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Abstract Extremely compact objects trap gravitational wa-
ves or neutrinos, assumed to move along null geodesics in the
trapping regions. The trapping of neutrinos was extensively
studied for spherically symmetric extremely compact objects
constructed under the simplest approximation of the uni-
form energy density distribution, with radius located under
the photosphere of the external spacetime; in addition, uni-
form emissivity distribution of neutrinos was assumed in
these studies. Here we extend the studies of the neutrino
trapping for the case of the extremely compact Tolman VII
objects representing the simplest generalization of the inter-
nal Schwarzschild solution with uniform distribution of the
energy density, and the correspondingly related distribution
of the neutrino emissivity that is thus again proportional to
the energy density; radius of such extremely compact objects
can overcome the photosphere of the external Schwarzschild
spacetime. In dependence on the parameters of the Tol-
man VII spacetimes, we determine the “local” and “global”
coefficients of efficiency of the trapping and demonstrate that
the role of the trapping is significantly stronger than in the
internal Schwarzschild spacetimes. Our results indicate pos-
sible influence of the neutrino trapping in cooling of neutron
stars.

1 Introduction

The extremely compact objects contain a region of trapped
null geodesics [1,2], allowing for trapping of gravitational
waves [3–5] or neutrinos [6]. The trapping region is centered
around a stable circular null geodesic and has an outer bound-
ary given by an unstable circular null geodesic [6]. Extremely
compact objects could be considered as black-hole mimick-
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ers in the analysis of gravitational waves detected after the
merging of black holes, their mimickers, or neutron stars [7]
– the quasinormal modes of gravitational waves resulting in
the merging processes are expected to be related to the unsta-
ble circular null geodesics, as demonstrated in [8], if models
based on the Einstein gravity are assumed; however, this is
not necessarily true in alternative gravity theories [9], and
exceptions are possible even in the Einstein theory combined
with a non-linear electrodynamics [10–12].

Inside the extremely compact objects representing neu-
tron stars, or quark (hybrid) stars, null geodesics determine
the motion of neutrinos, if the neutron stars are sufficiently
cooled, yet maintaining large temperatures [6,13,14]. The
geodesic (free) motion of the neutrinos is relevant, if their
free mean path Λ is larger than the neutron star extension R
which is estimated by observations to be slightly larger than
10 km. The free mean path is governed by the elastic scat-
tering of neutrinos on electrons (neutrons), determined by
the cross section σe (σn), and the electron (neutron) number
density Ne (nn). For neutrinos with energy Eν the neutrino–
electron scattering implies the free mean path in the form [15]

Λe = (σeNe)
−1 ∼ 9 × 107

(
ρnucl

ρ

)4/3 (
100 kV

Eν

)3

km ,

(1)

while the free mean path based on the neutrino-neutron scat-
tering reads

Λn = (σnnn)
−1 ∼ 300

(
ρnucl

ρ

) (
100 kV

Eν

)2

km . (2)

We thus find Λe > 10 km for Eν < 20 MeV, and Λn >

10 km for Eν < 500 keV, and it is clear that in one hour old
neutron star with temperature T < 109 K (Eν < 100 keV)
the neutrino motion can be of geodesic character with good
precision [15].
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The neutrino trapping is then relevant both for detectable
decrease of the neutrino flow observed at large distances,
and for significant role in the cooling of the neutron star
that can influence its internal structure due to induced inter-
nal flows, causing self-organization of the neutron star mat-
ter in the trapping region. In the simplest case of the inter-
nal Schwarzschild spacetime [16], the neutrino trapping was
treated in detail in [6], and with inclusion of the cosmo-
logical constant in [17,18]; relevance of the cosmological
constant in astrophysics is discussed in [19]. The generaliza-
tion of the internal Schwarzschild spacetime in the frame-
work of the Hartle–Thorne theory of slowly rotating com-
pact objects [20,21] was presented in [22]. The trapping
in the internal Schwarzschild spacetimes with inclusion of
the rotational effects based on the linearized form of the
Hartle–Thorne model has been recently studied in [23]. Neu-
trino trapping in the braneworld [24,25] extremely compact
objects with uniformly distributed energy density was treated
in [18].

In the internal Schwarzschild spacetimes with uniform
distribution of energy density [6] the neutrino trapping is
possible if its radius R < 3GM/c2 = 3rg/2, where M is the
mass and rg is the related gravitational radius of the extremely
compact object, i.e., the object radius must be located under
the unstable null circular geodesic (photosphere) of the exter-
nal vacuum Schwarzschild spacetime. The neutrino trapping
efficiency increases with decreasing radius of the uniform
sphere – its radius R ≥ Rc = 9rg/8 [6]. It is quite interest-
ing that the internal Schwarzschild spacetimes demonstrate
an extraordinary character for R → 2M , being related to
gravastars as shown in [26–28].

However, from the astrophysical point of view it is impor-
tant, if models of the extremely compact objects trapping
neutrinos can have their radius larger than the radius of the
external Schwarzschild spacetime photosphere, being thus
closer to the radii of neutron stars governed by the realistic
equations of state that are restricted by observations to be
larger than R = 3.2M as implied by the limits of realistic
equations of state applied for neutron stars. One of the well
known spacetimes satisfying this requirement is represented
by the special class of the solutions of Einstein gravitational
equations, namely the Tolman VII solution assuming inside
the object a special, very simple but non-uniform, energy
density radial profile of quadratic character [29]. This solu-
tion modifies in a realistic way the internal Schwarzschi-
ld solution and its trapping versions allow for radii over-
coming the radius of the photosphere [30], making thus the
extremely compact Tolman VII models more plausible in
comparison with those limited by the photosphere radius.1

1 Note that also extremely compact polytropic spheres can have exten-
sion overcoming the external Schwarzschild spacetime photosphere
radius R = 3M [31–37]; for polytropic index n > 3.3 such extremely

Properties of the Tolman VII solution were studied in a series
of papers [30,39–42] that all lead to a strong conclusion that
this exact solution of the Einstein equations exhibits sur-
prisingly good approximation to properties of realistic neu-
tron stars. Furthermore, a modified Tolman VII solution was
introduced in [39] that includes an additional quartic term
in the energy density radial profile being, however, only an
approximate solution of the Einstein equations; its concor-
dance with realistic models of neutron stars was discussed
and confirmed along the I-Love-C relations [40]. Moreover,
also an anisotropic version of the Tolman VII solution was
presented in [43] enabling inclusion of the influence of addi-
tional matter sources on the properties of neutron stars. Here
we restrict attention to the study of the neutrino trapping
effect in Tolman VII solutions, as it is an exact solution of
the Einstein equations giving very good approximation to the
behavior of the realistic neutron stars [43].

In Sect. 2 we summarize the general properties of the
Tolman VII spacetimes, and by treating the null geodesics
of these spacetimes we determine the range of parameters
(external radii R) of the extremely compact Tolman VII
spacetimes allowing for existence of the region of neutrino
trapping. Then we discuss in Sect. 3 the effective potential
and trapping (or complementary escape) cones of the null
geodesics. In Sect. 4 we determine the “local” and “global”
efficiency coefficients of the null geodesics (neutrino) trap-
ping, and make comparison to the simplest case of the inter-
nal Schwarzschild spacetimes. Concluding remarks are pre-
sented in Sect. 5.

In the following we use geometric units with c = G = 1.

2 Tolman VII spacetime and its null geodesics

In the static and spherically symmetric Tolman VII solution,
the energy density distribution is assumed to be a quadratic
function of the radius, and the Einstein equations and the
stress–energy conservation then enable the determination of
the metric coefficients and pressure radial profiles in terms
of elementary functions.

We first present the Tolman VII solution as given in an
elegant and compact form in [39] where the free parameter
characterizing the solution is chosen to be the compactness of
the object C ≡ M/R, or its inverse, R/M . Then we discuss
the equations of its null geodesics and give the extremely
compact Tolman VII spacetimes allowing for the trapping of

Footnote 1 continued
compact polytropes can be very extended (R � rg) modeling thus dark
matter halos of (galaxy) mass 1012M�, while gravitational instability
of the trapping zone of extension Rtr � R can induce gravitational
collapse creating a supermassive (M ∼ 109M�) black hole [38].
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null geodesics by determining the limits on the values of the
parameter R/M .

2.1 Tolman VII spacetime

The Tolman VII spacetime belongs to the static and spheri-
cally symmetric spacetimes having in the standard Schwarz-
schild coordinates (t, r, θ, ϕ) the line element in the form

ds2 = −eΦ(r)dt2 + eΨ (r)dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

. (3)

The matter inside the Tolman VII solution is assumed to be
a perfect fluid with stress–energy tensor

Tμν = (ρ + p)uμuν + pgμν , (4)

where ρ is the energy density and p is the pressure of the
fluid. The metric functions, the energy density and pressure
are functions of the radius r only. The Einstein equations then
give a set of three differential equations for the four unknown
functions of the radius r [29]:

d

dr

(
e−Ψ − 1

r2

)
+ d

dr

(
e−Ψ Φ ′

2r

)

+e−Ψ −Φ d

dr

(
e−ΦΦ ′

2r

)
= 0 , (5)

e−Ψ

(
Φ ′

r
+ 1

r2

)
− 1

r2 = 8πp , (6)

e−Ψ

(
Ψ ′

r
− 1

r2

)
+ 1

r2 = 8πρ , (7)

where the prime denotes derivative against r , and the radial
metric coefficient is given directly in terms of the mass con-
tained inside the radius m(r) in the form

e−Ψ (r) = 1 − 2m(r)

r
. (8)

Usually, this system of equations is closed after the specifi-
cation of the equation of state p(ρ), however, the Tolman VII
solution is governed by specification (assumption) of the
energy density radial profile [29]. The exterior at r > R,
where both energy density and pressure vanish, is described
by the standard Schwarzschild metric

eΦex = e−Ψex = 1 − 2M

r
, (9)

with the total mass of the object M = m(R).
In the Tolman VII solution the energy density profile,

given in terms of the dimensionless radial coordinate ξ =
r/R, is given by the relation

ρ(ξ) = ρc(1 − ξ2) , (10)

where R denotes radius of the object, and ρc is the central
energy density. Notice that the energy density vanishes at the
surface.2 We can then immediately obtain the mass radial
profile which takes the form

m(r) = 4πρc

(
r3

3
− r5

5R2

)
. (11)

Using the compactness parameter C ≡ M/R, the central
density can be expressed in the form

ρc = 15C
8πR2 . (12)

Then the Tolman VII solution can be expressed in the form
introduced by [39,40]. The energy density and mass profiles
read

ρ(ξ) = 15C
8πR2

(
1 − ξ2

)
, (13)

m(ξ) = CR
(

5

2
ξ3 − 3

2
ξ5

)
. (14)

The metric coefficients are determined by the relations

e−Ψ (ξ) = 1 − Cξ2
(

5 − 3ξ2
)

, (15)

eΦ(ξ) = C1 cos2 φT , (16)

while the pressure is given by

p(ξ) = 1

4πR2

[√
3Ce−Ψ tan φT − C

2

(
5 − 3ξ2

)]
, (17)

where

φT(ξ) = C2 − 1

2
log

⎛
⎝ξ2 − 5

6
+

√
e−Ψ

3C

⎞
⎠ , (18)

and the integration constants take the form

C1 = 1 − 5C
3

, (19)

C2 = arctan

√
C

3(1 − 2C)
+ 1

2
log

(
1

6
+

√
1 − 2C

3C

)
. (20)

Properties of the Tolman VII solution were extensively stud-
ied in several papers – the existence of the trapping null
geodesics [30], stability against radial perturbations [44–47],
and other important properties relevant for comparison to
the realistic neutron stars were discussed recently in [39,40].
Here we shortly summarize the most relevant results.

2 Here we are studying extremely compact objects, for which the zero
density at the surface is a good approximation considering the inte-
rior density profile, as the central energy density is several orders of
magnitude higher than the surface energy density.
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The well defined Tolman VII spacetimes are restricted by
the requirement of finite central pressure p(ξ = 0). Clearly,
the central pressure diverges if tan φT (ξ = 0) diverges, i.e.,
if

φT (ξ = 0) = π

2
. (21)

This condition then implies the relation

π

2
= C2 − 1

2
log

(√
1

3C − 5

6

)
. (22)

We then find the lower limiting value of the Tolman VII
sphere to be given as

RT min
.= 2.5894M . (23)

We can see that this critical minimal radius of the Tolman VII
spheres is substantially exceeding the lowest radius allowed
for the internal Schwarzschild solutions with uniform energy
density that reads RS min = 2.25M [6].

In order to find the class of extremely compact Tolman
VII solution that allows the trapping of null geodesics, we
have to study the null geodesics of these spacetimes.

2.2 Circular null geodesics in extremely compact
Tolman VII spacetimes

The motion along null geodesics is governed by the geodesic
equation and corresponding normalization condition

Dpμ

dτ
= 0 , pμ p

μ = 0 , (24)

where τ is the affine parameter. Two Killing vector fields
(∂/∂t , ∂/∂ϕ) imply two conserved components of the four-
momentum

pt = −E (energy) ,

pϕ = φ (axial angular momentum).
(25)

Motion in the spherically symmetric spacetimes is restricted
to their central planes. In the case of geodesic motion, it is
convenient to choose the equatorial plane of the coordinate
system, i.e. we set θ = π/2. Introducing the impact para-
meter λ = φ/E , we obtain from the normalization condition
relation governing the radial motion in the form

(pr )2 = e−(Φ+Ψ ) E2
(

1 − eΦ λ2

r2

)
. (26)

It is obvious that for null geodesics the energy E is not rel-
evant for the character of the motion (we can use it for the

Fig. 1 Effective potentials of the Tolman VII objects with inverse com-
pactness R/M given in the potentials

scaling of the impact parameter λ). Note that the expres-
sion in brackets is non-negative. We can thus introduce the
effective potential Veff determining the turning points of the
radial motion along null geodesics for a given impact param-
eter λ [48]:

λ2 ≤ Veff =⎧⎪⎪⎨
⎪⎪⎩
V int

eff = 3r2

3 − 5C cos−2 [Ca + Y (r)] , for r ≤ R ,

V ext
eff = r3

r − 2M
, for r > R ,

(27)

where

Ca = arctan

√ C
3 − 6C , (28)

Y (r) = 1

2
log

[ (
1 + 2

√
3/C − 6

)
R2

2
√

3R4/C + 9r4 − 15r2R2 + 6r2 − 5R2

]
.

(29)

The behavior of the resulting effective potentials is pre-
sented in Fig. 1, where one can notice that contrary to the
case of the internal Schwarzschild spacetimes, the effective
potential of the interior of the Tolman VII spacetimes has a
non-monotonic character even for R > 3M .

The circular null geodesics are determined by the local
extrema of the effective potential, i.e., for the interior by the
condition dV int

eff/dr = 0 that implies the relation

6r
(
1 + rY ′(r) tan χ

)
(5C − 3) cos2 χ

= 0 , (30)

where

χ = Ca + Y (r) . (31)

The limiting case when the effective potential has an inflex-
ion point and starts to be monotonic is determined by the
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Fig. 2 The effective potential of the Tolman VII spacetimes with R = 2.8M (left panel) and R = 3.15M (right panel). The trapped area is light
shaded for the internal trapped null geodesics and dark shaded for the external trapped geodesics

additional condition d2V int
eff/dr2 = 0 which implies the rela-

tion

r
[
2rY ′(r)2 (cos(2χ) − 2) − rY ′′(r) sin(2χ)

−4Y ′(r) sin(2χ)
]/

cos2 χ = 2 . (32)

By numerical methods we are able to find the critical maximal
value of R allowing for existence of a trapping region in the
Tolman VII solution which reads

Rt
.= 3.202M . (33)

The range of radii RT min ≤ R ≤ Rt determines the trapping
Tolman VII spacetimes. For all of them, a local maximum of
V int

eff corresponding to a stable circular null geodesic always
exists, being located at rc(i), with value giving the upper limit
on the impact parameters of trapped null geodesics λ2

c(i) =
λ(rc(i))

2 = V int
eff(rc(i)).

A local minimum of the external effective potential V ext
eff

corresponding to the unstable circular null geodesics in the
vacuum Schwarzschild spacetime, may exist if and only if
R < 3M and comes from solution dV ext

eff /dr = 0 which gives
the well known results rc(e) = 3M and λ2

c(e) = 27M2 [48].
The behavior of the effective potential of the Tolman VII
spacetime has then similar character as in the case of the
internal Schwarzschild spacetimes, as demonstrated in Fig. 2.
In this case the (shaded) region of trapped null geodesics can
be separated into two parts – see e.g. [6]. The internal trapped
null geodesics (light shade) have motion fully restricted to the
interior of the object, being limited by the values of the impact
parameters, λb(i) < λ < λc(i) and the radii rb(i) < r < R;
the external trapped null geodesics (dark shade) leave and
re-enter the object, being limited by the values of the impact
parameters λc(e) < λ < λb(i) and the radii rb(1) < r <

rc(e) = 3M ≡ rb(2) – see Fig. 2 (left panel). The critical
impact parameters (radii) λb(1) (rb(1)) and λb(i) (rb(i)) are
determined by the equations λ2

b(1) ≡ V int
eff(r = rb(1)) =

V ext
eff (rc(e)) ≡ 27M2 and λ2

b(i) ≡ V int
eff(r = rb(i)) = V ext

eff (R).
However, in the following we are not discussing separately
the internal and external trapped null geodesics, considering
them only in unity.

In the case 3M < R < Rt , the Tolman VII spacetime
has a slightly different character in comparison with the
internal Schwarzschild spacetime, as its effective potential
V int

eff(r) demonstrates along with presence of the local max-
imum giving the stable circular null geodesics at rc(i) also a
local minimum giving an unstable circular null geodesic that
is located at the radius rb(2) and has the impact parameter
given by the relation λ2

b(2) ≡ λ(r = rb(2))
2 = V int

eff(rb(2))

taken at the local minimum of the effective potential. There-
fore, the trapping Tolman VII spacetimes with R > 3M have
only internal trapped null geodesics that are limited by the
impact parameters λb(2) < λ < λc(i), while the range of
radii where the null geodesic trapping occurs is limited by
rb(1) < r < rb(2). The critical radius rb(1), giving the lower
limit on radius of trapped null geodesics, is determined by
the relation λ2

b(2) = V int
eff(rb(1)).

Contrary to the case of the internal Schwarzschild space-
time where the critical values of the impact parameters and
radii governing the trapping effects can be given in terms
of elementary functions, for the trapping Tolman VII space-
times they can be determined numerically only. The results of
the numerical calculations for the critical radii are presented
in Fig. 3. Note that in the limiting case of R = Rt , the photon
circular null geodesics coincide at r

.= 0.855 R. The range
of integration of the trapping is determined by the radii rb(1)

and rb(2) for the spacetimes with R > 3M , and by rb(1) and
rb(2) = R in the spacetimes with R ≤ 3M .

For the critical values of the impact parameter λ of the
null geodesics, relevant for the null geodesics trapping, the
dependence on the parameter R/M is presented in Fig. 4. The
range of the values of λb(2) and λc(i) governs the efficiency
of the trapping effects.
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Fig. 3 Region of trapping of null geodesics in extremely compact Tol-
man VII spacetimes. Significant radii rb(1), rb(2) and rc(i) governing the
trapping region are given in relation to the parameter R/M of the object.
The profiles are related to the object radius R. Note that for objects with
R/M < 3 there is rb(2)/R > 1 as the unstable circular null geodesic is
located outside the object, while it is inside for R/M > 3

Fig. 4 Impact parameters governing the trapping cones of null
geodesics in Tolman VII spacetimes. Dependence of the critical val-
ues of the impact parameter, λc(i) and λb(2) is given as a function of the
parameter R/M

3 Escape cones and trapped null geodesics

We now have to apply the framework of trapped null geo-
desics in the context of the models of neutrinos radiated by
matter of the extremely compact object. Thus, we have to
determine the escape (or complementary trapping) cones of
null geodesics related to the matter constituting the config-
uration – the trapped part of neutrinos radiated by a given
source corresponds to the directional angles belonging to the
trapping cone of null geodesics related to the source.

As the Tolman VII spacetimes are spherically symmet-
ric and static, we can directly follow the procedures intro-
duced in [6] for the interior Schwarzschild solution. The
escape (trapping) cones have to be related to the static sources
(observers) in the static spacetime – we have to determine
the trapping cones in appropriately chosen local frames of

the static observers. In a spherically symmetric spacetime
the tetrad of the differential forms reads

e(t) = eΦ/2 dt , e(r) = eΨ/2 dr ,

e(θ) = r dθ , e(ϕ) = r sinθ dϕ ,
(34)

and its line element then can be expressed in the special-
relativistic form

ds2 = −
[
e(t)

]2 +
[
e(r)

]2 +
[
e(θ)

]2 +
[
e(ϕ)

]2
. (35)

The complementary tetrad of base 4-vectors e(α) is deter-
mined by

eμ

(α)e
(α)
ν = δμ

ν , e(α)
μ eμ

(β) = δα
β . (36)

Physically relevant projections of a neutrino (null geodesic)
4-momentum pμ are given by

p(α) = pμe(α)
μ , p(α) = pμeμ

(α) . (37)

Neutrinos radiated locally by a static source can be charac-
terized by the directional angles (α, β, γ ) related to the loca-
tion of the source, whose definition is presented for instance
in [49,50]. These directional angles are connected by the
relation

cos γ = sin β sin α. (38)

Due to the spherical symmetry of the configuration, the direc-
tional angle α related to the radial direction (the outgoing
radial unit vector e(r)) is sufficient to determine the escape
(trapping) cones, while the angle β determines position on
the trapping cone; the angle γ is related to the axial unit
vector [6].

In order to obtain the trapping (escape) cones in the
observer (source) sky it is crucial that they are fully governed
by the angles corresponding to the photon parameters defin-
ing the stable and unstable circular null geodesics. Therefore,
it is sufficient to find the angles αc(i) corresponding to λc(i)

of the stable circular null geodesic, and λb(2)) of the unstable
circular null geodesic. We thus relate the directional angles
to the motion constant (impact parameters). Because of the
spherical symmetry, we can consider for simplicity the equa-
torial null geodesics (when β = 0, or β = π , and p(θ) = 0).
The directional angle α is then given by the relations

sin α = p(ϕ)

p(t)
, cos α = p(r)

p(t)
. (39)
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Fig. 5 Visualization of the escaping/trapping cone

The radial component of the null geodesic 4-momentum re-
ads

pr = ±E e(Ψ −Φ)/2
(

1 − eΦ λ2

r2

)1/2

, (40)

and finally we can express the directional angle in the Tol-
man VII spacetimes in the form (for simplicity M = 1)

sin α = eΦ/2 λ

r
= √

1 − 5C/3 cos [Ca + Y (r)]
λ

r
, (41)

cos α = ±
√

1 − sin2 α . (42)

To find the trapping (escape) cone in the region where the
trapping is possible, which is defined by the extension of the
effective potential barrier governed by its local extrema, we
have to calculate the angles αb(2) corresponding to the impact
parameter λ = λb(2) given by the relation

cos αb(2)(r, C) = ±
√

1 −
(

eΦ(r)/2 λb(2)

r

)2

= ±
√

1 − V int
eff(rb(2))

V int
eff(r)

. (43)

We have to separate the case R/M ≤ 3 when λb(2) = 3
√

3 M
in the external vacuum Schwarzschild spacetime, and the
case R/M > 3 when λ2

b(2) = V int
eff(min)(C) in the internal

Tolman VII spacetime.
The trapping zone lies between the angles αb(2) related to

the outward and inward radial direction, as shown in Fig. 5
where the trapping zone is light shaded, while the escape
cone (zone) is dark shaded and null geodesics of this kind
can escape to infinity even if originally radiated inwards.

Recall that the trapping effects are relevant only in the
extremely compact Tolman VII spacetimes existing in the
range 2.590 < R/M < 3.202, and can occur only in the
range of radii of these objects limited by rb(1) < r < rb(2)

for R/M > 3, and rb(1) < r < R, for R/M < 3. At any
allowed radius r , the trapping occurs for the values of the

impact parameter in the region λb(2) < λ < λt ≡
√
V int

eff(r),

while λb(2) corresponds to cos αb(2)(r) and λt corresponds to
cos αt = 0 (α = π/2 corresponds to the turning point of the
radial motion). At r = rc(i), there is λt = λc(i).

The extension of the trapping zone in the plane of angles
(α, β) in dependence on the position of the source is pre-
sented for some representative values of the compactness in
Fig. 6. Because of the spacetime symmetry the trapping cones
are symmetric relative to the center.3

4 Efficiency of neutrino trapping in extremely compact
Tolman VII spacetime

The trapping effect can be characterized by its efficiency
which can be defined in both, the local sense taken at a given
radius of the object, and the global sense considering the
whole object [6]. Denoting as Np, Nt , and Ne, respectively,
the number of produced, trapped and escaped neutrinos, per
unit time of distant static observers, the global trapping effi-
ciency Bt and global escaping efficiency Be are determined
by the relations

Bt = Nt(C)

Np(C)
, Be = Ne(C)

Np(C)
, (44)

which satisfy Bt + Be = 1. In order to find the global trap-
ping efficiency, we have to find the local efficiency related
to a fixed radius in the region where the trapping occurs.
In the following, we consider for simplicity that the neutri-
nos are produced by sources emitting isotropically – then
the trapping will be locally governed solely by the spacetime
geometry (for the case of anisotropic emission see e.g. [6]).

4.1 Local efficiency of trapping

To determine the local properties of the trapping effect,
we introduce a local trapping efficiency coefficient b(r, C),
defined at a given radius r of the compact object as the ratio
of the number of neutrinos emitted, from this radius, and
trapped by the object dNt(r, C), to the number of neutrinos
totally produced at this radius dNp(r, C).

Due to the isotropy of the radiation emitted by the local
sources at the given radius, the number of escaping neutrinos
is determined by the solid angle Ωe(αb(2)) given by

Ωe
(
αb(2)

) =
∫ αb(2)

0

∫ 2π

0
sin α dα dϕ

= 2π
(
1 − cos αb(2)

)
, (45)

3 Note that in rotating spacetimes the symmetry of the trapping zone
(cone) is lost as the motion depends on the sign of the impact parameter,
as shown for the case of trapped null geodesics in Kerr spacetimes [49,
50].
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(a) (b) (c)

Fig. 6 The escaping/trapping cones corresponding to r/M = {0.8, 1.45, 2.7} for the Tolman VII configuration with R/M = 2.8. Above is shown
the effective potential and marked positions indicate the locations where the cones are determined. The trapping zones are shaded

while the number of produced neutrinos is the total solid
angle Ωp = 4π . Then the local escaping efficiency is given
by the relation

e(r, C) ≡ dNe(r)

dNp(r)
= 2Ω(αb(2)(r, C))

4π

= 1 − cos αb(2)(r, C) , (46)

and the local trapping coefficient, b(r, C)+e(r, C) = 1 reads

b(r, C) ≡ dNb(r)

dNp(r)
= cos αb(2)(r, C) . (47)

The resultant local trapping efficiency coefficient is presented
in Fig. 7.

The position of the local extrema of the local trapping
efficiency function b(r, C), given by the condition ∂b/∂r =
0, coincides with the position of the stable circular null
geodesic. The local extrema bmax determines the position

of the largest local trapping in a fixed Tolman VII configura-
tion. The dependence of bmax on R/M is plotted in Fig. 7.

For better insight into the nature of the trapping phe-
nomena, in Fig. 8 we compare the results obtained for the
Tolman VII configurations to those related to the internal
Schwarzschild spacetimes with uniformly distributed energy
density [6], demonstrating some important differences. The
most relevant one is that the radius of the extremely compact
Tolman VII solution can overcome the photosphere of the
external vacuum Schwarzschild – in this case the trapping
region is not extending to the surface of the object, but its
external boundary approaches the surface when R → 3M .
We can also see that the difference in the local trapping effi-
ciency profile for the maximally compact Tolman VII space-
time is not large, but it shows a significant decrease near the
central region of the object. On the other hand, for the Tol-
man VII and interior Schwarzschild, with the same parameter
R/M , the local trapping efficiency radial profile is higher for
the Tolman VII spacetimes, vanishing for R/M = 3.202,
while for the internal Schwarzschild spacetimes the vanish-
ing occurs for R/M = 3.
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Fig. 7 The local trapping efficiency radial profile b(r, C) illustrated for
several values of inverse compactness R/M of the extremely compact
Tolman VII spacetimes (left plot). The parameter R/M for each curve

is given by the corresponding position of bmax on the right plot which
shows the local maxima of local trapping efficiency bmax for the same
values of the parameter R/M

Fig. 8 Local trapping efficiency in extremely compact Tolman VII
spacetime (black) compared to local trapping efficiency in extremely
compact Schwarzschild spacetime (dashed-gray)

4.2 Neutrino production

In order to study the efficiency of the neutrino trapping in
the extremely compact Tolman VII spacetimes, in the global
sense, reflecting both the cooling process and the total neu-
trino luminosity of the object, we have to discuss first the
production rate of neutrinos and its properties that have to be
well representative for our study of the Tolman VII space-
times.

The neutrino production is generally a complex process
governed fully by the detailed structure of the configura-
tion (e.g., a neutron star). The local neutrino production rate
I (r,A), considered at a given radius r , is determined by the
relation

I (r,A) = dN (r,A)

dτ
, (48)

where dN is the number of neutrino producing interactions at
radius r , per element of proper time dτ of the static observer
located at the radius r ; A denotes the full set of quantities
governing the neutrino production rate, taken at the given
radius. The number of interactions can be expressed in the
form

dN (r,A) = dn(r) Γ (r,A) dV (r) , (49)

where dn represents the number density of particles deter-
mining the neutrino production, Γ denotes the neutrino pro-
duction rate (governed by the temperature at the given radius)
and dV denotes the proper volume element at the given
radius; dn and Γ are determined by the details of the matter
in the extremely compact object, while dV is governed by
the spacetime geometry. The production rate of neutrinos can
be a very complex function of radius, being determined by
all the complexities of the internal structure of the extremely
compact object. However, it is rather meaningless to try to
study the physical details of the compact object structure
and related consequences on the neutrino production rate,
in the case of the Tolman VII solution, as it represents only
a rough approximation of neutron stars modeled by realis-
tic equations of state. In order to study the influence of the
modification of the energy density profile in the Tolman VII
solution, it is quite reasonable and sufficient to assume that
the neutrino production rate is determined by the energy den-
sity profile, as in the previous studies of the trapping effect in
the internal Schwarzschild spacetimes [6,51]; moreover, the
energy density radial profile includes naturally, in an implicit
way, the effect of temperature of the matter [14]. The neutrino
production rate is thus assumed in the form
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I (r) = dN (r)

dτ
∼ ρ(r) . (50)

We further assume as in [6] that the neutrino radiation is
locally isotropic so the efficiency of the trapping effect is
given by the spacetime geometry (relative extension of the
trapping cone) only.

Including the time-delay factor, we arrive to the neutrino
production rate related to the distant static observers

I(r) = dN (r)

dt
= I eΦ(r)/2. (51)

Finally, we find that the number of neutrinos generated at a
given radius at the proper volume element dV , per unit time
of distant static observers, i.e., the local neutrino production
rate, is determined by the relation

dNp(r) = I(r) dV(r) = I (r) eΦ(r)/2 4π eΨ (r)/2 r2 dr

∼ ρ(r) 4π eΦ(r)/2 eΨ (r)/2 r2 dr

= ρc

(
1 − r2/R2

)
4π eΦ(r)/2 eΨ (r)/2 r2 dr . (52)

The global neutrino production rate is then determined by
the integration across the whole compact object

Np = 4π

∫ R

0
I (r) eΦ(r)/2 eΨ (r)/2 r2 dr

= 4π

∫ R

0
ρc

(
1 − r2/R2

)
eΦ(r)/2 eΨ (r)/2 r2 dr . (53)

The global rate of the neutrino trapping is determined under
the assumption of the isotropy of the emitted neutrino flow
given by the relation

Nt = 4π

∫ min{R, rb(2)}

rb(1)

ρc

(
1 − r2/R2

)
b(r, R)

×eΦ(r)/2eΨ (r)/2r2 dr . (54)

Now, we are able to study the trapping of neutrinos and the
global trapping efficiency in dependence on the spacetime
parameters. We assume sources emitting isotropically the
neutrinos following the null geodesics [6].

4.3 Global trapping efficiency for total neutrino luminosity

The coefficient of the global trapping related to total neu-
trino luminosity of the object characterizes the trapping phe-
nomenon integrated across the whole trapping region, related
to the radiating object. Thus, we consider the amount of neu-
trinos radiated along null geodesics by the object, per unit of
distant observer time, and determine the part of these radi-
ated neutrinos that remain trapped by the radiating object.
Details of the derivation of the global trapping coefficient

are presented in [6], and we apply them here using again the
basic assumption that the locally defined radiation intensity
is proportional to the energy density of the object matter,
being thus distributed due to the quadratic radial profile of
the Tolman VII energy density. We thus again assume the
emissivity directly related to the energy density of the object,
enabling also easy comparison to the results of the study of
the internal Schwarzschild spacetime. Of course, we could
make a detailed calculation of the emissivity, using relevant
physical conditions in the interior of neutron stars, and tak-
ing into account both the local particle density (proportional
to the rest energy density), the temperature of matter, and all
the details of the physics of neutrino emission [13,14]. How-
ever, we decide to use the simple assumption of emissivity
related to the energy density, as this assumption, in a reason-
able measure, incorporates both the influence of the particle
density of radiating matter and its temperature.

The global luminosity trapping effects are thus manifested
by the global luminosity trapping efficiency coefficient BL

defined by a suitable modification of the relation presented
in [6]

BL =

∫ min {R, rb(2)}

rb(1)

ρ(r) g(r, C) b(r, C) r2 dr

∫ R

0
ρ(r) g(r, C) r2 dr

, (55)

where ρ(r) is given by Eq. (13), and

g(r, C) = e(Φ+Ψ )/2 =
√

C1 cos2 (φT(r))

1 − C (r/R)2 (5 − 3 (r/R)2)
.

(56)

The upper limit of the integral is R, if R/M ≤ 3, and rb(2), if
R/M > 3. Contrary to the case of the internal Schwarzschild
spacetimes, the integration must be carried out numerically.
The results obtained for the extremely compact Tolman VII
spacetimes are presented in Fig. 9, where for comparison we
present also the results obtained for the extremely compact
internal Schwarzschild spacetimes. Recall that the modeling
of the cooling process has to be done using a Monte Carlo
method taking into account the finiteness of the mean free
path of neutrinos and possible scattering of trapped neutrinos
that could cause change of their impact parameter and even-
tual escape. Of course, in such a case one have to distinguish
the case of the interior and exterior trapped neutrinos [51].

4.4 Global trapping efficiency for neutrino cooling

The influence of the neutrino trapping effect on the cool-
ing process of the compact object can be effectively shown
by the local trapping coefficient b(r, C) presented above –
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Fig. 9 The dependence of luminosity global trapping efficiency coef-
ficient BL (black) and cooling global trapping coefficient BC (grey) for
Schwarzschild and Tolman VII star

clearly, this coefficient indicates that the cooling is most effi-
ciently influenced near the location of the stable circular null
geodesic where the efficiency is highest.

However, the cooling efficiency can be represented also
by a global trapping coefficient restricted exclusively to the
active zone of the trapping that can be defined in a way closely
related to the definition of the global trapping coefficient for
total luminosity. Let us define the cooling global trapping
coefficient by the relation

BC =

∫ min {R, rb(2)}

rb(1)

ρ(r)g(r, C) b(r, C) r2 dr

∫ min {R, rb(2)}

rb(1)

ρ(r) g(r, C) r2 dr

=

∫ min {R, rb(2)}

rb(1)

(
1 − r2/R2

)
g(r, C) b(r, C) r2 dr

∫ min {R, rb(2)}

rb(1)

(
1 − r2/R2

)
g(r, C) r2 dr

.

(57)

In contrast with the definition of the global coefficient of total
luminosity, now the interval of integration is the same in the
numerator and denominator, all the functions occurring in the
global coefficient definitions are the same in both cases. The
results of the integration are presented in Fig. 9, including the
case of the internal Schwarzschild spacetimes for compari-
son. We notice that the global trapping coefficient of cooling
slightly exceeds those related to the total luminosity, but their
difference is suppressed with decreasing parameter R/M for
both cases.

5 Conclusions

In the present study we considered the trapping of null geo-
desics in relation to trapping of neutrinos in the extremely
compact Tolman VII spacetimes that are considered by some
authors as the best representation of neutron stars given by
an exact solution of the Einstein gravity [30,39,40]. It is
important that these spacetimes can be extremely compact
(contain trapped null geodesics) even for R/M ∼ 3.2 close
to the values of observed neutron stars.

In our study we applied simplification of the isotropic
emission of neutrinos by all sources in the compact object
(as in [6]) and assume also its linear dependence on the energy
density of the object that is chosen in the Tolman VII solu-
tions to be quadratic, giving thus a simple generalization of
the physically unrealistic uniform distribution of the energy
density in the internal Schwarzschild spacetime. We have
found that the local trapping coefficient demonstrates behav-
ior similar to those of the internal Schwarzschild spacetimes,
having maximal points located at the position of the stable
circular null geodesic of the spacetime. For the objects of the
same parameter R/M , we have found radial profiles of the
local trapping coefficients in Tolman VII to be located above
those of the interior Schwarzschild. We can see that for the
Tolman VII solution with R/M = 3 (when trapping vanishes
in the internal Schwarzschild spacetimes) about 0.35 part of
the emitted neutrinos is trapped near the location of the stable
circular null geodesics indicating thus a strong possible role
of trapped neutrinos on the cooling process.

Similar behavior is observed also in the case of the global
trapping coefficients, both for the total luminosity, and the
cooling process. For the spacetimes with the same R/M , both
the global coefficients are significantly higher in the case of
the Tolman VII spacetimes. For example, at R/M = 3 repre-
senting the limit on the existence of extremely compact inter-
nal Schwarzschild solutions, we found for the Tolman VII
solution BL ∼ 0.24 and BC ∼ 0.27. Generally, the global
cooling efficiency is slightly higher than the global luminos-
ity coefficient and their difference increases with increasing
value of the parameter R/M .

Our results indicate the following important conclusion –
for the physically realistic Tolman VII solutions that could
well reflect some important properties of neutron stars [40],
the trapping of neutrinos could be relevant in physically
realistic situations, demonstrating significant influence espe-
cially in the cooling process of the neutron stars having
a cumulative character with possible effect on their struc-
ture, and smaller effect on their total luminosity. We also
expect on the base of our previous results with rotating
internal Schwarzschild spacetimes [23] that rotational effect
could lead to further enhancement of the role of the trap-
ping in both the luminosity and cooling process, enabling
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it for slowly rotating Tolman VII objects with R/M >

3.2.
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