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Abstract It is demonstrated that many of the assumed rules
that govern the structure of a previously proposed topological
preon model, in which simple non-trivial braids consisting
of three twisted ribbons are mapped to the first generation of
leptons and quarks, are automatically adhered to when the
algebraic spinors of two complex Clifford algebras are iden-
tified with braids via a suitable map. Much of the assumed
topological architecture of this model can therefore be inter-
preted as a direct consequence of the deeper algebraic struc-
tures upon which the minimal ideals of these Clifford alge-
bras are constructed. This result deepens the understanding
of how these two complementary descriptions, one topolog-
ical and one algebraic, of Standard Model symmetries are
intimately connected despite originating from very different
perspectives.

1 Introduction

Preon models were first developed in the 1970s with the hope
of deriving the properties and quantum numbers of the SM
particles from a smaller set of constituent particles. The most
famous of these is the Harari-Shupe preon model, based on
just two fundamental particles [1,2]. Using the Harari-Shupe
model as inspiration, it was shown in [3] that one generation
of SM fermions can be represented topologically in terms of
triplets of ribbons, possibly carrying twists of ±2π , bounded
together at the top and bottom by a parallel disk. The three
ribbons are allowed to braid each other which allows the
ribbons to be distinguished by their relative crossings. With
the ribbons distinguished in this way, the twist structure of the
ribbons accounts for the electrocolor symmetries. The braid
structure on the other hand encodes the weak symmetry and
chirality.
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Although this topological preon model provides an eco-
nomical representation of leptons and quarks, the class of
braids considered to correspond to physical states is heavily
restricted by a set of rules (axioms), which although simple,
are arbitrary and lack any theoretical motivation. There is no
intrinsic reason to bind ribbons in triplets in particular (as
opposed to any other arbitrary number of ribbons), nor why
the twisting on each ribbons should be restricted to only ±2π .
Most importantly, there is no a priori reason for excluding
braids composed of ribbons that carry opposite twists, yet
this assumption is crucial to the model, and without it one
ends up with 27 electrocolor states instead of 16.1 The braid-
ing between ribbons is unrestricted in the model. Without a
suitable mechanism to prevent ever more complex braiding,
one ends up with an unbounded number of generations [4].

The minimal left ideals of C�(6) were previously shown
to contain one generation of leptons and quarks transforming
correctly under the unbroken SU (3)c ×U (1)em gauge sym-
metry [5]. This paper demonstrates that the rules that govern
the permitted topological architecture of triplets of twisted
ribbons in [3] can at a deeper level be understood as a reflec-
tion of the algebraic structure of the minimal one-sided ideals
of C�(6). The construction of ideals relies fundamentally on
a Witt basis composed of nilpotent anti-commuting ladder
operators. Via a simple map from this Witt basis to elements
of a suitable braid group with half the number of genera-
tors, every basis state of the minimal ideals of C�(6), each
representing a distinct fermion in [5], is associated with a
unique braid that is isotopic to the triplets of twisted ribbons
that represent the electrocolor symmetries of one generation
of leptons and quarks via the twist structure in [3]. That is,
starting with the algebraic states together with a simple map,
the resulting topological structures automatically adhere to
the rules imposed by hand in [3]. The finite dimensionality
of the exterior algebra generated from the C�(6) Witt basis

1 It is worth noting that a similar assumption is made in other preon
models, including the Harari-Shupe model [1,2].
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means that the twisting on each ribbon never exceeds ±2π

and that combinations of ribbons that carry opposite twist are
naturally excluded.

Likewise, the minimal right ideals of C�(4) were shown
previously to contain one generation of chiral weak states
transforming correctly under SU (2)L [6]. Therefore, by sup-
plementing the minimal left ideals ofC�(6) with the minimal
right ideals of C�(4), every lepton and quark can be alge-
braically represented as simultaneously belonging to a mini-
mal left ideals of C�(6) and minimal right ideal of C�(4) [7].
We demonstrate that the braiding of (twisted) ribbons in [4]
can be generated from these minimal right ideals of C�(4).
The finite dimensionality of the exterior algebra generated
from the C�(4) Witt basis in this case restricts the possi-
ble complexity of braiding, thereby avoiding the problem of
an unbounded number of generations. We are therefore able
to reproduce (with some minor differences) the topological
model in [3] starting with the minimal ideals of C�(6) and
C�(4), without having to introduce additional rules about
the permitted topological structures. These permitted states
emerge automatically as a consequence of the underlying
algebraic structure of the minimal ideals.

This paper builds on earlier works where a structural corre-
spondence between the algebraic characterization of leptons
and quarks as minimal one-sided ideals of Clifford algebras,
and their topological representation as triplets of braided rib-
bons was established. It was shown in [8] that mapping a Witt
basis of C�(6) to specific braids in the circular Artin braid
group Bc

3
2 makes it possible to replicate the twist structure

describing electrocolor symmetries in this preon model. This
result makes use of the important fact that braiding and twist-
ing are interchangeable [4,9]. This result was subsequently
extended to include the SU (2)L chiral weak symmetry in
terms of the braid structure. This is achieved by mapping a
Witt basis of an additional C�(4) algebra to braids in B3,
taken to be a subgroup of Bc

3 [7,10].
Whereas the purpose of these earlier works was to estab-

lish a structural correspondence between the algebraic char-
acterization of leptons and quarks as minimal one-sided ide-
als of Clifford algebras, and their topological representation
as braids, the focus here is to demonstrate that the rules
imposed to restrict the permitted topological structures in
[3], are at a deeper level actually a reflection of the alge-
braic structure of the minimal one-sided ideals of C�(6) and
C�(4). Our starting point is the algebras C�(6) and C�(4).
We do not focus on justifying the choice of these two algebras
here, other than to say that both can be generated from tensor

2 The Artin braid group on n strands is denoted by Bn and is
generated by elementary braids {σ1, ..., σn−1} satisfying σiσ j =
σ jσi , whenever |i − j | > 1, and σiσi+1σi = σi+1σiσi+1, for i =
1, ...., n − 2. The circular braid group Bc

n has n strings attached to the
outer edges of two disks, and has one additional generator σn which
crosses the n-th string over the first string.

products of normed division algebras acting on themselves.
The reader is directed to [5,11–15] for more information.

2 A topological model of composite preons

We begin by providing a brief overview of the building blocks
and rules of the braid model [3]. The fundamental preonic
object is a ribbon which may be twisted by ±π . The permitted
topological structure of these ribbons are governed by the
following three rules:

(i) Unordered pairing Twists combine in pairs, called
helons, so that their total twist is 0 modulo 2π , and
the ordering of twists within a pair is unimportant. This
results in each ribbon carrying a twist of 0, +2π , or −2π .
We may simply write this as 0,+1,−1 respectively.
(ii) Helons bind into triplets Helons are bound into
triplets by a mechanism represented as the tops of each
strand being connected to each other, and likewise for the
bottoms of each strand. Such a triplet of helons may be
written as a vector [a, b, c] where by the first assumption
a, b, c ∈ {0,+1,−1}.
(iii) No charge mixing When constructing braided
triplets, combinations of helons with twists in opposite
direction in the same triplet are not allowed. A permissi-
ble triplet of helons can then be written as [a, b, c] where
now a, b, c ∈ {0,+1} or a, b, c ∈ {0,−1}.

With these assumptions, supplemented by a simple choice for
how the ribbons are braided, the braids in Fig. 1, represent
the first generation of SM leptons and quarks.

In this representation, the twist structure of the ribbons
accounts for the electrocolor symmetries, with charges of
±e/3 represented by ±2π twists, and the permutations of
twisted ribbons representing color. The braid structure of rib-
bons on the other hand encodes the weak symmetry and chi-
rality, with a top to bottom reflection corresponding to map-
ping between particles and anti-particles, and a left to right
reflection corresponding to a parity transformation. Weak
interaction are represented via braid composition, which cor-
responds to joining the bottom of the ribbons of the first braid
to the tops of the ribbons of the second braid, and then slid-
ing (isotop) the twists from each component braid upward.
No explicit assumption is made about the permitted braiding
of ribbons, and the model in Fig. 1 chooses just one simple
possibility. More complex braiding is assumed to correspond
to additional generations. However, without any restriction
on the complexity of braiding, this leads to an unbounded
number of generation [4].

The joining of three helons at the top and bottom is equiv-
alent to two parallel disks connected by a triplet of ribbons.
Without any braiding of these ribbons, the order of a, b, c in
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Fig. 1 In the braid model, leptons and quarks are represented as braids
of three twisted ribbons, restricted by certain rules. Source, [3]

Fig. 2 One can go from the framed braid on the left (with braiding but
no twisting) to the one on the right (with twisting but no braiding) by
turning over the disk at the top by π around the axis that passes through
its center and between the first and second ribbons. Source, [17]

the twist vector [a, b, c] is of no importance, since a simple
overall rotation will permute a, b, c, making it impossible
to distinguish the ribbons. This means one would no longer
be able to assign color to quarks. When the braid structure
is included, [1, 0, 0]σ1σ

−1
2 is not isotopic to [0, 1, 0]σ1σ

−1
2 ,

and so all three colored quarks are topologically distinct.
The union of the ribbons and disks form a closed surface
which may or may not be orientable. The resulting topolog-
ical objects, corresponding to capped framed braids in the
circular Artin braid group Bc

3, are called 3-belts [9,16].
Crucial to our construction later on is the observation that

the twist and braid structure are not individually conserved,
but are interchangeable [4,9]. An example for the braid gen-
erator σ1 is given in Fig. 2.

As a 3-belt, σ1 is isotopic to [1/2, 1/2,−1/2]. For the
generators of Bc

3 we write:

σ1 ≈ [1/2, 1/2,−1/2] , σ2 ≈ [−1/2, 1/2, 1/2] ,

σ3 ≈ [1/2,−1/2, 1/2] . (1)

The twist vectors of σ−1
i correspond to the negatives of σi ,

so that, for example, σ−1
1 ≈ [−1/2,−1/2, 1/2]. Care must

be taken when consider longer braid words since each braid
generator induces a permutation. Exchanging between twist-
ing and braiding is possible for n-belts in general. However,
(orientable) 3-belts are unique in that they can always be

written in a form in which all the twisting or all the braiding
has been eliminated [9].

3 Construction of C�(2n) spinors

The algebras C�(2n) each have only one irreducible rep-
resentations, the algebraic spinors, of dimension 2n . These
algebraic spinors correspond to minimal one-sided ideals. In
this section we review the well-known construction of these
minimal ideals [18], and subsequently how the minimal ide-
als ofC�(6) andC�(4) can be used to represent the unbroken
electrocolor, and chiral weak symmetry respectively, of a sin-
gle generation of leptons and quarks [5].

The construction of algebraic spinors requires three key
ingredients. These are a Witt basis of nilpotent ladder oper-
ators, the exterior algebra generated from these ladder oper-
ators, and finally a primitive idempotent. Let V be the gen-
erating space of C�(2n) spanned by {ei }, i = 1, ..2n over C.
These basis vectors ei are anticommuting. Via a Witt decom-
position of this basis, we can define a set of n creation oper-
ators, and an adjoint set of annihilation operators:

α
†
j := 1

2
(e j + ie j+n), α j := 1

2
(−e j + ie j+n),

j = 1, .., n (2)

These ladder operators are nilpotent (α2
i = 0), and satisfy

the fermionic anti-commutation relations

{α†
i , α

†
j } = 0, {αi , α j } = 0, {α†

i , α j } = δi j . (3)

Here, † takes i �→ −i , e j �→ −e j , and reverses the order
of multiplications. The ladder operators, {αi } and {α†

i } each

form the basis of an n complex dimensional space, χ†
n

∼= C
n

and χn ∼= C
∗n respectively, corresponding to maximal totally

isotropic subspaces.
Via the Clifford product,3 {α†

i } and {αi } generate the 2n-
dimensional exterior algebras

∧
C
n and

∧
C

∗n respectively,
including the nilpotents w = ∧n

C
n , and w† = ∧n

C
∗n ,

from which the primitive idempotents ww† and w†w can be
constructed. Subsequently

∧
C
nww† and

∧
C

∗nw†w define
two minimal left ideals of C�(2n). We can write

C�(2n)ww† ≡
∧

C
nww†,

C�(2n)w†w ≡
∧

C
∗nw†w. (4)

The unitary symmetry that preserves these one-sided ide-
als is SU (n) × U (1), with the generators of this symmetry
constructed from the bivectors of the algebra, expressible in
terms of the Witt basis.

3 Because the inner product vanishes on χ and χ†, the Clifford product
on the subalgebra coincides with the exterior product.
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Electrocolor symmetries from C�(6)

Using this construction, the first minimal left ideal of C�(6),
Su ≡ C�(6)ωω† = ∧

χ†ωω†, containing the isospin-up
fermions is explicitly given

Su ≡ νωω†+d̄rα†
1ωω†+d̄gα†

2ωω†+d̄bα†
3ωω†urα†

3α
†
2ωω†

+ugα†
1α

†
3ωω† + ubα†

2α
†
1ωω†

+e+α
†
3α

†
2α

†
1ωω†, (5)

where ωω† = α1α2α3α
†
3α

†
2α

†
1, and ν, d̄r etc. are complex

coefficients denoting the isospin-up fermions. The conjugate
system gives a second, linearly independent, minimal left
ideal of isospin-down fermions Sd ≡ C�(6)ω†ω = ∧

χω†ω

spanned by the states

{1, α1, α2, α3, α2α3, α3α1, α1α2, α1α2α3} ω†ω. (6)

In [5] it was shown that Su and Sd , are preserved by the
electrocolor symmetry SU (3)c × U (1)em , with each basis
state, via the commutator, transforming as a specific lepton
or quark as indicated by their suggestively labeled complex
coefficients. The reader is directed to [5] for the explicit rep-
resentation of the SU (3)c × U (1)em generators, which are
of no importance to us in what follows.

Chiral weak symmetries from C�(4)

Including the weak symmetry requires an additional Clifford
algebra, linearly independent from C�(6), whose minimal
one-sided ideals are preserved by SU (2)L . This algebra is
C�(4) with Witt basis {β1, β2, β

†
1 , β

†
2 }, satisfying the same

anticommutation relations (3). Two minimal right ideals are
given by ��†

C�(4) and �†�C�(4), with explicit bases

�†�{1, β
†
1 , β

†
2 , β

†
1β

†
2 }, ��†{1, β1, β2, β2β1}, (7)

where � = β2β1 and �† = β
†
1β

†
2 . These ideals each contain

an SU (2) doublet and two SU (2) singlets [6], allowing us
to assign chirality to the previously obtained C�(6) states, so
that now

νR = ωω†�†�, νL = ωω†�†�β
†
1 , (8)

e−
L = α1α2α3ω

†ω�†�β
†
2 ,

e−
R = α1α2α3ω

†ω�†�β
†
1β

†
2 . (9)

It is apparent that the neutrino and electron live in different
C�(6) ideals, but in the sameC�(4) ideal. One can write down
the quark states in a similar manner (see [7] for details). The
eight weak-doublets are then identified as

(
νL
e−
L

)

=
(

ωω†�†�β
†
1

α1α2α3ω
†ω�†�β

†
2

)

,

(
u(3)
L

d(3)
L

)

=
(

α
†
jα

†
i ωω†�†�β

†
1

εi jkαkω
†ω�†�β

†
2

)

, (10)

(
e+
R

ν̄R

)

=
(

α
†
3α

†
2α

†
1ωω†��†β2

ω†ω��†β1

)

,

(
d̄(3)
R

ū(3)
R

)

=
(

α
†
i ωω†��†β2

εi jkα jαkω
†ω��†β1

)

(11)

All of the other physical states, such as (ū(3)
L ) = (εi jkα jαkω

†

ω��†β2β1), are weak singlets.
All of these states transform correctly under the unbro-

ken electrocolor symmetry, and chiral weak symmetry, with
the symmetry generators explicitly given in [7]. The com-
bined ideals can be written as minimal left ideals of C�(6)⊗
C�(4) ∼= C�(10) in a way that preserves individually the
C�(6) structure and C�(4) structure of physical states. One
advantage of this model is that it captures many of the
attractive features of the Georgi and Glashow SU (5) Grand
Unified Theory without introducing proton decay or other
unobserved processes. Such processes are naturally excluded
because they do not preserve the underlying algebraic
structure.

4 From C�(6) to triplets of twisted ribbons

This section contains the first main result of this paper. At
the core of our construction is a map C

3 �→ Bc+
3 , together

with the dual map C
∗3 �→ Bc−

3 . Here Bc
3 denotes the circu-

lar braid group of three strands, and the + and − indicate
positive braids (composed of σi ) and negative braids (com-
posed of σ−1

i ) respectively. These maps extend to the exterior
algebras

∧
C

3 etc in such a way that the algebraic product in
∧

C
3 corresponds to braid composition in Bc

3. A particularly
important feature for 3-belts is that twisting and braiding are
interchangeable. Because this is a unique feature of 3-belts,
our construction does not work for general maps Cn �→ Bc

n .
We demonstrate that via these maps, every basis state of the
C�(6) ideals Su and Sd is associated with a unique braid that
is isotopic to a triplets of twisted ribbons that respects the
rules (i)–(iii) in Sect. 2, and coincide with the twist struc-
tures in Fig. 1. We establish this result in three steps: (1) we
interpret the twist structures found in the topological model
as a binary code; (2) we find a suitable map from the Witt
basis of C�(6) to the circular braid group Bc

3; and (3) elim-
inate the resulting braiding by exchanging it for twisting,
using Eq. (1).

123



Eur. Phys. J. C (2021) 81 :506 Page 5 of 7 506

Twist structure as a 3-bit binary code

By assumption (iii) in Sect. 2, oppositely charged ribbons
cannot be part of the same triplet. An admissible triplet of rib-
bons can then be written as [a, b, c] where a, b, c ∈ {0,+1}
or a, b, c ∈ {0,−1}. These twist vectors may be interpreted
as a 3-bit binary code, precisely because ribbons with oppo-
site twists do not bind together. For three ribbons, this gener-
ates 23 = 8 possible twist states for a given twist direction.
This matches the dimensionality of

∧
C

3 and
∧

C
∗3 and

hence the minimal left ideals of C�(6).4 This is essentially
the same how in the SU (5) and SO(10) grand unified the-
ories each particle and antiparticle can be represented via a
5-bit binary code [19]. Each bit, representing a basic prop-
erty of a particle such as isospin up or red, can be treated as
a basis vector of C5. Subsequently, the 32-complex dimen-
sional algebra

∧
C

5 has a basis given by the wedge product
of these five basis vectors, and the representation of SU (5)

is then used to describe fermions.

From algebraic spinors to triplets of twisted ribbons

Since the number of basis vectors of the minimal left ideal
Su of C�(6) matches the number of distinct twist vectors,
one might look for a one-one map from the former to the
latter. This is possible by first mapping the creation operators
α

†
i to specific braids in Bc

3, and subsequently exchanging
the resulting braiding for twisting. It is easy to check, using
Eq. (1), that

[1, 0, 0] = σ3σ2[0, 0, 0], [0, 1, 0] = σ1σ3[0, 0, 0],
[0, 0, 1] = σ2σ1[0, 0, 0]. (12)

One might therefore consider the mapping α
†
i �→ σi+2σi+1

where i + 1, i + 2 are modulo 3.5 Explicitly

α
†
1 �→ (σ3σ2), α

†
2 �→ (σ1σ3), α

†
3 �→ (σ2σ1). (13)

With this choice, each of the eight basis states in
∧

χ† maps
to a distinct twist vector that happens to coincide precisely
with the twist vectors of the leptons and quarks in Fig. 1
in a one-to-one manner. Crucially, this construction avoids
triplets containing ribbons with twists in opposite directions,
thereby automatically satisfying both rules (i) and (iii). The

4 More generally, for n ribbons there are 2n states, representable via
an n-bit binary code. This dimensionality matches that of the exterior
algebra

∧
C
n , which we saw plays a central role in the construction of

the algebraic spinors of C�(2n).
5 One may wonder why the simpler map α

†
i �→ σi (along with

αi �→ σ−1
i ) is not chosen instead. In that case, when the braiding is

exchanged for twisting, it gives a twist of only ±π on each of the
ribbons, and furthermore will lead to some ribbons being twisted in
opposite directions, as is clear from Eq. (1). This violates rules (i) and
(iii).

finite dimensionality of the exterior algebra also means that
the twisting on each ribbon never exceeds ±2π .

As an explicit example, consider the twist structure of a
green up quark ug:

ug : α
†
1α

†
3ωω† �→ (σ3σ2)(σ2σ1)[0, 0, 0] = [1, 1, 0]. (14)

We can do the same for the second ideal, Sd , via the maps
(see [10] for more details)

α1 �→ (σ−1
2 σ−1

3 ), α2 �→ (σ−1
3 σ−1

1 ), α3 �→ (σ−1
1 σ−1

2 ).

(15)

Note that whereas αi and α
†
i are dual, the braids they map

to are inverses.6 However, their actions are the same. At
the algebra level we have, for example (α

†
1)(α1α2ω

†ω) =
(1 − α1α

†
1)α2ω

†ω = α2ω
†ω. The action of multiplying by

α
†
1 cancels the action of α1 (in the presence of the primitive

idempotent ω†ω). At the braid group level this is replicated
when α

†
1 and α1 are mapped to braid inverses. The primitive

idempotents ωω† and ω†ω both lie in the kernal of our com-
bined map (13) and (15), which is therefore not one-to-one.

We finish this section by discussing the insights and advan-
tages offered by this algebraic construction. Even though
from the braid group point of view there are infinitely many
3-belts, the nilpotent nature of the algebraic ladder operators,
together with their anti-commuting properties means that the
maps (13) and (15) each select a finite set of 23 = 8 3-belts,
one for each algebraically nonzero product of ladder oper-
ators. The other 3-belts do not correspond to basis states of
minimal ideals, cannot be represented as a product of lad-
der operators, and therefore do not correspond to a physical
state. Furthermore, triplets composed of oppositely twisted
ribbons do not arise from this algebraic construction, and the
twisting on each ribbon never exceeds ±2π .

5 From C�(4) to braided ribbons

Without braid structure, the order of a, b, c in the vector
[a, b, c] representing the twist structure is of no importance,
making it impossible to distinguish the ribbons, and subse-
quently to be able to assign color to quarks if the braid struc-
ture is ignored. In this section we supplement the minimal
left ideals of C�(6) with the minimal right ideals of C�(4),
and subsequently generate suitable braid structure from these
ideals of C�(4). We again construct a map, C2 �→ B3 ⊂ Bc

3

together with its dual. We would like βi and β
†
i to again map

to inverse braids. One choice would be to map β
†
1 �→ σ1σ2,

and β
†
2 �→ σ2σ1. However in that case both α

†
3 and β

†
2 map

to the same braid, making C�(6) and C�(4) not independent

6 This is a slight but important deviation from the original construction
in [8], where α

†
i and αi were not mapped to inverse braids of each other.
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from each other. Taking inspiration from Fig. 1 we instead
consider the maps

β
†
1 �→ σ1σ

−1
2 , β

†
2 �→ σ−1

1 σ2, (16)

β1 �→ σ2σ
−1
1 , β2 �→ σ−1

2 σ1. (17)

Again, both the primitive idempotents ��† and �†� map
to the unbraid I.

Finally, every physical state in C�(6)⊗C�(4) can now be
mapped to a unique braid with both twist structure and braid
structure. For example
(
urL
drL

)

=
(

α
†
3α

†
2ωω†�†�β

†
1

α1ω
†ω�†�β

†
2

)

�→
( [1, 0, 1]σ1σ

−1
2

[0,−1, 0]σ−1
1 σ2

)

=
( [1, 0, 1]σ1σ

−1
2

σ−1
1 σ2[−1, 0, 0]

)

. (18)

It is here that it is important to remember that the twist struc-
ture is permuted by the braid structure, so that [0,−1, 0]σ−1

1 σ2

= σ−1
1 σ2[−1, 0, 0]. Similarly, for the associated weak sin-

glets we find

(
urR

) �→ ([1, 0, 1]I) ,
(
drR

) �→ (
σ1σ

−1
2 σ−1

1 σ2[0, 0,−1]) .

(19)

The full list of particle states are listed in the Appendix of
[10]. It is apparent that it is no longer true that the braid
structures of all particles are the same length. However it
remains true that all weakly interacting particle states have
the same length, and are equivalent to their representations
in [3].

Importantly, the complexity of braid structure is naturally
limited by the algebraic structure of the ideals, and only
22 = 4 different braids (together with their inverses) appear
in this construction. That is, the underlying algebraic struc-
ture of the minimal right ideals ofC�(4) provides the required
mechanism that limits the complexity of braiding, and hence
the introduction of an unbounded number of generations.

6 Discussion

The purpose of this paper has been to demonstrate that the
arbitrary rules that restrict the permitted topological struc-
tures in [3], are at a deeper level actually a reflection of the
underlying algebraic structure of the minimal one-sided ide-
als of C�(6) and C�(4). Despite the topological and alge-
braic models originating from very different perspectives,
remarkably they share a common underlying mathematical
structure. This connection should be investigated further.

A Witt-decomposition of C�(2n) splits the algebra into n
raising and n lowering operators, all nilpotent. These ladder
operators are subsequently mapped to braids in an appro-
priate braid group. The choice of braid group is determined

by the number of raising operators. For C�(6) the possible
braid groups are Bc

3 or B4, each of which has three generators,
whereas for C�(4) the braid group B3 with two generators
is the unique choice. To represent every lepton and quark as
a single topological object in a way that reflects the alge-
braic representation of leptons and quarks as simultaneously
belonging to a minimal left ideal of C�(6) and minimal right
ideal of C�(4) forces us to map the C�(6) ideals to braids in
Bc

3. Every lepton and quark is then represented topologically
as a 3-belt, corresponding to a triplet of ribbons connected
to each other at the top and bottom. This is assumption (ii)
in Sect. 2.

Within Bc
3, the braiding of ribbons is exchangeable for

twisting. Using the maps (13) and (15), the basis states of the
C�(6) ideals replicate the twist structure of [3] with the twist
on each ribbon equal to 0, +2π , or −2π . This is assump-
tion (i) in Sect. 2. Furthermore, each minimal ideal is con-
structed entirely from either raising or lowering operators
acting on a primitive idempotent, but not both. As a direct
consequence of this algebraic structure, combinations of rib-
bons with twists in opposite direction in the same triplet are
excluded. This is assumption (iii) in Sect. 2.

Finally, the nilpotent nature of the ladder operators means
the dimensionality of the minimal ideals correspond to the
dimensionality of the exterior algebra of the ladder operators.
Since each basis state of a minimal ideal is mapped to a braid,
this gives a finite spectrum of braids. Therefore the algebraic
structure of the minimal ideals, and the nilpotent nature of
the ladder operators naturally restricts the number of distinct
physical states. This avoids the problem of generating an
unbounded number of generations via ever more complex
braiding.

A more general construction which maps the minimal ide-
als of C�(2n) and C�(2n − 2) to n-belts is unlikely to work.
This is because in general the twisting or braiding cannot
be made trivial in an n-belt. The connection between C�(6)

and C�(4), with a topological representation of leptons and
quarks in terms of 3-belts is therefore essentially unique. This
is interesting because these Clifford algebras (and others) can
be generated from the left and right actions of the octonions
and quaternions on themselves respectively (or tensor prod-
ucts of division algebras acting on themselves) [5,20–22].
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15. Č. Burdik, S. Catto, Hurwitz algebras and the octonion algebra. J.
Phys. Conf. Ser. 965, 012009 (2018)

16. S. Bilson-Thompson, Braided topology and the emergence of mat-
ter. J. Phys. Conf. Ser. 360(1), 012056 (2012) (IOP Publishing)

17. S.O. Bilson-Thompson, F. Markopoulou, L. Smolin, Quantum
gravity and the standard model. Class. Quantum Gravity 24(16),
3975 (2007)

18. R. Abłamowicz, Construction of spinors via witt decomposition
and primitive idempotents: a review. In: Clifford Algebras and
Spinor Structures, pp. 113–123. Springer, New York (1995)

19. J. Baez, J. Huerta, The algebra of grand unified theories. Bull. Am.
Math. Soc. 47(3), 483–552 (2010)

20. C.C. Perelman, R⊗C⊗H⊗O-valued gravity as a grand unified
field theory. Adv. Appl. Clifford Algebras 29(1), 22 (2019)

21. N. Gresnigt, Sedenions, the Clifford algebra C�(8), and three
Fermion generations. In: European Physical Society Conference
on High Energy Physics, 10–17 July, pp. 615 (2019)

22. N.G. Gresnigt, Braided fermions from hurwitz algebras. J. Phys.
Conf. Ser. 1194, 012040 (2019) (IOP Publishing)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-ph/0503213
http://arxiv.org/abs/1611.09182

	Topological preons from algebraic spinors
	Abstract 
	1 Introduction
	2 A topological model of composite preons
	3 Construction of mathbbCell(2n) spinors
	Electrocolor symmetries from mathbbCell(6)
	Chiral weak symmetries from mathbbCell(4)


	4 From mathbbCell(6) to triplets of twisted ribbons
	Twist structure as a 3-bit binary code
	From algebraic spinors to triplets of twisted ribbons


	5 From mathbbCell(4) to braided ribbons
	6 Discussion
	Acknowledgements
	References




