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Abstract We consider the application of a Fleischer–
Jegerlehner-like treatment of tadpoles to the calculation of
neutral scalar masses (including the Higgs) in general the-
ories beyond the Standard Model. This is especially useful
when the theory contains new scalars associated with a small
expectation value, but comes with its own disadvantages. We
show that these can be overcome by combining with effec-
tive field theory matching. We provide the formalism in this
modified approach for matching the quartic coupling of the
Higgs via pole masses at one loop, and apply it to both a toy
model and to the μNMSSM as prototypes where the standard
treatment can break down.

1 Introduction

The mass of the SM-like Higgs boson, discovered by ATLAS
and CMS [1–3], is now an electroweak precision observ-
able, thanks to its outstandingly accurate determination at
the LHC [4–6], and it plays an important role in constrain-
ing the allowed parameter space of Beyond-the-Standard-
Model (BSM) theories. On the one hand, the Higgs mass is a
prediction in supersymmetric theories (see Ref. [7] and refer-
ences therein for a recent review) and interestingly it depends
most heavily on the electroweak couplings and scale – quan-
tities that are already known from other observations – while
it is only at loop level that a dependence on the scale of
supersymmetric particles appears. This property has spurred
significant developments in precision scalar-mass calcula-
tions, advanced in recent years by the KUTS initiative [8–
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54] as described in the report [7]. On the other hand, in non-
supersymmetric theories, the Higgs mass is not a prediction
by itself, but it can be used to extract the Higgs quartic cou-
pling and, in turn, investigate the stability of the electroweak
vacuum. In this context, a precise calculation is essential to
produce reliable results on vacuum stability (see Refs. [55–
59] for works in the SM) and to correctly appreciate the
potential impact of new particles [60–65].

We refer the interested reader to Ref. [7] and references
therein for an in-depth review of Higgs-mass computations,
and we only recall here the main steps involved (applicable
for any BSM theory). The standard calculational technique
begins with the extraction of SM-like parameters – namely
the electroweak and strong gauge couplings, the quark and
lepton Yukawa couplings, and the Higgs vacuum expecta-
tion value (vev) – from observables. Adding then the BSM
parameters to these, the Higgs (and other particle) masses
can be calculated, along with any other desired predictions.
The relevant observables for the electroweak sector are typ-
ically, as in calculations in the SM, either MZ , MW , α(0) or
MZ ,GF , α(0) where MZ ,W are the Z and W boson masses,
α(0) is the fine-structure constant extracted in the Thomp-
son limit, and GF is the Fermi constant. This latter quantity
is extracted from muon three-body decays, whereas the oth-
ers are related essentially to self-energies. In general, this
extraction of the SM-like couplings and the Higgs vev can
be performed at one-loop for any theory, but the two-loop
relationships are only known for the SM and a small subset
of other models in certain limits.

At the tree level, the expectation value v of the Higgs
boson is related to the other parameters in the theory by the
requirement that the theory be at the minimum of the poten-
tial. To be concrete, consider the Higgs potential of the SM,
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V = μ2 |H |2+λ |H |4; then the minimisation condition gives

0 = μ2 + λ v2 . (1.1)

Since we do not have an observable for μ2 we typically use
this equation to eliminate it, giving the Higgs mass to be

m2
h = μ2 + 3 λ v2 = 2 λ v2 . (1.2)

However, once we go beyond tree level, there are several pos-
sible choices. The approach typically taken in BSM theories,
and in the SM in Ref. [66], is to insist that the expectation
value v is a fixed “observable”, and instead keep solving for
μ2 order-by-order in perturbation theory. In this way,

μ2 = −λ v2 − 1

v

∂�V

∂h

∣
∣
∣
∣
h=0

≡ −λ v2 − 1

v
th , (1.3)

where �V are the loop corrections to the effective potential,
and then the Higgs pole mass Mh reads

M2
h = 2 λ v2 − 1

v
th + �hh

(

M2
h

)

≡ 2 λ v2 + �M2
h , (1.4)

where �hh
(

M2
h

)

is the Higgs self-energy evaluated on-shell.
One of the chief advantages of this approach is that tadpole
diagrams do not appear in any processes, since they vanish
by construction.

On the other hand, while this is in principle a straightfor-
ward procedure to follow, it is complicated by the fact that
the self-energies and effective potential implicitly depend on
μ2. In Landau gauge, or the gaugeless limit, this leads to the
“Goldstone Boson Catastrophe” at two loops [67–70] – its
solution appears by consistently solving the above equation
order by order [27,33]. Indeed, one way to formalise this is
as a finite (or possibly IR-divergent) counterterm for μ2:

L ⊃ − (

μ2 + δμ2 + λ v2) v h − 1

2

(

μ2 + δμ2 + 3 λ v2) h2 + · · · ,

(1.5)

where δμ2 = − 1
v
th . Another drawback is that it manifestly

breaks gauge invariance, since the loop corrections above
depend on the gauge; and it also means that the expectation
value v is not an MS parameter, so the renormalisation-group
equations for the expectation value are no longer just given
by those of μ2 and λ, but have extra contributions [71,72].

However, there is a further drawback to the above proce-
dure which we wish to highlight in this paper. When consid-
ering a BSM theory with additional scalars that may have an
expectation value, it is typical to take the same approach as
for the scalar field in the SM and fix their expectation values,
solving the additional tadpole equations for other dimension-
ful parameters – for example, their mass-squared parameters,

or sometimes a cubic scalar coupling. To take the example
of a real singlet S with mass-squared Lagrangian parameter
m2

S – not to be confused with the pole mass, which we denote
MS – and expectation value vS , this means that analagously
to Eq. (1.3),

m2
S =

(

m2
S

)tree − 1

vS

∂�V

∂S
. (1.6)

If the loop corrections are not large, and vS is not small, this is
completely acceptable – so for models such as the NMSSM
there is generally no problem. However, if we consider a
different theory or regions of the parameter space where vS
is small, for example if mS � v and vS ∝ v2 (as may be
found in examples of EFT matching [41]) then we can easily
find the case that δm2

S >
(

m2
S

)tree
. This makes the calculation

unreliable.
The archetypal example of this problem is the case where

the neutral scalar obtaining an expectation value actually
comes from an SU (2) triplet T with expectation value vT
and mass-squared m2

T – for example in Dirac-gaugino mod-
els [73–76]. In that case, vT ∝ v2/m2

T multiplied by other
dimensionful parameters of the theory. Moreover, we require
that vT � 4 GeV from electroweak-precision constraints,
generally requiring mT � 1 TeV. So then

δm2
T ∼ 1

4 GeV
× 1

16π2 × O
(

TeV3
)

∼ 2.5 × O
(

TeV2
)

,

(1.7)

i.e. we see that there is a severe problem whenever vT /mT

is of the order of a loop factor.
Moreover, for such cases where vS is small, this procedure

works in the opposite way to that which we would desire. In
BSM theories the scalar expectation values beyond v are not
top-down inputs or tied closely to some observables, whereas
we may typically want to define the masses and couplings as
fixed by some high-energy boundary conditions (for exam-
ple constrained or minimal SUGRA conditions where soft
masses have a common origin). In this case we would like to
solve the tadpole equations for vS ; even if this would typically
lead to coupled cubic equations, nowadays it is almost trivial
to solve them numerically, or start from an approximation.

In this paper we will instead examine an alternative pro-
cedure, proposed by Fleischer and Jegerlehner in examining
Higgs decays in the SM [77], which has the potential to solve
both of these issues. Instead of taking the expectation values
as fixed, we take them to be the tree-level solutions of the
tadpole equations. This means that we do not work at the
“true” minimum of the potential and must include tadpole
diagrams in all processes. While this implies the addition of
some new Feynman diagrams in the Higgs mass calculation,
it is not technically more complicated than including finite
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counterterm insertions for μ2. This approach has the addi-
tional advantages that, since the Lagrangian is specified in
terms of MS parameters only, the result is manifestly gauge
independent, and the expectation values are just the solu-
tions to the tree-level tadpole equations. For these reasons,
it has been used and advocated in the SM, in particular at
two loops in Refs. [57,78–82]; and applied to certain exten-
sions of the Two Higgs Doublet Model (THDM) when con-
sidering decays [83–86]. We also note that this approach is
closely related to the various on-shell renormalisations used
in e.g. Refs. [87–90] in the THDM and the Minimal Super-
symmetric Standard Model (MSSM).

In the example of the SM at the one-loop order, this would
mean

M2
h = 2 λ v2 − 6 λ v

m2
h

t (1)
h + �

(1)
hh

(

m2
h

)

, (1.8)

where the superscripts in brackets indicate the loop order,
and we put the momentum in the self-energy at the tree-
level Higgs mass in order to respect the order of perturbation
theory. In other words, the tadpole contribution is suppressed
by the mass-squared of the Higgs, although – since m2

h =
2 λ v2 – here we find that they have a very similar form to the
previous approach. On the other hand, in the case of a heavy
singlet or triplet the contributions to the singlet self-energy
would be similarly suppressed by m2

S , and we can have mS

much greater than the triplet coupling – so the corrections to
the singlet mass would be well under control.

On the other hand, in the BSM context this approach was
proposed by Ref. [91] for the following very different rea-
son: by no-longer forcing the electroweak expectation value
to have its observed value, we allow new physics to disturb
the electroweak hierarchy. In the above approach, the con-
tribution − 6 λ v

m2
h
t (1)
h = − 3

v
t (1)
h is effectively the contribution

from a shift in v. We can view the calculation as equivalent
to counterterms for the expectation value δ(1)v, where

L ⊃−
(

μ2+λ v2
)

v h−
(

μ2+3 λ v2
)

δ(1)v h−· · · (1.9)

so that now

δ(1)v = − 1

m2
h

t (1)
h . (1.10)

In this case, if there is heavy new physics at a scale 	 � mh ,
then we shift the Higgs expectation value up to that new
scale suppressed only by a loop factor. Indeed in Ref. [91]
the proposal was to use

δm2
h

m2
h

≡ 1

m2
h

[

−3

v
t (1)
h + �

(1)
hh

(

m2
h

)]

(1.11)

as as a measure of fine-tuning of the theory.
Another perspective on the difference between the two

approaches is given by viewing the SM as an EFT. In this
case, in the EFT the SM receives corrections to both μ2 and
λ at the matching scale from integrating out heavy states
which can be done with v = 0. As discussed in Ref. [27],
when expanding in v, in order to respect gauge invariance
we must have:

�V = �V0 + 1

2
�Vhh |v=0 v2 + O

(

v4
)

+ · · · ,

�hh

(

m2
h

)

= �Vhh |v=0 + O
(

v2
)

(1.12)

and therefore th = v �Vhh |v=0 + · · · This shows that the
EFT-matching correction to μ2, which is �Vhh |v=0, and the
origin of the hierarchy problem, correspond to th/v to lowest
order in v. Hence in the “standard” approach of Eq. (1.4) this
cancels out and leaves only corrections proportional to v2

– whereas in the modified approach it remains and gives a
large shift to the Higgs mass.

However, the reappearance of the hierarchy is a problem
for the light Higgs mass, whereas the problem we wished
to solve actually appeared in new, heavy states! If we wish
to explore theories which may remain natural while having
heavy states, such as those in Ref. [91], then the modified
tadpole approach should work best. There must consequently
be some trade-off between losing control of the light Higgs
and losing control of the heavier states (and losing gauge
invariance too). In Sect. 2 we will set up the necessary general
formalism and explore this in detail for a toy model.

However, there are two potential solutions to allow us to
have the best of both worlds:

1. Retain counterterms for μ2 as in Eq. (1.5) for the SM
Higgs, but only for them. This is somewhat tricky to
automate, since we must make a special case of the elec-
troweak sector, and we also lose gauge invariance.

2. For cases where the tuning of the hierarchy becomes
large, use EFT pole matching [26] with the modified
treatment of tadpoles. This way, the heavy states remain
entirely under control, we keep the heavy masses and
couplings as top-down inputs (that remain genuinely MS
or DR

′
), and we have gauge invariance built-in.

In Sect. 4 we will adopt the second approach for the example
of the general NMSSM (and apply it specifically to the variant
known as the μNMSSM [63]). We establish the necessary
formalism for the matching and give a detailed examination,
via implementing the computation in a modified SPheno
[92,93] code generated from SARAH [13,16,33,94–98].
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2 Treatment of tadpoles for theories with heavy scalars

For a general renormalisable field theory, once we have
solved the vacuum minimisation conditions and diagonalised
the mass matrices, we can write the potential in terms of real
scalar fields {φi } as

V = const + 1

2
m2
i φ2

i + 1

6
ai jk φi φ j φk + 1

24
λi jkl φi φ j φk φl .

(2.1)

If we take the standard approach and fix the expectation val-
ues, adjusting the mass parameters order by order in pertur-
bation theory, then as described in Ref. [27] we can write the
pole masses as

(

M2
i

)(1) = m2
i + �i i + �

(1)
i i

(

m2
i

)

≡ m2
i + �M2

i . (2.2)

To define the shifts �i i in a general way, we must start from
some basis of fields

{

φ0
i

}

split into expectation values and

fluctuations so that φ0
i ≡ vi + φ̂0

i and then diagonalise the
fields via φ̂0

i = Ri j φi . In the simplest case where we solve
the tadpole equations for some mass-squared parameters in
the original basis and where we ignore pseudoscalars, we can
then write

�i i = −
∑

k

R2
ki

1

vk

∂�V

∂φ̂0
k

∣
∣
∣
∣
∣
φ̂0
k=0

= −
∑

k,l

R2
ki Rlk

1

vk
t (1)
l .

(2.3)

The generalisation to solving for other variables (such as
cubic scalar couplings) and to include pseudoscalar mass
shifts is given in Ref. [33].

On the other hand, taking the modified approach and
including the tadpole diagrams, the pole masses up to one
loop are simply

(

M2
i

)(1) = m̂2
i − 1

m̂2
j

aii j t
(1)
j + �

(1)
i i

(

m̂2
i

)

≡ m̂2
i + �̂

(1)
i i

(

m̂2
i

)

,

(2.4)

where we have defined m̂2
i to be the tree-level mass when

we are using the modified scheme (we will later drop the
distinction between mi and m̂i , see below) and �̂i j

(

p2
)

for
later use to be the self-energies including the tadpoles. The
expressions for the tadpoles and self-energies at one loop
can be found e.g. in Refs. [27,99]; this calculation is there-
fore more straightforward to automate, being purely diagram-
matic in nature. An explicitly gauge-invariant expression for
this (i.e. one where there are no gauge-fixing parameters
present) will be given in future work.

At this point the reader may object that, no matter what
technique we use to calculate masses, the result for a given
theory should be the same up to higher-loop corrections.
Unfortunately this is made obscure by the difficulties in gen-
eral in defining the parameters of our theory. To compare the
two calculations for the same parameter point, in the stan-
dard approach we are invited to treat the expectation values
as fundamental, so if we start from a theory defined in this
way, we must:

1. Calculate loop-level masses in the standard approach for
a given choice of expectation values (with the associated
problems when those expectation values are small).

2. Extract the Lagrangian parameters from the loop-corrected
tadpole equations.

3. Solve the tree-level vacuum stability equations with these
new parameters, obtaining the expectation values for use
in the alternative approach.

4. Compute the new tree-level spectrum using these expec-
tation values

5. Compute the loop-corrected masses in the alternative
approach.

Let us denote the tree-level masses and expectation values
in the alternative approach as m̂i and v̂i , and for simplic-
ity assume that we solve the tadpole equations for some
mass-squared parameters (rather than cubic couplings, say).
Then, by passing back to the basis in which the fields are
not diagonalised, where the Lagrangian mass parameters
are m2

0,i j = m̂2
0,i j + δm2

0,i j and the Lagrangian couplings
are a0,i jk, λ0,i jkl , we can carry out the above steps and solve
perturbatively for the expectation values v̂i in the modified
scheme:

0 = (

m2
0,i j + δm2

0,i j

)

v j + 1

2
a0,i jk v j vk + 1

6
λ0,i jkl v j vk vl + t0,i

= (

m2
0,i j + δm2

0,i j

)

v̂ j + 1

2
a0,i jk v̂ j v̂k + 1

6
λ0,i jkl v̂ j v̂k v̂l . (2.5)

We have written t0,i for the one-loop tadpole to emphasise
that it is in the undiagonalised basis; to go to the mass-
diagonal basis we need to rotate by the matrix Ri j as above.
Writing v̂i = vi + δvi we obtain

0 = −t0,i + M2
0,i j δv j , (2.6)

where M2
0,i j is the tree-level mass matrix of scalars in the

standard scheme. This can be trivially solved by rotating to
the mass-diagonal basis. We then write the tree-level mass
matrix in the alternative scheme as

M̂2
0,i j = M2

0,i j + δm2
0,i j + a0,i jk δvk + λ0,i jkl vk δvl .

(2.7)
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Using the same matrix Ri j we can rotate this to obtain1

m̂2
i = (

RT M̂2
0 R

)

i i = m2
i + �i i + aiik

t (1)
k

m2
k

+ O(2-loop).

(2.8)

Inserting this into (2.4) gives (2.2).
Of course, this comes with the associated problems of

defining the theory in the standard approach: if we have a
small expectation value, then (as we shall illustrate below)
the loop corrections in �i i can be very large, so the mass of
the heavy scalar may differ greatly from the tree-level one.
Making a conversion in this way just ensures that we see the
same problem in the alternative treatment. Instead, for such
points we should start with a theory defined in the alternative
manner.
Then, to compare the same point for the standard calculation
one should:

1. Calculate loop-level masses in the alternative approach
for a given choice of masses and couplings.

2. Iteratively solve the loop-level vacuum stability equa-
tions to obtain the loop-corrected expectation values vi
for use in the standard scheme.

3. Use these expectation values to compute the tree-level
spectrum for use in the standard scheme (if we are using
the approach with “consistent tadpoles”)2

4. Compute the loop-corrected masses in the standard
approach.

In this way, we should obtain the same result (up to higher-
order differences) for our desired point as in the alternative
scheme. However, the key complicating factor is step 2: it
assumes that we can efficiently and accurately find the true
minimum of the potential. This can only be done by itera-
tion of the tadpole equations; this involves recomputing the
masses and couplings of the theory at each step and is there-
fore often numerically expensive (especially at higher loop
orders). On the other hand, if we do this perturbatively, then
we are effectively using the alternative scheme!

Disclaimer

While the above discussion is reassuring for the consistency
of our calculations, in the following we will not (for the
most part) compare masses at the same parameter point,
for the obvious reason that the results would be almost the

1 Recall that ai jk = (a0,i ′ j ′k′ + λ0,i ′ j ′k′l ′ vl ′ ) Ri ′i R j ′ j Rk′k .
2 In principle it is possible, and simpler, to just use the “true” input
masses in the standard approach. This would vitiate the problem to a
large extent, but would then lead to the well-known infra-red issues at
two loops, or uncancelled logarithms in EFT matching, etc.

same. Instead, what we want to illustrate is the difficulty
in even defining our theory: in the standard approach, since
we are required to choose a vacuum-expectation value for
the heavy singlet fields (which are not physical parameters),
the phenomenologist will often use a guess or a tree-level-
approximate solution for this, rather than iteratively solve the
tadpole equations (which, in any case, would lead to a dif-
ferent input value depending on the chosen loop order). We
shall take this naive approach below, and compare (in most
cases) theories with the same tree-level spectrum by taking
the expecation values to be the same in both the standard
and modified schemes. Of course, according to the discus-
sion above, these are not the same parameter points: we are
instead illustrating the differences in methods of defining the
theory, and will show how the alternative scheme gives a
much more stable and efficient definition (at least in cases
where the hierarchy problem for the light Higgs does not
become severe).

2.1 A toy model

Let us now apply the above general expressions to the sim-
plest toy model that can illustrate the differences of prescrip-
tions for dealing with radiative corrections to tadpoles. This
consists of the abelian Goldstone model coupled to a real
singlet S, and has scalar potential

V = μ2 |H |2 + 1

4
λ |H |4 + 1

2
m2

S S
2 + aSH S |H |2

+ λSH S2 |H |2 + aS S
3 + λS S

4 (2.9)

with the fields

H ≡ 1√
2

(v + h + i G) , S ≡ vS + Ŝ , (2.10)

v and vS denoting the Higgs and singlet vacuum expectation
values (vevs), respectively. The minimisation conditions at
the tree level yield the equations

−μ2 = 1

4
λ v2 + aSH vS + λSH v2

S (2.11a)
(

m2
S + λSH v2

)

vS = −1

2
aSH v2 − 3 aS v2

S − 4 λS v3
S

(2.11b)

that lead to the tree-level (squared) mass matrix for the scalars
(which do not mix with the massless pseudoscalar):

M2
tree =

(
1
2 λ v2 aSH v + 2 λSH v vS

aSH v + 2 λSH v vS m2
S + λSH v2 + 6 aS vS + 12 λS v2

S

)

.

(2.12)
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tadpole topologies self-energy topologies connected tadpole topologies

Fig. 1 left: one-loop tadpole diagrams; middle: one-loop self-energy diagrams appearing in standard and modified calculation; right: additional
self-energy diagrams in the modified approach

The one-particle irreducible one-loop contributions to the
one- and two-point functions (see Fig. 1) of this toy model
are given by

t(1)
i = − κ

2
ai j j A

(

m2
j

)

(2.13a)

�
(1)
i j

(

p2
)

= κ

[
1

2
λi jkk A

(

m2
k

)

− 1

2
aikl a jkl B

(

p2,m2
k ,m

2
l

)]

(2.13b)

with A and B denoting the scalar one-point and two-point
one-loop integrals in the conventions of e.g. Refs. [27,99],
κ ≡ (16π2)−1 and p2 denoting the external momentum.
In the approach of keeping the vevs fixed, we find for the
one-loop pole masses:

(

M2
i

)(1) = m2
i − R2

i1
1

v
t (1)
h − R2

i2
1

vS
t (1)
S + �i i

(

m2
i

)

,

(2.14)

where t (1)
h = ∂�V

/

∂h
∣
∣
h,Ŝ=0 , t (1)

S = ∂�V
/

∂S
∣
∣
h,Ŝ=0 . Thus

the tadpole corrections suffer from the division by the vev;
in particular, the mass predictions can become numerically
unstable in scenarios with a small singlet vev. Let us see this
in practice for our example when m2

S is large; in this case

vS ∼ −aSH v2

2m2
S

, R ∼
(

1 − aSH v

m2
S

aSH v

m2
S

1

)

. (2.15)

If we take v small and just look at the singlet mass in the
limit p2 → 0 for simplicity,3 we have

�M2
S ≈ �SS(0) − 1

vS
tS ⊃ −3 aS m2

S κ

vS

(

logm2
S − 1

) + · · ·
(2.16)

where logm2
S ≡ logm2

S/Q
2 for renormalisation scale Q.

When the system is really decoupled and v = 0, then vS ∼
m2

S

/

(6aS) and this expression remains well-controlled, but
when 0 < v � mS – which is the case we are interested in
– we instead have

3 This limit is not implemented in our code and serves only the more
lucid presentation. In fact, an off-shell evaluation of the self-energies
implies unphysical behaviour of Higgs-mass predictions [100].

�M2
S ∝ 6 aS m4

S

16 π2 aSH v2 logm2
S (2.17)

which can be very large compared to m2
S .

If we take the modified approach to tadpoles, then the
relevant generic expression for the self-energy is

�̂
(1)
i j

(

p2
)

= 1

16 π2

[

1

2
λi jkk A

(

m2
k

)

− 1

2
aikl a jkl B

(

p2,m2
k ,m

2
l

)

− 1

2m2
k

ai jk akll A
(

m2
l

)
]

; (2.18)

and for our example

�̂
(1)
SS

(

m2
S

)

≈ �SS(0) − a2
SH κ

2m2
h

A
(

m2
S

)

− 3 a2
S κ

m2
S

A
(

m2
S

)

+ · · ·

∼ −κ

2

(

a2
SH

m2
h

− 24 λS

)

m2
S logm2

S . (2.19)

Provided that aSH � mh this is well under control, in contrast
to the previous “standard” approach.

2.2 Numerical examples

In this section we shall illustrate the different behaviours
of the two approaches to tadpoles in the toy model defined
in Eq. (2.9) through numerical examples. For this purpose,
we present results for the one-loop pole masses Mh and MS

computed diagrammatically both in the standard approach
– following Eq. (2.2) – and in the modified approach of equa-
tion (2.4). We shall consider points defined to have the same
tree-level spectrum, but whose loop-corrected masses differ
according to the scheme used. As described in the disclaimer
above, these are not therefore the same points in parameter
space: this illustrates the difficulty in defining the model.

For all the following figures, we set λ = 0.52, to reproduce
a light “Higgs” (noting that there are no gauge fields) near 125
GeV, and we also fix λSH = 0 and λS = 1/24. In each case,
we shall fix the MS parametermS and solve the tree-level tad-
pole equations numerically to obtain vS and fix v = 246GeV.
Then the calculation in the modified scheme gives the correct
value for the scalar masses. For comparison, in each of the
Figs. 2, 3, 4 and 5 we use these same values as inputs for
the conventional scheme, where we treat the derived value
for vS as the “all orders” expectation value; this means that,
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Fig. 2 Mh (left) and MS (right) as a function of aSH . mtree
S = Q =

2000 GeV, aS = 100 GeV, λ = 0.52, λSH = 0, λS = 1/24. The
tree-level values are shown with the green curves, while the red and

blue curves correspond to the one-loop results using respectively the
standard (Eq. (2.2)) and modified (Eq. (2.4)) treatments of tadpoles

Fig. 3 Mh (left) and MS (right) as a function of mtree
S . Q = mtree

S , aSH = 150 GeV, aS = 100 GeV, λ = 0.52, λSH = 0, λS = 1/24. The colours
for the different curves are the same as in Fig. 2

Fig. 4 Mh (left) and MS (right) as a function of aSH . mtree
S = 1000 GeV, Q = 5000 GeV, aS = 0 GeV, λ = 0.52, λSH = 0, λS = 1/24. The

colours for the different curves are the same as in Fig. 2
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Fig. 5 Mh (left) and MS (right) as a function of aSH . mtree
S = Q = 500 GeV, aS = 0 GeV, λSH = 0, λ = 0.52, λS = 1/24. The colours for the

different curves are the same as in Fig. 2

in the standard scheme, (m2
S)

mod. = (m2
S)

tree, the tree-level
value, and is not actually the MS mass-squared parameter
any more. Hence, as mentioned above, these represent dif-
ferent parameter points now; only the tree-level spectra are
the same. To avoid ambiguity, we shall therefore use (m2

S)
tree

since it is the input value for both schemes. In this way we
see that two ways of defining the theory at tree-level can give,
at times, drastically different results. In Sect. 2.3 we provide
as a consistency check a comparison of the approaches with
a conversion of the parameters.

In Fig. 2, we show first Mh (left side) and MS (right
side) as a function of the trilinear coupling aSH , at tree
level (green curves) and at one loop in the standard (red
curves) and modified (blue curves) schemes for the tad-
poles. We choose here a scenario with a large Lagrangian
mass term mtree

S = 2000 GeV and a non-zero trilinear self-
coupling aS = 100 GeV for the singlet (and we also fix
the renormalisation scale to be Q = 2000 GeV). Conse-
quently, we find ourselves exactly in the dangerous region
0 < v � mS , c.f. Eq. (2.17), and as expected from our
theoretical discussion, we find that the standard treatment
of the tadpoles breaks down. On the one hand, for Mh one
can observe that the radiative corrections are larger in the
standard approach and lead to larger variations of the loop-
corrected mass than in the modified tadpole scheme. On the
other hand, more strikingly, the results for MS in the stan-
dard approach are manifestly spurious. Indeed, while the loop
corrections in the modified scheme remain very small (the
green tree-level and blue one-loop curves are almost superim-
posed), in the standard scheme the corrections are huge: for
large aSH � v – meaning not too small values of the singlet
vev vS – they already amount to several hundred GeV, and if
one decreases aSH (thereby increasing �M2

S , c.f. Eq. (2.17))
the singlet pole mass becomes tachyonic below aSH = v.

Next, in Fig. 3, we fix the trilinear coupling aSH =
150 GeV and now consider Mh (left) and MS (right) as

a function of the Lagrangian mass term mtree
S . We also set

Q = mtree
S and aS = 100 GeV. Once again, with our choice

of a non-zero singlet trilinear self-coupling aS and relatively
small aSH – hence also a small singlet vev – we expect the
standard approach to exhibit instabilities. For Mh (left side of
Fig. 3) both approaches behave relatively well and no insta-
bility seems to occur, although the radiative corrections are
significantly larger in the standard scheme. However, for MS

the calculation in the standard approach (red curve) once
again breaks down when mtree

S is increased – equivalently for
small vS – while the loop corrections to MS in the modified
approach (blue curve) remain minute.

In Fig. 4, we illustrate the behaviour of Eq. (2.19). We
plot once more Mh (left) and MS (right) as a function of the
trilinear coupling aSH , but now for a scenario where aS = 0
(in order to avoid large corrections �M2

S in the standard
scheme), and with mtree

S = 1000 GeV and Q = 5000 GeV
so as to increase the size of the logarithms log (m2

S)
tree . For

small values of aSH , both schemes (red and blue curves) pro-
duce very similar results, however, as aSH becomes larger the
radiative corrections to Mh as well as MS increase signifi-
cantly in the modified tadpole scheme, leading to less reliable
predictions (especially for aSH � 300–400 GeV).

Finally, we present in Fig. 5 an example of scenario
in which both ways to treat the tadpole contributions give
reliable results. We take a small singlet mass parameter
mS = 500 GeV, set aS = 0 and maintain aSH < 200 GeV.
We observe here that the radiative corrections to Mh and MS

remain well behaved in both approaches.

2.3 Comparisons at the same point

Here, for clarity (and as a consistency check) we shall follow
the (first) prescription in Sect. 2 and compare the two schemes
for computing the one-loop masses in our toy model at the
same parameter point. We consider the same input parameters
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as in Fig. 3, except that now we scan over the true MS mass
mS in both schemes. The calculation in the modified scheme
is therefore identical to those in Fig. 3, but we then solve the
tadpole equations for μ2 and m2

S at the one-loop order to find
the values of v, vS ; while the value for v changes little, the
equation for vS becomes

0 =
(

m2
S + λSH v2

)

vS + 1

2
aSH v2 + 3 aS v2

S + 4 λS v3
S + tS

(

m2
S

)

.

(2.20)

We then use this new value for vS to compute the tree
and loop-level spectra in the standard scheme. In Fig. 6 we
employ consistent tadpoles, so that we obtain a value for
(m2

S)
tree which satisfies Eq. (2.11b) and use this to compute

the tree-level spectrum, and as input for the loop computa-
tion with the appropriate perturbative shifts to the loop mass;
neglecting mixing between the light and heavy scalars we
have

(M2
S)

tree � −aSH v2

2 vS
+ vS (3 aS + 8 vS λS) , (2.21a)

M2
S � (M2

S)
tree− 1

vS
tS

(

(m2
S)

tree)+�SS
(

(M2
S)

tree; (m2
S)

tree) .

(2.21b)

We have written (m2
S)

tree in the arguments of the tadpoles
and self-energies to show the explicit dependence in the loop
functions. In the left and right-hand plots of Fig. 6 we there-
fore see that the shift between m2

S and (m2
S)

tree becomes very
large, and this leads to a breakdown of the (primitive) itera-
tive algorithm that we use to solve for vS , hence the standard
scheme curves end near mS = 1250 GeV, while the mod-
ified scheme has no such issue and the difference between
loop-corrected and tree-level masses is negligible. This gives
a different perspective on the general problem of calculating
masses in such models. On the other hand, we see that, while
the tree-level masses can differ significantly (even for the
light “Higgs”) the loop masses agree to a high precision, as
they should.

For a final comparison, we give in Fig. 7 the same com-
putation but where, instead of “consistent tadpoles” we use
the true MS mass m2

S obtained from Eq. (2.20) in all of the
loop functions so that

(M2
S)

tree � −aSHv2

2 vS
+ vS (3 aS + 8 vS λS) − 1

vS
tS

(

m2
S

)

(2.22a)

M2
S � (M2

S)
tree + �SS

(

(M2
S)

tree;m2
S

)

. (2.22b)

Aside from a shuffling of the tadpole term between the “tree-
level” mass in the standard scheme, which now ensures that
all of the curves on the right-hand side of Fig. 7 lie on top
of each other (modulo the same proviso that the algorithm

for finding vS breaks down) the differences between these
two versions of the standard scheme then only exist at two
loops. From Fig. 7 it would seem that avoiding the consistent
tadpoles would be preferable in these cases, but of course then
the above equations mix tree-level and loop-level quantities,
so we have problems with EFT matching at one loop (because
subleading logarithms do not cancel) and infra-red issues at
two loops.

3 Pole mass matching with tadpole insertions

When matching two theories via pole masses, care must be
taken that subleading logarithms are correctly subtracted.
The best way to do this is to expand the expressions on both
sides of the matching relation in terms of the same parame-
ters; the most efficient way to do this is to use those of the
high-energy theory (HET) even though this adds a layer of
complication because it is the SM parameters that we know
from the bottom-up observations. To this end we require
the shifts in the vacuum expectation value as well as gauge,
Yukawa and of course quartic couplings.

The most straightforward way to match the vacuum-
expectation value of the Higgs is via matching the Z mass,
which gives (see e.g. Refs. [26,29,41]):

v2
SM = v2

HET + 4

g2
Y + g2

2

[

�̂HET
Z Z (0) − �̂SM

Z Z (0)
]

+ O
(

v4
)

.

(3.1)

If we match the one-loop Higgs mass in the SM to the HET,
where the light Higgs mass at tree level is m0, then we have

2 λSM v2
SM + �̂SM

hh

(

2 λSM v2
SM

)

= m2
0 + �̂HET

hh

(

m2
0

)

(3.2a)

λSM = 1

2 v2
HET

{

m2
0 + �̂HET

hh

(

m2
0

)

− �̂SM
hh

(

m2
0

)

− 4m2
0

v2
HET

(

g2
Y + g2

2

)

[

�̂HET
Z Z (0) − �̂SM

Z Z (0)
]}

.

(3.2b)

It should be noted that – in order to preserve gauge invariance,
and cancel large logarithms exactly without introducing spu-
rious subleading ones – the matching of the quartic coupling
should be performed according to this equation, as opposed to
performing some iteration, matching eigenvalues of the mass
matrices, or separately matching the expectation values and
Higgs mass (as performed in some codes) [32,51]. With the
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Fig. 6 Mh (left) and MS (right) as a function of the true MS parameter mS in both the standard and modified schemes, where the standard scheme
is performed according to the “consistent tadpole” prescription. Other parameters as in Fig. 3

Fig. 7 Mh (left) and MS (right) as a function of the true MS parameter mS in both the standard and modified schemes, where the standard scheme
does not involve “consistent tadpoles” but the true MS mass mS is used everywhere. Other parameters as in Fig. 3

prescription of including tadpole diagrams, this leads to

�̂hh ≡ �hh − ahhk
1

m2
k

tk , �̂Z Z ≡ �Z Z − gZ Zk
1

m2
k

tk .

(3.3)

In the SM with L ⊃ −λSM |H |4 we have

�̂SM
hh ≡ �SM

hh − 6 λ v

m2
h

tSM
h = �SM

hh − 3

v
tSM
h ,

�̂SM
Z Z ≡ �SM

Z Z − 2 M2
Z

vm2
h

tSM
k (3.4)

and so

�̂SM
hh − m2

h

M2
Z

�̂SM
Z Z = �SM

hh − m2
h

M2
Z

�SM
Z Z − 3

v
tSM
h + 2

v
tSM
h

= �M2
SM − m2

h

M2
Z

�SM
Z Z , (3.5)

where the �M2
SM is now just the standard set of vacuum

conditions as in Eqs. (1.4) or (2.2). So what we have shown
is that the modified treament of tadpoles cancels out exactly in
the matching of the light Higgs, for the SM part. Of course,
the shift in the matching condition should only depend on
the Lagrangian parameters, which are not affected by the
treatment of tadpoles, so the same is true for the matching in
the HET part up to terms of higher order in v.

We have already implicitly shown how the change in
scheme affects the matching of the gauge bosons; now for
fermions we have

�Fi Fj (p) = i (/p − mF ) δi j + i
[

/p
(

PL ̂L
i j

(

p2
)

+ PR ̂R
i j

(

p2
))

+PL ̂SL
i j

(

p2
)

+ PR ̂SR
i j

(

p2
)]

. (3.6)

For fermions at one loop we can write the mass-matrix cor-
rections as

δmF = −SL − 1

2

(

R m + m L
)

. (3.7)
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This means that our tadpole shift just affects

δSL = δSR = 1

m2
k

yi jk
∂V

∂φk
, (3.8)

where yi jk are the Yukawa couplings, that can be written in
terms of Weyl spinors {ψi } as

L ⊃ −1

2
yi jk ψi ψ j φk . (3.9)

To match the Yukawa couplings via the pole masses of the
quarks, the matching of the electroweak expectation value
must also be included; working in the basis with diagonalised
Yukawa couplings, we can match the diagonal elements as
(using Y F ≡ yFFh for h the SM Higgs and a general fermion
F)

MF = v Y F − SL − 1

2

(

R m + m L
)

, (3.10a)

Y F
SM = Y F

HET

+ 1

vHET

[

(δmF )HET − (δmF )SM − 1

m2
k

yFFk
HET tk + 1

m2
h

Y F
SM tSM

h

]

− Y F
HET

2 M2
Z

[

�̂HET
Z Z (0) − �̂SM

Z Z (0)
]

= Y F
HET + 1

vHET

[

(δmF )HET − (δmF )SM − 1

m2
k

yFFk
HET tk

]

− Y F
HET

2 M2
Z

[

�̂HET
Z Z (0) − �SM

Z Z (0)
]

, (3.10b)

where we once again see that the shift in the tadpole scheme
cancels out exactly in the SM part. This procedure is particu-
larly important since the shift to the expectation value arising
in Eq. (3.1) is very large, as discussed in the introduction. In
this case, since the corrections to μ2 – and therefore also to v2

– are very large, it becomes impractical in an implementation
to actually use the “correct” value of v2 in the high-energy
theory. Indeed, this can even become impossible, if δμ2 is
such that μ2 would become positive in the SM! Instead, pro-
vided we take v much less than the matching scale, we can
just treat it as perturbation parameter to extract the SM val-
ues. In our numerical calculation in the next section we do
exactly this: we just use the SM value of v in both high- and
low-energy theories, but use the correct shifts of the expec-
tation values in the matching of the parameters. This is very
similar to a standard EFT calculation, which assumes e.g. in
split supersymmetry that the heavy Higgs masses are tuned
according to the mixing angle given as an input, and takes
v = 0 explicitly, since we are not interested in corrections
to Lagrangian parameters of order v2

/

M2 where M is the
matching scale.

4 Application in the µNMSSM

In the introduction, we explained that the modified treatment
of tadpoles can be useful for stability under perturbation the-
ory of heavy scalar masses when they are associated with a
small expectation value. In Sect. 2 we showed how it worked
in practice in a toy model. In Sect. 3 we described how,
for theories where the new scalars are substantially above
the electroweak scale, it can be practically applied via EFT
matching of the pole masses. Here, we shall apply this tech-
nique to a real test case, the μNMSSM.

4.1 NMSSM, μNMSSM and GNMSSM

The superpotential of the most general form of the NMSSM
– the GNMSSM – is [101,102]

WGNMSSM = Yu Q · Hu U − Yd Q · Hd D − Ye L · Hd E

+ 1

3
κ S3 + (μ + λ S)Hu · Hd + ξ S + 1

2
μS S

2

and the supersymmetry-breaking terms in the Higgs sector
are

Vsoft ⊃ m2
S |S|2 + m2

Hu
|Hu |2 + m2

Hd
|Hd |2

+
(

Bμ Hu · Hd + Tλ S Hu · Hd + 1

3
Tκ S3

+ 1

2
BS S

2 + ξS S + h.c.

)

. (4.1)

Once the singlet develops an expectation value, we can write
effective terms

μeff ≡ μ + 1√
2

λ vS ,

Beff ≡ Bμ + 1√
2
Tλ vS + λ

(

ξ + 1√
2

μS vS + 1

2
κ v2

S

)

(4.2)

and the tadpole equations become

0 = −Beff cot β + m2
Hu

+ μ2
eff − M2

Z

2
c2β + 1

2
λ c2

β (4.3a)

0 = −Beff tan β + m2
Hd

+ μ2
eff + M2

Z

2
c2β + 1

2
λ s2

β (4.3b)

0 = vS

(

BS + m2
S + μ2

S + 2 κ ξ
)

+ 1√
2

v2
S (Tκ + 3 κ μS) + κ2 v3

S

+ √
2 μS ξ + √

2 ξS

+ 1

2
√

2
v2

(

2 λ μeff − (Tλ + 2 κ λ vS + μS λ) s2β

)

.

(4.3c)
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The first two lines are essentially modified versions of the
MSSM tadpole equations with an extra term from the λ cou-
pling. The third line, however, is the crucial one for our
discussion. In a general non-supersymmetric theory, we can
redefine singlet fields to remove their tadpole terms. How-
ever, in the GNMSSM, which has tadpole parameters ξ in the
superpotential and ξS in the soft-breaking terms, we can only
remove one of these, or the combination

√
2 μS ξ + √

2 ξS .
Clearly in the GNMSSM, it is most logical to choose

a linear combination of the singlet tadpole terms ξ and ξS
(or just one) as the variable to be eliminated by the tadpole
equations. However, this is not possible in the NMSSM or
μNMSSM, since these terms vanish by the assumption of (at
least partial) Z3 symmetry. Then aside from (m2

Hu
,m2

Hd
) or

(μ, Bμ), the dimensionful parameter that we can now choose
for elimination via the singlet tadpole equation is one of
{

m2
S, μeff , Tλ, Tκ

}

.
We are interested in the case that the singlet is rather

heavier than the SM-like Higgs, so that v2
/

m2
S � 1.

This is clearly at best problematic in the NMSSM, since
μeff , Beff ∝ vS so if we imagine vS ∼ GeV we will have
very light higgsinos, pseudoscalar/charged Higgs and diffi-
culties solving the tadpole equations. Hence we turn to the
μNMSSM, where we neglect all terms that break theZ3 sym-
metry except for μ and Bμ, and find

vS � −v2

(

2 λ μ − Tλ s2β

2
√

2m2
S

)

, (4.4)

where the true value can be found numerically.
The logical choice for this case is to solve for Tλ. In this

case we have

�Tλ = − 2
√

2

v2 s2β

∂�V

∂vS
, (4.5)

and the terms in the mass matrix become

M2
h0
uh

0
u

⊃ − vS t
(1)
S

v2 sβ cβ

+ · · · ∝ t (1)
S

m2
S

,

M2
h0
usR

= −m2
S vS + t (1)

S

v sβ
+ · · · . (4.6)

Note that this is in the “flavour basis” before we diagonalise
the fields at tree level, so the contributions to the light Higgs
and heavy singlet masses are ∝ t (1)

S

/

m2
S .

On the other hand, this choice leads to a (potentially very)
large quantum correction to Tλ. Suppose we want to investi-
gate gauge-mediation scenarios where trilinears are small
(nearly vanishing), or are otherwise specified by the top-
down inputs – this would be completely inappropriate. Fur-
thermore, we have to not only take into account shifts in

the masses but also the couplings – this is moderately cum-
bersome to implement at one loop, but much more so if we
want to compute the two-loop corrections. Indeed, it is not
included in the algorithm to generate “consistent vacuum
equations” of Refs. [27,70], which assumes that the parame-
ters that we solve the tadpole equations for only affect scalar
masses.

To solve both of these issues the simplest choice is to
solve for m2

S , and this leads to exactly the same problem
as in the toy model, that the corrections to the singlet mass
scale as t (1)

S

/

vS leading to numerical instabilities for tiny vS .
Hence this model is an excellent prototype for comparing the
different approaches to solving the tadpole equations.

4.2 Numerical comparison of tadpole schemes

In the μNMSSM and GNMSSM, we not only have a Higgs
sector, but also squarks, sleptons, a gluino and electroweaki-
nos. In particular the colourful states have a large impact on
the mass of the light Higgs, and, when they are heavy enough
to be safe from current collider searches, they cause the “little
hierarchy problem” to manifest itself. If we try to apply our
modified tadpole scheme directly to these models, then we
find all of the problems associated with this little hierarchy in
our Higgs-mass calculation. Therefore it is only sensible to
use EFT matching for the light Higgs mass. In this section we
shall endeavour to show that with such an approach we can
solve the technical difficulties with computing the masses of
both light and heavy Higgs bosons.

We shall present here numerical investigations of several
scenarios of the μNMSSM and GNMSSM illustrating the
differences between the two approaches to the treatment of
tadpoles, both using EFT matching. For this, we compare
results obtained using the original version of SPheno code
obtained directly from SARAH (for the model SMSSM), as
well as with a version of the Fortran output extensively
modified according to the prescriptions described in Sect. 3.4

In these calculations we must refer the reader again to our
disclaimer, that we shall compare parameter points that gen-
erate the same tree-level spectrum in the two schemes, but
that differ from each other at higher order; because this pro-
vides the clearest illustration of the problems faced (namely
how to even define the parameter point). In contrast to the
toy model, we will give no examples with a complete con-
version of parameters, i.e. a comparison of both calculations
at the same point, since the actual procedure of converting
between the schemes is too onerous for technical reasons.
In the SARAH/SPheno code, while a numerical solution of
the tadpole equations (required for providing MS input to the

4 This private code is not intended for public release, although it is
available on request from the authors. The new functionality should
eventually be made available in a future release of SARAH.
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Fig. 8 Mh1 (left) and Mh2 and Mh3 (right) as a function of vS in
a scenario of the μNMSSM. The other inputs are taken as follows:
λ = κ = 0.1, Tλ = 200 GeV, Tκ = −10 GeV, μ = 100 GeV,
Bμ = 6 · 105 GeV2. Tree-level values are shown with green curves,

while the red and blue curves correspond to the pole masses computed
at one loop, respectively with the standard and modified approaches to
the tadpoles. The colour coding of the lines remains the same for all
figures in this Section

standard scheme) is in principle possible, it is labourious and
not implemented for loop computations where the variable to
solve for is the vacuum expectation value.5 Therefore, again
we take the tree-level value of vS as input for the modified
scheme, and treat it as the “all-orders” expectation value in
the standard scheme (with consistent tadpoles) thus ensuring
the same tree-level spectrum, but potentially vastly different
results at one loop due to the large corrections to m2

S in the
standard scheme. Again we stress that this is typical of the
ambiguity in defining a parameter point that the phenome-
nologist is invited to suffer, thanks to the expedient in the
standard scheme of hiding loop corrections in the definition
of the expectation values.

In Sect. 4.2.1 we give an example of the above reason-
ing in the μNMSSM. For illustration in Sect. 4.2.2 we also
give examples in the GNMSSM where we solve the tadpoles
for the same variables (m2

Hu
, m2

Hd
, m2

S) which allows us to
compare several different scenarios.

4.2.1 μNMSSM

In Fig. 8, we present the behaviour of the three CP-even
mass eigenvalues – i.e. the lightest Higgs mass Mh1 (left
side) and the masses of the additional CP-even states Mh2

and Mh3 (right side) – as a function of the singlet vev vS in
a μNMSSM scenario, where the underlying parameters are
given in the caption. The tree-level values are shown in green,
while the one-loop results using the standard and the modi-
fied treatments of tadpoles are in red and blue respectively.
We consider here a low range of values for vS , so that, fol-
lowing our discussion in the previous section, we expect the
standard approach to perform poorly for the singlet-like mass

5 This development in SARAH is envisioned in the future.

eigenstate. This is indeed what we observe if we turn to the
right-side plot: for lower vS (� 0.1–1 GeV) the singlet-like
scalar is the heaviest eigenstate h3, while after level cross-
ing it is h2 for larger vS . For the entire range of vS the mass
corrections in the standard approach are huge, and they grow
as large as 50 TeV for vS = 0.001 GeV – i.e. 250% of the
tree-level result! On the other hand, if we look instead at
the lightest Higgs boson h1, we find that the radiative cor-
rections are somewhat larger with the modified treatment of
the tadpole diagrams, and increase significantly with vS in
this scenario – due to the contributions from the tadpole dia-
gram with a relatively large value of Tλ = 200 GeV and a
relatively small tree-level mass of the singlet-like state.

4.2.2 GNMSSM

While the μNMSSM provides an excellent prototype for the
case of a heavy singlet with a small expectation value, where
we cannot hide the loop corrections in a tadpole term, since it
is a subset of the GNMSSM we can find more varied scenarios
exhibiting the same behaviour. Of course, this is with the
proviso that (with less justification in general) we restrict
ourselves to solving the tadpole equations for m2

S .
We have devised three types of scenarios:

• Scenario 1: large singlet vev and intermediate λ;
• Scenario 2: small singlet vev and small λ;
• Scenario 3: small singlet vev but large λ.

Table 1 summarises the values taken for the BSM input
parameters relevant for SPheno – note that we have adjusted
the soft terms m0 (scalar mass) and A0 (scalar trilinear cou-
pling) in order to obtain a mass for the lightest Higgs boson
within the interval [123 GeV, 127 GeV]. We should also
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Table 1 Definitions of the input parameters in the considered
μNMSSM scenarios. Some of the BSM parameters are not modified,
and remain the same for the three scenario. Namely, we take: tan β = 10,
m12 = 2 TeV, A0 = 3 TeV, B0 = 0, mA = 500 GeV, Tκ = −0.5 GeV.
The renormalisation scale is kept at Q = 3 TeV for all computations.
Finally, the numbers marked with a “†” are varied for some of the
parameter scans

Scenario 1 2 3

m0 (GeV) 2000 1500 1500

λ 0.1† 0.01 0.15

κ 0.005 0.05 0.05

Tλ (GeV) 1000 1000† 7500†

vS (GeV) 3000 1.0† 1.0†

μ (GeV) 500 200 200

μS (GeV) 0 −200 −200

ξ (GeV2) 1.0 × 108 1.7 × 106 5.0 × 104

Bμ (GeV2) 2.0 × 105 1.0 × 106 4.0 × 105

emphasise that the numbers in Table 1 are given to SPheno
as high-scale inputs (as this only requires a limited set of
values). We then convert these into low-scale input param-
eters using the standard version of the μNMSSM SPheno
code, and the plots presented in the following are obtained
by varying one of the low-scale inputs. In light of the analytic
expressions in the previous section, we can expect the two
approaches to the tadpoles to give relatively similar results
in scenario 1, where the singlet vev is large. However, in sce-
narios 2 and 3, the singlet vev is taken to be small, so that the
differences between the two schemes should be more pro-
nounced. Scenario 3 furthermore allows us to investigate the
effect of increasing the coupling λ.

We show first in Fig. 9 the behaviour of the lightest Higgs
mass Mh1 (left side) and of the additional CP-even Higgs-
boson masses Mh2 and Mh3 (right side) as a function of the
superpotential coupling λ. Among the two BSM states h2

and h3, the former is singlet-like while the latter is doublet-
like, in this figure. As can be seen in the right-hand side
plot of Fig. 9, the heavy Higgs bosons receive only minute
mass corrections in either of the approaches for tadpoles. For
the lightest scalar mass Mh1 , the results in the two schemes
are also in excellent agreement. However, we have cut off
the plot before λ = 0.19 because beyond this value per-
turbativity is lost: in the standard approach the singlet-like
pseudoscalar Higgs becomes tachyonic at one loop (from a
tree-level mass of 750 GeV!). If we continued the plot into
this regime we would see the predictions diverging, with the
standard approach predicting ever decreasing masses and the
modified approach increasing ones for larger λ (compare 104
GeV and 138 GeV respectively for λ = 0.3).

Next, we turn to scenario 2, i.e. we consider a small
λ = 0.01 and small singlet vev vS = 1 GeV. Figure 10

shows the behaviour of the CP-even masses as a function of
the soft trilinear coupling Tλ, at tree level and one loop (the
colouring of the curves is the same as previously explained).
We should emphasise that we have made sure to fulfill con-
straints from vacuum stability (and the absence of a charge-
breaking minimum) on Tλ – see Ref. [63] – and the tree-
level mass of the charged Higgs boson remains positive for
the entire range of Tλ investigated here. While for Mh1 (left
side) and Mh2 (lower curves of the right-side plot) it seems
essentially impossible to distinguish the two approaches to
the tadpole treatment, the radiative corrections to Mh3 – the
mass of the singlet-like scalar – are clearly much larger with
the standard method, and the result of the modified scheme is
certainly more reliable. As a concrete comparison, we have
for the intermediate value Tλ = 2 TeV a one-loop correc-
tion to Mh3 of 2752 GeV (i.e. 24% of the tree-level result) in
the standard approach, but only of –4.5 GeV in the modified
scheme.

We can confirm that the large difference between the two
treatments of the tadpoles arises from the small value of the
singlet vev vS . Indeed, in Fig. 11, we present the same three
CP-even scalar masses for vS varying between 0.5 and 100
GeV. One can observe that the results using both approaches
for all three masses are in good agreement for large values of
the singlet vev. A short comment should be made for Mh1 :
indeed, as vS increases the results from the two schemes
seem to grow apart, and it is somewhat difficult to deter-
mine which one should be trusted more in this case. We note
that the radiative corrections to Mh1 keep increasing with vS
in the standard approach while their size remains relatively
stable in the modified scheme. On the other hand, if we con-
sider the situation for vS � 0.5 GeV, the breakdown of the
standard approach for small singlet vevs becomes obvious.
Indeed, considering the different results for the mass Mh3 of
the CP-even singlet-like scalar at vS = 0.5 GeV, the one-loop
corrections in the standard scheme amount to 6.5 TeV – in
other words, 40% of the tree-level result – compared to only
–3.3 GeV (–0.02% of the tree-level mass) in the modified
scheme.

Lastly, we consider the type of scenario 3, i.e. what hap-
pens if we keep a small singlet vev vS = 1 GeV but increase
the coupling λ to 0.15. In Fig. 12, we present the CP-even
scalar masses as a function of Tλ – having once again made
sure to maintain vacuum stability [63]. Considering first
the masses of the two doublet-like scalars h1 and h2, we
observe an excellent agreement of the results from the two
tadpole schemes for low to intermediate values of Tλ – for
0 ≤ Tλ � 4 TeV. However, as Tλ becomes larger, the correc-
tions to Mh1 and Mh2 in the modified approach start growing
out of control. This appears similar to the loss of accuracy of
the modified scheme that we encountered in the toy model
of Sect. 2 when increasing the trilinear coupling aSH , which
plays the same role as Tλ – see Eq. (2.19) and Fig. 4. Turning
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Fig. 9 Mh1 (left) and Mh2 and Mh3 (right) as a function of λ, in sce-
nario 1. The other inputs are taken as in Table 1. Tree-level values are
shown with green curves, while the red and blue curves correspond to

the pole masses computed at one loop, respectively with the standard
and modified approaches to the tadpoles

Fig. 10 Mh1 (left) and Mh2 and Mh3 (right) as a function of the soft trilinear coupling Tλ, in scenario 2. The values of the other BSM parameters
are taken as in Table 1

Fig. 11 Mh1 (left) and Mh2 and Mh3 (right) as a function of vS , in scenario 2. Input values for the other BSM parameters are given in Table 1
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Fig. 12 Mh1 (left) and Mh2 and Mh3 (right) as a function of Tλ, in scenario 3. The other BSM inputs are taken as in Table 1

Fig. 13 Mh1 (left) and Mh2 and Mh3 (right) as a function of vS , in scenario 3. The values of the other relevant inputs are given in Table 1

however to the singlet-like mass Mh3 we find (as in Fig. 10
for scenario 2) that the radiative corrections are huge with the
standard treatment of tadpoles, but remain well-behaved with
the modified one. Interestingly, having increased the value of
λ has not made the breakdown of the standard calculation for
the singlet-like mass more severe than in scenario 2. Never-
theless, the one-loop result Mh3 using the modified tadpole
scheme is undoubtedly more reliable here.

Finally, we present in Fig. 13 the behaviour of the CP-even
scalar masses as a function of the singlet vev vS – restricting
our attention to the low range 0.5 GeV ≤ vS ≤ 5 GeV. As can
be read from Table 1, we have chosen for this figure a large
value of the soft trilinear coupling Tλ = 7.5 TeV, which cor-
responds to the right parts of the plots in Fig. 12. Therefore, it
is not surprising that we observe some discrepancy between
the results of the two tadpole schemes for all three masses,
as discussed above. More interestingly, we can compare the
size of the loop corrections to Mh3 in the two approaches, as
we vary vS . On the one hand, in the standard approach, the
one-loop corrections increase from 2.3 TeV (19% of the tree-
level result) for vS = 2.5 GeV to as much as 9 TeV (40% of

the tree-level mass) for vS = 0.75 GeV, for instance. On the
other hand, in the modified scheme, the effects remain minute
and vary from –46 GeV for vS = 2.5 GeV to –3.6 GeV for
vS = 0.75 GeV (this amounts to –0.38% and –0.02% of the
results at tree level, respectively).

5 Conclusions

We have shown the advantages and limitations of taking a
different prescription for the solution of tadpole equations.
In contrast to previous applications of this technique, in the
SM or as a measure of fine-tuning, we have shown that it can
be very useful when new scalars having a small expectation
value are present in the theory, and in the case that they are
much heavier than the electroweak scale, it is best employed
via the matching of pole masses in an EFT approach. While
this technique offers the advantages of perturbative stability
for the heavy scalar masses, easy generalisability (the cor-
rections are simply computed diagramatically rather than via
taking derivatives of the tadpole equations) and gauge invari-
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ance, it can also lead to numerical instabilities in extracting
the light Higgs mass, and the loss of the ability to match the
electroweak expectation value.

In future work, other than a general numerical implemen-
tation in SARAH, it would be interesting to explore a hybrid
approach (along the lines of option 1 described at the end
of the introduction), where only the electroweak expecta-
tion value is fixed by appropriate counterterms. On the other
hand, we intend to consider the corrections at two loops in this
approach, and we shall also provide general expressions for
the one-loop self-energies which are explicitly gauge inde-
pendent.
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