur. Phys. J. C (2021) 81:696
https://doi.org/10.1140/epjc/s10052-021-09350-y

Regular Article - Theoretical Physics

On the canonical energy of weak gravitational fields with a
cosmological constant Λ ∈ R
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Abstract We analyse the canonical energy of vacuum lin-
earised gravitational fields on light cones on a de Sitter,
Minkowski, and Anti de Sitter backgrounds in Bondi gauge.
We derive the associated asymptotic symmetries. When
Λ > 0 the energy diverges, but a renormalised formula with
well defined flux is obtained. We show that the renormalised
energy in the asymptotically off-diagonal gauge coincides
with the quadratisation of the generalisation of the Trautman–
Bondi mass proposed in Chruściel and Ifsits (Phys Rev D
93:124075, arXiv:1603.07018 [gr-qc], 2016).

1 Introduction

A question of current interest is the amount of energy that can
be radiated by a gravitating system in the presence of a posi-
tive cosmological constant. This problem has been addressed
in [13] using an approach based on the characteristic con-
straint equations and involving Bondi coordinates. The anal-
ysis there showed ambiguities in the resulting expression.
The question then arises, whether some insight into the prob-
lem at hand could be gained by considering linearised gravity
on the de Sitter background. The aim of this work is to carry
out this project.

We start, in Sect. 2 with a general analysis of the canoni-
cal energy in linearised Lagrangian theories. The main point
is to derive a formula for the canonical energy including all
boundary terms, which are usually neglected and which play
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a key role in general relativity. The results presented in this
section are essentially known [41,56], but a coherent and
systematic presentation for linearised field theories, keeping
track of all terms in the integrals, does not exist in the litera-
ture. One of the main results in this section is Proposition 1,
which does not seem to have appeared in the literature in this
generality.

In Sect. 3 we show how to put a linearised gravitational
field into Bondi gauge, analyse the small-r behaviour of the
fields and derive the freedom remaining. This gives a uni-
fied treatment for all Λ ∈ R of asymptotic symmetries à la
Bondi-Metzner-Sachs in the linearised regime, which leads
to a clear view of the differences arising from the sign of
the cosmological constant and from the boundary conditions
imposed. We note that the current approach to asymptotic
symmetries, based on characteristic initial data and their evo-
lution, gives a perspective different from the one based e.g.
on Fefferman–Graham expansions, as it introduces naturally
a foliation of the conformal boundary I by spheres obtained
by intersecting I with the light cones.

In Sect. 4 we analyse the large-r behaviour of vacuum
metric perturbation in the Bondi gauge and show explicitly
how the formalism works for a class of linearised solutions
of the vacuum Einstein equations discovered by Blanchet
and Damour [8]. Our asymptotic conditions on the linearised
perturbations of the metric are modelled on the asymp-
totic behaviour of the full solutions of the Einstein vacuum
field equations with positive cosmological constant and with
smooth initial Cauchy data on S3, as derived by Friedrich
in [29]. Here some comments might be in order. In [29]
Friedrich shows that small perturbations of de Sitter Cauchy
data on S3 lead to vacuum spacetimes with smooth confor-
mal boundaries at infinity. He isolates a set of data on the
spacelike boundary at infinity which parameterise uniquely
all vacuum spacetimes with a positive cosmological con-
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stant and with smooth conformal completions at infinity.
His analysis carries over without difficulties to the linearised
equations; a convenient way to proceed is to linearise the
equations in [47]. The results of Friedrich provide a rigor-
ous justification of the asymptotic expansions proposed by
Starobinsky [50], revisited later from a more general perspec-
tive in [26]. The readers familiar with the Fefferman–Graham
expansions can view the results in this section as a transla-
tion of these expansions to characteristic Cauchy data in the
linearised setting.

It should be emphasised that requiring asymptotic con-
ditions more stringent than ours will lead to non-generic
fields, in the sense that generic smooth changes of initial
data on a Cauchy surface in de Sitter spacetime will lead to
solutions which do not satisfy the more stringent conditions.
And allowing less stringent conditions will lead to linearised
metric fields which are not smoothly conformally extendable
along, and in a neighborhood of, the initial light cone. In other
words, our asymptotic conditions are optimal for linearised
fields which are smoothly conformally extendable.

In Sect. 5 we apply the formalism developed so far to
derive our formula for the canonical energy of vacuum lin-
earised metric perturbations on a de Sitter, Minkowski, and
Anti de Sitter backgrounds.

In the asymptotically flat case we recover the linearised-
theory version of the usual Trautman–Bondi mass. Similarly
whenΛ ≤ 0 and the old-fashioned [4,5,16,32] strong decay
conditions are imposed on the linearised field we obtain the
linearised version of the usual, conserved, Anti de Sitter
mass.

When Λ > 0, or when Λ < 0 but the asymptotic condi-
tions are relaxed to the linearised version of not-conformally-
flat-I , we obtain an expression for the canonical mass on
light cones truncated to radius R which diverges when R
tends to infinity. It turns out that the divergent part of the
energy has a dynamics of its own, which allows one to intro-
duce a renormalised energy which satisfies a well defined
flux formula. This formula, and its flux, are the main results
of this work, to be found in Sect. 5.4. We show in Sect. 5.6
that the renormalised energy coincides with a quadratisa-
tion of a generalisation of the Trautman–Bondi mass pro-
posed in [13] when an “asymptotically off-diagonal gauge” is
used. On the other hand, the “asymptotically block-diagonal
gauge” leads to a formula for the renormalised energy which
differs from the previous one by a boundary term deter-
mined in Sect. 5.7.1. We find several natural candidates
for a renormalised canonical energy: δ2mTB(Cu), Êc,I and
Êc,I I ; yet another one, δ2 E (Λ), motivated by holography,
has been proposed in [20]; cf. Sect. 5.7.2. We find that the
only one which is invariant under asymptotic symmetries is
δ2mTB(Cu), which coincides with Êc,I in the gauge where
the Bondi-transformed linearised metric is as regular as pos-
sible at the origin.

Most of the results derived here have been summarised
in [12]. Further results on, or related to, this problem can be
found in [1–3,7,24,25,35,42,43,49,51,52].

We note that there exists a rich literature on energy when
Λ < 0 [4,6,19,31,33,40,48], and while essentially all our
results apply to either sign of cosmological constant, includ-
ing Λ = 0, we will not carry-out a systematic comparison of
our results to these, since the main concern of this paper is
the case Λ > 0, which is much less understood so far.

2 The energy of linearised fields

Our aim in this section is to establish that the canonical energy
of the linearised theory can be calculated, up-to-divergence,
by means of the “presymplectic current” (using the Lee-Wald
terminology) of the original theory; see Proposition 1 below.
This is well known, but we revisit the proof as we will need
the formula for the divergence term.

We further show gauge-independence up-to-boundary
term of the canonical energy of the linearised theory. This
is also well known (cf., e.g., [22,28,56]), and closely related
to the above, but here again our focus is on the explicit form
of the boundary term.

2.1 General formalism

We consider a first-order Lagrangian field theory for a col-
lection of fields φ ≡ (φA), where A runs over a finite set.
We write

∂φ ≡
(
φA

μ

)
:=

(
∂μφ

A
)

≡
(
∂φA

∂xμ

)
.

Given a Lagrangian density L (φ, ∂φ, ·), where · denotes
background fields (which might or might not be present), the
field equations are

EA:=∂μ

(
∂L

∂φA
μ

)
− ∂L

∂φA
= 0 . (2.1)

For λ ∈ I , where I is an open interval containing 0, let
φ(λ) ≡ (

φA(λ)
)

be a one-parameter family of fields differ-
entiable with respect to λ, set

φ̃ ≡ (φ̃A):=dφA

dλ
. (2.2)

Then φ̃ satisfies the set of equations

∂μ

(
∂2L

∂φA
μ∂φB

ν

∂νφ̃
B + ∂2L

∂φA
μ∂φB

φ̃B
)

= ∂2L

∂φA∂φB
μ

∂μφ̃
B + ∂2L

∂φA∂φB
φ̃B + dEA

dλ
. (2.3)
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To continue, it is convenient to introduce some notation.
We set

πA
μ:= ∂L

∂φA
μ
, πA:= ∂L

∂φA
, (2.4)

πA
μ

B
ν := ∂2L

∂φA
μ∂φB

ν
, πA

μ
B := ∂2L

∂φA
μ∂φB

, πAB := ∂2L

∂φA∂φB
.

(2.5)

In this notation, (2.3) can be rewritten somewhat more con-
cisely as

∂μ

(
πA

μ
B
ν∂νφ̃

B + πA
μ

B φ̃
B
)

=
(
πB

μ
A∂μφ̃

B + πAB φ̃
B
)

+ dEA

dλ
. (2.6)

If dEA
dλ has been prescribed (e.g., equal to zero, in which

case the fields φ̃A satisfy the linearised field equations), or
is known and is φ̃–independent, this set of equations can be
derived from a Lagrangian density L̃ given by

L̃ = 1

2
πA

μ
B
ν∂μφ̃

A∂νφ̃
B + πA

μ
B∂μφ̃

Aφ̃B

+1

2
πAB φ̃

Aφ̃B + dEA

dλ
φ̃A. (2.7)

(To avoid ambiguities: we see that (2.7) with dEA
dλ ≡ 0 pro-

vides the Lagrangian for the linearised field equations at
φ(λ)|λ=0, regardless of whether or not φ(λ)|λ=0 itself satis-
fies any field equations, though typically one would be inter-
ested in situations where EA(φ(0)) = 0.)

We remark that the field φ:=φ(λ)|λ=0 plays a role of
a background field in L̃ , so even if we assumed that L
depends only upon φ and ∂φ, we end up with a Lagrangian
density where background dependence has to be taken into
consideration.

The following identities are useful, assuming dEA
dλ = 0:

π̃A
μ(φ̃):= ∂L̃

∂φ̃A
μ

= πA
μ

B
ν∂νφ̃

B + πA
μ

B φ̃
B

= d
(
∂L
∂φA

μ

)

dλ
= dπA

μ

dλ
, (2.8)

π̃B(φ̃):= ∂L̃

∂φ̃B
= πA

μ
B∂μφ̃

A + πAB φ̃
A

= d
(
∂L
∂φB

)

dλ
= dπB

dλ
. (2.9)

From now on, we consider a theory which satisfies the
following:

H1. L is a scalar density.
H2. There exists a notion of derivation with respect to a family

of vector fields X , which we will denote by LX , which

coincides with the usual Lie derivative on vector den-
sities, and which we will call Lie derivative regardless
of whether or not this is the usual Lie derivative on the
remaining fields, such that the following holds:

(a) LX preserves the type of a field, thus LX of a scalar
density is a scalar density, etc.;

(b) the field πA
μLXφ

A is a vector density;
(c) in a coordinate system in which X = ∂0 we have

LX = ∂0;
(d) LX satisfies the Leibnitz rule.

The above holds if the fields φA are tensor fields and L
is of the form

√| det g|L , where L is a scalar, with L the
standard Lie derivative.

Let us denote byH̃ the Hamiltonian density vector (called
“Noether current” in [45]) associated with the Lagrangian
density L̃ and X :

H̃
μ[X ]:= ∂L̃

∂φ̃A
μ

LX φ̃
A − XμL̃

=
(
πA

μ
B
ν∂νφ̃

B + πA
μ

B φ̃
B
)
LX φ̃

A − XμL̃ .

(2.10)

Let H μ[X ] be the corresponding vector density associated
with the original field φ:

H μ[X ]:= ∂L

∂φA
μ

LXφ
A − XμL

= πA
μLXφ

A − XμL . (2.11)

We wish to calculate the variation of H μ. Typically one
assumes that the background fields, if any, areλ-independent.
This might, however, not be the case for some variations,
e.g. if the variations correspond to coordinate transformation
which do not leave the background invariant. In order to allow
for such situations let us denote by

ψ :=(ψ I )

the collection of all background fields; if L depends both
upon a background and some derivatives thereof, we include
the derivatives of the background as part of components of
ψ . For completeness we will carry out the usual calculation
of dH μ[X ]

dλ . For this, recall the formula for the Lie derivative
of a vector density Z :

LX Zμ = ∂σ (X
σ Zμ) − Zσ ∂σ Xμ . (2.12)

Keeping in mind that πA
μ is a tensor density by H1), and our

remaining hypotheses H2.a)-H2.d), we are led to the follow-
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ing identity:

∂σ

(
XσπA

μ dφA

dλ

)
= LXπA

μ dφA

dλ
+ πA

μLX
dφA

dλ

+∂σ XμπA
σ dφA

dλ
. (2.13)

We are ready now to calculate the variation of H :

dH μ[X ]
dλ

= LXφ
A dπA

μ

dλ
+ πA

μLX
dφA

dλ

+πA
μL d X

dλ
φA − d Xμ

dλ
L

︸ ︷︷ ︸
=H μ[ d X

dλ ]

−Xμ

(
πA

σ ∂σ
dφA

dλ
+ ∂L

∂φA︸︷︷︸
=∂σ πA

σ−E A

dφA

dλ
+ ∂L

∂ψ I

dψ I

dλ

)

= LXφ
A dπA

μ

dλ
− LXπA

μ dφA

dλ

+(LXπA
μ − ∂σ (X

μπA
σ )

)dφA

dλ

+πA
μLX

dφA

dλ
+ ∂σ XμπA

σ dφA

dλ

−XμπA
σ ∂σ

dφA

dλ
+ H μ

[
d X

dλ

]

+Xμ

(
EA

dφA

dλ
− ∂L

∂ψ I

dψ I

dλ

)

= LXφ
A dπA

μ

dλ
− LXπA

μ dφA

dλ

+2∂σ

(
X [σπA

μ] dφA

dλ

)

+H μ

[
d X

dλ

]
+ Xμ

(
EA

dφA

dλ
− ∂L

∂ψ I

dψ I

dλ

)
, (2.14)

(One should keep in mind that, when the background is not
invariant under the flow of X , there might be a contribution
from the background when calculating LXπA

μ.) When inte-
grated over a compact hypersurface S with boundary,

H [S , X ]:=
∫

S
H μ[X ]d Sμ , (2.15)

(2.14) leads to the usual field-theoretical version of the gen-
erating formula of Hamilton: Indeed, for solutions of the field
equations and for λ-independent vector fields X and back-
ground fields the last line in (2.14) vanishes and, using the
notation

δφA:=dφA

dλ
, δπA

μ:=dπA
μ

dλ
, (2.16)

d Sμ = ∂μ�dx0 ∧ · · · ∧ dxn , d Sμν = −∂μ�d Sν , (2.17)

after integration of (2.14) over S one obtains

δH [S , X ] :=
∫

S

dH μ[X ]
dλ

d Sμ

=
∫

S

(LXφ
AδπA

μ − LXπA
μδφA)d Sμ

−
∫

∂S
X [σπA

μ]δφA d Sσμ , (2.18)

where the boundary term might or might not vanish depend-
ing upon the boundary conditions satisfied by the fields at
hand. These terms do not vanish, and play a key role for the
problems at hand in this work.

Given two one-parameter families of fields φA(λ) and
φA(τ ), the “presymplectic current” ωμ is defined as

ωμ

(
dφ

dλ
,

dφ

dτ

)
= dφA

dτ

dπA
μ

dλ
− dφA

dλ

dπA
μ

dτ

≡ dφA

dτ
π̃A

μ

(
dφ

dλ

)
− dφA

dλ
π̃A

μ

(
dφ

dτ

)
,

(2.19)

with a similar definition for ω̃μ:

ω̃μ

(
dφ̃

dσ
,

dφ̃

dτ

)
= dφ̃A

dτ

dπ̃A
μ

dσ
− dφ̃A

dσ

dπ̃A
μ

dτ

= dφ̃A

dτ
π̃A

μ

(
dφ̃

dσ

)
− dφ̃A

dσ
π̃A

μ

(
dφ̃

dτ

)
,

(2.20)

where in the last equation we have used linearity of π̃A
μ in

its argument. Strictly speaking, π̃A
μ
(

dφ̃
dσ

)
in (2.20) should

be written as (π̃A
μ)∗

(
dφ̃
dσ

)
, where (π̃A

μ)∗ is the map tangent

to the linear map

dφ

dλ
	→ π̃A

μ

(
dφ

dλ

)
,

but we will stick to the notation π̃A
μ.

While ω̃μ and ωμ look identical, one should keep in mind
that they are not defined on the same spaces: the arguments of
ωμ are sections of the bundle tangent to the bundle of fields,
while the arguments of ω̃μ are sections of the bundle of tan-
gents to the tangents. The difference is, however, somewhat
esoteric in any case.

2.1.1 The divergence of the presymplectic current

We wish to calculate the divergence of the pre-symplectic
current (2.19). Consider thus, as before, a two-parameter
family of fields φA(λ, τ ). Assuming that the variations and
the coordinate derivatives commute we have:
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∂μ

(
dφA

dτ

dπA
μ

dλ

)
= ∂μ

dφA

dτ

dπA
μ

dλ
+ dφA

dτ
∂μ

dπA
μ

dλ

= ∂μ
dφA

dτ

dπA
μ

dλ
+ dφA

dτ

d

dλ
(EA + πA)

= d

dλ

[
πA

μ∂μ
dφA

dτ
+ (EA + πA)

dφA

dτ

]

−πA
μ∂μ

d2φA

dτdλ
− (EA + πA)

d2φA

dτdλ

= d2L

dλδτ
+ d

dλ

[
EA

dφA

dτ

]

−πA
μ∂μ

d2φA

dτdλ
− (EA + πA)

d2φA

dτdλ
.

(2.21)

Changing the order of τ and λ leads to

∂μω
μ ≡ ∂μ

(
dφA

dτ

dπA
μ

dλ
− dφA

dλ

dπA
μ

dτ

)

= dEA

dλ

dφA

dτ
− dEA

dτ

dφA

dλ
. (2.22)

We conclude that the divergence will vanish if the linearised
field equations

dEA

dλ
= 0 = dEA

dτ
. (2.23)

are satisfied.

2.1.2 The canonical energy of the linearised theory and the
presymplectic form

Calculating directly from the definition (2.11) we have

dH μ[X ]
dλ

= π̃A
μLXφ

A + πA
μLX φ̃

A − Xμ

×
(
πA

σ ∂σ φ̃
A + πAφ̃

A + ∂L

∂ψ I

dψ I

dλ

)

+πA
μL d X

dλ
φA − d Xμ

dλ
L

︸ ︷︷ ︸
H μ[ d X

dλ ]

. (2.24)

Comparing (2.24) with (2.14) we obtain

0 = −πA
μLX φ̃

A − LXπA
μφ̃A + 2∂σ

(
X [σπA

μ]φ̃A
)

+Xμ
(
πA

σ ∂σ φ̃
A + (πA + EA)φ̃

A) . (2.25)

This is true for all fields φ, φ̃ and X , regardless of whether
or not the fields satisfy any equations.

We will differentiate (2.25) with respect toλ. Before doing
this, we note first that a replacement in (2.25) of X by d X/dλ

gives the identity

0 = −πA
μL d X

dλ
φ̃A − L d X

dλ
πA

μφ̃A + 2∂σ

(
d X

dλ

[σ
πA

μ]φ̃A

)

+d X

dλ

μ (
πA

σ ∂σ φ̃
A + (πA + EA)φ̃

A
)
. (2.26)

Similarly, replacing φ̃ by dφ̃/dλ in (2.25) gives

0 = −πA
μLX

dφ̃A

dλ
− LXπA

μ dφ̃A

dλ
+ 2∂σ

(
X [σπA

μ] dφ̃A

dλ

)

+Xμ

(
πA

σ ∂σ
dφ̃A

dλ
+ (πA + EA)

dφ̃A

dλ

)
. (2.27)

Differentiating (2.25) with respect to λ, after taking into
account (2.26) and (2.27) one is led to

0 = −π̃A
μLX φ̃

A − LX π̃A
μφ̃A + 2∂σ

(
X [σ π̃A

μ]φ̃A
)

+Xμ

(
π̃A

σ ∂σ φ̃
A +

(
π̃A + dEA

dλ

)
φ̃A

)
. (2.28)

Adding this to twice the right-hand side of (2.10) one obtains

2H̃ [X ] = LX φ̃
A π̃A

μ − LX π̃A
μφ̃A

︸ ︷︷ ︸
≡ωμ(φ̃,LX φ̃)

+2∂σ
(

X [σ π̃A
μ]φ̃A

)

−Xμ dEA

dλ
φ̃A .

This leads us to the following (compare [36, Appendix]);
note the we are not assuming that the fields φ at which we
are linearising satisfy any equations, nor that the background
structures (if any) are invariant under the flow of X :

Proposition 1 Consider a solution φ̃ of the linearised field
equations and assume that the vector field X is independent
of the fields considered. The Hamiltonian current

H̃
μ[X ]:=π̃μ

ALX φ̃
A − XμL̃ (2.29)

of the linearised theory can be rewritten as

H̃
μ[X ] = 1

2
ωμ(φ̃,LX φ̃) + ∂σ

(
X [σ π̃A

μ]φ̃A
)
. (2.30)

Here L̃ is the Lagrangian density for the linearised equa-
tions, with π̃ A

μ = ∂L̃ /∂(∂μφ̃
A), and ωμ is the presymplec-

tic current (2.19).

In view of the above, the Hamiltonian H̃ (S , X) for the
linearised theory associated with a hypersurface S reads

H̃ [S , X ]:=
∫

S

(
π̃ A

μLX φ̃
A − XμL̃

)
d Sμ

= 1

2

(∫

S
ωμ(φ̃,LX φ̃) d Sμ

−
∫

∂S
X [σ π̃A

μ]φ̃Ad Sσμ

)
. (2.31)
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When X is a time-translation, one often identifies the numer-
ical value of (2.31) with the energy of the field contained in
S . We will use this terminology, momentarily ignoring all
the delicate issues associated with the boundary conditions
satisfied by the fields, to which we will return in due course.

2.1.3 Energy flux

We wish to derive a formula for the flux of energy across
∂S . For this, define

φ(τ) = Φτ [Y ](φ) , (2.32)

where we use the symbol Φτ [Y ] to denote both the flow of
a vector field Y and its action on our field. We consider a
family of fields obtaining by flowing along Y , and the result-
ing variational identity. We will require that X commutes
with Y , that the background is invariant under the flow of Y ,
and that all the φ(τ)’s are solutions of the field equations.
Equation (2.14) with λ replaced by τ reads

dH μ[X ]
dτ

= LXφ
A dπA

μ

dτ
− LXπA

μ dφA

dτ

+2∂σ

(
X [σπA

μ] dφA

dτ

)

= LXφ
ALYπA

μ − LXπA
μLYφ

A

+2∂σ
(

X [σπA
μ]LYφ

A
)
. (2.33)

Taking Y = X , Eq. (2.33) becomes

dH μ[X ]
dτ

= 2∂σ
(

X [σπA
μ]LXφ

A
)
. (2.34)

This is the field-theoretical analogue of the statement that a
Hamiltonian in mechanics is conserved along its flow, except
that here one needs to take into account the boundary term.
Indeed, given a hypersurface S set

Sτ :=Φτ [X ](S )

and define

H (Sτ , X):=
∫

Sτ

H μd Sμ . (2.35)

It follows from (2.34) that

dH (Sτ , X)

dτ
= −

∫

∂Sτ

X [σπA
μ]LXφ

Ad Sσμ , (2.36)

so that the integrand of (2.36) represents the flux of energy
through ∂S when S is dragged along the flow of X .

2.1.4 The divergence of the Noether current

An important consequence of the hypotheses H1.-H2., p. 5,
is the identity

∂μH
μ[X ] = EALXφ

A . (2.37)

Note that the right-hand side is zero if a) either the field
equations E A = 0 hold, or b) the solution is stationary in the
sense that LXφ = 0.

The identity is easiest to establish by going to coordinates
in which LX = ∂0, so that

∂μH
μ[X ] = ∂μ(πA

μ∂0φ
A − δ

μ
0 L )

= (∂μπA
μ)∂0φ

A + πA
μ∂μ∂0φ

A − ∂0L

= (πA + EA)∂0φ
A + πA

μ∂μ∂0φ
A

− ∂L

∂φA
∂0φ

A − ∂L

∂φA
μ

∂0∂μφ
A

= EA∂0φ
A , (2.38)

which is the same as (2.37).
Formula (2.37) provides an alternative derivation of

(2.36), as follows: Let X be a vector field everywhere
transversal to a hypersurface S with boundary ∂S . Let,
as before, Sτ be obtained by flowing S with the vector field
X for a time τ . Let us denote by Tτ the hypersurface obtained
by flowing the boundary of S from time zero to time τ :

Tτ = ∪s∈[0,τ ]φs[X ](∂S ) .

Supposing that the right-hand side of (2.37) vanishes, and
applying Stokes’ theorem on the set bounded by S , Sτ and
Tτ we obtain

H [Sτ , X ] = H [S0, X ] +
∫

Tτ
H μd Sμ . (2.39)

Differentiating with respect to τ one obtains

d H [Sτ , X ]
dτ

= −
∫

∂S
X [νH μ]d Sνμ . (2.40)

This coincides with (2.36), as the term XμL in the definition
of H μ drops out from the integral after antisymmetrisation.

2.1.5 The energy flux revisited

In the case of theory of fields linearised around a solution,
there exists yet another way of computing the flux of energy
across ∂S , as follows:1

1 The calculation here is due to J.Hoque.
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Since the divergence of ωμ vanishes for solutions of field
equations, the calculation leading to (2.40) gives

d

dτ

∫

S
ωμ(φ̃,LX φ̃) d Sμ = −

∫

∂S
X [σωμ](φ̃,LX φ̃) d Sσμ.

(2.41)

Calculating the τ -derivative of H̃ [S , X ] as given by (2.31)
we obtain

dH̃ [Sτ , X ]
dτ

= 1

2

d

dτ

∫

S
ωμ(φ̃,LX φ̃) d Sμ

−1

2

∫

∂S
LX

(
X [σ π̃A

μ]φ̃A
)

d Sσμ

= −1

2

∫

∂S
X [σωμ](φ̃,LX φ̃) d Sσμ

−1

2

∫

∂S

(
X [σLX π̃A

μ]φ̃A + X [σ π̃A
μ]LX φ̃

A
)

d Sσμ .

(2.42)

Inserting the definition ωμ(φ̃,LX φ̃):=LX φ̃
Aπ̃A

μ − φ̃ALX

π̃A
μ, one term cancels out and another gets doubled, resulting

in the energy flux equal to

dH̃ (Sτ , X)

dτ
= −

∫

∂Sτ

X [σ π̃A
μ]LX φ̃

Ad Sσμ , (2.43)

recovering again (2.36).

2.2 Scalar fields on de Sitter spacetime

We apply the formalism to a linear scalar field in Minkowski
spacetime and in de Sitter spacetime. In our signature the
Lagrangian reads

L = −1

2

√| − det g|(gμν∂μφ ∂νφ+m2φ2) , (2.44)

for a constant m. The theory coincides with its linearisation
and we will therefore not make a distinction between the
fieldsϕ and ϕ̃. The canonical energy-momentum currentH μ

equals

H μ[X ] = −√| − det g|
×

(
∇μφ LXφ − 1

2

(∇αφ∇αφ+m2φ2)Xμ

)
.

(2.45)

We consider simultaneously the Minkowski space-time
and the de Sitter space-time in Bondi coordinates, in which
the metric takes the form

g ≡ gαβdxαdxβ = εN 2du2−2du dr+r2 (dθ2 + sin2 θdφ2)︸ ︷︷ ︸
=:γ̊

,

(2.46)

with Λ ≥ 0,

N :=
√

|(1 − α2r2)| , α ∈
{

0,

√
Λ

3

}
, ε ∈ {±1} ,

with ε equal to one if 1−α2r2 < 0, and minus one otherwise.
Hence

gαβ∂α∂β = −2∂u∂r − εN 2(∂r )
2 + r−2γ̊ AB∂A∂B ,

and

∇φ = −∂rφ ∂u − (∂uφ + εN 2∂rφ)∂r + r−2γ̊ AB∂Aφ ∂B .

(2.47)

(Starting from a more usual form of the de Sitter metric,

g = −(1 − α2r2)dt2 + dr2

1 − α2r2 + r2(dθ2 + sin2 θdφ2) ,

(2.48)

the form (2.46) can be obtained, for αr > 1, by introducing
a coordinate u through the formula

du := dt− dr

1 − α2r2 ≡ d

(
t + 1

2α
ln

(
αr − 1

αr + 1

))
; (2.49)

cf., e.g., [27].)
We denote by Cu the light cone of constant u, and by

Cu,R its truncation in which the Bondi coordinate r ranges
from zero to R. We wish to calculate the canonical energy
associated with the Killing vector field X = ∂u and contained
in Cu,R . Letting

dμC = √
det gAB dr ∧ dx2 ∧ dx3 and

dμγ̊ = √
det γ̊AB dx2 ∧ dx3 (2.50)

we find

Ec[φ,Cu,R]:=
∫

Cu,R

H μ[∂u]d Sμ =
∫

Cu,R

H u[∂u]d Su

= 1

2

∫

Cu,R

(∇αφ∇αφ − 2∇uφ ∂uφ + m2φ2)dμC

= 1

2

∫

Cu,R

(
g AB∂Aφ ∂Bφ−εN 2(∂rφ)

2+m2φ2)r2 dr dμγ̊ .

(2.51)

We see that (∂rφ)
2 gives a positive contribution to the energy

integral in the region where guu = εN 2 is negative, and a
negative contribution otherwise.
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The presymplectic current is defined as

ωμ(δ1φ, δ2φ)=(δ1φ∇μδ2φ−δ2φ∇μδ1φ)
√| det g|, (2.52)

with obviously vanishing divergence on solutions of field
equations:

∇μω
μ ≡ ∂μω

μ = 0 .

The u-component of the presymplectic current on Cu reads

ωu(δ1φ, δ2φ) = (
δ2φ ∂rδ1φ − δ1φ ∂rδ2φ

)√| det g| . (2.53)

When X = ∂u , this results in the following volume integrand
in (2.30)

1

2
ωu(φ, ∂uφ) = 1

2

(
∂uφ ∂rφ − φ ∂r∂uφ

)√| det g| , (2.54)

while the boundary integrand equals

∂σ

(
X [σ π̃μ]φ

)
= 1

2
∂i

(
φ∇ iφ

√| det g|
)
. (2.55)

Equation (2.30) leads to the following alternative form of
(2.51):

Ec[φ,Cu,R]
=

∫

Cu,R

(
1

2
ωμ(φ̃,LX φ̃) + ∂σ

(
X [σπμ]φ̃

))
d Sμ

= 1

2

∫

Cu,R

(
∂uφ ∂rφ − φ ∂r∂uφ

)
dμC

+1

2

∫

Su,R

φ∇ iφ
√| det g|∂i�(dx1 ∧ dx2 ∧ dx3) (2.56)

= 1

2

∫

Cu,R

(
∂uφ ∂rφ − φ ∂r∂uφ

)
dμC

−1

2

∫

Su,R

φ(∂uφ + εN 2∂rφ)
√| det g| dx2 ∧ dx3.

(2.57)

A careful reader might justly worry about the convergence
of the integrals, since a light cone is not a smooth manifold.
The fact that all integrals in this section are well behaved
for solutions of the wave equation which are smooth in a
neighborhood of the light cone can be verified using [14,
Proposition 2.1].

As a check of equality of (2.56) and (2.51), we note that
the field equation for φ reads

m2
√| det g|φ

= √| det g|�φ = ∂μ(
√| det g|∇μφ)

= −√| det g|∂u∂rφ + ∂i (
√| det g|∇ iφ) (2.58)

= −r2
√

det γ̊ ∂u∂rφ − ∂r
(
r2

√
det γ̊ (∂uφ + εN 2∂rφ)

)

+∂A(
√

det γ̊ γ̊ AB∂Bφ)

= −2r
√

det γ̊ ∂r (r∂uφ) − ∂r
(
r2

√
det γ̊ εN 2∂rφ

)

+∂A(
√

det γ̊ γ̊ AB∂Bφ) . (2.59)

Equation (2.58) together with the divergence theorem can
be used to replace the boundary term in (2.56) by a volume
integral, indeed recovering (2.51).

The mass-flux formula (2.36) becomes

d Ec[φ,Cu,R]
du

≡ dH (Cu,R, ∂u)

du
= −

∫

∂Sτ

X [σπμ]∂uφ d Sσμ

=
∫

Su,R

∇rφ ∂uφ r2 dμγ̊

= −
∫

Su,R

(
(∂uφ)

2 + εN 2∂rφ ∂uφ
)

r2 dμγ̊ . (2.60)

Let us momentarily assume that Λ = 0 = m. As is
well known, there exists a large class of solutions of the
wave equation on Minkowski spacetime with full asymptotic
expansions, for large r ,

φ(u, r, x A) =
(−1)
φ (u, x A)

r
+

(−2)
φ (u, x A)

r2 +
(−3)
φ (u, x A)

r3 +· · ·
(2.61)

After passing to the limit R → ∞, for such solutions (2.60)
becomes the usual energy-loss formula for the scalar field:

d Ec[φ,Cu]
du

= −
∫

S2
(∂u

(−1)
φ )2 dμγ̊ . (2.62)

We now turn our attention to the de Sitter case. We first
consider a massive scalar field, with the mass chosen so that
the equation is conformally covariant,

�gφ − (d − 2)R(g)

4(d − 1)︸ ︷︷ ︸
=:m2

φ = 0 , (2.63)

where d is the dimension of spacetime and R(g) is the scalar
curvature of g. After a conformal transformation g 	→ Ω2g
the fieldΩd/2−1φ satisfies again (2.63), with g there replaced
by Ω2g. This implies that solutions of (2.63) with smooth
initial data on a Cauchy surface in de Sitter spacetime behave
asymptotically for large r , in spacetime dimension four, again
as in (2.61). We return to this in Sect. 2.2.1 below.

For such solutions (2.57) becomes

Ec[φ,Cu,R] = 1

2

∫

Cu,R

(
∂uφ ∂rφ − φ ∂r∂uφ

)
dμC

−1

2

∫

S2

(−1)
φ

(
∂u

(−1)
φ − α2 R

(−1)
φ

)
dμγ̊ + o(1) ,

(2.64)
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where the volume integral converges when passing with the
radius R to infinity, but the boundary integral diverges lin-
early in R in general. Indeed, given φ|Cu one can integrate
(2.59) to

∂uφ

= 1

2r

∫ r

0

1

ρ

( − ∂r
(
r2εN 2∂rφ

) − m2r2φ + Δγ̊ φ
)∣∣

r=ρ
dρ

= ∂u

(−1)
φ

r
+ 2α2

(−3)
φ − Δγ̊

(−1)
φ

2r2 + · · · , (2.65)

where Δγ̊ is the Laplace operator associated with the metric
γ̊ , and where we have used

m2 = 2α2 (2.66)

in spacetime dimension four. Here

∂u

(−1)
φ =

∫ ∞

0

1

2ρ

( −∂r
(
r2εN 2∂rφ

)−2α2r2φ+Δγ̊ φ
)∣∣

r=ρ
dρ,

(2.67)

which shows that
(−1)
φ will not be zero at later times in general

even if it is initially.
As for (2.60), we find

d Ec[φ,Cu,R]
du

= −
∫

S2

(
(∂u

(−1)
φ )2 − α2 R

(−1)
φ ∂u

(−1)
φ

)
dμγ̊ + o(1).

(2.68)

This diverges again when R tends to infinity. However, we
see that the divergent term in Ec has a dynamics of its own,
so that a renormalised energy can be obtained by subtracting
the divergent term in Ec and passing with R to infinity,

E[φ,Cu] := 1

2

∫

Cu

(
∂uφ ∂rφ − φ ∂r∂uφ

)
dμC

−1

2

∫

S2

(−1)
φ ∂u

(−1)
φ dμγ̊ . (2.69)

The renormalised energy satisfies again an energy-loss for-
mula identical to (2.62), formally coinciding with that in
Minkowski spacetime.

A similar behaviour is observed for the massless scalar
field. It follows from [55] (cf. Sect. 2.2.1) that scalar fields
evolving out of smooth initial data on a Cauchy surface have
an asymptotic expansion of the form

φ(u, r, x A) = (0)
φ (u, r, x A)+

(−1)
φ (u, x A)

r
+

(−2)
φ (u, x A)

r2 . . . ,

(2.70)

compare (2.92).

It turns out that the volume part of Ec given by (2.57) does
not converge anymore as R tends to infinity under (2.70).
Indeed, using (2.92)–(2.93) one finds

1

2

∫

Cu,R

(
∂uφ ∂rφ − φ ∂r∂uφ

)
dμC

= −1

2

∫

S2

((
α2(

(−1)
φ )2 − (0)

φ ∂u

(−1)
φ

)
R

+D̊ A
((−1)
φ D̊A

(0)
φ − (0)

φ D̊A

(−1)
φ

)
ln R

)
dμγ̊ + O(1) ,

(2.71)

where D̊ is the covariant derivative associated with the metric
γ̊ and where O(1) denotes terms which have a finite limit as
R tends to infinity. Note that the logarithmic term integrates-
out to zero over S2. This leads us to define the finite part, say
EV , of the volume integral as

EV := lim
R→∞

(
1

2

∫

Cu,R

(
∂uφ ∂rφ − φ ∂r∂uφ

)
dμC

+ R

2

∫

S2

(
α2(

(−1)
φ )2 − (0)

φ ∂u

(−1)
φ

)
dμγ̊

)
. (2.72)

One now finds

Ec[φ,Cu,R]

:=EV − 1

2

∫

S2

((
α2(

(−1)
φ )2 −

(0)

D̊ Aφ D̊ A
(0)
φ

)
R

+ (0)
φ
(−1)
φ + (−1)

φ ∂u

(−1)
φ − 3α2

(0)
φ
(−3)
φ

+(−1)
φ Δγ̊

(0)
φ − 1

2

(0)
φ Δγ̊

(−1)
φ

︸ ︷︷ ︸
= 1

2

(−1)
φ Δγ̊

(0)
φ after integration by parts

)
dμγ̊ + o(1) ,

(2.73)

which continues to diverge as R tends to infinity in general.
The associated energy flux formula reads

d Ec[φ,Cu,R]
du

= −
∫

S2

(
R
(
Δγ̊

(0)
φ + ∂u

(−1)
φ

)
α2

(−1)
φ

+
((−1)
φ − 3α2

(−3)
φ − 1

2
Δγ̊

(−1)
φ

)
α2

(−1)
φ

+(∂u

(−1)
φ )2 + Δγ̊

(0)
φ ∂u

(−1)
φ

)
dμγ̊ + o(1).

(2.74)

Using ∂u

(0)
φ = α2

(−1)
φ (cf. (2.93)), one finds (unsurpris-

ingly) that the divergent term has a dynamics of its own, so
that the finite renormalised energy, defined as
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E[φ,Cu] := EV − 1

2

∫

S2

(
(0)
φ
(−1)
φ + (−1)

φ ∂u

(−1)
φ − 3α2

(0)
φ
(−3)
φ

+1

2

(−1)
φ Δγ̊

(0)
φ

)
dμγ̊ (2.75)

has a finite and well-defined flux:

d E[φ,Cu]
du

= −
∫

S2

(((−1)
φ − 3α2

(−3)
φ − 1

2
Δγ̊

(−1)
φ

)
α2

(−1)
φ

+(∂u

(−1)
φ )2 + Δγ̊

(0)
φ ∂u

(−1)
φ

)
dμγ̊ . (2.76)

2.2.1 Asymptotics of scalar fields on de Sitter spacetime

In order to understand the behaviour for large r , in Bondi
coordinates, of solutions of the massive or massless wave
equation,

�φ = m2φ , (2.77)

on de Sitter spacetime it is most convenient to work using a
foliation of (part of) de Sitter spacetime by flat submanifolds,
so that the metric takes the form

g = −dτ 2 + e2
√

Λ
3 τ (dx2 + dy2 + dz2) . (2.78)

Let ρ = √
x2 + y2 + z2, where (x, y, z) are as in (2.78),

thus

g = −dτ 2 + e2
√

Λ
3 τ

(
dρ2 + ρ2(dθ2 + sin2 θdϕ2)

)
. (2.79)

Set

T :=α−1e−ατ , α =
√
Λ

3
. (2.80)

We start our discussion with the case m = 0. According to
[55], smooth solutions of the massless scalar wave equation
on de Sitter spacetime extend through the conformal bound-
ary {T = 0} as

φ = f + T 3 ln T f̌ , (2.81)

where f and f̌ are smooth functions of (T, x, y, z). (By
matching coefficients as below one finds in fact that f̌ ≡ 0;
in other words, φ extends smoothly across the conformal
boundary.) The coordinate transformation

r = ρeατ , t = τ − 1

2α
ln(−1 + ρ2α2e2ατ ) , (2.82)

brings (2.79) to the form

g = −V dt2 + dr2

V
+r2(dθ2 +sin2 θdϕ2) , V = 1−α2r2 .

(2.83)

In terms of the coordinate u of (2.49),

u = t + 1

2α
ln

(αr − 1

αr + 1

)
, (2.84)

one finds

u = τ − 1

α
ln(αr + 1) ⇐⇒ T = e−αu

α(1 + αr)
, (2.85)

as well as

ρ = re−αu

1 + αr
. (2.86)

We thus have the expansions as r → ∞, absolutely conver-
gent for r > α−1,

ρ = e−αu

α

∞∑
n=0

(
− 1

αr

)n

= e−αu

α

(
1− 1

αr
+ 1

(αr)2
+ · · ·

)
,

T = e−αu

α2r

∞∑
n=0

(
− 1

αr

)n

= e−αu

α

(
1

αr
− 1

(αr)2
+ · · ·

)
.

(2.87)

This shows that a Taylor-series in T , near T = 0, for a
function f ,

f (T, ρ, θ, ϕ) = f (0, ρ, θ, ϕ) + ∂T f (0, ρ, θ, ϕ)T + · · · ,
(2.88)

translates into a full asymptotic expansion in 1/r , for large
r :

f |
(T =0,ρ= e−αu

α
,θ,ϕ)︸ ︷︷ ︸

(0)
f (u,θ,ϕ)

+
e−αu(∂T f − ∂ρ f )|

(T =0,ρ= e−αu
α

,θ,ϕ)

α︸ ︷︷ ︸
(−1)

f (u,θ,ϕ)

×1

r
+ · · · . (2.89)

Using

ln(αT ) = −αu − ln(1 + αr)

= ln(αr)

(
1 + 1

αr
+ · · ·

)
− αu ,

Equation (2.89) translates to the following asymptotic expan-
sion for solutions φ of the massless wave equation:
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φ(u, r, x A) = (0)
φ (u, x A) +

(−1)
φ (u, x A)

r
+

(−2)
φ (u, x A)

r2

+
(−3)
φ (u, x A)

r3 +
(−3,1)
φ (u, x A) ln r

r3 + · · · .
(2.90)

Here some words of caution are in order. When consider-
ing the characteristic Cauchy problem for the wave equation
with initial data on a light cone C (u0), any function φ|C (u0)

can be used as initial data. In particular we can prescribe φ of
the form (2.90) at u = u0 with arbitrary expansion functions
(−k)
φ . However, some relations will have to be satisfied by the

coefficients so that φ extends as in (2.81). This can be seen by
inserting the Taylor expansion (5.65) in the massless wave
equation in the coordinates of (2.78) to find that solutions
take the following form near T = 0:

φ(T, xi ) = f (xi ) − 1

2
Δδ f (xi )T 2 + 1

6
f̆ (xi )T 3

−1

8
Δ2
δ f (xi )T 4 + · · · , (2.91)

with arbitrary functions f and f̆ , where Δδ is the Laplacian
on Euclidean R

3, and where no logarithmic terms occur, so
that the function f̌ in (2.81) is zero.

Using (2.91), the expansion (2.90) becomes

φ(u, r, x A) = f

(
e−αu

α
, x A

)
−

e−αu∂ρ f
(

e−αu

α
, x A

)

α2r

−
Δγ̊ f

(
e−αu

α
, x A

)

2(αr)2
+ · · ·

= (0)
φ (u, x A) +

(−1)
φ (u, x A)

α2r
− Δγ̊

(0)
φ (u, x A)

2(αr)2

+ · · · . (2.92)

where
(0)
φ (u, ·) = f

( e−αu

α
, ·) and

(−3)
φ are arbitrary. Note that

(−2)
φ is determined uniquely by

(0)
φ .

As a consistency check, given φ|Cu of the form (2.92) one
can integrate (2.59) to determine ∂uφ on Cu :

∂uφ = 1

2r

∫ r

0

1

ρ

( − ∂r
(
r2εN 2∂rφ

) + Δγ̊ φ
)∣∣

r=ρ
dρ

= α2
(−1)
φ + ∂u

(−1)
φ

r
− Δγ̊

(−1)
φ

2r2 − (Δγ̊ + 2)
(−2)
φ

4r3 + · · · .
(2.93)

where

∂u

(−1)
φ = lim

r→∞

(
1

2

∫ r

0

1

ρ

( − ∂r
(
r2εN 2∂rφ

) + Δγ̊ φ
)∣∣

r=ρ
dρ

−α2
(−1)
φ r

)
. (2.94)

We finish by a short remark on the conformally covariant
case. The corresponding wave equation in the metric (2.79)
becomes the massless Minkowskian wave equation in the
coordinates (T, x, y, z) for the function

φ̂:=T −1φ . (2.95)

A Taylor expansion near T = 0 of a solution φ̂ gives

φ̂(T, ρ, θ, ϕ) = f (ρ, θ, ϕ) + f̂ (ρ, θ, ϕ)T

+1

2
Δδ f (ρ, θ, ϕ)T 2 + · · · , (2.96)

where Δδ is the Laplace operator of the flat metric δ on R
3,

and where f and f̂ are arbitrary functions. Hence

φ(u, r, ·) = f (ρ, ·)T + f̂ (ρ, ·)T 2 + 1

2
Δδ f (ρ, ·)T 3 + · · ·

= e−αu

1 + αr
f

(
re−αu

1 + αr
, ·
)

+ f̂

(
re−αu

1 + αr
, ·
)(

e−αu

1 + αr

)2

+1

2
Δδ f

(
re−αu

1 + αr
, ·
)(

e−αu

1 + αr

)3

+ · · · ,

= e−αu

α2r
f

(
e−αu

α
, ·
)

−e−2αu

α4r2

(
αeαu f

(
e−αu

α
, ·
)

+ ∂ρ f

(
e−αu

α
, ·
)

− f̂

(
e−αu

α
, ·
)

+ · · · . (2.97)

We see that the initial data for a solution which extends
smoothly through the conformal boundary at infinity will
have, in Bondi coordinates, arbitrary expansion coefficients
(−1)
φ and

(−2)
φ , with all the remaining expansion coefficients

determined uniquely by these first two.

2.3 Linearised gravity

We apply the results of Sect. 2.1 to vacuum general relativity
with cosmological constant Λ, using the background metric
approach of [11]. Thus

(φA) ≡ (gμν) .

We note the usual ambiguity related to the question, how to
differentiate with respect to a symmetric tensor field. When
performing variations we resolve this by allowing gμν not to
have any symmetries, with all geometric quantities such as
the Christoffel symbols, the Ricci tensor, or the volume form
defined using the symmetric part g(μν) of gμν . The tensor
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field gμν is assumed to be symmetric in all final formulae
and in all unrelated calculations.

In [11] the Lagrangian density is obtained by removing
from the Hilbert one a divergence which is made covariant
by using a background metric b. After allowing for a cosmo-
logical constant, in space-time dimension d this leads to the
Lagrangian (see [15, Section 5.1])

L = gμν
[ (

Γ ϕ
χμ − Bϕ

χμ

) (
Γ χ
ϕν − Bχ

ϕν

)

− (
Γ ϕ
μν − Bϕ

μν

) (
Γ χ
ϕχ − Bχ

ϕχ

)
+ rμν − 2Λ

d
gμν

]
,

(2.98)

where rμν is the Ricci tensor of b,

gμν := 1

16π

√− det g gμν , (2.99)

and where the Bϕ
ψγ ’s are the Christoffel symbols of the back-

ground metric b.
Consider the field

(δπA
ϕ) :=

(dπA
ϕ

dλ

)
≡

(dπψγϕ

dλ

)
≡ (δπψγϕ)

:=
(

d

dλ

∂L

∂(∂ϕgψγ )

)
.

Viewing momentarily Γ ϕ
μν and gμν as independent variables

we have

δL = gμν
[
δΓ ϕ

χμ

(
Γ χ
ϕν − Bχ

ϕν

) +
(
Γ ϕ
χμ − Bϕ

χμ

)
δΓ χ

ϕν

−δΓ ϕ
μν

(
Γ χ
ϕχ − Bχ

ϕχ

)
− (

Γ ϕ
μν − Bϕ

μν

)
δΓ χ

ϕχ

]

+ ∂L

∂gμν
δgμν

= gμν
[
2
(
Γ χ
ϕν − Bχ

ϕν

)
δρμ −

(
Γ
ψ
ϕψ − Bψ

ϕψ

)
δχμδ

ρ
ν

− (
Γ χ
μν − Bχ

μν

)
δρϕ

]
δΓ ϕ

χρ + ∂L

∂gμν
δgμν.

(2.100)

The point is thatL depends upon the derivatives of the metric
only through δΓ ϕ

χρ , so that the formula allows us to calculate
πβγα:

πβγα = gμν
[
2
(
Γ χ
ϕν − Bχ

ϕν

)
δρμ −

(
Γ
ψ
ϕψ − Bψ

ϕψ

)

δχμδ
ρ
ν − (

Γ χ
μν − Bχ

μν

)
δρϕ

] ∂Γ
ϕ
χρ

∂(∂αgβγ )
. (2.101)

Denoting by ∇̊ the covariant derivative associated with the
background metric b, one has

Γ σ
μν − Bσ

μν = 1

2
gσρ(∇̊μgνρ + ∇̊νgμρ − ∇̊ρgμν) . (2.102)

A somewhat lengthy calculation allows one to rewrite (2.101)
as

πβγα = 1

16π

√| det g|Pα(βγ )δ(εσ )∇̊δgεσ , (2.103)

with

Pαβγ δεσ = 1

2

(
gαεgδβgγ σ + gαεgσβgγ δ − gαδgβεgσγ

−gαβgγ δgεσ − gβγ gαεgσδ + gβγ gαδgεσ
)
.

(2.104)

Note that most expressions that follow in this paper involve
contractions of Pαβγ δεσ with tensors which are symmetric
both in the pairs βγ and εσ , and in such expressions there
is no need to symmetrise Pαβγ δεσ as in (2.103), since such a
symmetrisation is done automatically when the contraction
is performed.

Incidentally, since L is quadratic in ∇̊g, (2.104) implies

L = 1

32π

√| det g|

×
(

Pαβγ δεσ ∇̊αgβγ ∇̊δgεσ + 2gμν(rμν − 2Λ

d
gμν)

)
,

(2.105)

which shows that it makes sense to require

Pα(βγ )δ(εσ ) = Pδ(εσ )α(βγ ) . (2.106)

This last equation is not obvious by staring at (2.104), but
can be checked by a direct calculation.

Recall that we are interested in the linearised theory. For
this, it is clearly convenient to choose the background metric
b to be the metric g at which we are linearising. Denoting
by hμν the linearised metric field, the Lagrangian L̃ for the
linearised theory is thus

L̃ = 1

32π

√| det g|(Pαβγ δεσ ∇̊αhβγ ∇̊δhεσ + Q(h))
)
,

(2.107)

where Q arises from the quadratic terms in the Taylor expan-
sion, at the background metric, of

F :=√| det g|gμν(rμν − 2Λ

d
gμν

)
. (2.108)

We have, ignoring the usual issues related to the symmetry
of gαβ as this will be taken care of by itself when calculating
the Taylor expansion below,
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∂F

∂gαβ
= −√| det g|

(
gαμgβνrμν + (

Λ − gμνrμν
2

)
gαβ

)
,

∂2 F

∂gρσ ∂gαβ

= −√| det g|
(

1

2

(
gαμgβνrμν + (

Λ − gμνrμν
2

)
gαβ

)
gρσ

−(gαρgμσ gβν + gαμgβρgνσ )rμν − Λgαρgβσ

+1

2

(
gμρgνσ gαβ + gμνgαρgβσ

)
rμν

)
. (2.109)

Replacing g by g + h in the right-hand side of (2.108) we
thus obtain the Taylor expansion, after replacing rμν by Rμν

in the result,

F = √| det g|
[

R − 2Λ − (
Rαβ + (

Λ − R

2

)
gαβ

)
hαβ

−1

2

((
Rαβ + 1

2

(
Λ − R

2

)
gαβ

)
gρσ

−2
(
Rαρ + 1

2

(
Λ − R

2

)
gαρ

)
gβσ

)
hαβhρσ

]
+ O(h3).

(2.110)

Hence

Q(h) =
(

2
(
Rαρ + 1

2

(
Λ − R

2

)
gαρ

)
gβσ

−(
Rαβ + 1

2

(
Λ − R

2

)
gαβ

)
gρσ

)
hαβhρσ .

(2.111)

Assuming that the background satisfies the Einstein vacuum
equations,

Rαβ +
(
Λ − R

2

)
gαβ = 0 ⇐⇒ Rαβ = 2Λ

d − 2
gαβ ,

(2.112)

Equation (2.111) simplifies to

Q(h) = 2Λ

(d − 2)

[
gαρgβσ hαβhρσ − 1

2
(gαβhαβ)

2
]
. (2.113)

In view of (2.103), the variation of πβγα at g = b equals

δπβγα = gμν
[
2δΓ χ

ϕνδ
ρ
μ − δΓ

ψ
ϕψδ

χ
μδ

ρ
ν − δΓ χ

μνδ
ρ
ϕ

] ∂Γ
ϕ
χρ

∂(∂αgβγ )

= 1

16π

√| det g|Pα(βγ )δ(εσ )∇̊δδgεσ . (2.114)

Given two solutions δi g, i = 1, 2, of linearised Ein-
stein equations, the presymplectic current of vacuum Einstein
gravity with a cosmological constant therefore reads

ωα ≡ ωα(δ1g, δ2g)

= 1

16π

√| det g|Pα(βγ )δ(εσ )

(
δ2gβγ ∇̊δδ1gεσ − δ1gβγ ∇̊δδ2gεσ

)
.

(2.115)

(Because of the symmetrisations occurring in (2.115), one
can use there instead an equivalent version of (2.104) given
by Wald and Zoupas in [56]:

Pαβγ δεσ

W Z = gαεgσβgγ δ − 1

2
gαδgβεgσγ − 1

2
gαβgγ δgεσ

−1

2
gβγ gαεgσδ + 1

2
gβγ gαδgεσ . (2.116)

One can check that the part of the Lagrangian density which
contains Christoffel symbols can be reduced to four terms.
Indeed, we have

Pαβγ δεσ ∇̊αgβγ ∇̊δgεσ = P̃αβγ δεσ ∇̊αgβγ ∇̊δgεσ , (2.117)

where

P̃αβγ δεσ := gασ gβεgγ δ − gαβgγ δgεσ + 1

2
gαδgβγ gεσ

−1

2
gαδgβσ gγ ε . (2.118)

Using (2.117), it follows from (2.105) that

πβγα = 1

32π

√| det g| (P̃αβγ δεσ + P̃δεσαβγ
) ∇̊δgεσ .

(2.119)

Note that one of the terms constituting P̃αβγ δεσ is not invari-
ant under exchange of the first three indices with the three
last ones:

P̃αβγ δεσ − P̃δεσαβγ = −gαβgγ δgεσ −
(

− gδεgσαgβγ
)
,

(2.120)

which prevents us to express the canonical momenta in a
simple form using P̃αβγ δεσ .

The following relations hold:

Pα(βγ )δ(εσ ) = Pδ(εσ )α(βγ ) , (2.121)

Pα(βγ )δ(εσ ) = Pα(βγ )δ(εσ )

W Z , (2.122)

Pα(βγ )δ(εσ ) = 1

2

(
P̃α(βγ )δ(εσ ) + P̃δ(εσ )α(βγ )

)
. (2.123)

2.3.1 Canonical energy of weak gravitational fields

In the gravitational case (2.31) reads

H̃ [S , X ] = 1

2

(∫

S
ωμ(δg,LXδg) d Sμ

−
∫

∂S
π̃αβ[μXσ ]δgαβd Sσμ

)
. (2.124)

From (2.8) and (2.114) we find
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(π̃A
α(δφ)) ≡ (π̃βγα(δg))

= 1

16π

√| det g|Pα(βγ )δ(εσ )∇̊δδgεσ . (2.125)

If ∂S is a spacelike surface given by the equation

{u ≡ x0 = const , r ≡ x1 = const′} ,
and if X equals ∂u , then the boundary integral in (2.124) reads

− 1

32π

∫

∂S
X [σ Pμ](βγ )δ(εσ )∇̊δδgεσ δgβγ

√| det g| d Sσμ

= − 1

32π

∫

∂S
Pr(βγ )δ(εσ )∇̊δδgεσ δgβγ

√| det g| dx2∧dx3.

(2.126)

If we denote by hμν the linearised metric field, the “gen-
erating equation” (2.18) reads, again with X = ∂u ,

dH̃ [S , X ]
dλ

=
∫

S

(LX hαβ
dπ̃αβμ

dλ
− LX π̃

αβμ dhαβ
dλ

)
d Sμ

− 1

16π

∫

∂S
X [σ Pμ](βγ )δ(εσ )∇̊δhεσ

dhβγ
dλ

√| det g| d Sσμ
︸ ︷︷ ︸

Pr(βγ )δ(εσ )∇̊δhεσ
dhβγ

dλ

√| det g| dx2∧dx3

.

(2.127)

2.3.2 Energy flux

In the setting just described, the linearised-fields version of
the flux formula (2.36) takes the form

dH̃ [Sτ , X ]
dτ

= − 1

16π

∫

∂S
X [σ Pμ](βγ )δ(εσ )∇̊δδgεσ

×LXδgβγ
√| det g| d Sσμ

= − 1

16π

∫

∂Sτ

Pr(βγ )δ(εσ )∇̊δδgεσ

×LXδgβγ
√| det g| dx2 ∧ dx3 . (2.128)

2.3.3 Gauge invariance

It is shown in [15, Equations (5.19)–(5.20)] that for solutions
of the field equations and for all vector fields Y the current
H μ[Y ] takes the form H μ = ∂αU

μα + G μ, where

U
νλ = U

νλ
βY β − 1

8π

√| det gρσ |gα[νδλ]β Y β ;α , (2.129)

U
νλ

β = 2| det bμν |
16π

√| det gρσ |gβγ (e
2gγ [λgν]κ);κ , (2.130)

where a semicolon denotes the covariant derivative of the
metric b, with

e ≡
√| det gρσ |√| det bμν |

, (2.131)

and where G μ does not depend upon the derivatives of g.
Under our conditions, inspection of the analysis in [15,

Section 5.1] leads to the formula
∫

S
ωμ(LY g, δg) d Sμ = dHboundary[S ,Y ]

dλ
≡ δHboundary[S ,Y ] , (2.132)

where

Hboundary[S ,Y ] := 1

2

∫

∂S
U
μνd Sμν . (2.133)

A direct proof of (2.132) will be provided shortly. Thus,
for all vector fields Y which vanish together with their first
derivatives at ∂S and for all variations δg of the metric
satisfying the linearised field equations it holds that
∫

S
ωμ(LY g, δg) d Sμ = 0 , (2.134)

as already established by different arguments in [22,28,45].
Since LY g is the variation of the metric g corresponding to
infinitesimal coordinate-transformations, this is interpreted
as the statement that the form obtained by integrating the
presymplectic current is gauge-invariant.

For our purposes the key significance of (2.134) is:

Theorem 2 The total Noether charge H̃ [S , X ] of the lin-
earised gravitational field associated with a compact hyper-
surface S with smooth boundary is invariant under the
“gauge transformation”

δg 	→ δg + LY g

as long as the vector field Y satisfies Y = 0 = ∇̊Y =
[X,Y ] = ∇̊([X,Y ]) at ∂S .

Proof Using (2.134) we have
∫

S
ωμ(δg + LY g,LX (δg + LY g)) d Sμ

=
∫

S
ωμ(δg,LX (δg + LY g)) d Sμ

+
∫

S
ωμ(LY g,LX (δg + LY g)) d Sμ

︸ ︷︷ ︸
=0

=
∫

S
ωμ(δg,LXδg) d Sμ

+
∫

S
ωμ(δg,LYLX g + L[X,Y ]g)︸ ︷︷ ︸

≡LXLY g

d Sμ

=
∫

S
ωμ(δg,LXδg) d Sμ +

∫

S
ωμ(δg,LYLX g)

︸ ︷︷ ︸
=0

+
∫

S
ωμ(δg,L[X,Y ]g) d Sμ

︸ ︷︷ ︸
=0

. (2.135)
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The result follows now from (2.134). ��
Remark 3 There is an obvious version of Theorem 2 for non-
compactS ’s, when suitable asymptotic conditions, ensuring
the vanishing of the boundary integrals at the right-hand side
of (2.132), are imposed on all objects involved. ��

2.3.4 Proof of (2.132)

The remainder of this section will be devoted to the proof of
(2.132). For this it is convenient to write

wμ:= 16π√| det g|ω
μ . (2.136)

The presymplectic form on a light cone Cu , which we denote
byΩCu , is obtained by integrating the presymplectic current:

ΩCu (δ1g, δ2g):=
∫

Cu

ωμ(δ1g, δ2g) d Sμ

≡ 1

16π

∫

Cu

wu(δ1g, δ2g)
√| det g| dr d2x A

︸ ︷︷ ︸
=:dμC

,

(2.137)

where the light cone is given by the equation {u = 0},
and coordinatised by coordinates (r, x A). Thus, to determine
ΩCu (δ1g, δ2g), which in turn determines the volume part of
the Noether charge (2.124), we need to calculate wu .

We define

bμ(δ1g, δ2g):=Pμ(βγ )δ(εσ )δ1gβγ∇δδ2gεσ , (2.138)

so that the vector field w of (2.136) equals

wμ(δ1g, δ2g) = bμ(δ2g, δ1g)− bμ(δ1g, δ2g) . (2.139)

We consider the following gauge transformations

δ1g → δ1g + Lξ1 g , (2.140)

δ2g → δ2g + Lξ2 g . (2.141)

A gauge transformation of the vector fieldw of (2.136) leads
to

wα(δ1g + Lξ1 g, δ2g + Lξ2 g) = bα(δ2g, δ1g)

−bα(δ1g, δ2g)

+[bα(δ2g,Lξ1 g)− bα(Lξ1 g, δ2g)]
−[bα(δ1g,Lξ2 g)− bα(Lξ2 g, δ1g)]
+[bα(Lξ2 g,Lξ1 g)− bα(Lξ1 g,Lξ2 g)] . (2.142)

In order to avoid a notational confusion between fields
such as δgμν , understood as a variation of gμν , and

gμαgνβδgαβ , as before we will write hμν for δgμν . It is con-
venient introduce

hμν :=hμν − 1

2
gμνgαβhαβ . (2.143)

Indices on hμν and hμν are of course raised and lowered with
the metric g. Each term in square brackets in (2.142) can be
rewritten using the identity

[bα(h,Lξ g)− bα(Lξ g, h)]
= ∇β

[(
gβγ δασ hγ δ − gαγ δβσ hγ δ

)∇δξσ
]

−∇β

[
∇δU

αβ
γ
δξγ

]

+2Rδγ ξ
γ h

αδ −gαβ(2δRβγ −gνρδRνρgβγ )ξ
γ , (2.144)

where

Uαβγ δ:=gβδh
αγ + gαγ h

βδ − gβγ h
αδ − gαδh

βγ
. (2.145)

The tensor Uαβγ δ fulfills Uμλνκ = U [μλ][νκ] = U νκμλ .

Note that the last line in (2.144) vanishes on a background
which satisfies the vacuum Einstein equations (2.112) and for
metric perturbation satisfying the linearised vacuum Einstein
equations:

∇μ∇αhβμ + ∇μ∇βhαμ − ∇μ∇μhαβ − gαβ∇κ∇λhκλ︸ ︷︷ ︸
2δRαβ−gαβgνρδRνρ

= 2Λhαβ , (2.146)

Indeed, (2.146) is equivalent to the linearised Einstein equa-
tions

δ
(
Gμν + Λgμν

) = 0 , (2.147)

when Rμν = Λgμν holds; see Appendix C.
In order to show (2.144) we start by noting that, by defi-

nition of bα , we have

bα(h,Lξ g) = (
gβγ δασ hγ δ − gαγ δβσ hγ δ

)∇β∇δξσ

+Rα
δβσ ξ

βh
δσ + Rβδξ

βh
δα
. (2.148)

In order to find bα(Lξ g, h), we calculate ∇β∇δUαβγ δ and
use (2.146) to obtain

∇β∇δU
αβγ δ

= gβδ∇β∇δh
αγ + gαγ∇β∇δh

βδ − gβγ∇β∇δh
αδ

−gαδ∇β∇δh
βγ

= −(
2δRμβ − gμβgσρδRσρ

)
gμαgγβ − Rα

β
γ
δh

βδ

+Rδ
γ h

αδ
.

(2.149)
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Thus

∇β

[
∇δU

αβ
γ
δξγ

]

= ∇β∇δU
αβ

γ
δξγ + (∇δU

αβ
γ
δ)∇βξ

γ

= −(
2δRμν − gμνgσρδRσρ

)
gμαξν

−Rα
βγ δh

βδξγ + Rδγ hαδξγ + (∇δU
αβ

γ
δ
)∇βξ

γ

= −(
2δRμν − gμνgσρδRσρ

)
gμαξν − Rα

βγ δh
βδξγ

+Rδγ hαδξγ

+(
gβδ∇δh

α
γ+δαγ∇δh

βδ−δβγ∇δh
αδ−gαδ∇δh

β
γ

)∇βξ
γ

︸ ︷︷ ︸
=:I

.

Next

∇β

[(
gβγ δασ hγ δ − gαγ δβσ hγ δ

)∇δξσ
]

= (
gβγ δασ∇βhγ δ − gαγ δβσ∇βhγ δ

)∇δξσ︸ ︷︷ ︸
=:I I

,

+(
gβγ δασ hγ δ − gαγ δβσ hγ δ

)∇β∇δξσ . (2.150)

A calculation gives

bα(Lξ g, h) = I − I I (2.151)

Subtracting (2.151) from (2.148) gives (2.144)
To finish the argument it remains to compare (2.132) with

(2.144). The variation of the boundary Hamiltonian (2.133)
reads

δHboundary[S ,Y ]= 1

2

∫

∂S
δUμνd Sμν = 1

2

∫

∂S

[
δUαβ

γ Y γ

− 1

8π

√| det gρκ |gμ[αδgμγ δ
β]
σ Y σ ;γ ]d Sαβ . (2.152)

The linearisation of (2.130) gives

16π√| det gρκ |
Y γ

U
αβ

γ

= ∇δ

(
gβγ h

αδ + gαδh
βγ − gβδh

αγ − gαγ h
βδ

)
Yγ , (2.153)

16π√| det gρκ |
Y γ

U
αβ

γ = −∇δU
αβ

γ
δξγ , (2.154)

which shows that δHboundary equals the second line in
(2.144).

2.4 Adding matter fields

We consider now Einstein equations interacting with matter
fields. The fields φA under consideration take the form

φA = (gμν, φ
a) , (2.155)

where φa are matter fields. We write the Lagrangian in the
form

L = Lg + Lm (2.156)

whereLg is the Lagrangian (2.98) andLm is the Lagrangian
describing matter fields, which is assumed to depend upon the
metric but not its derivatives. The examples of main interest in
the current context would be the Einstein-Maxwell equations,
as well as the equations for gravitating elastic bodies.

Assuming that φa and ∂μφ
a are independent fields, the

variation of L reads

δL = δLH + ∂Lm

∂
(
∂μφa

)δ (
∂μφ

a)+ ∂Lm

∂φa
δφa + ∂Lm

∂gμν
δgμν ,

(2.157)

where δLg is given by (2.100).
The momenta πA split into gravitational and matter parts,

with the gravitational momenta given by (2.103), and the
matter ones defined as before:

πa
μ:= ∂Lm

∂φa
μ

, πa :=∂Lm

∂φa
, (2.158)

πa
μ

b
ν := ∂2Lm

∂φa
μ∂φb

ν

, πa
μ

b:= ∂2Lm

∂φa
μ∂φb

, πab:= ∂2Lm

∂φa∂φb
.

(2.159)

The Hamiltonian density of linearised fields equals now

H̃ [S , X ] = H̃ g[S , X ] + H̃ m[S , X ] . (2.160)

According to (2.31), the contribution to the total energy aris-
ing from the linearised matter fields equals

H̃ m[S , X ] = 1

2

(∫

S
ωμ(φ̃,LX φ̃) d Sμ

−
∫

∂S
X [σ π̃a

μ]φ̃ad Sσμ

)
,

where ωμ(φ̃,LX φ̃) = LX φ̃
a π̃a

μ−LX π̃a
μφ̃a . From (2.36),

the energy flux formula for matter fields is equal to

dHm(Sτ , X)

dτ
= −

∫

∂Sτ

X [σπa
μ]LXφ

ad Sσμ . (2.161)

2.4.1 The presymplectic form on null hypersurfaces

2.4.2 General gauge

While we are mainly interested in families of light cones
in this work, the calculations that follow apply to any null
hypersurfaces. Hence we consider a set of coordinates which
is adapted to a space-time foliation by null hypersurfaces.
The null generator of each surface is proportional to ∂r . We
will write the space-time metric in adapted coordinates as

g = guudu2 − 2e2βdu dr + 2gu Adx A + gABdx Adx B .

(2.162)
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In terms of coordinate components, the field bu defined in
(2.138) takes the form

bu(δ1g, δ2g)

= e−4βδ1gur

2
g AB (∇rδ2gAB − 2∇Aδ2gr B)

+e−2βδ1gAB

2

[
g AB

(
gC D (∇Cδ2gr D − ∇rδ2gC D)

+e−2β∇rδ2gur

)

+g AC gB D (∇rδ2gC D − 2∇Cδ2gr D)
]
. (2.163)

While we use the notation (2.162) for the components of
the metric at which the variations are taking place, most of
the time we simply use δgμν for the variations, which are
assumed to satisfy

δgrr = δgr A = 0 .

Note that ∇Aδ2gr B will not be zero in general even though
δgr A vanishes. Writing-out the Christoffel symbols, we find

bu(δ1g, δ2g)

= e−6βδ1gur

2
g AB

(
δ2gur∂r gAB + e2β∂rδ2gAB

)

+e−4βδ1gAB

{
g AB

[
1

2
∂rδ2gur − δ2gur

×
(

1

4
gC D∂r gC D + ∂rβ

)
+ e2β

4

×
(
δ2gC DgC E gDF∂r gE F − 2gC D∂rδ2gC D

)]

+ g AC gB D

2

(
e2β∂rδ2gC D + δ2gur∂r gC D

)}
. (2.164)

Antisymmetrising over δ1g and δ2g to obtain the field wu of
(2.136), the first term at the right-hand side drops out, which
is the only obvious simplification. If we assume moreover
the Bondi condition

g ABδgAB = 0 , (2.165)

we find

wu(δ1g, δ2g)

= e−4β

2

[
δ2gur g AB∂rδ1gAB − δ1gur g AB∂rδ2gAB

+g AC gB D(
δ2gAB(e

2β∂rδ1gC D + δ1gur∂r gC D)

−δ1gAB(e
2β∂rδ2gC D + δ2gur∂r gC D)

)]
. (2.166)

Using

δ2gur g AB∂rδ1gAB − δ1gABδ2gur g AC gB D∂r gC D

= δ2gur∂r

(
g ABδ1gAB

)
= 0

we obtain

wu(δ1g, δ2g)

= e−2β

2
g AC gB D (δ2gAB∂rδ1gC D − δ1gAB∂rδ2gC D) .

(2.167)

Explicit formulae for the field br can be found in Appendix B,
see also (5.21).

2.4.3 The nonlinear theory

Let us denote by K a family of future directed generators of
N . We choose the orientation of Bondi coordinates so that
K = f ∂r where f > 0. For each point p ∈ N the tangent
space TpN may be quotiented by the subspace spanned by
K . This quotient space TpN /K carries a non-degenerate
Riemannian metric h and, therefore, is equipped with a vol-
ume form ω. Consider a two-form L which is equal to the
pull-back of ω from the quotient space TpN /K to TpN

π : TpN −→ TpN /K , L:=π∗ω .

We choose a one-form α on N , such that < K , α >≡ 1, and
define a three-form vK as the product

vK = α ∧ L .

Note that vK does not depend upon α because K ∧ L = 0.
We can write

vK = vK dr ∧dx2∧dx3 , where vK =
√

det gAB

f
. (2.168)

We define the following vector density

Π = vK K ≡ √
det gAB∂r , (2.169)

which is equivalent to the equation

L = Πa
(
∂a � dr ∧ dx2 ∧ dx3

)
. (2.170)

Following [39], we define the tensor density

Qa
b(K ):= − s

{
vK

(∇b K a − δa
b∇c K c) + δa

b∂cΠ
c} ,

(2.171)

where

s:=sgngur = ±1 ,

thus s equals minus one if both ∂u and ∂r are causal and
consistently time-oriented. (In the case where ∂u changes
type, as happens for light cones in the de Sitter metric when
∂u is taken to be a timelike Killing vector near the vertex of
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the cone, the value of s is determined near the vertex and
extended to the light cone by continuity.) Choosing

K :=e−2β∂r

and assuming that the variations of the metric preserve the
Bondi form of the metric (including the determinant condi-
tion), the pre-symplectic form can be rewritten as [39]

ΩN (δ1g, δ2g)

= 1

16π

∫

N
(δ1 Q ABδ2gAB − δ2 Q ABδ1gAB) d3x , (2.172)

where Q is given by

Q AB := gBC Q A
C (K ) ≡ s

2

√
det gE F g AC gB D∂r gC D.

(2.173)

The reader is warned that the field Qa
b is not invari-

ant under rescalings of the null generator K . Linearis-
ing (2.172)–(2.173) provides another derivation of (2.167).
Compare [44].

3 Bondi gauge

In this section we show how to put a linearised metric per-
turbation in Bondi gauge, and analyse the gauge freedom
remaining.

3.1 Coordinate transformations, gauge freedom

Linearised gravitational fields are defined up to a gauge trans-
formation

h 	→ h + Lζ g (3.1)

determined by a vector field ζ . The aim of this section is
to analyse the gauge transformations which bring a smooth
linearised solution h of the vacuum Einstein equations to
the Bondi gauge. We will assume that, near the conformal
boundary at future infinity, the linearised solution behaves
as if it arose from a one-parameter of smoothly conformally
compactifiable solutions near the de Sitter metric. Thus we
take a background of the form

g = εN 2du2 − 2du dr + r2γ̊ABdx Adx B , (3.2)

where N depends only upon r , with ε ∈ {±1}, and where
∂u γ̊AB = 0 = ∂r γ̊AB .

It turns out that the transformation to Bondi gauge intro-
duces singularities at the vertex. For this reason in this section
in formulae where ambiguities might arise, and only these
formulae, we will write hreg for the metric perturbation in
the original manifestly smooth gauge (where “reg” stands for

“regular”) in the cone-adapted coordinates (u, r, x A), and we
will write hBo for the metric in the Bondi gauge. For instance,
in order not to overburden the notation we will continue to
write htt , hti and hi j instead of hreg

t t , hreg
ti and hreg

i j in
the original manifestly smooth coordinates (t, xi ), since the
metric in the Bondi coordinates will only be considered in
the (u, r, x A)–coordinate system.

The “infinitesimal coordinate transformations” (3.1) should
transform the metric perturbation to the Bondi gauge:

Lζ grr + hreg
rr = 0 , (3.3)

Lζ gr A + hreg
r A = 0 , (3.4)

g AB(Lζ gAB + hreg
AB) = 0 . (3.5)

The last condition deserves a justification. For this, con-
sider a one-parameter family of metrics, say λ 	→ g(λ) in
Bondi coordinates. (In the current case of interest λ is the
flow parameter along the vector field ζ , but the argument
applies to any such family.) We then have

g(λ)22g(λ)33 − g23(λ)
2 = r4 sin2 θ . (3.6)

Differentiating with respect to λ one finds

g ABh AB ≡ g AB dgAB

dλ
= 0 . (3.7)

After performing a gauge transformation (3.1), in the new
gauge we must likewise have

g AB(h AB + Lξ gAB) = 0 , (3.8)

which explains (3.5).
The conditions (3.3)–(3.4) are equivalent to:

∂rζ
u − 1

2
hreg

rr = 0 ,

∂rζ
A − γ̊ AB

r2

(
∂Bζ

u − hreg
r B

) = 0 ,

which is solved by

ζ u(u, r, x A) = ξu(u, x A) + 1

2

∫ r

0
hreg

rr (u, s, x A) ds ,(3.9)

ζ B(u, r, x A) = ξ B(u, x A) − γ̊ BC
(

1

r
∂Cξ

u(u, x A)

+
∫ r

r0

1

s2

(
hreg

rC (u, s, x A)

−1

2

∫ s

0
∂C hreg

rr (u, ρ, x A) dρ

)
ds

)
,(3.10)

for some fields ξu(u, x A), ξ B(u, x A), and where r0 can be
chosen conveniently according to the context.

In order to address (3.5) we will use the symbol L̊ζ to
denote Lie-derivation in the x A-variables with respect to the
vector field ζ A∂A. We have
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r−2γ̊ ABLζ gAB

= r−2γ̊ AB
(

2rζ r γ̊AB + ζC∂C gAB + 2ζC
,(AgB)C

)

= r−2γ̊ AB
(

2rζ r γ̊AB + r2L̊ζ γ̊AB

)

= r−2
(

4rζ r + 2r2 D̊Bζ
B
)

= −r−2γ̊ ABhreg
AB , (3.11)

where in the last line we used (3.5). Hence

ζ r = −1

2
r D̊Bζ

B − 1

4
r−1γ̊ ABhreg

AB . (3.12)

We will denote by

ζ [hreg] ≡ ζ |ξ A=ξu=0

the part of ζ which depends explicitly upon h, and write

ζμ = ζμ[hreg] + ζ̊ μ . (3.13)

We note that ζ̊ still contains a part which depends upon h, as
needed to satisfy the asymptotic boundary conditions. This
is discussed in more detail in Sect. 3.1.2. The remaining part
of ζ̊ describes asymptotic symmetries, we return to this in
Sect. 3.2.1.

3.1.1 Small r

An analysis of the behavior of the metric at the tip of the
light cone is in order. For definiteness consider a smooth
metric perturbation of Minkowski, Anti de Sitter or de Sitter
spacetime. After transforming to Bondi coordinates of the
background metric we have for small r

hreg
rr = O(1) , hreg

r A = O(r) , hreg
AB = O(r2) ,

hreg
ur = O(1) , hreg

u A = O(r) , hreg
uu = O(1) . (3.14)

Equation (3.9) gives, for small r ,

ζ [hreg]u = O(r) . (3.15)

Now, there could be a 1/r term for small r in the integral
defining ζ A, which could lead to logarithmic terms. To see
that there is a cancellation, we note that

hreg
rr = htt + 2hti

xi

r
+ hi j

xi x j

r2 , (3.16)

hreg
r A =

(
ht j + hi j

xi

r

)
∂x j

∂x A
, (3.17)

hreg
ur = htt + hti

xi

r
. (3.18)

Then

hreg
rC − 1

2

∫ r

0
∂C hreg

rr dr

=
(

ht j + hi j
xi

r

)
∂x j

∂x A

−1

2

∫ r

0
∂C

(
htt + 2hti

xi

r
+ hi j

xi x j

r2

)
dr

=
∫ r

0

[
d

dr

((
ht j + hi j

xi

r

)
∂x j

∂xC

)

−1

2
∂C

(
htt + 2hti

xi

r
+ hi j

xi x j

r2

)]
dr

=
∫ r

0

(
(∂kht j )

xk

r

∂x j

∂xC
+ 1

r
ht j

∂x j

∂xC
− 1

2
(∂khtt )

∂xk

∂xC

−(∂kht j )
x j

r

∂xk

∂xC
− 1

r
ht j

∂x j

∂xC

)
dr +

∫ r

0

(
(∂khi j )

xk

r

xi

r

× ∂x j

∂xC
+ hi j

xi

r2

∂x j

∂xC
− 1

2
∂C

(
hi j

xi x j

r2

))
dr

=
∫ r

0

(
2(∂[kh j]t )

xk

r

∂x j

∂xC
− 1

2
(∂khtt )

∂xk

∂xC

)
dr

+
∫ r

0

(
(∂khi j )

(
xk

r

∂x j

∂xC
− 1

2

x j

r

∂xk

∂xC

)
xi

r

)
dr

= O(r2) , (3.19)

and (3.10) gives, again for small r ,

ζ B(u, r, x A)

= ξ B(u, x A) − γ̊ BC
[

1

r
∂Cξ

u(u, x A)

+1

2
∂khi j

∣∣
r=0

(
xk

r

∂x j

∂xC
− 1

2

x j

r

∂xk

∂xC

)
xi

r

]
+ O(r2)

= O(r−1) , (3.20)

so that

ζ [h]A = O(r) . (3.21)

Equations (3.9)–(3.10) together with (3.12) lead to, again for
small r ,

ζ [h]r = O(r) , (3.22)

ξu = O(1) , ξ A = O(1) , ζ u = ξu + O(r) , (3.23)

ζ A = ξ A(u, x B) − 1

r
D̊ Aξu(u, x B)+ O(r) . (3.24)

Inserting (3.10) in (3.12) we find

ζ̊ r = Δγ̊ ξ
u

2
− r D̊Bξ

B

2
= O(1) ,

ζ r = 1

2
Δγ̊ ξ

u + O(r) = O(1) , (3.25)

where Δγ̊ is a Laplace operator associated with the metric
γ̊AB .

The behaviour of various derivatives should be clear from
the above.
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We emphasise that the original behaviour (3.14) of h near
the vertex will not be true in general for the metric coefficients
in Bondi coordinates. For instance:

hBo
u A = hreg

u A+Lζ gu A = hreg
u A+∂Aζ

μηuμ+∂uζ
μημA

= hreg
u A+∂A(εN 2ζ u −ζ r )+r2γ̊AB∂uζ

B

= −D̊A

(
1 + 1

2
Δγ̊

)
ξu + O(r)

= O(1) , (3.26)

hBo
ur = hreg

ur +Lζ gur =hreg
ur −∂uζ

u +εN 2∂rζ
u −∂rζ

r

= hreg
ur − ∂uξ

u − 1

2
hreg

rr + 1

2
D̊ AξA

+1

4
∂r (r

−1γ̊ ABhreg
AB) + O(r) , (3.27)

hBo
uu = hreg

uu + Lζ guu = hreg
uu + εζ r∂r N 2

+2∂u(εN 2ζ u − ζ r )

= hreg
uu − (2 + Δγ̊ )∂uξ

u + O(r) , (3.28)

hBo
AB = hreg

AB +Lζ gAB =hreg
AB +2rζ r γ̊AB +r2L̊ζ γ̊AB

= r(Δγ̊ ξ
u γ̊AB − 2D̊A D̊Bξ

u) + O(r2) . (3.29)

Summarising, for small r ,

hBo
uu = O(1) , hBo

ur = O(1) , hBo
u A = O(1) ,

hBo
AB = O(r) . (3.30)

For further reference we emphasise that

D̊ AhBo
u A|r=0 = −1

2
(Δγ̊ + 2)Δγ̊ ξ

u . (3.31)

Using

γ̊ AB ∂xi

∂x A

∂x j

∂x B
=

(
δi j − xi x j

r2

)
r2 (3.32)

Δγ̊ xi = −2xi , 0 = Δγ̊ (x
i xi︸︷︷︸
r2

) = 2D̊ A(xi D̊Axi ) , (3.33)

D̊C
(

x j

r2

∂xi

∂xC

)
= D̊C x j

r2

∂xi

∂xC
+ x j

r2 Δγ̊ xi = δi j − 3xi x j

r2 ,

(3.34)

D̊C
(

x ( j

r2

∂xi)

∂xC

)
=δi j − 3xi x j

r2 , Δγ̊

xi x j

r2 =2δi j −6
xi x j

r2 ,

(3.35)

Equation (3.27) can be rewritten as

hBo
ur = hreg

ur |r=0 − ∂uξ
u + 1

2
D̊ AξA

−1

2

(
htt |r=0 + 2hti |r=0

xi

r
+ hi j |r=0

xi x j

r2

)

+1

4
∂r

(
r−1γ̊ ABhi j

∂xi

∂x A

∂x j

∂x B︸ ︷︷ ︸
rhi j

(
δi j − xi x j

r2

)

)
+ O(r)

= hreg
ur |r=0 − ∂uξ

u + 1

2
D̊ AξA

−1

2

(
htt |r=0 + 2hti |r=0

xi

r

)

+1

4
hi j |r=0

(
δi j − xi x j

r2

)
− 1

2
hi j |r=0

xi x j

r2 +O(r)

= 1

2
htt |r=0 − ∂uξ

u + 1

2
D̊ AξA

+1

4
hi j |r=0

(
δi j − 3

xi x j

r2

)
+ O(r) . (3.36)

3.1.2 From smooth to Bondi

In view of the formulae so far, one proceeds as follows.
Given a smooth linearised metric perturbation h we per-
form the “infinitesimal coordinate transformation” ζ [h] as
defined above to obtain a metric in Bondi gauge, still denoted
by h but occasionally by hBo. It still remains to take care
of the boundary conditions. In particular, after the above,

the asymptotic field
(0)
h AB(u, ·) will not necessarily vanish,

regardless of whether or not
(0)
h AB(u, ·) was zero before the

ζ [h]-transformation. In order to remedy this we take the u-
parameterised family of covector fields ξB(u, ·) to be any
family of solutions, smooth in u, of the equations (cf., e.g.,
[10, Théorème 3.4])

D̊AξB+D̊BξA−D̊C ξC γ̊AB+
(0)

ȟ AB(u, ·)−1

2

(0)

ȟ C
C (u, ·)γ̊AB = 0 ,

(3.37)

where

(0)

ȟ μν := lim
r→∞ r−2hμν .

These solutions will be denoted by ξ A[h].
It follows from the first line of (3.29) that the gauge-

transformed fields
(0)

ȟ AB(u, ·) will vanish.
Equation (3.37) determines ξA[h](u, x B) up to a u-

dependent family of conformal Killing vectors of the round
two-dimensional sphere; we will return to this freedom
shortly.

We let ξu[h] be a solution of (compare (3.27) and (3.36))

∂uξ
u[h](u, x A) =

(
hreg

ur + 1

2
εN 2hreg

rr + 1

2
D̊ AξA[h]

) ∣∣
r=0

= 1

2
hreg

t t |r=0 + 1

4
hreg

i j |r=0

×
(
δi j − 3

xi x j

r2

)
+ 1

2
D̊ AξA[h] , (3.38)
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with smooth initial data ξu(u0, ·) for some u0. In vacuum
(cf. (4.12) below) this leads to a gauge-transformed field for
which

hur ≡ 0 .

This procedure leads to a metric perturbation satisfying
all Bondi gauge conditions together with

(0)

ȟ AB ≡ 0 ≡ hur , (3.39)

where the second equality requires Tur ≡ 0.

3.2 Residual gauge

The freedom of choosing the vector field ζ̊ of (3.13) describes
the freedom to perform coordinate transformations preserv-
ing the Bondi form of the metric. These will be referred to
as residual gauge-transformations. An example is provided
by the vector field ξ [h] just defined.

Under these ζ̊ -transformations, the linearised metric com-
ponents acquire the following terms:

huu : L
ζ̊
guu = ζ̊ rε∂r N 2 + 2εN 2∂u ζ̊

u − 2∂u ζ̊
r

= −(2 + Δγ̊ )∂uξ
u + r(D̊B∂uξ

B + α2Δγ̊ ξ
u)

+α2r2(2∂uξ
u − D̊Bξ

B) , (3.40)

hur : L
ζ̊
gur = −∂u ζ̊

u − ∂r ζ̊
r

= −∂uξ
u + D̊Bξ

B

2
, (3.41)

hu A : L
ζ̊
gu A = r2γ̊AB∂u ζ̊

B − ∂A ζ̊
r + εN 2∂A ζ̊

u

= −1

2
∂A

[(
Δγ̊ ξ

u +2ξu)+r(D̊Bξ
B −2∂uξ

u)
]

+r2(γ̊AB∂uξ
B + α2∂Aξ

u) , (3.42)

h AB : L
ζ̊
gAB = 2r ζ̊ r γ̊AB + r2L̊

ζ̊
γ̊AB

= r2(L̊ξ γ̊AB − γ̊AB D̊Cξ
C )

−r(2D̊A D̊Bξ
u − γ̊ABΔγ̊ ξ

u) . (3.43)

The residual gauge transformations are thus defined by
a u-parameterised family of vector fields ξ A(u, ·) on S2

together with

∂uξ
u(u, x A) = D̊Bξ

B(u, x A)

2
, (3.44)

and (3.25). Explicitly:

ζ̊ =
(∫

D̊Bξ
B(u, x A)

2
du + ξ̊u(x A)

)
∂u

+1

2

(
Δγ̊ ξ

u − r D̊Bξ
B
)
∂r

+
(
ξ B(u, x A) − 1

r
D̊Bξu(u, x A)

)
∂B , (3.45)

with an arbitrary function ξ̊u(x A).

3.2.1 Asymptotic symmetries

Unless explicitly indicated otherwise, in the remainder of
this work we suppose that the metric has been transformed

to Bondi form with
(0)

ȟ AB ≡ 0. The residual gauge trans-
formation which preserve this condition will take the form
(3.45) with, at each u, ξ B(u, x A)∂B being a conformal Killing
vector field of γ̊ .

The conformal Killing vectors of S2 are related to the
Lorentz group, and the remaining freedom in ξu corresponds
to translations and supertranslations.

All these gauge transformations are interpreted as govern-
ing asymptotic symmetries, defined here as transformation
which preserve the Bondi gauge as well as the asymptotic
fall off condition for linearised fields.

In the asymptotically flat case (thus Λ = 0) the fields ξ A

become u-independent by (consistently) requiring in addition

that
(0)

ȟ u A ≡ 0.

However, when Λ > 0, the requirement
(0)

ȟ u A ≡ 0 is
not consistent with (3.39) for general metric perturbations
considered so far. Indeed, it follows from (3.42) that under
the ξ -gauge transformations, the r2-terms in hu A transform
as

(0)

ȟ u A(u, x A) 	→
(0)

ȟ u A(u, x A) + γ̊AB∂uξ
B(u, x A)

+α2∂Aξ
u(u, x A) , (3.46)

keeping in mind that ε = 1 for large r While this shows that
we can always choose ∂uξ

B so that the gauge-transformed

field
(0)

ȟ u B vanishes identically, such a choice will not be

compatible with the requirement that
(0)

ȟ AB ≡ 0 in general
when Λ �= 0. Indeed, we have the transformation law

(0)

ȟ AB(u, ·) 	→
(

D̊AξB + D̊BξA− D̊CξC γ̊AB +
(0)

ȟ AB

)
(u, ·).
(3.47)
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One could therefore choose ξ B so that

(0)

ȟ AB(u0, ·) ≡ 0 ≡
(0)

ȟ u B(u.·) , (3.48)

but there does not seem to be any reason why
(0)

ȟ AB(u, ·)
should then be zero in general for u �= u0.

In the gauge (3.48) the canonical energy on Cu,R diverges
as R3 when R tends to infinity for u �= u0, while R2 is
replaced by R when (3.39) holds. This property makes the

gauge
(0)

ȟ AB ≡ 0 more attractive from our perspective.

3.2.2 Rigid transport of sections of I +

When Λ �= 0, a prescription to reduce the set of asymp-
totic symmetries has been presented in [12]. For the sake of
completeness we reproduce the construction here.

The Hodge–Kodaira decomposition of one-forms on S2

shows that there exist functions χ̂(u) and χ̌(u) on S2 such
that

(0)

ȟ u A(u, ·) = D̊Aχ̂ (u) + εA
B D̊B χ̌ (u) , (3.49)

where εB
C is the two-dimensional Levi–Civita tensor. We

can similarly write ξB as

ξB(u, ·) = D̊B ι(u) + εB
C D̊Cυ(u) , (3.50)

where the functions ι(u) and υ(u) are linear combinations
of ! = 1 spherical harmonics (see Appendix A). Equation
(3.46) can be rewritten as

χ̂ (u) 	→ χ̂(u) + ∂u ι(u) + α2ξu(u, ·) , (3.51)

χ̌ (u) 	→ χ̌(u) + ∂uυ(u) . (3.52)

Let P1 denote the L2(S2)-orthogonal projection on the space
of ! = 1 spherical harmonics. We can arrange that P1

(
χ̌
)

vanishes by solving the linear ODE

∂uυ = −P1
(
χ̌
)
, (3.53)

which leaves the freedom of choosing υ(u0).
Next, using (3.51) and (3.44) we obtain

∂u χ̂(u) 	→ ∂u χ̂(u) + ∂2
u ι(u) + α2∂uξ

u(u, ·)
= ∂u χ̂ (u) + ∂2

u ι(u) − α2ι(u) . (3.54)

We can arrange that ∂u
(
P1(χ̂)

)
vanishes by solving the equa-

tion

∂2
u ι − α2ι = P1

(
∂u χ̂

)
. (3.55)

Equation (3.51) shows that P1χ̂ will vanish if

∂uι(u0) + P1
(
χ̂ (u0) + α2ξu(u0, ·)

) = 0 . (3.56)

There remains the freedom of choosing ι(u0), with the
solutions of the homogeneous equation (3.55) taking the form

ι(u, ·) = eαu ι+(·)+ e−αu ι−(·) , (3.57)

where ι± are linear combinations for ! = 1 spherical har-
monics.

Summarising, we can achieve a rigid transport of the
Bondi coordinates from one sphere to the other by requir-
ing that the potentials χ̂ and χ̌ of (3.50) satisfy

P1(χ̂) ≡ 0 ≡ P1(χ̌) . (3.58)

We will refer to (3.58) as the rigid transport condition.
Under the rigid transport conditions, we have the free-

dom of choosing
(
ι(u0), ∂u ι(u0), υ(u0)

)
, which is related to

the freedom of rotating and boosting the initial light cone
Cu0 , and of choosing ξu(u0, ·), which is the equivalent of the
supertranslations that arise in the case Λ = 0, subject to the
constraint

∂uι(u0) + α2 P1
(
ξu(u0, ·)

) = 0 . (3.59)

After imposing (3.58), the residual gauge transformations
which also preserve the rigid transport condition (3.58) take
the form (3.45) with an arbitrary function ξ̊u(x A), and where
ξ̊ B(u, x A)∂B is the angular part of a Killing vector field of de
Sitter spacetime as in (3.50), thus υ is a u-independent linear
combination of ! = 1 spherical harmonics, the potential ι
takes the form (3.57), with ∂u ι(u0) satisfying (3.59).

4 The linearised Einstein equations

4.1 Linearised metric perturbations in Bondi coordinates

Let N be a null hypersurface given by u = const. We will
use Bondi-type coordinates and a Bondi parameterisation of
the metric on N :

gαβdxαdxβ = − V

r
e2βdu2 − 2e2βdudr

+r2γAB

(
dx A − U Adu

)(
dx B − U Bdu

)
.

(4.1)

Here it is also assumed that det γAB takes a canonical, r - and
u-independent value, namely

det γ = sin2 θ . (4.2)
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In spacetime dimension four, the Euler–Lagrange equa-
tions for the Lagrangian (2.107) with ∇̊ replaced by ∇ are

∇μ∇αδgβμ + ∇μ∇βδgαμ + gαβ∇κ∇κδgλ
λ − ∇μ∇μδgαβ

−gαβ∇κ∇λδgκλ−∇α∇βδgκκ =2Λ

(
δgαβ− 1

2
δgκκgαβ

)
.

(4.3)

Assuming δgκκ = 0, which is the case in the Bondi gauge,
we obtain

Eαβ := ∇μ∇αδgβμ + ∇μ∇βδgαμ − ∇μ∇μδgαβ

−gαβ∇κ∇λδgκλ − 2Λδgαβ = 0 . (4.4)

Taking a trace we find

∇κ∇λδgκλ = 0 , (4.5)

which simplifies (4.4) further to

∇μ∇αδgβμ + ∇μ∇βδgαμ − ∇μ∇μδgαβ − 2Λδgαβ = 0 .

(4.6)

These equations are still unpleasant enough so that it
appears simpler to instead linearise the equations as writ-
ten down in [46], and we will do so. Nevertheless, to be on
the safe side, we have checked, using Maple, that the set of
equations E u

r = E u
u = E u

A = 0 is equivalent to the lin-
earised equations (4.12), (4.14) and (4.32) below, obtained
from the equations in [46].

Our asymptotic conditions on the linearised perturbations
of the metric will be modelled on the asymptotic behaviour
of the full solutions of the Einstein vacuum field equations
with positive cosmological constant and with smooth initial
Cauchy data on S3, as constructed by Friedrich in [29]. The
resulting spacetimes have a smooth conformal completion
with a (necessarily spacelike) boundary at (timelike) infinity
I + (denoted by I + by some authors). It is shown in [13,
Section 2.1] that, given a foliation ofI + by a function y0 (in
our case, this foliation will be provided by the intersections
of a family of null light cones emanating from a world-line
in spacetime), there exists a neighborhood of I + on which
the metric takes the Bondi form (4.1), where u |I + = y0.
Now, Bondi et al. consider the case Λ = 0 and assume

lim
r→∞ U A = 0 , lim

r→∞β = 0 , lim
r→∞

(
r−2gAB

)
= γ̊AB ,

(4.7)

where γ̊AB is the standard metric on S2. It follows e.g.
from [13, Section 2.1] that the last equation in (4.7) is justi-
fied under the hypothesis of existence of a smooth conformal
completion at infinity regardless of the value of Λ. However,
it is not clear at all whether the first two equations (4.7) can

be assumed to hold for all retarded times in general: When
Λ < 0 this is part of asymptotic conditions which one is free
to impose, and which are usually imposed in this context,
but which one might not want to impose in some situations.
When Λ = 0 these conditions can be realised by choosing
the function y0 suitably. However, when Λ > 0 there is little
doubt that all three conditions in (4.7) can be simultaneously
satisfied for all retarded times by a restricted class of met-
rics only. In the linearised theory this will be clear from the
calculations that follow.

We have mentioned above the results of Friedrich on the
spacelike relativistic Cauchy problem, as they guarantee exis-
tence of a large class of vacuum spacetimes with a positive
cosmological constant, near the de Sitter or Anti de Sitter
spacetime, with a smooth conformal completion at Scri. As
such, in our context it is more natural to think of the charac-
teristic rather than the spacelike Cauchy problem (cf., e.g.,
[18]). In this context, in the linearised theory we are free to
prescribe arbitrarily the angular part h ABdx Adx B of the lin-
earised metric perturbation on the light cone, with the remain-
ing fields, and their asymptotics, determined by these free
data and the residual gauge conditions to which we return
in Sect. 3.1. This follows quite generally from the analysis
in e.g. [18], but can also be deduced directly from the con-
siderations that we are about to present. Friedrich’s results
just mentioned guarantee, e.g. by taking data induced on light
cones from his solutions, that there exists a large class of free
data h ABdx Adx B on the initial light cone with an evolution
which is smoothly conformally compactifiable at I +, and
we restrict our attention to such data.

Writing interchangeably

hμν for δgμν, and ȟμν for r−2hμν,

we thus assume the following large-r expansion

h AB = r2
(2)
h AB︸ ︷︷ ︸

0

+r
(1)
h AB + (0)

h AB + r−1
(−1)
h AB + o(r−1)

)

≡ r2( (0)ȟ AB︸ ︷︷ ︸
0

+r−1
(−1)

ȟ AB + r−2
(−2)

ȟ AB + r−3
(−3)

ȟ AB

+o(r−3)
)
, (4.8)

where the expansion tensors
(1)
h AB ≡

(−1)

ȟ AB , etc., are inde-
pendent of r .

A comment on our hypothesis that
(0)

ȟ AB ≡ 0 is in order.
As discussed in detail in Sect. 3.1, after transforming the
metric perturbation to the Bondi form we can always use

the remaining coordinate freedom to achieve
(0)

ȟ AB = 0.

An alternative possibility is
(0)

ȟ u A = 0. A key fact is that
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(0)

ȟ AB = 0 and
(0)

ȟ u A = 0 cannot be achieved simultaneously

in general. As already mentioned, the condition
(0)

ȟ u A = 0 (in

which case
(0)

ȟ AB �= 0 in general) leads to energy integrals
on balls of radius R which diverge as R3, and therefore we

have opted for
(0)

ȟ AB = 0 which leads to a slower divergence.
Smooth compactifiability of the solution guarantees that

there will be no logarithmic terms in the asymptotic expan-
sion, which in turn requires

(−2)

ȟ AB ≡ 0 , (4.9)

as follows from our calculations below (compare [13]). How-
ever, we will not assume (4.9) at this stage, to be able to track
down the role of this term in the equations that follow.

We will derive precise information on the asymptotic
behaviour of the remaining linearised fields using the char-
acteristic constraint equations in Bondi coordinates, which
read [46]

∂rβ = r

16
γ ACγ B D(∂rγAB)(∂rγC D)+ 2πrTrr , (4.10)

∂r

[
r4e−2βγAB(∂r U B)

]
= 2r4∂r

( 1

r2 DAβ
)

−r2γ E F DE (∂rγAF )+ 16πr2Tr A , (4.11)

as well as (4.31) below. Here DA is the covariant derivative
of the 2-metric γAB .

4.1.1 hur

Since the right-hand side of (4.10) is quadratic in ∂rγAB ,
assuming a vacuum spacetime everywhere, after linearising
we find

∂rδβ = 0 ⇐⇒ δβ = δβ(u, x A) . (4.12)

Hence we can use the ξ -gauge transformation (3.41) to obtain

δβ ≡ 0 ⇐⇒ δgur ≡ 0 . (4.13)

4.1.2 hu A

The linearisation of (4.11) at the de Sitter metric gives now,
in vacuum,

∂r

[
r4∂r (r

−2δgu A)
]

= r2 D̊E

(
γ̊ E F∂r

(
r−2δgAF

))
. (4.14)

Let ψA denote the right-hand side of the last equation,

ψA:=r2 D̊E

(
γ̊ E F∂r

(
r−2δgAF

))
. (4.15)

Equation (4.8) gives, for large r ,

ψA = −D̊B
(−1)

ȟ AB−2r−1 D̊B
(−2)

ȟ AB−3r−2 D̊B
(−3)

ȟ AB+o(r−2) .

(4.16)

while for small r we have, from (3.29),

ψA = D̊B(2D̊A D̊Bξ
u − Δγ̊ ξ

u γ̊AB) + O(r) . (4.17)

Here ξ is the gauge field of (3.9), cf. (3.1).
As ψA tends to a non-zero covector field as r goes to

infinity in general, it turns out to be convenient to write the
general solution of (4.14) as

r−2δgu A = μA(u, x B) + λA(u, x B)

r3

+
∫ r

1

[
1

ρ4

∫ ρ

0
ψA(s)ds

]
dρ

= μA(u, x B) + λA(u, x B)

r3

+
∫ ∞

1

[
1

ρ4

∫ ρ

0
ψA(s)ds

]
dρ

︸ ︷︷ ︸
=:μ̊A

−
∫ ∞

r

[
1

ρ4

∫ ρ

0
ψA(s)ds

]
dρ , (4.18)

with fields μA and λA depending upon the arguments indi-
cated. Here ψA(s) stands for ψA(u, s, x A). It follows from
(3.42) that the requirement, that δg is obtained by an infinites-
imal coordinate transformation from a metric perturbation
which is smooth near the vertex of the cone, enforces bound-
edness of r−2δgu A. This, together with (4.17) shows that

λA ≡ 0 . (4.19)

The fieldμA has a gauge character and can be determined by
imposing convenient conditions at infinity, as follows from
the results in Sect. 3.2.

We have for large ρ

∫ ρ

0
ψA(s)ds = −D̊B

(−1)

ȟ AB ρ − 2D̊B
(−2)

ȟ AB ln ρ − 3λ̊A

+3ρ−1 D̊B
(−3)

ȟ AB + o(ρ−1) , (4.20)

where

λ̊A := −1

3
lim

r→∞

(∫ r

0
ψA(s)ds + D̊B

(−1)

ȟ AB r

+2D̊B
(−2)

ȟ AB ln r

)
. (4.21)
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This leads to the following expansion, for large r ,

−
∫ ∞

r

[
1

ρ4

∫ ρ

0
ψA(s)ds

]
dρ

= 1

2
D̊B

(−1)

ȟ AB r−2 + 2

9
D̊B

(−2)

ȟ AB (3 ln r + 1)r−3

+λ̊Ar−3 − 3

4
D̊B

(−3)

ȟ ABr−4 + o(r−4) , (4.22)

resulting in2

ȟu A:=r−2δgu A = μA + μ̊A + 1

2
D̊B

(−1)

ȟ AB r−2

+
(
λ̊A + 2

9
D̊B

(−2)

ȟ AB (3 ln r + 1)

)
r−3

− 3

4
D̊B

(−3)

ȟ AB r−4 + o(r−4) . (4.23)

4.1.3 ∂uh AB

We continue with an analysis of the asymptotics of ∂uh AB ,
which can be determined from [46, Equation (32)]. Denoting
the traceless symmetric part of a tensor on the sphere by

T S[·] ,

we have

T S

[
r∂r [r(∂uγAB)] − 1

2
∂r [r V (∂rγAB)] − 2eβ DA DBeβ

+γC A DB[∂r (r
2U C )] − 1

2
r4e−2βγACγB D(∂r U C )(∂rU D)

+r2

2
(∂rγAB)(DCU C ) + r2U C DC (∂rγAB)

−r2(∂rγAC )γB E (D
CU E − DEU C ) − 8πe2βTAB

]
= 0.

(4.24)

Linearising around the de Sitter background one obtains

r∂r [r(∂u ȟ AB)]+ ε

2
∂r [r2 N 2(∂r ȟ AB)]−T S

[
D̊A

(
∂r (r

2ȟu B)
)]

= 8πT S[δTAB] . (4.25)

Integrating in vacuum, we find for large r

2 We take this opportunity to note that there is a misprint in the power
of the log term in Equation (4.33) in [13]; the correct power is r−3, as
here. There are also some powers of ν0 missing in this equation, which
is innocuous since ν0 equals 1 in situations of interest.

∂u ȟ AB(r, ·) = −1

r

∫ r

0

1

s

(ε
2
∂r [r2 N 2(∂r ȟ AB)]

−T S
[
D̊A

(
∂r (r

2ȟu B)
)])

(s, ·)ds

= ∂u

(0)

ȟ AB(·) + ∂u

(−1)

ȟ AB(·)
r

+∂u

(−3)

ȟ AB(·)
r3 + o(r−3) , (4.26)

where

∂u

(0)

ȟ AB(·) = α2
(−1)

ȟ AB + (
D̊A

(0)

ȟ u B + D̊B

(0)

ȟ u A

−D̊C
(0)

ȟ uC γ̊AB
)
, (4.27)

∂u

(−1)

ȟ AB(·) = − lim
R→∞

(∫ R

0

1

s

(ε
2
∂r [r2 N 2(∂r ȟ AB)]

−T S
[
D̊A

(
∂r (r

2ȟu B)
)])

(s, ·)ds + ∂u

(0)

ȟ AB(·)R

)
, (4.28)

∂u

(−3)

ȟ (·) = α2
(−4)

ȟ AB + (
D̊A

(−3)

ȟ u B + D̊B

(−3)

ȟ u A

−D̊C
(−3)

ȟ uC γ̊AB
)
, (4.29)

and note that the limit in (4.28) exists and is finite under the
current conditions. Also note that (4.26) has no r−2 terms,

which shows that the expansion coefficients
(−2)

ȟ AB are con-
stants of motion.

The choice of asymptotic gauge
(0)

ȟ AB ≡ 0 implies

∂u

(0)

ȟ AB ≡ 0, equivalently

D̊A

(0)

ȟ u B + D̊B

(0)

ȟ u A − D̊C

(0)

ȟ u
C γ̊AB = −α2

(−1)

ȟ AB . (4.30)

4.1.4 huu

The V function occurring in the Bondi form of the metric
solves the equation [46]

2e−2β∂r V = R − 2γ AB
[

DA DBβ + (DAβ)(DBβ)
]

+e−2β

r2 DA

[
∂r (r

4U A)
]

− 1

2
r4e−4βγAB(∂r U A)(∂r U B)

−8π
[
γ AB TAB − r2T α

α

]
− 2Λr2 , (4.31)

whereR is the Ricci scalar of the conformal two-metric γAB .
Assuming δβ ≡ 0, the linearised version of (4.31) reads
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2∂rδV = δR− 1

r2 D̊ A
[
∂r (r

4ȟu A)
]
+8πδ

[
γ AB TAB−r2T a

a

]
.

(4.32)

Let R̊AB denote the Ricci tensor of the metric γ̊AB . As
h AB is γ̊ -traceless we have

r2δR = −D̊ A D̊A(γ̊
BC hBC ) + D̊ A D̊Bh AB − R̊ ABh AB

= D̊ A D̊Bh AB . (4.33)

This leads to, in vacuum,

2∂rδV = D̊ A
(

D̊B ȟ AB − 1

r2

[
∂r (r

4ȟu A)
])

. (4.34)

It follows from (4.23) that the r−1 terms in the large-r expan-
sion of the right-hand side of (4.34) cancel out, and that for
large r we have

2∂rδV = D̊ A( − 4r
(0)

ȟ u A − r−2
(−3)

ȟ u A + o(r−2)
)
. (4.35)

Hence

δV = 1

2
D̊ A

(∫ r

0

(
D̊B ȟ AB − 1

r2

[
∂r (r

4ȟu A)
]) ∣∣

r=ρ
dρ

)

= −D̊ A

(
r2

(0)

ȟ u A − νA − 1

2r

(−3)

ȟ u A + o(1/r)

)
(4.36)

as r goes to infinity, where we used that δV |r=0 = 0 vanishes
when transforming to Bondi coordinates a field which was
originally smooth near the tip of the light cone; compare
(3.40). Here νA = νA(u, x B) equals

νA = lim
r→∞

(
1

2

∫ r

0

(
D̊B ȟ AB − 1

r2

[
∂r (r

4ȟu A)
]) ∣∣

r=ρ
dρ

+r2
(0)

ȟ u A

)
. (4.37)

We note that the individual terms in the integrands of
(4.36) and (4.37) have, for small r , potentially dangerous
1/r terms which could lead to a logarithmic divergence of
the integral near r = 0. However, these terms have to cancel
out for fields obtained by a coordinate transformation from
metric perturbations which are smooth near the vertex. This
can be seen by a direct calculation from (3.42) and (3.43). A
simpler argument is to notice that a pure gauge field satisfies
the linearised field equations, and that there are no logarith-
mic terms in the pure gauge fields (3.40)–(3.43).

4.1.5 The remaining Einstein equations

The remaining Einstein equations are irrelevant for our anal-
ysis in this paper, in the following sense (see [46]):

1. The uu part of the Einstein equations is an equation
involving ∂u V , which did not occur in the equations
above and therefore cannot put further constraints on the
expansion coefficients so far.

2. Similarly for the u A part of the Einstein equations, which
involves ∂uU A.

3. The trace part of the angular part of the Einstein equations
is automatically satisfied in Bondi coordinates once the
remaining equations are satisfied.

We present detailed derivations for completeness.
The equation Euu = 0 reads

1

r2

[
2

(
∂u + (α2r2 − 1)∂r − 1

r

)
D̊ Ahu A − D̊ A D̊Ahuu

−(α2r2 − 1)

(
D̊ A D̊Bh AB

r2

)
− 2r∂uhuu

−2(α2r2 − 1)∂r (rhuu)

]
= 0.

(4.38)

We insert the asymptotic expansion of hμν into (4.38), obtain-
ing

4α2r
(
D̊ A

(2)
h u A − (1)

h uu
) + 2∂u

(
D̊ A

(2)
h u A − (1)

h uu
)

+1

r

(
4
(1)
h uu − 6D̊ A

(2)
h u A − Δγ̊

(1)
h uu − α2 D A DB

(1)
h AB

)

2

r2

(
∂u D̊ A

(0)
h u A − α2 D̊ A

(−1)
h u A − ∂u

(−1)
h uu + α2

(−2)
h uu

)

= o
( 1

r2

)
. (4.39)

Hence

α2(D̊ A
(2)
h u A − (1)

h uu
) = 0 , (4.40)

∂u
(
D̊ A

(2)
h u A − (1)

h uu
) = 0 , (4.41)

4
(1)
h uu − 6D̊ A

(2)
h u A − Δγ̊

(1)
h uu − α2 D A DB

(1)
h AB = 0 ,

(4.42)

∂u D̊ A
(0)
h u A − α2 D̊ A

(−1)
h u A − ∂u

(−1)
h uu + α2

(−2)
h uu = 0,

(4.43)

and note that (4.40) implies (4.41) only if α �= 0; however,
with our boundary conditions, the latter is trivially satisfied
when α vanishes. Now, (4.36) gives

(−2)
h uu = −1

2
D̊ A

(−1)
h u A , (4.44)

while from (4.23) we obtain

D̊ A
(0)
h u A = 1

2
D̊ A D̊B

(1)
h AB . (4.45)
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Substituting (4.44) and (4.45) into (4.43) we are led to

∂u

(−1)
h uu = 1

2
∂u D̊ A D̊B

(1)
h AB + 3α2

(−2)
h uu (4.46)

Suppose, first, that α �= 0. Inserting (4.40) into (4.42)
gives

D̊ A D̊B
(1)
h AB = − 1

α2

(
Δγ̊

(1)
h uu + 2

(1)
h uu

)
(4.47)

Combining (4.46) and (4.47) leads to

∂u

(−1)
h uu = − 1

2α2 (Δγ̊ + 2)∂u

(1)
h uu + 3α2

(−2)
h uu

= 1

2
D̊ A D̊B∂u

(1)
h AB + 3α2

(−2)
h uu . (4.48)

Similar manipulations show that (4.48) remains valid for
α = 0:

∂u

(−1)
h uu = 1

2
D̊ A D̊B∂u

(1)
h AB , (4.49)

which is the linearisation of the usual equation for the time-
evolution of the mass aspect function (cf., e.g. [15, Equa-
tion (5.102)]).

We continue with an analysis of the equations Eu A = 0,
which read

0 = 1

r2

[
D̊B D̊Ahu B − D̊B D̊Bhu A + ∂u D̊Bh AB

−r2
((

1 − r2α2
)
∂2

r hu A + 2α2hu A

−r2∂r∂u

(
hu A

r2

)
+ ∂r D̊Ahuu

)]
. (4.50)

An asymptotic expansion of the above equation takes the
form

Eu A = D̊B D̊A

(2)
h u B − D̊B D̊B

(2)
h u A − 2

(2)
h u A − 2α2

(0)
h u A

−D̊A

(1)
h uu + 1

r
∂u

(
D̊B

(1)
h AB − 2

(0)
h u A

)

+ 1

r2

(
D̊B D̊A

(0)
h u B − D̊B D̊B

(0)
h u A − 3∂u

(−1)
h u A

+4α2
(−2)
h u A + D̊A

(−1)
h uu

) + o
(

r−2
)
. (4.51)

Hence

D̊B D̊A

(2)
h u B − D̊B D̊B

(2)
h u A−2

(2)
h u A−2α2

(0)
h u A − D̊A

(1)
h uu

= 0 , (4.52)

∂u
(
D̊B

(1)
h AB − 2

(0)
h u A

) = 0 , (4.53)

D̊B D̊A

(0)
h u B − D̊B D̊B

(0)
h u A − 3∂u

(−1)
h u A + 4α2

(−2)
h u A

+D̊A

(−1)
h uu = 0. (4.54)

Using the identity

D̊B D̊A

(2)
h u B = D̊A D̊B

(2)
h u B + (2)

h u A , (4.55)

(4.52) becomes

−(
Δγ̊ + 1

)(2)
h u A + D̊A D̊B

(2)
h u B − 2α2

(0)
h u A − D̊A

(1)
h uu = 0 .

(4.56)

For α �= 0, substituting (4.40) we obtain

−(
Δγ̊ + 1

)(2)
h u A − 2α2

(0)
h u A = 0 . (4.57)

Regardless of whether α vanishes or not, we similarly sub-
stitute (4.55) into (4.54) to obtain an evolution equation for

∂u

(−1)
h u A

3∂u

(−1)
h u A = D̊A D̊B

(0)
h u B − (

Δγ̊ + 1
)(0)

h u A

+2
(0)
h u A + 4α2

(−2)
h u A + D̊A

(−1)
h uu . (4.58)

Recall that
(0)
h u A = D̊B

(1)
h AB/2 and

(−2)
h u A = −3/4D̊B

(−1)
h AB ,

both by (4.23), which allows us to rewrite (4.58) as

3∂u
(−1)

h u A = 1

2
D̊A D̊B D̊C

(1)
h C B + 1

2
D̊B

(1)
h AB − 1

2
Δγ̊ D̊B

(1)
h AB

−3α2 D̊B
(−1)

h AB + D̊A
(−1)

h uu . (4.59)

The asymptotically flat case is obtained by setting α = 0,
compare [15, Equation (5.103)].

An alternative analysis of the equations Euu = 0 and
Eu A = 0 can be found in Appendix D.

4.2 An example: the Blanchet–Damour solutions

An interesting class of linearised solutions of the linearised
Einstein equations with Λ = 0 has been introduced in [8].
We use these solutions to provide an explicit example of the
behaviour both at the origin and at infinity of a vacuum metric
perturbation in Bondi coordinates. In particular we calculate
the news tensor for the Blanchet–Damour metrics, see (4.82).

In [8] the solutions are presented in harmonic coordinates,
where the trace-reversed tensor

h̄μν :=hμν − 1

2
ηαβhαβημν

satisfies

�ηh̄μν = 0 , ∂μh̄μν = 0 . (4.60)
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Here η is the Minkowski metric, taken to be −(dx0)2 +
(dx1)2 + (dx2)2 + (dx3)2 in the coordinates of (4.60), and
�η the associated wave operator.

Given a collection of smooth functions Ii j : R → R such
that Ii j = I ji , the tensor field

h̄t t = ∂i∂ j

(
Ii j (t − r)− Ii j (t + r)

r

)

= (
Ïi j (t − r)− Ïi j (t + r)

) xi x j

r3 + O(r−2) , (4.61)

h̄ti = ∂ j

(
İi j (t − r)− İi j (t + r)

r

)

= −(
Ïi j (t − r)+ Ïi j (t + r)

) x j

r2 + O(r−2) , (4.62)

h̄i j = Ïi j (t − r)− Ïi j (t + r)

r
, (4.63)

where each dot represents a derivative with respect to the
argument of Ii j , is a smooth tensor field on Minkowski space-
time solving (4.60).

Since the operators appearing in (4.60) commute with par-
tial differentiation, further solutions can be constructed by
applying ∂μ1 · · · ∂μ!

to h̄μν , and by applying Poincaré trans-
formations.

Transforming to the cone-adapted coordinates (u = t −
r, r, x A) one has

∂u = ∂t , ∂r = ∂t + xi

r
∂i , ∂A = ∂xi

∂x A
∂i . (4.64)

It follows that

hti = h̄ti = ∂ j

(
İi j (t − r)− İi j (t + r)

r

)

= −
(

Ïi j (u)+ Ïi j (u + 2r)

r
+ İi j (u)− İi j (u+2r)

r2

)
x j

r
,

h̄t t = “∂i hti where in hti the functions İi j have been

replaced by I ′′
i j

=
(
Ïi j (u) − Ïi j (u + 2r)

)

r

xi x j

r2 + İi j (u) + İi j (u + 2r)

r2

×
(

3
xi x j

r2 − δi j
)

+ Ii j (u) − Ii j (u + 2r)

r3

×
(

3
xi x j

r2 − δi j
)
,

huu = htt = h̄t t + 1

2
h̄μμ = 1

2

(
h̄t t + h̄i

i
)

= Ïi j (u) − Ïi j (u + 2r)

2r

(
δi j + xi x j

r2

)

+ İi j (u) + İi j (u + 2r)

2r2

(
3

xi x j

r2 − δi j
)

+ Ii j (u) − Ii j (u + 2r)

2r3

(
3

xi x j

r2 − δi j
)
,

h̄μμ = −h̄t t + Ïi i (t − r)− Ïi i (t + r)

r

= Ïi j (u) − Ïi j (u + 2r)

r

(
δi j − xi x j

r2

)

− İi j (u) + İi j (u + 2r)

r2

(
3

xi x j

r2 − δi j
)

− Ii j (u) − Ii j (u + 2r)

r3

(
3

xi x j

r2 − δi j
)
,

hrr = h̄rr = h̄t t + 2h̄ti
x i

r
+ h̄i j

x i x j

r2

= −4 Ïi j (u + 2r)

r

xi x j

r2

− İi j (u)

r2

(
δi j − xi x j

r2

)

− İi j (u + 2r)

r2

(
δi j − 5

xi x j

r2

)

+ Ii j (u) − Ii j (u + 2r)

r3

(
3

xi x j

r2 − δi j
)
,

hr A = h̄r A =
(

h̄t j + h̄i j
x i

r

)
∂x j

∂x A

=
(
∂ j

(
İi j (t − r)− İi j (t + r)

r

)

+ Ïi j (t − r)− Ïi j (t + r)

r

x j

r

)
∂xi

∂x A

= −
(

2 Ïi j (u+2r)

r
+ İi j (u)− İi j (u+2r)

r2

)
x j

r

∂xi

∂x A
,

(4.65)

h AB = h̄ AB − 1

2
h̄μμr2γ̊AB = h̄i j

∂xi

∂x A

∂x j

∂x B
− 1

2
h̄μμr2γ̊AB

=
(

Ïi j (u) − Ïi j (u + 2r)

r

)
∂xi

∂x A

∂x j

∂x B

−1

2

(
Ïi j (u) − Ïi j (u + 2r)

r

(
δi j − xi x j

r2

)

− İi j (u) + İi j (u + 2r)

r2

(
3

xi x j

r2 − δi j
)

− Ii j (u) − Ii j (u + 2r)

r3

(
3

xi x j

r2 − δi j
))

r2γ̊AB

=
(

Ïi j (u) − Ïi j (u + 2r)

r

)
∂xi

∂x A

∂x j

∂x B

− Ïi j (u) − Ïi j (u + 2r)

2r

(
δi j − xi x j

r2

)
r2γ̊AB

+O(r−2). (4.66)
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Finally (with all expansions in the last equation and below
for large r ),

hur = h̄ur + 1

2
h̄μμ = h̄t t + h̄ti

x i

r
+ 1

2
h̄μμ

= ∂i∂ j

(
Ii j (t − r)− Ii j (t + r)

r

)

+∂ j

(
İi j (t − r)− İi j (t + r)

r

)
xi

r

−∂i∂ j

(
Ii j (t − r)− Ii j (t + r)

2r

)

+ Ïi i (t − r)− Ïi i (t + r)

2r

= Ïi j (u)− Ïi j (u + 2r)

2r

(
δi j + xi x j

r2

)

− Ïi j (u) + Ïi j (u + 2r)

r

xi x j

r2 + O(r−2) ,

hu A = h̄u A = h̄ti
∂xi

∂x A

= ∂ j

(
İi j (t − r)− İi j (t + r)

r

)
∂xi

∂x A

= − Ïi j (u) + Ïi j (u + 2r)

r

∂xi

∂x A

x j

r
+ O(r−2) . (4.67)

To continue, for simplicity we assume that all the Ii j ’s van-
ish for sufficiently large arguments, and that r is so large that
all the Ii j (u + 2r)’s vanish. The vector field ξ which brings
the metric perturbation to the Bondi form is (cf. Sect. 3.1)

ζ u = ξu(u, x A) + İi j (u)

2r

(
δi j − xi x j

r2

)

− Ii j (u)

4r2

(
3

xi x j

r2 − δi j
)
, (4.68)

ζ B = ξ B(u, x A) + D̊B
[

− 1

r
ξu(u, x A)+ Ii j (u)

4r3

xi x j

r2

]
,

(4.69)

r D̊Bζ
B = r D̊Bξ

B(u, x A) −Δγ̊ ξ
u(u, x A)

+ Ii j (u)

4r2 Δγ̊

(
xi x j

r2

)
, (4.70)

ζ r = −1

2
r D̊Bζ

B − 1

4
r−1γ̊ ABh AB

= −1

2
r D̊Bζ

B − rhi j

4

(
δi j − xi x j

r2

)

= −1

2
r D̊Bζ

B − Ïi j (u)

4

(
δi j − xi x j

r2

)
+ r h̄μμ

4

= −1

2
r D̊Bξ

B + 1

2
Δγ̊ ξ

u − İi j (u)

4r

(
3

xi x j

r2 − δi j
)
.

(4.71)

To obtain the mass aspect function one needs the gauge-
transformed huu

huu → huu + Lζ ηuu = huu − 2∂u
(
ζ u + ζ r ) . (4.72)

After applying a u-derivative to (4.71), we will obtain a solu-
tion for which huu tends to zero as r tends to infinity in Bondi
gauge if and only if

(Δγ̊ + 2)∂uξ
u = 0 , D̊A∂uξ

A = 0 , (4.73)

In the calculations that follow the identities (3.32) are use-
ful; we repeat them here for the convenience of the reader:

γ̊ AB ∂xi

∂x A

∂x j

∂x B
= (δi j − xi x j

r2 )r2 , D̊ A(xi D̊Axi ) = 0 ,

(4.74)

D̊C
(

x ( j

r2

∂xi)

∂xC

)
=δi j − 3xi x j

r2 , Δγ̊

xi x j

r2 =2δi j −6
xi x j

r2 .

(4.75)

One then finds that in the linearised Bondi gauge the original
field huu becomes

huu → huu − Ïi j (u)

2r

(
3δi j − 5

xi x j

r2

)
+ O(r−2)

= Ïi j (u)

r

(
3xi x j

r2 − δi j
)

+ O(r−2) . (4.76)

Let δμ denote the linearised mass aspect function, thus huu =
2δμ/r + O(r−2). We see that

δμ = Ïi j (u)

2

(
3xi x j

r2 − δi j
)
. (4.77)

The functionχ of (D.4) can be calculated by inspecting the
asymptotic behaviour, for large r , of the functions appearing
there. One finds

χ = 4δμ − 1

2
(Δγ̊ + 2)Δγ̊ ξ

u

= 2 Ïi j (u)

(
3xi x j

r2 − δi j
)

− 1

2
(Δγ̊ + 2)Δγ̊ ξ

u . (4.78)

It then follows from (D.3) that

D̊ Ahu A
∣∣
r=0 = 2 Ïi j (u)

(
3xi x j

r2 − δi j
)

− 1

2
(Δγ̊ + 2)Δγ̊ ξ

u .

(4.79)

This equation looks surprising at first sight, since the left-
hand side is zero for a smooth tensor field in the (u, r, x A)

coordinates. However, (4.79) makes it clear that the linearised
Bondi gauge introduces a singular behaviour of the gauge-
transformed metric perturbation at r = 0. This singularity
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can be removed on some chosen light cone, say Cu0 , but can-
not be removed for all u by a residual gauge transformation
(in other words, asymptotic symmetry) in general.

Recall the formula for the gauge-transformed h AB :

h AB → h AB + 2rζ r γ̊AB + r2L̊ζ γ̊AB , (4.80)

where L̊ζ denotes the two-dimensional Lie derivative with
respect to the field ζ A∂A. This leads to

h AB →
(

Ïi j (u) − Ïi j (u + 2r)

r

)
∂xi

∂x A

∂x j

∂x B

− γ̊ C D

(
Ïi j (u) − Ïi j (u + 2r)

2r

)
∂xi

∂xC

∂x j

∂x D
γ̊AB

+ O(r−3) , (4.81)

from which the news tensor ∂u

(1)
h AB is readily obtained:

∂u

(1)
h AB = ...

I i j (u)

(
∂xi

∂x A

∂x j

∂x B
− 1

2
γ̊ C D ∂xi

∂xC

∂x j

∂x D
γ̊AB

)
.

(4.82)

5 The energy of weak gravitational fields

5.1 Trautman–Bondi mass

When Λ = 0, the Trautman–Bondi mass is determined from
the function V appearing in the metric. Based on the varia-
tional arguments so far, one expects that its linearised-theory
equivalent will be determined by the second variation of V .
Our aim in this section is to derive a formula for this second
variation.

Recall that the one-parameter families of vacuum metrics
gμν(λ, ·) which define the variations considered here satisfy

e2β |λ=0 = 1 , V |λ=0 = r − Λr3

3
, ∂r V |λ=0 = 1 − Λr2 .

(5.1)

Using (5.1) and our remaining asymptotic conditions, the sec-
ond variation equation is obtained by differentiating (4.31)
twice with respect to λ and reads (cf. (5.10) below)

2∂rδ
2V +4(Λr2 − 1)δ2β = δ2R − 1

r2 D̊ A
[
∂r (r

4δȟu A)
]

−2γ̊ AB D̊A D̊Bδ
2β − r4γ̊ AB(∂r ȟu A)(∂r ȟu B)

−8πδ2
[
γ AB TAB − r2T a

a

]

+ 2

r2 D̊ A
[
∂r (r

4γ̊ B Dȟ ABȟu D)
]
. (5.2)

We need the second variation of (4.10), which reads

∂rδ
2β = r

8
γ̊ AC γ̊ B D∂r ȟ AB∂r ȟC D + 2πrδ2Trr , (5.3)

and which can be explicitly integrated after requiring that
δ2β goes to zero as r tends to infinity:

δ2β = −
∫ ∞

r

(r

8
γ̊ AC γ̊ B D∂r ȟ AB∂r ȟC D + 2πrδ2Trr

)
dr.

(5.4)

(We note that this is negative if we impose the dominant
energy condition.) In vacuum and for large r we obtain the
expansion

δ2β = − 1

16r2 γ̊
AC γ̊ B D

(−1)

ȟ AB

(
(−1)

ȟ C D + 3

r2

(−3)

ȟ C D

)

+O(r−5) , (5.5)

while for small r we have, using (3.29),

δ2β = − 1

8r2 D̊ A D̊Bξu(2D̊A D̊Bξ
u −Δγ̊ ξ

u γ̊AB)+ O(r−1) .

(5.6)

We see that δ2β diverges badly at the origin unless ξu is a
linear combination of ! = 0 and ! = 1 spherical harmonics.
Now, as explained in Sect. 3, the field ξu is determined by
the linearised metric up to the choice of a u-independent
initial datum. Hence, given a light cone we can always find
a gauge so that the leading-order singularity above vanishes.
Equation (3.29) shows that in this gauge the integrand in (5.4)
is bounded and δ2β is finite everywhere.

In the remainder of this section we assume a vacuum met-
ric perturbation, and a gauge so that δ2β is bounded on the
light cone under consideration.

We rewrite (5.2) as

2∂rδ
2V = δ2R − 1

r2 D̊A

[
∂r (r

4δȟu
A)

]
− 4(Λr2 − 1)δ2β

−2γ̊ AB D̊A D̊Bδ
2β − r4γ̊ AB∂r ȟu A∂r ȟu B

+ 2

r2 D̊ A
[
∂r (r

4γ̊ B Dȟ ABȟu D)
]
. (5.7)

Recall that for Λ = 0 the Trautman–Bondi mass mTB is
defined as [9,53,54]

mTB = − 1

8π

∫

S2

(0)
V d2μγ̊ , (5.8)

where
(0)
V is the r -independent coefficient in an asymptotic

expansion of V . It was proposed in [13] to use this defini-
tion for Λ �= 0, which was motivated by Cauchy-problem
considerations.

123



Eur. Phys. J. C (2021) 81 :696 Page 31 of 48 696

Before proceeding further, recall that a one-parameter
family of metrics λ 	→ gμν(λ) in Bondi gauge satisfies the
condition

√
det gAB(λ) = √

det gAB(0) . (5.9)

This implies in particular

d
√

det gAB(λ)

dλ
= 0 = d2√det gAB(λ)

dλ2 . (5.10)

Equivalently,

δ
√

det gAB = 0 = δ2
√

det gAB . (5.11)

It then follows from the Gauss–Bonnet theorem that

δ

∫

S2
R d2μγ = 0 = δ2

∫

S2
R d2μγ , (5.12)

Integrating (5.7) over a truncated cone

Cu,R = Cu ∩ {0 ≤ r ≤ R}
one obtains

δ2mTB(Cu,R) := − 1

8π

∫

r=R
δ2V d2μγ̊

= 1

16π

∫

Cu,R

(
r4γ̊ AB∂r ȟu A∂r ȟu B

−4(1 − Λr2)δ2β
)

dr dμγ̊ . (5.13)

When Λ ≤ 0 we have δ2β ≤ 0, which proves positivity of
δ2mTB(Cu,R), and of its limit δ2mTB(Cu) with R → ∞.

The notation in (5.13) is somewhat misleading, as the
limit as R goes to infinity of (5.13) will only reproduce the
Trautman–Bondi mass if this limit converges. This is the case
when Λ ≤ 0 (compare (5.105), Sect. 5.8). However, when
Λ > 0 the integrand for large r behaves as

−Λr

4
γ̊ AC γ̊ B D

(−1)

ȟ AB

(−1)

ȟ C D + O(r−1) , (5.14)

so that

δ2mTB(Cu) := − 1

8π

∫

S2
δ2

(0)
V d2μγ̊ (5.15)

= lim
R→∞

1

16π

(∫

Cu,R

(
r4γ̊ AB∂r ȟu A∂r ȟu B

−4(1 − Λr2)δ2β
)

dr dμγ̊

+ΛR

4

∫

SR

γ̊ AC γ̊ B D
(−1)

ȟ AB

(−1)

ȟ C D dμγ̊

)
.

(5.16)

5.2 Boundary integrand and Λ

We assume now that the background takes the form

gαβdxαdxβ = εN 2du2 − 2du dr + r2 (dθ2 + sin2 θdφ2)︸ ︷︷ ︸
=:γ̊

,

(5.17)

which is compatible both with the Minkowski and the de
Sitter metrics. We suppose that the metric perturbations δgμν
satisfy the Bondi gauge conditions:

δgrr = 0 = δgr A = g ABδgAB . (5.18)

This implies

∇μδgrr = 0 = ∇uδgr A = ∇rδgr A , (5.19)

and

∇uδguu = ∂u(δguu) − 2εN
′
N

(
δguu + εN 2δgur

)
,

∇uδgur = ∂u(δgur ) ,

∇uδgAB = ∂u(δgAB) , ∇uδgu A = ∂u(δgu A) − εN
′
Nδgu A ,

∇rδguu = ∂r (δguu) + 2εN
′
Nδgur , ∇rδgur = ∂r (δgur ) ,

∇rδgAB = ∂r (δgAB) − 2

r
δgAB ,

∇rδgu A = ∂r (δgu A) − 1

r
δgu A ,

∇Aδguu = ∂A(δguu) ,∇Aδgur = ∂A(δgur ) − 1

r
δgu A

∇Aδgu B = D̊A(δgu B) − 1

r
gAB

(
δguu + εN 2δgur

)
,

∇AδgBC = D̊A(δgBC ) − 2

r
gA(BδgC)u ,

∇Aδgr B = −1

r
(δgAB + gABδgur ) .

Under the above assumptions, the functional br (δ1g, δ2g)
given by (B.14), Appendix B below becomes

br (δ1g, δ2g) = − 1

r2 δ1gur γ̊
AB∇B(δ2gu B + εN 2δ2gr B

+ 1

2r4 γ̊
AC γ̊ B Dδ1gC D

(
εN 2∇rδ2gAB + ∇uδ2gAB

−2∇A(εN 2δ2gr B + δ2gu B)
)

+ 1

r2 γ̊
ACδ1guC

(
∇rδ2gu A + 1

2r2 γ̊
B D∇Aδ2gB D

)
.

(5.20)

After some further algebra one obtains
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br (δ1g, δ2g)

= 1

r
δ1gur

[
2(1 + 2εN 2)δ2gur − 1

r
γ̊ C D D̊Cδ2gu D

]

+ 1

2r4 γ̊
AC γ̊ B Dδ1gC D

(
εN 2∂rδ2gAB + ∂uδ2gAB

−2D̊Aδ2gu B
) + 1

r2 δ1gu Aγ̊
AB

(
∂rδ2gu B − 2

r
δ2gu B

)
.

(5.21)

Upon antisymmetrisation the first and last terms above drop
out:

wr (δ1g, δ2g) ≡ br (δ2g, δ1g)− br (δ1g, δ2g)

= 1

r2 γ̊
C D

(
δ1gur D̊Cδ2gu D − δ2gur D̊Cδ1gu D

)

+ 1

2r4 γ̊
AC γ̊ B D

(
δ2gC D

(
εN 2∂rδ1gAB + ∂uδ1gAB

−2D̊Aδ1gu B
)

−δ1gC D
(
εN 2∂rδ2gAB + ∂uδ2gAB − 2D̊Aδ2gu B

))

+ 1

r2 γ̊
AB (δ2gu A∂rδ1gu B − δ1gu A∂rδ2gu B) . (5.22)

5.2.1 Large r

We use the following asymptotics for the linearised met-
ric components, as derived in Sect. 4.1 under the conditions
there:

δgur ≡ 0 ≡ δgr A ≡ δgrr , (5.23)

δgAB = δ
(1)
g ABr + o(1) , (5.24)

δgu A = δ
(2)
g u Ar2 + δ

(0)
g u A + o(1) , (5.25)

δguu = δ
(1)
g uur + δ

(−1)
g uu

r
+ o(r−1) , (5.26)

one finds

r2br (δ1g, δ2g)

= r
[

− 2γ̊ ABδ1
(2)
g u Aδ2

(0)
g u B

+γ̊ AC γ̊ B D
(α2

2
δ1

(1)
g ABδ2

(1)
g C D − δ1

(1)
g AB D̊Cδ2

(2)
g u D

)]

−3γ̊ ABδ1
(2)
g u Aδ2

(−1)
g u B + 1

2
γ̊ AC γ̊ B Dδ1

(1)
g AB∂uδ2

(1)
g C D

+o(1) . (5.27)

Hence

r2ωr (δ1g, δ2g) = r2(br (δ2g, δ1g)− br (δ1g, δ2g)
)

= r
[
2γ̊ AB(δ1

(2)
g u Aδ2

(0)
g u B − δ2

(2)
g u Aδ1

(0)
g u B)

+γ̊ AC γ̊ B D
(
δ1

(1)
g AB D̊Cδ2

(2)
g u D − δ2

(1)
g AB D̊Cδ1

(2)
g u D

)]

+3γ̊ AB(δ1
(2)
g u Aδ2

(−1)
g u B − δ2

(2)
g u Aδ1

(−1)
g u B)

+1

2
γ̊ AC γ̊ B D(δ2

(1)
g AB∂uδ1

(1)
g C D − δ1

(1)
g AB∂uδ2

(1)
g C D)

+o(1) . (5.28)

5.3 The energy and its flux

We return now to a linearised vacuum gravitation field in
Bondi gauge,

h ≡ hμνdxμdxν = huudu2 + 2hu Adx Adu + h ABdx Adx B

=:r2(ȟuudu2 + γ̊ABȟu
B

︸ ︷︷ ︸
=:ȟu A

dx Bdu + ȟ ABdx Adx B)
. (5.29)

Let, as before,Cu,R denote a light coneCu truncated at radius
R, and let Ec[h,Cu,R] denote the canonical energy contained
in Cu,R , defined using the vector field ∂u :

Ec[h,Cu,R]:=H̃ [Cu,R, ∂u] . (5.30)

Recall that the Bondi gauge introduces singular behaviour
at the tip of the light cone in general. When integrating for-
mulae such as (2.30) overS one obtains a “boundary integral
at r = 0”. One can keep track of this but the resulting formu-
lae do not seem to be very enlightening, so in what follows
we can, and will, choose a Bondi gauge so that the (freely
specifiable) gauge vector field ξ in (3.9), which is part of the
transformation which takes the metric from a smooth gauge
to a Bondi gauge, satisfies

D̊A D̊Bξ
u = 1

2
Δγ̊ ξ

u γ̊AB (5.31)

at a fixed light cone Cu under consideration. (Compare
(5.41)–(5.40) below and (3.29).) Equivalently, ξu is a lin-
ear combination of ! = 0 and ! = 1 spherical harmonics.

We note that this choice is tied to the chosen light coneCu ,
and will not be satisfied by nearby light cones in general. This
turns out to be irrelevant for the calculations in this section.

We further note that the Bondi gauge is mainly relevant
for us for the analysis of the field at large distances. One
can sweep under the carpet the problem of the singularity
at the origin by using Bondi coordinates for large r , and
any other coordinates for small r . It follows from Sect. 2.3.3
that the total energy does not depend upon the choice of the
coordinates for small r . The volume integral will then not
take the simple form presented here for “non-Bondi” values
of r , but this would again be irrelevant from the point of view
of the large-r analysis of the fields.

Putting together our calculations so far, namely (2.124)–
(2.126), (2.136), (2.138), (2.167) and (5.27) we find:
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Ec[h,Cu,R]
= 1

64π

∫

Cu,R

gB E gFC(
∂uhBC∂r hE F −hBC∂r∂uhE F

)
dμC

+ R

64π

∫

S2

(
4γ̊ AB

(0)

ȟ u A

(−2)

ȟ u B − γ̊ AB γ̊ C D

×
(
α2

(−1)

ȟ AC

(−1)

ȟ B D − 2
(−1)

ȟ AC D̊B

(0)

ȟu D

))
dμγ̊

+ 1

64π

∫

S2

(
6γ̊ AB

(0)

ȟ u A

(−3)

ȟ u B −γ̊ AB γ̊ C D
(−1)

ȟ AC∂u

(−1)

ȟ B D

−γ̊ AB γ̊ C D

(
α2

(−1)

ȟ AC

(−2)

ȟ B D − 2
(−2)

ȟ AC D̊B

(0)

ȟu D

))

×dμγ̊ + o(1) . (5.32)

The associated energy flux formula follows from (2.36)
together with the equations just listed:

d Ec[h,Cu,R]
du

= − 1

32π

∫

SR

r2br (∂uh, h) dμγ̊

= R

32π

∫

S2

(
4γ̊ AB

(−2)

ȟ u A∂u

(0)

ȟ u B − γ̊ AB γ̊ C D

×
(
α2

(−1)

ȟ AC∂u

(−1)

ȟ B D − 2∂u

(−1)

ȟ AC D̊B

(0)

ȟu D

))
d2μγ̊

− 1

32π

∫

S2

(
−6γ̊ AB

(−3)

ȟu A∂u

(0)

ȟu B

+γ̊ AB γ̊ C D∂u

(−1)

ȟ AC∂u

(−1)

ȟ B D

+γ̊ AB γ̊ C D

(
α2

(−1)

ȟ AC∂u

(−2)

ȟ B D −2∂u

(−2)

ȟ AC D̊B

(0)

ȟu D

))

×dμγ̊ + o(1) . (5.33)

Let us first analyse the convergence, as R tends to infinity,
of the volume integral in (5.32).

Consider the part of the boundary integral in (5.32) which
diverges linearly with R; up to a multiplicative coefficient
R/(64π) this term equals

∫

S2

(
4γ̊ AB

(0)

ȟ u A

(−2)

ȟ u B − γ̊ AB γ̊ C D(α2
(−1)

ȟ AC

(−1)

ȟ B D

−2
(−1)

ȟ AC D̊B

(0)

ȟu D)

)
dμγ̊ . (5.34)

Using (4.23), the first term in (5.34) can be rewritten as

−4
∫

S2
γ̊ AB

(0)

ȟ u A

(−2)

ȟ u B dμγ̊

= −2
∫

S2
γ̊ AB

(0)

ȟ u A D̊C
(−1)

ȟ BC dμγ̊

= 2
∫

S2
γ̊ AB D̊C

(0)

ȟ u A

(−1)

ȟ BC dμγ̊ , (5.35)

which cancels-out the last term in (5.34).

Incidentally, from (4.30) and the symmetries of
(−1)

ȟ AC we
obtain

−2
∫

S2
γ̊ AB γ̊ C D

(−1)

ȟ AC D̊B

(0)

ȟu D dμγ̊

= −
∫

S2
γ̊ AB γ̊ C D

(−1)

ȟ AC (D̊B

(0)

ȟ D + D̊D

(0)

ȟ u B

−D̊E

(0)

ȟ E γ̊B D)dμγ̊

= α2
∫

S2
γ̊ AB γ̊ C D

(−1)

ȟ AC

(−1)

ȟ B D dμγ̊ , (5.36)

so all three terms in (5.34) are equal up to signs. Thus (5.32)
can be rewritten as

Ec[h,Cu,R]
= 1

64π

∫

Cu,R

gB E gFC(
∂uhBC∂r hE F −hBC∂r∂uhE F

)
dμC

−α2 R

64π

∫

S2
γ̊ AB γ̊ C D

(−1)

ȟ AC

(−1)

ȟ B D dμγ̊

− 1

64π

∫

S2
γ̊ AB

(
γ̊ C D

(−1)

ȟ AC∂u

(−1)

ȟ B D − 6
(0)

ȟ u A

(−3)

ȟ u B

)

×dμγ̊ + o(1) . (5.37)

We finish this section by a remark concerning the vanish-

ing of
(0)

ȟ AB . If this were not the case, the insertion of the
expansion (4.26) into the volume integral in (5.32) would
lead to a divergent leading-order behaviour:
∫

Cu,R

gB E gFC (hBC∂r∂uhE F − ∂uhBC∂r hE F ) dμC

= R
∫

S2
γ̊ B E γ̊ FC

(
(−1)

ȟ BC∂u

(0)

ȟ E F −∂u

(−1)

ȟ BC

(0)

ȟ E F

)
dμγ̊

+2 ln(R)
∫

S2
γ̊ B E γ̊ FC

(
(−2)

ȟ BC∂u

(0)

ȟ E F −∂u

(−2)

ȟ BC

(0)

ȟ E F

)

×dμγ̊ + O(1) . (5.38)

Further, the boundary term in the energy would diverge as
R2. As already pointed out, this provides the justification

while it is natural to choose a gauge in which
(0)

ȟ AB vanishes.

5.3.1 Energy-loss revisited

In this section we rederive the energy-loss formula by a some-
what more direct calculation. For this we integrate over Cu,R

the identity
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∂uω
u = −∂iω

i (5.39)

to obtain

d

du

∫

Cu,R

ωur2dr dμγ̊ = −
∫

Su,R

ωr r2 dμγ̊

+ lim
ε→0

∫

Su,ε

ωr r2 dμγ̊ . (5.40)

One way to guarantee the vanishing of the last integral in
(5.40) is to choose a gauge so that

∂r h AB |r=0 = 0 . (5.41)

For simplicity this gauge choice will be made in the rest of
this section.

From (2.167) and (5.28) this is equivalent to

1

2

d

du

∫

Cu,R

g AB gC D (δ2gAC∂rδ1gB D − δ1gAC∂rδ2gB D) r2

×dr dμγ̊

= −
∫

Su,R

[
r

[
2γ̊ AB

(
δ1

(2)
g u Aδ2

(0)
g u B − δ2

(2)
g u Aδ1

(0)
g u B

)

+γ̊ AC γ̊ B D
(
δ1

(1)
g AB D̊Cδ2

(2)
g u D − δ2

(1)
g AB D̊Cδ1

(2)
g u D

)]

+3γ̊ AB
(
δ1

(2)
g u Aδ2

(−1)
g u B − δ2

(2)
g u Aδ1

(−1)
g u B

)

+γ̊ AC γ̊ B D
(

1

2

(
δ2

(1)
g AB∂uδ1

(1)
g C D −δ1

(1)
g AB∂uδ2

(1)
g C D

)

+α2

2

(
δ2

(0)
g ABδ1

(1)
g C D − δ1

(0)
g ABδ2

(1)
g C D

)

+δ1
(0)
g AB D̊Cδ2

(2)
g u D − δ2

(0)
g AB D̊Cδ1

(2)
g u D

)]
dμγ̊

+o(1) . (5.42)

Letting δ1gμν = hμν , δ2gμν = ∂uhμν , using

(0)

ȟ AB ≡ 0 ≡
(−2)

ȟ AB

(similarly for the u-derivatives), and keeping in mind that
h̆:=r−1h and ȟ = r−2h, this becomes

1

2

d

du

∫

Cu,R

γ̊ AB γ̊ C D
(
∂u h̆ AC∂r h̆B D −h̆ AC∂r∂u h̆B D

)
dr dμγ̊

= −
∫

Su,R

[
r

[
2γ̊ AB

(
(0)

ȟ u A∂u

(−2)

ȟ u B − ∂u

(0)

ȟ u A

(−2)

ȟ u B

)

+γ̊ AC γ̊ B D

(
(−1)

ȟ AB D̊C∂u

(0)

ȟ u D − ∂u

(−1)

ȟ AB D̊C

(0)

ȟ u D

)]

+3γ̊ AB

(
(0)

ȟ u A∂u

(−3)

ȟ u B − ∂u

(0)

ȟ u A

(−3)

ȟ u B

)

+1

2
γ̊ AC γ̊ B D

(
∂u

(−1)

ȟ AB∂u

(−1)

ȟ C D −
(−1)

ȟ AB∂
2
u

(−1)

ȟ C D

)]

×dμγ̊ + o(1) . (5.43)

In order to obtain d Ec[h,Cu,R]/du from this formula, we
analyse the surface terms in the definition of canonical energy
(5.32):

BEc := R
∫

S2

(
2γ̊ AB

(0)

ȟu A

(−2)

ȟu B − 1

2
γ̊ AB γ̊ C D

× (
α2

(−1)

ȟ AC

(−1)

ȟ B D − 2
(−1)

ȟ AC D̊B

(0)

ȟ B D
))

dμγ̊

+
∫

S2

(
3γ̊ AB

(0)

ȟu A

(−3)

ȟu B − 1

2
γ̊ AB γ̊ C D

× ((−1)

ȟ AC∂u

(−1)

ȟ B D
))

dμγ̊

+o(1) . (5.44)

Explicitly computing d BEc/du, adding both sides to (5.43),
after multiplying by 1/(32π) we recover the mass loss for-

mula (5.33), keeping in mind that
(−2)

ȟ AB = 0 when no log-
arithms occur.

In the case Λ = 0 things simplify as then α =
(0)

ȟ u B = 0.
One can integrate by parts in the first line above so that the
left-hand side of (5.43) reads instead

d

du

(∫

Cu,R

γ̊ AB γ̊ C D∂u h̆ AC∂r h̆B Ddr dμγ̊

−1

2

∫

Su,R

γ̊ AB γ̊ C Dh̆ AC∂u h̆B D dμγ̊

)
. (5.45)

From (5.43) one obtains

d

du

(∫

Cu,R

γ̊ AB γ̊ C D∂u h̆ AC∂r h̆B Ddr dμγ̊

−1

2

∫

Su,R

γ̊ AB γ̊ C Dh̆ AC∂u h̆B D dμγ̊

)

= −1

2

∫

Su,R

[
γ̊ AC γ̊ B D(

∂u

(−1)

ȟ AB∂u

(−1)

ȟ C D

−
(−1)

ȟ AB∂
2
u

(−1)

ȟ C D
)]

dμγ̊ + o(1) . (5.46)

Equivalently

d

du

(∫

Cu,R

γ̊ AB γ̊ C D∂u h̆ AC∂r h̆B Ddr dμγ̊

−
∫

Su,R

γ̊ AB γ̊ C Dh̆ AC∂u h̆B D dμγ̊

)
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= −
∫

Su,R

γ̊ AC γ̊ B D∂u

(−1)

ȟ AB∂u

(−1)

ȟ C D dμγ̊ + o(1) ,

(5.47)

or

d

du

(∫

Cu,R

γ̊ AB γ̊ C D
(
∂u h̆ AC∂r h̆B D −h̆ AC∂r∂u h̆B D

)
dr dμγ̊

−
∫

Su,R

γ̊ AB γ̊ C Dh̆ AC∂u h̆B D dμγ̊

)

= −2
∫

Su,R

γ̊ AC γ̊ B D∂u

(−1)

ȟ AB∂u

(−1)

ȟ C D dμγ̊ + o(1) .

(5.48)

Passing with R to infinity, after multiplying by 1/(64π) the
right-hand side becomes (up to a multiplicative factor) the
right-hand side of the familiar Trautman–Bondi mass loss
formula. Hence the expression which is differentiated at the
left-hand side must be the Trautman–Bondi energy, up to the
addition of a time-independent functional of the fields.

Now, it is known that there are no such functionals in the
nonlinear theory which are gauge-independent and which
vanish when hμν vanishes by [17], and it is clear that the
argument there carries over to the linearised theory. However,
gauge-independence of the functional being differentiated in
(5.48), namely

∫

Cu

γ̊ AB γ̊ C D
(
∂u h̆ AC∂r h̆B D − h̆ AC∂r∂u h̆B D

)
dr dμγ̊

− lim
R→∞

∫

Su,R

γ̊ AB γ̊ C Dh̆ AC∂u h̆B D dμγ̊ , (5.49)

is not clear at this stage. In Sect. 5.6 below we settle the issue
by providing a direct proof of the equality of Êc with half
of the quadratisation of the Trautman–Bondi mass. When
Λ vanishes this could have been anticipated by the results
of [15], where it is shown that the canonical energy for the
nonlinear field is the Trautman–Bondi mass. However, such
statements involve a careful choice of boundary terms so that
the correspondence is not automatic. And no such statement
for Λ > 0 has been established so far in any case.

5.4 Renormalised energy

Equation (5.33) shows that the divergent term in Ec has a
dynamics of its own, evolving separately from the remaining
part of the canonical energy. It is therefore natural to intro-
duce a renormalised canonical energy, say Êc[h,Cu,R], by
removing the divergent term in (5.37). After having done
this, we can pass to the limit R → ∞ to obtain:

Êc[h,Cu]
:= 1

64π

∫

Cu

gB E gFC(
∂uhBC∂r hE F − hBC∂r∂uhE F

)
r2

×dr sin θ dθ dϕ

− 1

64π

∫

S2
γ̊ AB

(
γ̊ C D

(−1)

ȟ AC∂u

(−1)

ȟ B D − 6
(0)

ȟ u A

(−3)

ȟ u B

)

× sin θ dθ dϕ . (5.50)

This is our first main result here, and is our proposal how to
calculate the total energy contained in a light cone of a weak
gravitational wave on a de Sitter background.

The flux equation for the renormalised energy Êc coin-
cides with the one obtained by dropping the term linear in R
in (5.33) and passing again to the limit R → ∞:

d Êc[h,Cu,R]
du

= − 1

32π
×

∫

S2
γ̊ AB

(
γ̊ C D∂u

(−1)

ȟ AC∂u

(−1)

ȟ B D − 6
(−3)

ȟ u A∂u

(0)

ȟ u B

)

× sin θ dθ dϕ. (5.51)

This is our key new formula. When Λ = 0 we recover
the weak-field version of the usual Trautman–Bondi mass

loss formula since, as already pointed out,
(0)

ȟ u A ≡ 0 in the
asymptotically Minkowskian case. Hence the last term in
(5.51) shows how the cosmological constant affects the flux
of energy emitted by a gravitating astrophysical system.

5.5 Energy and gauge transformations

We have seen by general considerations that the energy inte-
gral is invariant under gauge transformations, up to boundary
terms. It is instructive to rederive this result for the residual
gauge transformations by a direct calculation. As a byproduct
we obtain the explicit form of the boundary terms arising.

We focus attention on the volume part of the energy inte-
gral:

EV [h](u) := 1

64π

∫

Cu

gB E gFC(
∂uhBC∂r hE F

−hBC∂r∂uhE F
)

dμC . (5.52)

It is convenient to define a new field

h̆μν :=r−1hμν ≡ r ȟμν . (5.53)

In terms of h̆ the integral EV takes the form

EV [h](u)
= 1

64π

∫

Cu

γ̊ B E γ̊ FC(
∂u h̆BC∂r h̆E F − h̆ BC∂r∂u h̆E F

)

dr dμγ̊ . (5.54)
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Under asymptotic symmetries we have (cf. (3.43))

h̆ AB 	→ h̆ AB + r
(

D̊AξB + D̊BξA − γ̊AB D̊CξC︸ ︷︷ ︸
0

)

+ (
γ̊ABΔγ̊ − 2D̊A D̊B

)
ξu , (5.55)

where the term linear in r vanishes since ξ A(u, ·) is a con-
formal Killing vector of S2. Whence

∂u h̆ AB 	→ ∂u h̆ AB + (
γ̊ABΔγ̊ − 2D̊A D̊B

)
∂uξ

u(u, x A) ,

(5.56)

∂r h̆ AB 	→ ∂r h̆ AB . (5.57)

Now, for each u the function ∂uξ
u is a linear combination

of ! = 0 and ! = 1 spherical harmonics (see Appendix A),
which implies that the terms involving ∂uξ

u in ∂u h̆ AB vanish.
We conclude that both ∂uh AB ≡ r∂u h̆ AB and ∂r (r−1h AB) ≡
∂r h̆ AB are invariant under asymptotic symmetries.

Since the measure dμγ̊ = √
det γ̊ dx2 ∧ dx3 is r -

independent, integration by parts in (5.52) gives

EV [h](u) = 1

32π

∫

Cu

γ̊ B E γ̊ FC∂u h̆BC∂r h̆E F dr dμγ̊

+ lim
ε→0

1

64π

∫

r=ε

γ̊ B E γ̊ FC h̆BC∂u h̆E F dμγ̊

− lim
R→∞

1

64π

∫

r=R
γ̊ B E γ̊ FC h̆BC∂u h̆E F dμγ̊ ,

(5.58)

and note that the second line above does not vanish in a
general Bondi gauge, since then both h̆ AB and ∂u h̆ AB are of
order one for small r by (5.55). So

EV [h](u) = 1

32π

∫

Cu

γ̊ B E γ̊ FC∂u h̆BC∂r h̆E F dr dμγ̊

+ 1

64π

∫

S2
γ̊ B E γ̊ FC((h̆ BC∂u h̆E F )|r=0−

(0)

h̆ BC∂u

(0)

h̆ E F
)

dμγ̊ ,

(5.59)

where we assumed that the metric hμν has the usual asymp-
totic expansion for large r as considered elsewhere in this
paper.

From what has been said the volume integral in (5.59) is
invariant under residual gauge transformations, so that we
have

EV [h](u) 	→ EV [h](u)

+ 1

64π

∫

S2
γ̊ AB γ̊ C D(

∂u ȟ AC |r=0 − ∂u

(−1)

ȟ AC
)

×(
γ̊B DΔγ̊ − 2D̊B D̊D

)
ξu dμγ̊ . (5.60)

The second line in (5.60) vanishes when ξu is a linear com-
bination of ! = 0 and ! = 1 spherical harmonics.

It easily follows that the canononical energy is invariant
under such residual gauge transformations.

5.6 Êc = 1
2δ

2mTB

In this section we show by a direct calculation that our renor-
malised energy Êc coincides with the Trautman–Bondi mass
of the linearised theory. As before we fix a light cone Cu and
use the gauge (5.31) on Cu .

We start with (5.13), which we repeat here for the conve-
nience of the reader:

δ2mTB(Cu,R) = 1

16π

∫

Cu,R

(
r4γ̊ AB∂r ȟu A∂r ȟu B

−4(1 − Λr2)δ2β
)

dr dμγ̊ .

(5.61)

We integrate by parts on the δ2β term and use the vacuum
version of (5.3),

∂rδ
2β = r

8
γ̊ AC γ̊ B D∂r ȟ AB∂r ȟC D , (5.62)

to obtain

δ2mTB(Cu,R) = 1

16π

∫

Cu,R

(
r4γ̊ AB∂r ȟu A∂r ȟu B

+3r2−Λr4

6
γ̊ AC γ̊ B D∂r ȟ AB∂r ȟC D

)
dr dμγ̊

− 1

4π

∫

SR

r

(
1 − Λr2

3

)
δ2β dμγ̊ . (5.63)

The first volume integral can be handled using (4.14),

∂r

[
r4∂r (r

−2δgu A)
]

= r2 D̊E

(
γ̊ E F∂r

(
r−2δgAF

))
. (5.64)

Equivalently,

∂r

[
r4∂r ȟu A

]
= r2∂r D̊F ȟ AF . (5.65)

Hence

1

16π

∫

Cu,R

r4γ̊ AB∂r ȟu A∂r ȟu B dμγ̊ dr

= 1

16π

∫

SR

r4γ̊ ABȟu A∂r ȟu B dμγ̊

− 1

16π

∫

Cu,R

γ̊ ABȟu A∂r (r
4∂r ȟu B) dμγ̊ dr

= 1

16π

∫

SR

r4γ̊ ABȟu A∂r ȟu B dμγ̊

− 1

16π

∫

Cu,R

r2γ̊ ABȟu A∂r D̊F ȟB F dμγ̊ dr . (5.66)

Equation (5.63) can thus be rewritten as
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δ2mTB(Cu,R)

= − 1

16π

∫

Cu,R

(
r2γ̊ ABȟu A∂r D̊F ȟB F

−3r2 − Λr4

6
γ̊ AC γ̊ B D∂r ȟ AB∂r ȟC D

)
dr dμγ̊

+ 1

16π

∫

SR

(
r4γ̊ ABȟu A∂r ȟu B −4r

(
1−Λr2

3

)
δ2β

)
dμγ̊ .

(5.67)

Denoting by EV [h,Cu,R] the volume term in (5.32) and

h̆ AB :=r−1h AB ,

after another integration by parts we find

EV [h,Cu,R]:= 1

64π

∫

Cu,R

gB E gFC(
∂uhBC∂r hE F

− hBC∂r∂uhE F
)

dμC

= 1

64π

∫

Cu,R

γ̊ B E γ̊ FC

(
∂u h̆BC∂r h̆E F − h̆ BC∂r∂u h̆E F

)
dμγ̊ dr

= − 1

32π

∫

Cu,R

γ̊ B E γ̊ FC

h̆BC∂r∂u h̆E F dr dμγ̊

+ 1

64π

∫

SR

r−2γ̊ B E γ̊ FC∂uhBC hE F dμγ̊ .

(5.68)

Inserting the vacuum version of (4.25),

∂r∂u h̆E F + ε

2r
∂r [r2 N 2∂r ȟE F ] − T S

[
1

r
D̊E

(
∂r (r

2ȟuF )
)]

= 0 , (5.69)

into (5.68) we are led to

EV [h,Cu,R]
= 1

32π

∫

Cu,R

γ̊ B E γ̊ FC ȟBC

×
(ε

2
∂r [r2 N 2∂r ȟE F ] − D̊E

(
∂r (r

2ȟuF )
))

dμγ̊ dr

+ 1

64π

∫

SR

r−2γ̊ B E γ̊ FC∂uhBC hE F dμγ̊

= − 1

32π

∫

Cu,R

γ̊ B E γ̊ FC

×
(ε

2
r2 N 2∂r ȟBC∂r ȟE F +ȟ BC D̊E

(
∂r (r

2ȟuF )
))

dμγ̊ dr

+ 1

64π

∫

SR

γ̊ B E γ̊ FC hBC
(
∂u ȟE F + εN 2∂r ȟE F

)
dμγ̊ .

(5.70)

The last integral in the before-last line can be integrated by
parts over the angles to become, using (5.67) to pass from
(5.71) to (5.72),

− 1

32π

∫

Cu,R

γ̊ B E γ̊ FC ȟBC D̊E
(
∂r (r

2ȟuF )
))

dμγ̊ dr

= 1

32π

∫

Cu,R

γ̊ FC D̊BȟBC∂r (r
2ȟuF ) dμγ̊ dr

= − 1

32π

∫

Cu,R

γ̊ FCr2ȟuF∂r D̊B ȟBC dμγ̊ dr

+ 1

32π

∫

SR

r2γ̊ FC ȟuF D̊B ȟBC dμγ̊ (5.71)

= 1

2
δ2mTB(Cu,R)

− 1

32π

∫

Cu,R

3r2 − Λr4

6︸ ︷︷ ︸
−εr2 N 2/2

γ̊ AC γ̊ B D∂r ȟ AB∂r ȟC D dr dμγ̊

− 1

32π

∫

SR

(
r4γ̊ ABȟu A∂r ȟu B − 4r

(
1 − Λr2

3

)
δ2β

−r2γ̊ FC ȟuF D̊B ȟBC

)
dμγ̊ . (5.72)

Hence

EV [h,Cu,R] = 1

2
δ2mTB(Cu,R)

− 1

64π

∫

SR

(
2r4γ̊ ABȟu A∂r ȟu B − 8r

(
1 − Λr2

3

)
δ2β

−2r2γ̊ FC ȟuF D̊B ȟBC − γ̊ B E γ̊ FC hBC

×(
∂u ȟE F + εN 2∂r ȟE F

))
dμγ̊ . (5.73)

Now, using (2.124), (2.126), (2.138), (5.21), the total canon-
ical energy equals

Ec[Cu,R, h] := 1

2

(∫

Cu,R

ωμ(h,LX h) d Sμ

−
∫

SR

π̃αβ[μXσ ]hαβd Sσμ

)

= EV [h,Cu,R] − 1

32π

×
∫

SR

Pr(βγ )δ(εσ )hβγ ∇̊δhεσ r2dμγ̊

= EV [h,Cu,R] − 1

32π

∫

SR

br (h, h) r2dμγ̊

= EV [h,Cu,R]
− 1

32π

∫

SR

( 1

2r4 γ̊
AC γ̊ B DhC D

×(
εN 2∂r h AB + ∂uh AB − 2D̊Ahu B

)
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+hu Aγ̊
AB 1

r2

(
∂r hu B − 2

r
hu B

)

︸ ︷︷ ︸
∂r ȟu B

)
r2dμγ̊

= 1

2
δ2mTB(Cu,R)

− 1

64π

∫

SR

(
2r4γ̊ ABȟu A∂r ȟu B

−8r

(
1 − Λr2

3

)
δ2β

−2r2γ̊ FC ȟuF D̊B ȟBC − γ̊ B E γ̊ FC hBC

×(
∂u ȟE F + εN 2∂r ȟE F

))
dμγ̊

− 1

32π

∫

SR

(
1

2
γ̊ AC γ̊ B DȟC D

×(
εN 2∂r h AB + ∂uh AB − 2D̊Ahu B

)

+r2hu Aγ̊
AB∂r ȟu B

)
dμγ̊

= 1

2
δ2mTB(Cu,R)

− 1

64π

∫

SR

(
4r4γ̊ ABȟu A∂r ȟu B

−8r

(
1 − Λr2

3

)

︸ ︷︷ ︸
−εN 2

δ2β + γ̊ B E γ̊ FCεN 2

×(
ȟ BC∂r hE F − hBC∂r ȟE F

))
dμγ̊ . (5.74)

We emphasise that no asymptotic conditions have been used
in the analysis in this section so far.

To continue we invoke the asymptotic conditions used in
the preceding sections. From the expansion (5.5) of δ2β one
obtains

Ec[Cu,R, h] = 1

2
δ2mTB(Cu,R)

− 1

64π

∫

SR

(
3α2

2
r γ̊ B E γ̊ FC

(−1)

ȟ BC

(−1)

ȟ E F

+4r4γ̊ ABȟu A∂r ȟu B

)
dμγ̊ + o(1) . (5.75)

Using (5.16) this becomes

Ec[Cu,R, h] = 1

2
δ2mTB(Cu) + R

64π

∫

SR

×
(
−3α2

2
γ̊ B E γ̊ FC

(−1)

ȟ BC

(−1)

ȟ E F +8γ̊ AB
(0)

ȟ u A

(−2)

ȟ u B

)

×dμγ̊ − ΛR

128π

∫

SR

γ̊ AC γ̊ B D
(−1)

ȟ AB

(−1)

ȟ C D dμγ̊ + o(1) .

(5.76)

The last term in the second line can be integrated by parts as
in (5.35)–(5.36) to obtain

Ec[Cu,R, h] = 1

2
δ2mTB(Cu)

−α2 R

64π

∫

SR

γ̊ AC γ̊ B D
(−1)

ȟ AB

(−1)

ȟ C D dμγ̊ + o(1) . (5.77)

We see that the renormalised energy Êc coincides with one
half of the quadratisation of the Trautman–Bondi mass.

5.7 Energy in the asymptotically block-diagonal gauge

So far we have assumed a gauge where the leading order cor-
rections to the metric are encoded in the off-diagonal com-
ponents hu A of the metric perturbation. As such, the residual
gauge freedom of Sect. 3.2 allows us to pass between two
natural choices of asymptotic gauge:

(I)
(0)

ȟ AB ≡ 0 ,
(0)

ȟ u A �= 0 , (5.78)

(II)
(0)

ȟ AB �= 0 ,
(0)

ȟ u A ≡ 0 . (5.79)

Both choices are possible. However, as already emphasised

in Sect. 3.2.1, when Λ > 0 the asymptotic gauge
(0)

ȟ u A ≡ 0

cannot be attained simultaneously with
(0)

ȟ AB ≡ 0 for all u
for general metric perturbations considered in this work.

We wish to revisit our analysis in the asymptotically block-
diagonal gauge (I). Thus in the remainder of this section we
assume

δ
(2)
g AB �= 0 , (5.80)

δ
(2)
g u A ≡ 0 . (5.81)

5.7.1 The energy and its flux

Repeating the analysis of Sect. 4.1, one finds:

1. δ
(2)
g AB �= 0 does not change the expansion (4.23) of gu A.

In particular δ
(1)
g u A remains related with the log terms in

the asymptotic expansion of gAB .

2. When δ
(2)
g AB �= 0, Eq. (4.36) becomes

δV = 1

2
D̊ A(

∫ r

0

(
D̊B ȟ AB − 1

r2

[
∂r (r

4ȟu A)
])∣∣

r=ρ
dρ

)

= D̊ A

(
1

2
r D̊B

(0)

ȟ AB + ν̂A + 1

2r

(−3)

ȟ u A + o(1/r)

)
.

(5.82)
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ν̂A = lim
r→∞

(
1

2

∫ r

0

(
D̊B ȟ AB − 1

r2

[
∂r (r

4ȟu A)
])∣∣

r=ρ
dρ

− r

2
D̊B

(0)

ȟ AB

)
. (5.83)

This differs from (4.37), but does not affect the mass
because of the divergence structure of the right-hand side
of (5.82).

The asymptotics of the linearised metric perturbations
reads

δgur ≡ 0 ≡ δgr A ≡ δgrr , (5.84)

δgAB = δ
(2)
g ABr2 + δ

(1)
g ABr + o(1) , (5.85)

δgu A = δ
(0)
g u A + o(1) , (5.86)

δguu = δ
(0)
g uu + δ

(−1)
g uu

r
+ o(r−1) . (5.87)

Let us denote by Êc,I I the renormalised canonical energy
in the block-diagonal gauge. To determine Êc,I I we use
(5.74) with the asymptotically block-diagonal boundary con-
ditions. One checks that the asymptotic behaviour (5.5) of
δ2β remains unchanged at the order needed; the analysis of
the remaining terms in (5.74) is likewise straightforward,
leading to

Êc,I I =
(

1

2
δ2mTB(Cu) − 1

16π

×
∫

S2
γ̊ AC γ̊ B D

(
Λ

3

(−3)

ȟ AB

(0)

ȟ C D −
(−1)

ȟ AB

(0)

ȟ C D

)
dμγ̊

)
.

(5.88)

In order to make clear the comparison with our previous
calculations, let us denote by Êc,I the renormalised energy
Êc calculated in the asymptotically off-diagonal gauge (I):

Êc,I ≡ Êc . (5.89)

Now, δ2
(0)
V is gauge-independent (cf. (3.40)), and therefore

so is δ2mTB(Cu). And we have seen that this last quantity
coincides with 2Êc. We conclude that

Êc,I I = Êc,I − 1

16π

∫

S2
γ̊ AC γ̊ B D

×
(
Λ

3

(−3)

ȟ AB

(0)

ȟ C D −
(−1)

ȟ AB

(0)

ȟ C D

)
dμγ̊ . (5.90)

An alternative, direct way of calculating Êc,I I invokes the
boundary integrand br in (5.21), which now reads:

r2br (δ1g, δ2g)

= γ̊ AC γ̊ B D
[

r3α2δ1
(2)
g ABδ2

(2)
g C D

+1

2
r2

(
δ1

(2)
g AB∂uδ2

(2)
g C D + α2δ1

(2)
g ABδ2

(1)
g C D

+2α2δ1
(1)
g ABδ2

(2)
g C D

)

+1

2
r

(
δ1

(2)
g AB∂uδ2

(1)
g C D + δ1

(1)
g AB∂uδ2

(2)
g C D

+α2δ1
(1)
g ABδ2

(1)
g C D − 2δ1

(2)
g ABδ2

(2)
g C D

)

+1

2

(
δ1

(1)
g AB∂uδ2

(1)
g C D − δ1

(2)
g ABδ2

(1)
g C D

−2δ1
(1)
g ABδ2

(2)
g C D + 2α2δ1

(−1)
g ABδ2

(2)
g C D

−α2δ1
(2)
g ABδ2

(−1)
g C D − 2δ1

(2)
g AB D̊Cδ2

(0)
g u D

)]

+o(1) . (5.91)

Proceedings as in the derivation of (5.32), after discarding
the divergent terms both in the volume (compare (5.38)) and
boundary integrals, the renormalised canonical energy in the
block-diagonal gauge (II) is found to be

Êc,I I [h,Cu]
:=

[
1

64π

∫

Cu

gB E gFC

×(
∂uhBC∂r hE F −hBC∂r∂uhE F

)
r2 dr sin θ dθ dϕ

] ∣∣∣
ren

− 1

64π

∫

S2
γ̊ AB γ̊ C D

×
(
(−1)

ȟ AC∂u

(−1)

ȟ B D −
(0)

ȟ AC

(−1)

ȟ B D −
(0)

ȟ AC D̊B D̊F
(−1)

ȟ F D

−2
(−1)

ȟ AC

(0)

ȟ B D + α2(2
(−3)

ȟ AC

(0)

ȟ B D −
(0)

ȟ AC

(−3)

ȟ B D)

)

× sin θ dθ dϕ . (5.92)

(Here one could use (2.144) to analyse the change of the vol-
ume integral under changes of gauges to isolate the divergent
terms.)

The energy flux for the renormalised energy Êc,I I [h,Cu]
is
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d Êc,I I [h,Cu]
du

= − 1

32π

∫

S2
γ̊ AB γ̊ C D

×
(
∂u

(−1)

ȟ AC∂u

(−1)

ȟ B D − 2∂u

(−1)

ȟ AC

(0)

ȟ B D

+α2

(
2∂u

(−3)

ȟ AC

(0)

ȟ B D −
(−1)

ȟ AC

(−1)

ȟ B D −
(−1)

ȟ AC D̊B D̊F
(−1)

ȟ F D

)

−α4
(−1)

ȟ AC ×
(−3)

ȟ B D

)
sin θ dθ dϕ ,

(5.93)

where we have used (5.91) and ∂u

(0)

ȟ AB = α2
(−1)

ȟ AB .

5.7.2 Comparing with [20]

Compère et al. [20,21] proposed a version of mass in the
non-linear theory, using the asymptotically block-diagonal
gauge. In [20, Equation (2.39)] they define

M (Λ) = M + 1

16
(∂u + l)(CC DCC D) , (5.94)

where M is an integration constant which appears when
analysing the characteristic constraint equations, l is a gauge
field which can be set to zero and CAB is, essentially, our

field
(−1)

ȟ AB . They propose to define a mass, which we will
denote by E (Λ), as

E (Λ):= 1

4π

∫
M (Λ) dμγ̊ . (5.95)

(Strictly speaking, a different multiplicative constant factor
is probably used in [20].) Using our notation, the quadratised
version of (5.94) reads

δ2 M (Λ) = −1

2
δ2

(0)
V + 1

8
∂u

(
γ̊ AB γ̊ C D

(−1)

ȟ AC

(−1)

ȟ B D

)
.

(5.96)

Integrating over S2 we find:

δ2 E (Λ):= 1

4π

∫

S2
δ2 M (Λ) dμγ̊ (5.97)

= δ2mTB(Cu) + 1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊

(5.98)

= 2Êc,I + 1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊

(5.99)

= 2Êc,I I + 1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊

+ 1

8π

∫

S2
γ̊ AC γ̊ B D

(
Λ

3

(−3)

ȟ AB

(0)

ȟ C D −
(−1)

ȟ AB

(0)

ȟ C D

)

× dμγ̊ , (5.100)

where we used

Êc,I = 1

2
δ2mTB(Cu) = − 1

16π

∫

S2
δ2

(0)
V dμγ̊ , (5.101)

Êc,I I = Êc,I − 1

16π

∫

S2
γ̊ AC γ̊ B D

×
(
Λ

3

(−3)

ȟ AB

(0)

ȟ C D −
(−1)

ȟ AB

(0)

ȟ C D

)
dμγ̊ .

(5.102)

For completeness we note the following flux formula

∂u

∫

S2
δ2 M (Λ)dμγ̊ = − 1

24

∫

S2

(−1)

ȟ E F γ̊
AE γ̊ F B

×
{

−Λ2
(−3)

ȟ AB − 3∂2
u

(−1)

ȟ AB

−Λ

[
D̊(A D̊C

(−1)

ȟ B)C −
(−1)

ȟ AB

]}
dμγ̊

= 1

8

∫

S2
∂u

[
(−1)

ȟ E F γ̊
AE γ̊ F B∂u

(−1)

ȟ AB

]
dμγ̊

−1

8

∫

S2
γ̊ AC γ̊ B D

(
∂u

(−1)

ȟ AB∂u

(−1)

ȟ C D

−Λ

3
(

(−1)

ȟ AB D̊C D̊F
(−1)

ȟ F D −
(−1)

ȟ AB

(−1)

ȟ C D)

−Λ2

3

(−1)

ȟ AB

(−3)

ȟ C D

)
dμγ̊ . (5.103)

5.8 Λ < 0

All our results so far are independent of the sign of Λ: it
suffices to replace α2 by −α2 wherever relevant.

Now, it should be pointed out that there is a key con-
ceptual difference arising from the causal character of the
boundary at infinity. While in the Λ ≥ 0 case the data on the
initial light cone determine the remainder of the evolution
uniquely, this is not the case anymore for Λ < 0, where we
have the freedom to add and control boundary data on I
(compare [30,34]).

In the nonlinear theory the “pre-holographic” approach is
to require that the conformal boundary at infinity is the same
as that of anti de Sitter spacetime. At a linearised level, this
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translates to the requirement that the evolution preserves the
condition

(2)
h μν ≡ 0 , (5.104)

up to gauge. This, in turn, leads to corner conditions on the
data at the intersection of the initial light cone with the con-
formal boundary at infinity. For instance, choosing a gauge
so that (5.104) holds, Equation (4.30) implies

(−1)

ȟ AB ≡ 0 , (5.105)

which together with (5.104) shows that the canonical energy
Ec[Cu, h] is finite, u-independent, and equals the Trautman–
Bondi mass, without the need for renormalisation.

A natural option is to relax (5.104) by allowing the asymp-
totic data (but not the whole linearised solution) to be sta-
tionary. For this we reanalyze the linearised vacuum Einstein
equation under the assumption that X = ∂u is a Killing field
for a leading terms in metric perturbation. In other words, we
assume

LX

(2)
h μν ≡ 0 . (5.106)

In the off-diagonal gauge this the same as

∂u

(2)
h u A = 0 = (2)

h AB . (5.107)

Equation (4.41) then gives

∂u

(1)
h uu = 0 . (5.108)

Applying a u-derivative to (4.52) and (4.54) we obtain

∂u

(0)
h u A = 0 , (5.109)

4α2∂u

(−2)
h u A + ∂u D̊A

(−1)
h uu − 3∂2

u

(−1)
h u A = 0 . (5.110)

Under (5.107) the mass-loss formula (5.51) reduces, in view
of (5.109), to the one known from the Λ = 0 case:

d Êc[h,Cu,R]
du

= − 1

32π

∫

S2
γ̊ AB γ̊ C D∂u

(−1)

ȟ AC∂u

(−1)

ȟ B D sin θ dθ dϕ.

(5.111)

For completeness we list some further simplifications
which arise in the asymptotics of the field. Equation (4.52)
gives

∂u D A
(1)
h AB = 0 . (5.112)

Using (4.46) and (5.112) one obtains the following formula
for the evolution of the linearised mass aspect function (not
to be confused with the evolution of the quadratised mass
aspect, which is relevant for (5.111)):

∂u

(−1)
h uu = 3α2

(−2)
h uu . (5.113)

Equations (5.109) and (4.43) lead to

∂u

(−1)
h uu = α2

(−2)
h uu − α2 D̊ A

(−1)
h u A . (5.114)

Comparing (5.113) with (5.114) we find

(−2)
h uu = 1

2
D̊ A

(−1)
h u A . (5.115)

The asymptotic symmetries of interest are now those preserv-
ing (5.107). Equations (3.43), (5.108)–(5.109) and (5.112)
show that these satisfy

∂uhuu : 0 = ∂u(D̊B∂uξ
B + α2Δγ̊ ξ

u) (5.116)

= ∂u(2∂uξ
u − D̊Bξ

B) , (5.117)

∂uhu A : 0 = ∂A
(
Δγ̊ ∂uξ

u + 2∂uξ
u) (5.118)

= ∂uΔγ̊ (D̊Bξ
B − 2∂uξ

u) (5.119)

= ∂u(γ̊AB∂uξ
B + α2∂Aξ

u) , (5.120)

∂uh AB : 0 = ∂u(L̊ξ γ̊AB − γ̊AB D̊Cξ
C ) . (5.121)

Equations (5.117) and (5.119) are automatically satisfied by
(3.44). Equation (5.118) shows that ∂uξ

u is a linear combi-
nation of ! = 0 and ! = 1 spherical harmonics, and thus its
gradient is a conformal Killing vector on S2. Equation (5.120)
gives

∂2
u ξ

A = −α2 D̊ A∂uξ
u , (5.122)

and (5.116) follows automatically by taking the divergence of
(5.122). By (5.121) the vector field ∂uξ

A is also a conformal
vector field on S2.

By (5.56) the right-hand side of (5.111) is gauge-invariant
under the current asymptotic symmetries. We conclude that

Êc[h,Cu] ≡ Êc,I [h,Cu]
is gauge-invariant up do the addition of a functional which
is u-independent.

Note that the flux of energy seems to be of more interest
than the energy itself, since energy is always defined up to
an additive constant anyway, so gauge-invariance of the flux
is the key for a physically meaningful quantity.

Let us return to (5.98)-(5.99):
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δ2 E (Λ) = δ2mTB(Cu)

+ 1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊ (5.123)

= 2Êc,I + 1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊ .

(5.124)

The first equation is quite general, while the second holds in
a Bondi gauge which is “as regular at the origin as can be”.
But since d Êc,I /du is gauge-independent, the flux of Êc,I

coincides with that of δ2mTB(Cu)/2.
Next, consider the explicit integral term in (5.123). Under

a residual gauge transformation we have, by (3.43) and by
the above,

(−1)

ȟ AB 	→
(−1)

ȟ AB − 2D̊A D̊Bξ
u + γ̊ABΔγ̊ ξ

u

∂u

(−1)

ȟ AB 	→ ∂u

(
(−1)

ȟ AB − 2D̊A D̊Bξ
u + γ̊ABΔγ̊ ξ

u

)

= ∂u

(−1)

ȟ AB . (5.125)

Hence

1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊

	→ 1

16π

∫

S2
γ̊ AE γ̊ F B

(
(−1)

ȟ E F −2D̊E D̊Fξ
u

)
∂u

(−1)

ȟ ABdμγ̊

= 1

16π

∫

S2

(
(−1)

ȟ AB − 2ξu D̊ A D̊B

)
∂u

(−1)

ȟ AB dμγ̊

= 1

16π

∫

S2
γ̊ AE γ̊ F B

(−1)

ȟ E F∂u

(−1)

ȟ AB dμγ̊ . (5.126)

Since δ2mTB(Cu) is invariant under all residual gauge-
transformations, we conclude that both δ2mTB(Cu) and
δ2 E (Λ) are invariant under asymptotic symmetries preserv-
ing (5.106). But their fluxes differ. Which of the two fluxes
is more relevant for specific physical applications requires
further justification.
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Appendices

A The conformal Killing operator on S2

Consider the conformal Killing equation with a source on a
round two-dimensional sphere,

D̊AξB + D̊BξA − γ̊AB D̊CξC = HAB . (A.1)

Its properties have been extensively analysed by Boucetta in
[10], see also Appendix A in [23] and Appendix E in [38]).
The CKV operator, defined by the left-hand side of (A.1),
has a six-dimensional kernel, see (A.6). Solutions of (A.1)
are not unique and exist if and only if the symmetric traceless
tensor HAB is orthogonal to the kernel.

We calculate the kernel of the CKV operator

0 = D̊AξB + D̊BξA − γ̊AB D̊CξC

= D̊ A D̊AξB + D̊ A D̊BξA − γ̊AB D̊ A D̊CξC

= D̊ A D̊AξB + ξC RC
AB

A

= (Δγ̊ + 1)ξB . (A.2)

In the last line, we have used

RC
AB

A = RC
B = δC

B . (A.3)

We wish to show that only a gradient of a “dipole func-
tion”, i.e. a combination of ! = 1 spherical harmonics,
together with a co-gradient of a dipole function fulfill (A.2).
According to the Hodge–Kodaira theorem, each one-form
can be expressed as the sum of an exterior derivative, a
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coderivative and a harmonic form. Furthermore, it is well-
known that there are no harmonic one-forms on S2. This
leads to the following decomposition of ξB :

ξB = D̊B ι + εB
C D̊Cυ , (A.4)

where εB
C is the two-dimensional Levi–Civita tensor. Insert-

ing this into (A.2) one obtains

0 = (Δγ̊ + 1)(D̊B ι + εB
C D̊Cυ)

= D̊B(Δγ̊ + 2)ι + εB
C D̊C (Δγ̊ + 2)υ . (A.5)

Taking a divergence and codivergence of (A.5) gives

Δγ̊ (Δγ̊ + 2)ι = 0 = Δγ̊ (Δγ̊ + 2)υ . (A.6)

Basic facts about spherical harmonics show that the kernel of
Δγ̊ (Δγ̊ +2) is a mono-dipole function. Since a constant part
of ι or υ does not contribute to the co-vector ξB , we conclude
that conformal Killing vectors of S2 can be uniquely written
in the form (A.4) where ι and υ are linear combinations of
! = 1 spherical harmonics.

B The field bα

B.1 Alternative representation

Recall that

bα(δ1g, δ2g):=Pα(βγ )δ(εσ )δ1gβγ∇δδ2gεσ , (B.1)

where

Pαβγ δεσ = 1

2

(
gαεgδβgγ σ + gαεgσβgγ δ − gαδgβεgσγ

−gαβgγ δgεσ − gβγ gαεgσδ + gβγ gαδgεσ
)
.

(B.2)

In Bondi gauge for g and δg we have

gαβδgαβ = 2gurδgur + g ABδgAB︸ ︷︷ ︸
0

. (B.3)

For solutions of interest here it holds that δgur ≡ 0, which
leads us to consider the gauge

gαβδgαβ ≡ 0 , (B.4)

hence also

gαβ∇σ δgαβ ≡ 0 . (B.5)

After insertion in (B.1) the last three terms of (B.2) drop out
when (B.4)–(B.5) hold, and we obtain

bα(δ1g, δ2g)

= Pα(βγ )δ(εσ )δ1gβγ∇δδ2gεσ

= 1

2

(
gαεgδβgγ σ + gαεgσβgγ δ − gαδgβεgσγ

)
δ1gβγ

×∇δδ2gεσ

= 1

2

(
2gαεgδβgγ σ − gαδgβεgσγ

)
δ1gβγ∇δδ2gεσ . (B.6)

This formula can be used as a starting point for a simpler
calculation of a u+r+angles decomposed form of the fields
bα and ωα .

B.2 The field br

We assume the Bondi form of the metric

gαβdxαdxβ = − V

r
e2βdu2 − 2e2βdudr

+gAB

(
dx A − U Adu

)(
dx B − U Bdu

)
,

(B.7)

with variations satisfying

δgrr = δgr A = 0 . (B.8)

The metric allows a more general form of two-dimensional
metric than the one used in (4.1). In other words, we use
general coordinates adapted to a family of null hypersur-
faces {u = const}. In particular we do not assume the trace
condition g ABδgAB = 0 and that the determinant det gAB

takes a canonical form. Using the definition (2.138), we then
find

br (δ1g, δ2g)

= e−4βδ1gur

[
g AB(1

2
∇uδ2gAB − ∇Aδ2gu B + V

r
∇Aδ2gr B

)

+1

2

(
U AgBC − 2U B g AC)∇Aδ2gBC

]

−e−4β

2
δ1guu g AB∇rδ2gAB

+e−4βδ1gu A

[(
g ABU C − U AgBC)∇rδ2gBC

+g AB(∇rδ2gu B − ∇uδ2gr B
)

+g AB
(

e2β

2
gC D∇Bδ2gC D − U C∇Cδ2gr B

)]
+ e−2β

2
×

δ1gAB

{
g AB

[
e−2β

(
U CU D(∇Cδ2gr D − ∇rδ2gC D

)

+∇uδ2gur − ∇rδ2guu + U C(∇Cδ2gur

−2∇rδ2guC + ∇uδ2grC
))

+gC D
(

∇Cδ2gu D − ∇uδ2gC D
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+ V

r

(∇rδ2gC D − ∇Cδ2gr D
))]

+2e−2βU A
[

gBC(∇rδ2guC −∇uδ2grC +U D∇rδ2gC D
)

−gB DU C∇Cδ2gr D − 1

2
U B gC D∇rδ2gC D

]

+g AC gB D
(

∇uδ2gC D − 2∇Cδ2gu D

− V

r

(∇rδ2gC D − 2∇Cδ2gr D
))

+(
U AgB DgC E − g AC gB DU E)∇Cδ2gDE

}
. (B.9)

Letting D be the covariant derivative associated with the met-
ric gAB , we find

br (δ1g, δ2g)

= e−4β

4
δ1gur

{
δ2gAB

[
g AC gB D(

∂u gC D − 2V

r
∂r gC D

)]

+2g AB∂uδ2gAB + 2
(

U AgBC − 2U B g AC
)

DAδ2gBC

+4
(
δ2gur e−2β DAU A − g AB DAδ2gu B

)}

+e−2β

2
δ1gAB

{
g AB

[
2δ2gC DU C gDE DEβ + gC D

×
(

V

r
∂rδ2gC D − ∂uδ2gC D + DCδ2gu D + δ2guC DDβ

)

+e−2β
(

U C(
δ2gu DgDE∂rgC E − 2∂rδ2guC

−δ2gC D∂r U D + δ2gur DCβ − U D∂rδ2gC D
)

+∇uδ2gur − ∇rδ2guu − δ2gur DCU C − 1

2
δ2guC∂r U C

+3

2
e−2βδ2gurU C gC D∂r U D

+U C(
DCδ2gur − 2δ2gur DCβ

+1

2
e−2βδ2gurU E∂r gEC − 1

2
δ2guE gE F∂r gFC

))]

+g AC gB D
[
∂uδ2gC D − V

r
∂rδ2gC D − 2DCδ2gu D

−U E DCδ2gDE

+e−2β

2
∂r gC D

(
3U Eδ2guE + U EU Fδ2gE F

)]

+U AgBC gDE DDδ2gC E

+e−2β

2
U A

[(
U B gC E − 2gBCU E − U C gB E)

gDF

×∂r gE Fδ2gC D + 2
(
2U DgBC − U B gC D)

∂rδ2gC D

+4gBC∂rδ2guC − gBC gDE∂r gC Dδ2guE

]

+e−2β

2

(
g AC gB FU DU Eδ2∂r gE F gC D

+g AE gB DU C∂r gC Dδ2guE

)}

+e−4β

4
δ1gu A

[(
2U AgBC gDEδ2gC E

−3(U Eδ2gC E + δ2guC )g
AB gC D)

∂r gB D

+2g AB(
2∂rδ2gu B

) − 4e−2β∂r U Aδr gur

+4
(
g ACU B − U AgBC)

∂rδ2gBC

]

+e−4β

4
δ1guu g AC

(
gB D∂r gABδ2gC D − 2∂rδ2gAC

)
,

(B.10)

where

∇uδ2gur = ∂uδ2gur + δ2gur
[
U A DAβ

−2∂uβ − e−2β

2
U A∂r

(
gABU B)]

+δ2gu A
[1

2
g AB∂r

(
gBCU C) − e2βg AB DBβ

]
,

(B.11)

∇rδ2guu = ∂r guu +δ2gu A

[
g AB∂r

(
gBCU C)−2e2βg AB DBβ

]

+δ2gur

[
+ 2U A DAβ + e−2βU AgAB∂r U B

+2
V

r
∂rβ − ∂r

(
V

r

)]
. (B.12)

Assuming U A = 0 and g ABδgAB = 0, equation (B.9) sim-
plifies to

br (δ1g, δ2g)

= e−4βδ1gur

[
g AB(1

2
∇uδ2gAB −∇Aδ2gu B + V

r
∇Aδ2gr B

)]

−e−4β

2
δ1guu g AB∇rδ2gAB

+e−4βδ1gu A

[
g AB(∇rδ2gu B − ∇uδ2gr B

)

+g AB
(

e2β

2
gC D∇Bδ2gC D

)]

+e−2β

2
δ1gAB g AC gB D

(
∇uδ2gC D − 2∇Cδ2gu D

− V

r

(∇rδ2gC D − 2∇Cδ2gr D
))

. (B.13)

Likewise we have the following version of (B.10):

br (δ1g, δ2g)

= e−4β

4
δ1gur

{
δ2gAB

[
g AC gB D

(
∂u gC D − 2V

r
∂r gC D

)]
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+2g AB∂uδ2gAB − 4g AB DAδ2gu B

}

+e−2β

2
δ1gAB g AC gB D

×
[

+ ∂uδ2gC D − V

r
∂rδ2gC D − 2DCδ2gu D

]
+ e−4β

4

×δ1gu A

[
− 3δ2guC g AB gC D∂r gB D +2g AB(

2∂rδ2gu B
)]

+e−4β

4
δ1guu g AC

(
gB D∂r gABδ2gC D − 2∂rδ2gAC

)
.

(B.14)

C Linearised curvature

For completeness we derive here a formula for the linearised
Ricci tensor, as used in the main text. While the calculation is
standard, our final formulae (C.4) and (C.5) are nonstandard
in that they do not involve any explicit curvature tensors at
the right-hand sides.

δΓ μ
νλ= 1

2
gμκ

(∇λδgκν+∇νδgκλ−∇κδgλν
)
,

(C.1)

δRα
βμν = ∇μδΓ

α
βν − ∇νδΓ

α
βμ , (C.2)

2gμαδRα
νσρ = ∇σ∇ρδgμν − ∇ρ∇σ δgμν

+∇σ∇νδgμρ

−∇σ∇μδgνρ − ∇ρ∇νδgμσ

+∇ρ∇μδgνσ ,

= ∇σ∇νδgμρ − ∇σ∇μδgνρ

−∇ρ∇νδgμσ + ∇μ∇ρδgνσ

−Rα
μσρδgαν − Rα

νσρδgαμ

−Rα
νρμδgασ − Rα

σρμδgαν ,

(C.3)

2δRνρ = ∇σ∇νδgρσ + ∇σ∇ρδgσν

−∇σ∇σ δgνρ − gμσ∇ν∇ρδgσμ ,

(C.4)

2δRαβ − gαβgνρδRνρ = ∇μ∇αδḡβμ + ∇μ∇βδḡαμ

−∇μ∇μδḡαβ − gαβ∇κ∇λδḡκλ , ,

(C.5)

where δḡαβ = δgαβ − 1
2 gμνδgμνgαβ .

The linearisation of the Einstein tensor reads

δGαν = δRαν − 1

2
gανgσρδRσρ − 1

2
Rδgαν + 1

2
gανδgσρ Rσρ

(C.6)

In order to compare the linearised Einstein equations,

δ
(
Gμν + Λgμν

) = 0 , (C.7)

with the Euler–Lagrange equations, we substitute (C.6) into
(C.7) and regroup the terms as follows

δRαν− 1

2
gανgσρδRσρ =δGαν+ 1

2
Rδgαν− 1

2
gανδgσρ Rσρ

︸ ︷︷ ︸
Λhαν

.

(C.8)

Using (C.5), the last equations are equivalent to (2.146) when
the background satisfies Rμν = Λgμν holds. Furthermore,
under this last assumption, Eq. (C.8) coincides with (4.3).

D The remaining Einstein equations revisited

In this appendix we derive some further consequences of the
linearised Einstein equations.

Adding, in vacuum, the equation D̊ A× (4.14),

∂r

[
r4∂r (r

−2 D̊ Ahu A)
]

= r2
[
∂r

(
r−2 D̊ A D̊Bh AB

)]
,

(D.1)

to −r2∂r× (4.34),

2r2∂2
r (rhuu) = −r2∂r

[
r−2(D̊ A D̊Bh AB − ∂r (r

2 D̊ Ahu A
)]
,

(D.2)

one finds

∂r
(
r2∂r huu−D̊ Ahu A

) = 0 . (D.3)

Integrating, we find that there exists a functionχ(u, xC ) such
that

D̊ Ahu A = r2∂r huu + χ(u, xC ) . (D.4)

We evaluate this equation at r = 0 for a globally smooth lin-
earised field hμν . Let ζ [h]denote the gauge vector field which
brings hμν to the Bondi gauge; compare (3.9)–(3.10) with ξ
given by (3.37)–(3.38). By (3.26) and (3.28) one obtains

χ = (D̊ Ahu A − r2∂r huu)|r=0 = −1

2
(Δγ̊ + 2)Δγ̊ ξ

u . (D.5)

Keeping in mind that ξu is freely specifiable at a chosen value
of u, but that ∂uξ

u is essentially determined by the solution
(cf. (D.6) below), Equation (D.5) shows that the function χ

can be made to vanish by applying an asymptotic symmetry at
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a chosen retarded time u, and that the vanishing of χ at some
value of u will not be preserved by evolution in general. We
will exploit the possibility of setting χ to zero at the chosen
light cone later, but for the moment we remain in a general
gauge compatible with our setting so far.

Equations (D.5) and (3.38) show that

∂uχ = −1

2
(Δγ̊ + 2)Δγ̊ ∂uξ

u

= −1

2
(Δγ̊ + 2)Δγ̊

[
1

2
htt |r=0 + 1

4
hi j |r=0

×
(
δi j − 3

xi x j

r2

)
+ 1

2
D̊ AξA[h]

]
. (D.6)

where we have used the fact that, by [23, Appendix A.1],
when ξ B(u, x A) is a conformal vector field its divergence is
a linear combination of ! = 1 spherical harmonics.

We continue by inserting (D.4) into the right-hand side of
(4.34):

D̊ A D̊Bh AB = r4∂2
r huu + 2r3∂r huu − 2r2huu+2rχ(u, xC ) .

(D.7)

Recall that the equation r2Euu = 0 reads

2
(
∂u + (α2r2 − 1)∂r − 1

r

)
D̊ Ahu A − D̊ A D̊Ahuu

−(α2r2 − 1)

(
D̊ A D̊Bh AB

r2

)
− 2r∂uhuu

−2(α2r2 − 1)∂r (rhuu) = 0 . (D.8)

Substituting (4.32) into (D.8) one obtains
(

2r∂u + (α2r3 − r)∂r − 2α2r2
)

D̊ Ahu A

−r D̊ A D̊Ahuu − 2r2∂uhuu = 0 . (D.9)

We insert the asymptotic expansion of hμν into (D.9), obtain-
ing

r2
(

2α2
(−1)
h uu − 2α2χ − (Δγ̊ + 2)

(1)
h uu

)

+r
(

6α2
(−2)
h uu − 4∂u

(−1)
h uu + 2∂uχ

)
= O(1) , (D.10)

thus both the coefficient of r and that of r2 in the left-hand
side have to vanish:

χ = (−1)
h uu − 1

2α2 (Δγ̊ + 2)
(1)
h uu , (D.11)

∂uχ = 2∂u

(−1)
h uu − 3α2

(−2)
h uu . (D.12)

Assume momentarily that we are in Minkowski spacetime.
From (D.10) we obtain

∂uχ = 2∂u

(−1)
h uu . (D.13)

An asymptotic expansion of the right-hand side of (D.7) gives

D̊ A D̊Bh AB = 2r(χ − (−1)
h uu) + O(1) . (D.14)

Differentiating (D.14) with respect to u one finds

∂u

(−1)
h uu = 1

2
D̊ A D̊B∂u

(−1)

ȟ AB . (D.15)

This is the linearised version of the usual formula for the time
evolution of the mass aspect function.

When Λ �= 0, we can insert (D.11) into (D.14) to obtain
a corner condition

(Δγ̊ + 2)
(1)
h uu = −α2 D̊ A D̊B

(−1)

ȟ AB . (D.16)

Differentiating (D.11) with respect to u and inserting into

(D.12) gives the following evolution equation for
(−1)
h uu :

∂u

(−1)
h uu = − 1

2α2 (Δγ̊ + 2)∂u

(1)
h uu + 3α2

(−2)
h uu

= 1

2
D̊ A D̊B∂u

(−1)

ȟ AB + 3α2
(−2)
h uu . (D.17)

For further reference we note the following. In [37] Jezier-
ski has introduced two gauge-invariant scalars describing
linearised gravitational fields on spherically symmetric back-
grounds. These scalars are closely related to the fields D̊B hu B

and εAB D̊Ahu B . The time evolution of these last fields is gov-
erned by the divergence and co-divergence of (4.50):

0 =
[
∂u∂r + (α2r2 − 1)∂2

r − 2

r
∂u − 2α2

]
D̊ Ahu A

+ 1

r2 ∂u D̊ A D̊Bh AB − ∂r D̊ A D̊Ahuu , (D.18)

0 =
[
(α2r2 − 1)r2∂2

r +r2∂u∂r −2r∂u −2α2r2
]
εAB D̊Ahu B

+∂u
(
εAB D̊A D̊C hC B

) − Δγ̊ ε
AB D̊Ahu B . (D.19)
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