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Abstract A new method based on large scale structure
observations is proposed to probe a possible temporal varia-
tion of the fine-structure constant (α). Our analyses are based
on time-delay of Strong Gravitational Lensing and Type Ia
Supernovae observations. By considering the runaway dila-
ton scenario, where the cosmological temporal evolution of
the fine-structure constant is given by �α

α
≈ −γ ln (1 + z),

we obtain limits on the physical properties parameter of the
model (γ ) at the level 10−2 (1σ ). Although our limits are
less restrictive than those obtained by quasar spectroscopy,
the approach presented here provides new bounds on the pos-
sibility of �α

α
�= 0 at a different range of redshifts.

1 Introduction

It is well-known that the standard physics is characterized by
a set of laws and fundamental couplings which were histori-
cally assumed to be space-time invariant. One of the first con-
tributors to ask about this conjecture was Dirac [1], arguing
that fundamental couplings might not be pure numbers that
occur in many theories, but they might depend on the state of
the Universe. Thereafter, many theoretical and observational
approaches have come searching for a space-time variation of
the fundamental couplings of nature (see a detailed review in
[2,3]). Although the search for a possible varying fundamen-
tal couplings has raised the interest of many cosmologists,
the general relativity theory prohibits any violation since it
would violate the Equivalence Principle [4].

In most extensions of the current standard cosmological
model, the fundamental couplings are expected to vary lead-
ing to consequences that need to be probed with observa-
tional data [5–16]. In the astronomical context, particularly
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from white dwarfs astronomical observations, constraints on
�α/α at the level (2.7±9.1)×10−5 were obtained by using
gravitational potential [17,18], where α is the fine structure
constant.1 More recently, 4 new spectral observations of very
high redshift quasars, up to z ≈ 7.1, have shown no evidence
for a temporal variation of the fine-structure constant (by the
so-called many-multiplet method) [19]. However, when the
authors combined those measurements with a large existing
sample at lower redshifts, it was pointed out that a spatial
variation of α is preferred over a no-variation model at the
3.7σ level (see other discussions about α spatial variation
in [20,21]). However, very recently, the authors of the Ref.
[22] showed that fitting turbulent models in quasars neces-
sarily generates or enhances model non-uniqueness, adding a
substantial additional random uncertainty to �α/α. In other
words, there is a degeneracy between the absorption structure
and turbulent models, each giving different �α/α values.

By using the physics of cosmic microwave background
radiation (CMB), the Ref. [23] presented updated constraints
on the variation of the fine-structure constant and the effective
electron rest massme during the cosmological recombination
era. The authors showed that α and me can straightly modify
the recombination history at z ≈ 1100, and thus change the
temperature and polarization anisotropies of the CMB mea-
sured meticulously with the Planck satellite. Although the
constraints onα are slightly tightened due to improved Planck
2018 Polarization data [24,25], the new results remain very
similar in relation to the previous CMB analyses [26] (see
[27] for spatial variation of α using CMB data). It is impor-
tant to emphasize that analyses using CMB data rely on the
assumptions of an almost scale-invariant power spectrum and
purely adiabatic initial conditions without primordial grav-
ity waves, so that the CMB constraints on varying constants
are only competitive for very specific classes of models that

1 α ≡ e2/h̄c, where e is the elementary charge, h̄ the reduced Planck’s
constant, and c the speed of the light.
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predict strong variations in the very early universe. There are
other probes using distinct astrophysical observable, such
as black hole in a high gravitational potential [28], galaxy
cluster [29], Big-Bang Nucleosynthesis [30], among others
[31,32]. Nonetheless, in the Ref. [33] it was revisited the so
called �(α)CDM framework where the cosmological con-
stant is � ∝ α−6. By using cosmological observations as
SNe Ia, BAO and CMB along with 313 data from absorp-
tion systems in the spectra of distant quasars, constraints
on two specific �(α)CDM models were performed. The
authors found �α

α
≈ 10−4, very similar to the results dis-

cussed by [34]. On the other hand, variations in α have also
been explored on the Earth with atomic clock measurements
[35] and isotope ratio measurements [36], where its sensitiv-
ity (around 10−18) provides a useful constraint on a possible
temporal variation of α.

Among scenarios beyond standard model that produce a
temporal variation of alpha, we can cite a particular class of
string theory inspired-models,2 the so-called runaway dila-
ton model [37,38]. In this scenario, the runaway of the scalar
field dilaton towards strong3 coupling may yield a temporal
variation of the fine-structure constant. In this context, a pos-
sible evolution of α at low and intermediate redshifts is given
by �α

α
≈ − 1

40βhad,0φ
′
0 ln (1 + z) = −γ ln (1 + z), where

γ ≡ 1
40βhad,0φ

′
0, βhad,0 is the current value of the coupling

between the dilaton and hadronic matter, and φ
′
0 = ∂φ

∂ ln a at
the present time.

In order to check a possible temporal variation of the fine-
structure constant in runaway dilaton scenarios, some meth-
ods using astronomical data have been developed in recent
years. By using galaxy clusters observations, for instance,
the Ref. [39] proposed an approach by using gas mass frac-
tion (GMF) measurements and luminosity distances of type
Ia supernovae (SNe Ia) to put constraints on �α/α. The
GMF measurements used in the analyses were obtained via
the Sunyaev–Zeldovich (SZ) effect at 148 GHz by the Ata-
cama Cosmology Telescope, and the SNe Ia data from the
Union2.1 compilation. The results showed no strong evi-
dence for �α/α �= 0. More recently, the Ref. [40] argued
that the galaxy cluster scaling-relation YSZ D2

A/CXSZYX can
also be used to put constraints on the runaway dilaton model.
The authors found that YSZ D2

A/CXSZYX ∝ α3 by consid-
ering a direct relation between a temporal variation of the
fine-structure constant and a possible deviation of the cos-
mic distance duality relation (see also [41]). Once again, the
results showed no strong evidence for �α/α �= 0. Several
other tests capable of probing such temporal variation of α

2 String theories at low energy predict the existence of dilaton, a scalar
partner of Spin-2 graviton.
3 In addition, this scenario provides a way to reconcile a massless dila-
ton with experimental data.

with galaxy cluster observations have been emerging since
then (see e.g. [42–44] and references therein).

In this paper, we present a new method based on time-
delay of strong gravitational lensing (SGL) systems and type
Ia of supernovae observations to obtain limits on a possible
temporal variation of the fine-structure constant in runaway
dilaton scenario. The samples used to perform our approach
are: 19 two-image time-delay lensing systems compiled by
the Refs. [45,46] jointly with 1048 spectroscopically con-
firmed SNe Ia compiled by [47]. Moreover, we consider a
specific catalog containing 158 confirmed sources of strong
gravitational lensing systems from the Ref. [48]. We obtain
limits on the physical properties parameter of the runaway
dilaton model (γ ) at the level 10−2 (1σ ) in full agreement
with recent limits by using galaxy clusters observations plus
SNe Ia observations.

The work is organized as follows: in Sect. 2 we develop
our methodology. The theoretical framework is discussed in
Sect. 3. In Sect. 4 we present the data set used to perform the
analyses. In Sect. 5 the corresponding statistical analyses and
discussions, and in Sect. 6 we finished with the conclusions.

2 Methodology

2.1 Strong gravitational lensing systems

Strong gravitational lensing systems (SGL) can be used to
investigate gravitational and cosmological theories and fun-
damental physics. Particularly, observed SGL systems and
detected by SLACS, LSD, SLS2, and BELLS surveys have
been largely used to fit observational bounds on different
cosmological parameters. An useful quantity in this context
should be Einstein ring (θE ). Under the assumption of the
singular isothermal sphere (SIS) model to describe lens mass
distribution, the Einstein radius θE is given by [49–51]:

θE = 4πσ 2
SI S

c2
s

DAls

DAs

, (1)

where DAls is the angular diameter distance (ADD) from the
lens (l) to the source (s), DAs the ADD from the observer
to the source,cs is the speed of light between source and
observer, and σSI S is the velocity dispersion via SIS model.
From Eq. (1) the multiple-image separation of the source
depends only on the lens and source angular diameter dis-
tances. Nonetheless, the quantity of interest is

D ≡ DAls

DAs

= θEc2
s

4πσ 2
SI S

, (2)
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which can be written in terms of the fine-structure constant
(αs ≡ e2/h̄cs) by:

D = θEe4

4πα2
s h̄

2σ 2
SI S

. (3)

In order to obtain D from SGL systems observations one
needs to make an assumption on the variation of alpha. Cur-
rently available data make the assumption αs = α0, the local
value of the fine structure constant.4

2.2 Time-delay systems

Time-Delay is another important observational consequence
of Strong Gravitational Lensing and it can also be used as a
powerful astrophysical tool. Based on the fact that photons
follow null geodesics and they are originated from a distant
source with distinct optical paths, they shall pass through
dissimilar gravitational potentials [49,54,55]. Thus, the time-
delay is caused by the difference in length of the optical paths
and by the gravitational temporal variation originated in the
passage through the effective gravitational potential of the
lens.

Time-delay gives a correlation among the angular diame-
ter distances from observer to lens (DAl ), from observer to
source (DAs ), and from lens to source (DAls ) by [56]:

�τ = (1 + zl)

cs

DAl DAs

DAls

[
1

2
(�θ − �β)2 − (�θ)

]
, (4)

where �τ is the so-called time-delay, �θ and �β are, respec-
tively, the angular positions of the image and the source, zl
the lens redshift, and  is the lens effective gravitational
potential. Thereafter, for a two image lens system (A and B)
with SIS mass profile describing the lens mass, we can obtain
[57]:

�t = �τ(A) − �τ(B) = (1 + zl)

2cs

DAl DAs

DAls
[θ2

A − θ2
B]. (5)

Defining the quantity
DAl DAs
DAls

as time-delay angular diameter

distance DA�t :

DA�t ≡ DAl DAs

DAls
= 2cs�t

(1 + zl)(θ2
A − θ2

B)
, (6)

4 In type of theory explored in the present work (see Sect. 3), that
predicts variation of the fine-structure constant, such variation can arise
either from a varying μ0 theory (vacuum permeability) or from a varying
charge of the elementary particles theory. Both interpretations lead to
the same modified expression of the fine-structure constant [2,5,52,53].

which can be rewritten in terms of αs by:

DA�t = 2e2�t

h̄αs(1 + zl)(θ2
A − θ2

B)
. (7)

Also in this case one needs to make an assumption on the
variation of alpha to obtain DA�t from the measurements of
time delay, and currently available data set αs = α0.

3 Theoretical framework

3.1 Scalar–tensor theory of gravity

Theories of modified gravity associated to a scalar field with
a non-minimal multiplicative coupling to the usual electro-
magnetic Lagrangian lead to violations of the Einstein Equiv-
alence Principle (EEP) in the electromagnetic sector. The
matter Lagrangian of this type of theories is given by [53,58]

Smat =
∑
i

∫
d4x

√−ghi (φ)Li (gμν,i ), (8)

where hi (φ) is a function of the scalar field φ, and Li are the
Lagrangians for the different matter fields. In this context,
the fine-structure constant and the cosmic distance duality
relation (CDDR) change with cosmological time, and both
are intimately and unequivocally related to each other by
[53,58]:

�α

α
(z) = h(φ0)

h(φ)
− 1 = η2(z) − 1, (9)

where η takes into account any deviations of the CDDR.
Considering α = α0φ(z), where α0 is the current value of α,
the Eq. (9) gives η2(z) = φ(z) [53]. Therefore, the Eqs. (3)
and (7) shall be rewritten, respectively, by

D = D0φ
−2(zs) (10)

and

DA�t = DA�t,0φ
−1(zs), (11)

where, D0 ≡ e4θE
4πα2

0 h̄
2σ 2

SI S
and DA�t,0 ≡ 2e2�t

h̄α0(1+zl )(θ2
A−θ2

B )
. It

is important to clarify that the subscript 0 denotes the current
quantities that have been obtained in literature by assuming
αs = α0. It does not mean local values of D or DA�t . The D
or DA�t quantities (Eqs. (10), (11)) are the true observational
values if one corrects a possible α variation.

By considering the definitions D ≡ DAls
DAs

and DA�t ≡
DAl DAs
DAls

jointly with the Eq. (10) and (11), it is possible to
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obtain:

DAl = D0DA�t,0φ
−3(zs)

	⇒ φ3(zs) = D0DA�t,0

DAl
. (12)

Finally, to perform our tests and impose new limits on a
possible time-variation of α, it is necessary to know DAl for
each SGL. This quantity can be obtained by SNe Ia lumi-
nosity distance measurements with identical redshifts from
those of the SGL system sample. Since the SNe Ia observa-
tions also can are affected by a varying α, we shall consider
a deformed CDDR as DAl = η−1(zl)(1 + zl)−2DLl [59,60]
and the fact that η2(z) = φ(z) [53]. Then, one may obtain:

φ1/2(zl)

φ3(zs)
= DLl

D0DA�t,0(1 + zl)2 . (13)

This is our key equation, if α = α0 the right side is equal to
unity and no time variation of α is possible. It is possible to
use this expression to impose new limits on a possible time-
variation of α in the context of a very specific string-inspired
model, the so-called runaway dilaton Model.

3.2 Runaway Dilaton model

In this paper, we focus on the runaway dilaton model [37,38].
The main idea behind such model is exploiting the string-loop
modification of the four dimensional effective low-energy
action, where its Lagrangian is given by:

L = R

16πG
− 1

8πG
(∇φ)2 − 1

4
BF (φ)F2 + . . . , (14)

where R is the Ricci scalar, and BF (φ) is the gauge coupling
function. The Runaway Dilaton model is a particular case
of scalar–tensor theories of gravity commented in Sect. 3
[37,38,53]. One can show that the Friedmann equation in
this scenario is as follows

3H2 = 8πG
∑
i

ρi + H2φ′2, (15)

where the sum is over the components of the universe, and
H is the Hubble parameter. The relevant parameter of this
model is the coupling of φ to hadronic matter. Nevertheless,
the runaway of the dilaton towards strong coupling can lead
to temporal variations of α, and its variation at low and inter-
mediate redshifts is given by [3]

�α

α
≈ − 1

40
βhad,0φ

′
0 ln (1 + z), (16)

where βhad,0 is the current value of the coupling between the
dilaton and hadronic matter, and φ

′
0 ≡ ∂φ

∂ ln a .

4 Reconstruction method and data

4.1 Gaussian processes

In order to obtain a continuous regression of the luminos-
ity distance and D0 in function of z, we apply the Gaussian
Processes (GP) method to the data sets described in Sects.
4.2 and 4.4. The GP reconstruction is performed by choos-
ing a prior mean function and a covariance function which
quantifies the correlation between the values of the depen-
dent variable of the reconstruction and is characterized by a
set of hyperparameters. In our reconstructions of D0 and DL ,
we choose zero as the prior mean function to avoid biased
results and a Gaussian kernel as covariance function given
by:

k(z, z′) = σ 2 exp

(
− (z − z′)2

2l2

)
, (17)

where σ and l are hyperparameteres related to the variation of
the estimated function and its smoothing scale, respectively.
To optimize the hyperparameter values, we maximize the
logarithm of the marginal likelihood5:

lnL = −1

2
yT [k(x, x) + C] y − 1

2
ln |k(x, x) + C |, (18)

where x and y are the vectors of the independent and depen-
dent data variables, respectively, and C is the covariance
matrix of the data (error matrix). We use the code GaPP6

to perform the GP reconstruction of the DL and D0 data (see
Ref. [61] for more details about GP).

4.2 Supernova type Ia

The samples of luminosity distance to the lens is obtained
from the Pantheon catalog [47]. This is the most recent wide
and refined sample of SNe Ia measurements composed by
1048 spectroscopically confirmed SNe Ia and covers a red-
shift range of 0.01 ≤ z ≤ 2.3. We must obtain the SNe Ia
at the same redshift to the lens, for this purpose we apply
the GP method to find out the central value with the corre-
sponding variance. The first DL sample is constructed from
the apparent magnitude (mb) Pantheon catalog considering
the absolute magnitude Mb = −19.23 ± 0.04 (henceforth
R19) via the relation:

DL = 10(mb−Mb−25)/5 Mpc. (19)

5 This expression assumes that the prior mean function is equal to 0
and we omit the term that depends on the number of data points.
6 https://github.com/carlosandrepaes/GaPP.
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Fig. 1 The red points correspond to the DL data obtained by GP con-
sidering Mb R19, compatible with H0 from the Ref. [62].The black
points correspond to the DL data obtained by GP considering Mb P18,
compatible with H0 from the Ref. [63]

This value is obtained by constraining cosmological param-
eters in a �CDM framework assuming the Hubble rate pro-
vided by the Cepheids/SNe Ia estimates, H0 = 74.03 ± 1.42
km/s/Mpc [62]. The second sample is constructed by using
Mb = −19.43±0.02 (henceforth P18) obtained by consider-
ing the Hubble rate estimated by the Planck Collaborations in
the context of a �CDM model, H0 = 67.36±0.54 km/s/Mpc
[63] (see Fig. 1).

4.3 Time-delay

We use a data set of 12 two-image time-delay lensing systems
compiled by [45]. The use of two-image lensing systems is
justified by the consistency with SIS mass profile and its
simplicity. However, this selection criterion is necessary but
not sufficient to guarantee a SIS mass profile for the lens.
Thus, as mentioned in Ref. [64], we include an additional
error source denoted by ζ which takes into consideration
possible scatters of individual lenses from a pure SIS mass
profile7. Moreover, according to Ref. [65] ζ can contribute
up to 20% in the DA�t estimation. Adding ζ quadratically
the associated error we obtain

σ 2
DA�t,0

= D2
A�t,0

⎧⎨
⎩

(
σ�t

�t

)2

+ 4

[
σθAθA

(θ2
B − θ2

A)

]2

+4

[
σθB θB

(θ2
B − θ2

A)

]2

+ ζ 2

⎫⎬
⎭ , (20)

where σθA and σθB are the errors associated with the source
images positions A and B, respectively, and σ�t the time-
delay error. In addition, we consider seven more time-
delay systems obtained by the COSMOGRAIL’s Wellspring

7 Such as the presence of softened isothermal sphere potential, and
systematic errors in the RMS deviation of the velocity dispersion.

Fig. 2 Time-delay angular diameter distance measurements of strong
gravitational lensing systems compiled by [45] (black points) and [46]
(red points)

(H0LiCOW) collaboration and listed in Table 2 of [46]. Each
system were modeled using constraints from high-resolution
HST and/or ground-based AO (Adaptive Optics) imaging
data (see more details in [66]). Since the data from the Ref.
[46] present asymmetric error bars, the data were treated
using the method from the Ref. [67,68] (see Fig. 2).

4.4 Einstein radius

We consider a specific catalog containing 158 confirmed
sources of strong gravitational lensing presented in Ref. [48].
This compilation includes 118 SGL systems identical to the
compilation in Ref. [49] along with 40 new systems recently
discovered by SLACS and pre-selected by [69] (see Table I
in Ref. [48]).

However, studies using SGL systems have shown that the
pure SIS model may not be an accurate representation of
the lens mass distribution when σ0 < 250 km/s, for which
non-physical values of the quantity D0 are usually obtained
(D0 > 1). In addition, in Ref. [48] it is mentioned the need
for caution when using the SIS model as a reference model,
since the impact caused on the density profile can lead to
deviations in the observed stellar velocity dispersion (σ0).
It was also observed the need of introducing an additional
intrinsic error of approximately 12.22% in order to obtain
a better concordance between the data and the ωCDM and
�CDM models (see [48] for more details).

Thus, we will consider a general approach to describe the
mass distribution of lens-type galaxies, the one in favor of the
ϒ power-law index model (PLAW), where ρ ∝ r−ϒ . This
type of model is important due to several recent studies have
shown that the loops of the density profiles of individual
galaxies have exhibited a non-negligible spread of the SIS
model [70]. Thus, the term D0 of equation (10) is written by:
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Fig. 3 The figure represent an estimate of the ratio D0 for PLAW
model. The solid black lines represent the central value reconstruction
obtained by the Gaussian Process method with the corresponding 1σ

and 2σ confidence regions

D0 = e4θE

4πα2
0 h̄

2σ 2
ap

f (θE , θap, ϒ), (21)

where f (θE , θap, ϒ) is a function which depends on Ein-
stein’s radius (θE ), the angular aperture used by certain grav-
itational lens Surveys (θap), and the power-law index (ϒ).
In the limit ϒ = 2 the SIS model is recovered. More-
over, for a single system we could use the line-of-sight
velocity dispersion (σ 2

ap), but as we deal with a sample
we must transform all the velocity dispersions measured
within an aperture into velocity dispersions within circular
aperture of radius (Reff/2) following the description [71]:
σ0 = σap(θeff/(2θap))

−0.04, where θeff is the effective angular
radius. In principle, the use of σap satisfies the model, but the
use of σ0 makes the observable D0 more homogeneous for
the set of lens located at different redshifts. For that purpose,
we just replace σap for σ0 in Eq. (21) [49] and, therefore, the
corresponding error is given by:

σ 2
D0

= D2
0

{
4

(
σσ0

σ0

)2

+ (1 − ϒ)2
(

σθE

θE

)2

+ ζ ′2
}

. (22)

Here we choose ϒ = 2.1 [72]. Finally, by excluding sys-
tems for which the SIS model does not apply and the source
J0850-0347 as mentioned in Ref. [48], the D0 final sample is
composed by 124 measurements. We apply the GP method
to this data set to obtain a reconstructed information of the
D0 at the same z of time-delay systems. The result of this
regression is presented in Fig. 3 (with 1σ and 2σ intervals).

5 Analysis and discussion

We use Markov Chain Monte Carlo (MCMC) methods to cal-
culate the posterior probability distribution functions (pdf)
of the free parameter ( �� = γ ) [73]. Thus, the likelihood

Fig. 4 The red and blue contours represent the posterior probability
distribution functions for 19 time-delay Systems from [45,46], but with
distinct DL measurements from Pantheon compilation by [62] (red) and
[63] (blue). The vertical green dashed line is the limit γ = 0, and the
horizontal grey dashed lines represent 1σ and 2σ confidence levels

Table 1 Constraints on a possible time variation of the fine-structure
constant for the parameter γ of the runaway dilaton model in 1σ of
confidence level

DL compilation Time-delay sample γ (1σ)

Pantheon + R19 [45] −0.03+0.05
−0.06

Pantheon + P18 [45] +0.00+0.04
−0.05

Pantheon + R19 [46] −0.17+0.06
−0.07

Pantheon + P18 [46] −0.13+0.05
−0.06

Pantheon + R19 [45,46] −0.09+0.04
−0.05

Pantheon + P18 [45,46] −0.06+0.04
−0.04

distribution function is given by:

L(Data| ��) =
∏ 1√

2πσμ

exp

(
− 1

2
χ2

)
, (23)

where

χ2 =
∑
i

[
Wi − φ1/2(zli )

φ3(zsi )

]2

σ 2
Ti

, (24)

Wi ≡ DLli

D0,i DA�t,0i (1 + zli )
2 , (25)

and

σ 2
Ti = σ 2

Wi
= σ 2

D0,i
+ σ 2

DA�t,0i
+ σ 2

DLli
, (26)

the associated total error, φ(zs) = 1 − γ ln (1 + zs) and
φ(zl) = 1−γ ln (1 + zl) (where γ is the physical parameter
of the model). In our analyses, we assume a flat prior as
−1.0 ≤ γ ≤ +1.0.

As one may see in Eq. (25), in order to perform our anal-
yses, it is necessary to obtain the measure of the quantity
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D0 at the redshift of each time-delay system. Then, we use
the reconstruction of D0 obtained with GP method (see Sect.
4.4). Moreover, in order to obtain a χ2

red ≈ 1 (see Eq. 24)
in our analyses, it was added an additional intrinsic error
(σint ). We estimate it to be ≈ 33% for [45] and ≈ 23%
for [46]. For both samples together, σint was estimated to
be ≈ 30%. The addition of intrinsic error is necessary due
to some possible reasons: i) the reported errors are possibly
underestimated, and (ii) that there is an additional unrec-
ognized systematic effect that has yet to be included in the
analysis as, for instance, possible random deviations from
power law model. This kind of approach has been used in
previous analyses with SGL systems (see [48,65]).

Our results are as follows (in 1σ c.l.):

• By considering DL measurements from the Pantheon
compilation with Mb = −19.23 ± 0.04, we obtain:
γ = −0.03+0.05

−0.06 for the 12 time-delay systems [45], and

−0.17+0.06
−0.07 for the 6 time-delay systems [46]. For both

samples together: γ = −0.09+0.04
−0.05.

• By considering the DL measurements from Pantheon
compilation with Mb = −19.43 ± 0.02, we obtain:
γ = +0.00+0.04

−0.05 for the systems in Ref. [45], and

γ = −0.13+0.05
−0.06 considering the systems in Ref. [46].

For both samples together we obtain γ = −0.06+0.04
−0.04

(see Table 1).

We also performed our analyses with smoothing technique
[74–76] on D0 quantity, the results are in full agreement with
those by using Gaussian Process.

6 Conclusions

The search for a possible time-space variation of the funda-
mental constants of nature has raised the interest of many
cosmologists due to its possibility of revealing a new under-
lying physics. In this context, we provided a new method
capable of probing a possible temporal evolution of the fine-
structure constant by considering time-delay of Strong Grav-
itational Lensing Systems. A possible temporal variation of
α (α = α0φ(z)) was investigated in a class of runaway dila-
ton models, where φ(z) = 1−γ ln(1+ z), where γ is a free
parameter.

The most restrictive bounds come from the joint analysis
using the two samples of time-delay systems together from
the Refs. [45,46]. We obtained γ = −0.09+0.04

−0.05 and γ =
−0.06+0.04

−0.04 for DL measurements from Pantheon+R19 and
Pantheon+P18, respectively (see Fig. 4, Table 1).

Finally, it is important to stress that recently the authors in
the Ref. [22] showed that fitting turbulent models in quasars
necessarily generates or enhances model non-uniqueness,

adding a substantial additional random uncertainty to �α/α

obtained from quasar absorption systems. Basically, any
given absorption system can be fitted equally well by many
slightly different models, each furnishing a different value to
�α
α

. Therefore, although SGL plus time-delay systems are not
as much competitive as the limits imposed by quasar absorp-
tion systems, the constraints imposed in this paper provide
new and independent limits on a possible temporal variation
of the fine-structure constant.
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