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Abstract This article discusses a prescription to compute
polarized dimensionally regularized amplitudes, providing a
recipe for constructing simple and general polarized ampli-
tude projectors in D dimensions that avoids conventional
Lorentz tensor decomposition and avoids also dimensional
splitting. Because of the latter, commutation between Lorentz
index contraction and loop integration is preserved within
this prescription, which entails certain technical advantages.
The usage of these D-dimensional polarized amplitude pro-
jectors results in helicity amplitudes that can be expressed
solely in terms of external momenta, but different from those
defined in the existing dimensional regularization schemes.
Furthermore, we argue that despite being different from
the conventional dimensional regularization scheme (CDR),
owing to the amplitude-level factorization of ultraviolet and
infrared singularities, our prescription can be used, within
an infrared subtraction framework, in a hybrid way without
re-calculating the (process-independent) integrated subtrac-
tion coefficients, many of which are available in CDR. This
hybrid CDR-compatible prescription is shown to be unitary.
We include two examples to demonstrate this explicitly and
also to illustrate its usage in practice.
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1 Introduction

Helicity scattering amplitudes in Quantum Field Theory
(QFT) encode the full dependence on the spin degrees of
freedom of the particles involved in the scattering, and are
the building blocks for computing various kinds of physical
observables through which we try to understand the inter-
actions among particles observed in nature. The incorpora-
tion of spin degrees of freedom, or polarization effects, in
terms of spin-respectively polarization-dependent physical
observables, leads to a richer phenomenology. Such observ-
ables offer valuable means to discriminate different dynam-
ical models, in particular for discovering potential Beyond-
Standard-Model effects. For a review of the role of particle
polarizations in testing the Standard Model and searching for
new physics, we refer to Refs. [1–4] and references therein.
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Unlike physical observables, individual scattering ampli-
tudes in QFT generally possess infrared1 (IR) and ultraviolet
(UV) divergences, and thus a regularization scheme (RS) for
handling these intermediate divergences needs to be intro-
duced. Dimensional regularization [5,6] is by far the most
convenient one to use in gauge theories as it respects gauge
and Lorentz invariance,2 renders all loop integrals invari-
ant under arbitrary loop momentum shifts, and allows one
to handle both UV and IR divergences in the same man-
ner. The key ingredient of dimensional regularization is the
analytic continuation of loop momenta to D = 4−2ε space-
time dimensions with indefinite ε. Having done this, one is
still left with some freedom regarding the dimensionality of
the momenta of the external particles, of algebraic objects
like the spacetime-metric tensor and Dirac matrices, as well
as the number of polarizations of both external and internal
particles. This gives rise to different dimensional regulariza-
tion variants (for a review see e.g. Ref. [7] and references
therein), which in general leads to different expressions for
singular amplitudes. Apparently the RS dependence is inti-
mately connected to the singularity structures of amplitudes,
which fortunately obey a nice factorization form at the ampli-
tude level [8–19]. The result for a physical quantity, such as
a physical cross section which is free of any such divergence,
must not depend on the RS that has been used. However, in
practice, such a result is obtained as a sum of several par-
tial contributions, which usually are individually divergent
and computed separately before being combined. Therefore,
these intermediate results can depend on the RS, and have
to be computed consistently to ensure the cancellation of the
spurious RS-dependence.

The conventional dimensional regularization (CDR)3

scheme [20] is a very popular RS, where all vector bosons
are treated as D-dimensional objects. It is conceptually the
simplest one and does guarantee a consistent treatment. It
is typically employed in calculating (unpolarized) ampli-
tude interferences where the sum over the polarizations
of an external particle is conveniently made by using the
respective unpolarized Landau density matrix. For comput-
ing helicity amplitudes at the loop level, the two commonly
used RS are the ’t Hooft–Veltman (HV) scheme [5] and
the Four-Dimensional-Helicity (FDH) scheme [23,24]. In
the FDH, the usage of spinor-helicity representations [25–
33] and unitarity-cut based methods [34–38] lead to com-
pact expressions for helicity amplitudes, which are compu-
tationally very advantageous, while the proper renormaliza-

1 We use the term “infrared” (IR) to denote both soft and collinear
divergences.
2 The treatment of γ5 in dimensional regularization requires special
attention.
3 By the acronym “CDR” we refer in this article to the usual CDR [20]
where, in addition, γ5 is treated by Larin’s prescription [21,22].

tion procedure for non-supersymmetric theories beyond one
loop order requires some expertise [39–42]. Another widely
used dimensional regularization variant, the Dimensional-
Reduction (DRED) scheme [43], was initially devised for
application to supersymmetric theories and was later shown
to be applicable also to non-supersymmetric theories [44,45].
The DRED and FDH have much in common, while there are
also subtle differences between the two [7,24,40,46].

For computing D-dimensional helicity amplitudes, espe-
cially for amplitudes at the loop level, one typically uses
the projection method, see, e.g., Refs. [47–50], which is
based on Lorentz covariant tensor decomposition of scatter-
ing amplitudes (with external state vectors being stripped
off). The entire dependence of loop amplitudes on loop
integrals is encoded in the Lorentz invariant decomposi-
tion coefficients which multiply the relevant Lorentz ten-
sor structures. Lorentz tensor decomposition is commonly
employed in QFT, exploiting its symmetry under the Lorentz
group, for instance, in the study of hadron structure functions
that describe deep-inelastic lepton–hadron scattering, in the
Passarino–Veltman reduction procedure [48], and also in the
systematic constructions of dimensionally regularized QCD
helicity amplitudes [51,52].

Despite being very generic, versatile, and widely used in
many high-order perturbative calculations, there are a few
aspects of the Lorentz tensor decomposition approach that
makes the traditional projection method not so easy to be
carried out in certain cases, as will be discussed in detail in
the next section. For example, besides facing complexities in
deriving D-dimensional projectors for tensor decomposition
coefficients in some multiple-parton, multiple-scale scatter-
ing processes, evanescent Lorentz structures4 can appear in
the D-dimensional basis for the loop amplitudes in question.
Their presence can lead to intermediate spurious poles in the
resulting D-dimensional projectors [50,58,59]. Furthermore,
when there are several external fermions involved in the scat-
tering [51,58], the complete and linearly independent set of
basis structures in D dimensions will generally increase with
the perturbative order at which the virtual amplitude is com-
puted (as the Dirac algebra is formally infinite-dimensional
in non-integer D dimensions).

As is well known, when computing polarized amplitudes
using spinor-helicity representations, such as in Ref. [60] for
four photon scattering amplitudes in FDH, Lorentz tensor
decomposition is typically not used. While given the impres-
sive long list of high-order QCD calculations of important
phenomenological consequences done in CDR and, more-

4 The evanescent Lorentz structures appearing in a Lorentz ten-
sor decomposition should not be confused with operator mixings in
the renormalization of composite operators in effective field theories
[20,53], nor with evanescent terms in the DRED or FDH regularized
Lagrangian [24,39–42,45,54–57].
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over, having in mind the aforementioned critical features of
D-dimensional Lorentz tensor decomposition, it should be
justified to think of possible add-ons in order to facilitate the
computations of polarized amplitudes in a way fully com-
patible with CDR. In this article we propose an alternative
regularization prescription of external states (for both bosons
and fermions) in order to avoid Lorentz tensor decomposition
in the conventional projection method for extracting helicity
amplitudes. The prescription outlined below is devised to be
fully compatible with CDR so that certain results known in
CDR can be directly recycled.

As will become clear in following sections, the idea is
based on the following simple observation. In 4 dimen-
sions, there are only four linearly independent Lorentz 4-
vectors, and hence any Lorentz 4-vector can be expressed
linearly using just three linearly independent Lorentz 4-
vectors with the aid of the Levi-Civita tensor. Therefore
all polarization vectors can be built up by just using three
linearly independent external momenta in a Lorentz covari-
ant way, provided that there are enough linearly independent
momenta involved in the process. This basic mathematical
fact is of course well known, and without surprise it was
already exploited about 40 years ago in calculating (tree-
level) multiple photon bremsstrahlung processes in massless
QED [25,26]. It was initially used for simplifying the mass-
less QED vertex by rewriting the slashed photon polarization
vector in terms of the slashed momenta of external charged
fermions (from which the photon was radiated), a trick
that preluded the introduction of the 4-dimensional massless
spinor-helicity formalism [27–30]. In this article, instead of
seeking simplifications of the gauge interaction vertices of
fermions in 4-dimensional massless theories, this mathemat-
ical fact is employed for finding a CDR-compatible way to
directly project out polarized loop amplitudes, circumventing
Lorentz tensor decomposition. Furthermore, despite being
different from CDR, we would like to argue that thanks to
the amplitude-level factorization of IR singularities in the UV
renormalized amplitudes [8–19], such a prescription can be
used in a hybrid way together with results known in CDR to
obtain RS-independent finite remainders of loop amplitudes,
without the need to recalculate the integrated subtraction
coefficients involved in an IR subtraction framework. In other
words, we will show that such a hybrid CDR-compatible pre-
scription is unitary in the sense defined in Refs. [54,61].

The article is organized as follows. In the next section,
the conventional projection method for computing polarized
amplitudes is reviewed with comments on a few aspects
which motivated the work presented in this article. In Sect. 3
the proposed prescription to obtain polarized dimensionally
regularized scattering amplitudes is presented in detail. Sec-
tion 4 is devoted to the discussion of the unitarity of the
hybrid regularization prescription of Sect. 3. In particular we
show that pole-subtracted RS-independent finite remainders

are always obtained and furthermore demonstrate this fea-
ture in the context of an IR subtraction method. In Sect. 5,
we provide two examples of calculating finite remainders of
virtual amplitudes in order to illustrate the usage of the pre-
scription and to comment on a few practical points worthy
of attention. We conclude in Sect. 6.

2 A recap of the projection method

In this section, we review the projection method for com-
puting polarized amplitudes, and discuss a few aspects that
motivated the work in this article.

Lorentz covariant tensor decomposition is commonly
employed in theoretical physics, exploiting the fact that
the QFT is invariant under the Lorentz group. In particu-
lar, the projection method, (see, e.g., Refs. [47–50],) based
on Lorentz covariant tensor decomposition, can be used to
obtain helicity amplitudes for a generic scattering process at
any loop order. The entire dependence of scattering ampli-
tudes on loop integrals is encoded in their Lorentz-invariant
decomposition coefficients that multiply the corresponding
Lorentz tensor structures and are independent of the exter-
nal particles’ polarization vectors. These Lorentz-invariant
decomposition coefficients are sometimes called form fac-
tors of the amplitudes, a relativistic generalization of the
concept of charge distributions. In order to extract these form
factors containing dimensionally regularized loop integrals,
projectors defined in D dimensions should be constructed
and subsequently applied directly to the amplitude, which
can proceed diagram by diagram.

2.1 Gram matrix and projectors

Scattering amplitudes in QFT with Poincaré symmetry are
multi-linear in the state vectors of the external particles, i.e.,
proportional to the tensor product of all external polariza-
tion vectors, to all loop orders in perturbative calculations,
as manifestly shown by the Feynman diagram representa-
tions. The color structure of QCD amplitudes can be conve-
niently described using the color-decomposition [62–66] or
the color-space formalism of Ref. [67]. QCD amplitudes are
thus viewed as abstract vectors in the color space of exter-
nal colored particles. Since projecting QCD amplitudes onto
the factorized color space and spin (Lorentz) structures can
be done independently of each other, we suppress for ease
of notation possible color indices of scattering amplitudes in
the following discussions.

As nicely summarized and exploited in [52,68], every
scattering amplitude in Lorentz-invariant QFT is a vector
in a linear space spanned by a finite set of Lorentz covariant
structures, in dimensional regularization at any given per-
turbative order. These structures are constrained by physical
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requirements such as on-shell kinematics and symmetries of
the dynamics. Scattering amplitudes can thus be written as
a linear combination of a set of chosen Lorentz basis struc-
tures, where the decomposition coefficients are functions of
Lorentz invariants of external kinematics. All non-rational
dependence of the decomposition coefficients on external
kinematics appear via loop integrals. This implies the fol-
lowing linear ansatz for a scattering amplitude M̂ at a fixed
perturbative order,

M̂ =
NP∑

n=1

cn T̂n, (2.1)

where each form factor cn is a function of Lorentz invari-
ants of external momenta, and each Lorentz structure T̂n is
multi-linear in the external polarization state vectors. NP

denotes the total number of Lorentz structures involved in the
Lorentz tensor decomposition. In general, T̂n contains con-
tractions of external gauge bosons’ polarization state vectors
with either the spacetime-metric tensor connecting two dif-
ferent polarizations or with external momenta, and contains
also products of Dirac matrices sandwiched between external
on-shell spinors. The Levi-Civita tensor can also occur if the
scattering process involves parity-violating interactions. The
complete and linearly independent set of Lorentz structures
for M̂ at any given perturbative order depends on its sym-
metry properties as well as the Lorentz and Dirac algebra in
use.

Note that, as discussed in detail for the four-quark scat-
tering amplitude qq̄ → QQ̄ in [51,58], the complete and
linearly independent set of D-dimensional basis structures
must in general be enlarged according to the perturbative
order at which qq̄ → QQ̄ is computed, because the Dirac
algebra is infinite-dimensional for non-integer dimensions.
At each perturbative order only a finite number of linearly
independent Lorentz structures can appear in an amplitude,
as is evident from inspecting the corresponding Feynman
diagrams which is a set of finite elements.

To be specific, we consider in the following the Lorentz
tensor decomposition of scattering amplitudes in CDR at
fixed order in perturbation theory. In the discussion of the pro-
jection method below, we investigate also how to uncover lin-
ear dependent relations among a set of (preliminarily chosen)
Lorentz tensor structures arising from on-shell constraints,
without making explicit reference to the origin of these lin-
ear dependencies.

Let us assume that by construction the set of the NP

Lorentz structures T̂n in Eq. (2.1), denoted by TP ≡
{T̂1, . . . , T̂NP }, is linearly complete for the M̂ in question,
but the T̂n may not be linearly independent of each other. For
an analogy we recall the representation of QCD amplitudes
in terms of a set of color structures in color space without
demanding linear independence of these color structures. Let

us thus call Eq. (2.1) a primitive Lorentz covariant decompo-
sition of M̂. Possible linear relations among the NP Lorentz
structures T̂n due to Lorentz and/or Dirac algebra and also
on-shell constraints, such as equations of motion as well
as transversality satisfied by external state vectors, can be
uncovered by computing their NP × NP Gram matrix Ĝ,
whose matrix elements are defined by

Ĝi j = 〈T̂ †
i , T̂ j 〉. (2.2)

The symbol 〈T̂ †
i , T̂ j 〉 denotes the Lorentz-invariant inner

product between these two linear Lorentz structures. It is
typically defined as the trace of the matrix product of T̂i ’s
hermitian conjugate, i.e. T̂ †

i , and T̂ j with tensor products of
external state vectors (spinors) being substituted by the cor-
responding unpolarized Landau density matrices. In other
words, this Lorentz-invariant quantity can be viewed as the
interference between two linear Lorentz structures T̂i and T̂ j

summed over all helicity states of external particles in accor-
dance with certain polarization sum rules (encoded in the
unpolarized Landau density matrices).

This NP × NP Gram matrix Ĝ in Eq. (2.2) can be used
to determine the linearly independent subset of TP spanning
the vector space where the considered amplitude M̂ lives. If
the determinant of Ĝ is not identically zero, then the set TP

is both complete and linearly independent, and thus qualifies
as a basis of the vector space where M̂ lives. Otherwise, Ĝ
is not a full-rank matrix, and its matrix rank NR ≡ R[Ĝ]
tells us the number of linearly independent members of TP .
Since TP is assumed to be linearly complete w.r.t. M̂ by
construction, NR is thus the number of basis elements of a
linear basis of the vector space that contains M̂.

The number NP −NR of linear dependent relations in TP

can be extracted from the null-space of this Gram matrix Ĝ.
Technically, the null-space of a matrix M (not necessarily a
square matrix) is the solution space of the homogeneous sys-
tem of linear algebraic equations defined by taking this matrix
M as the system’s coefficient matrix. The null-space of Ĝ
can be conveniently represented as a list of linearly indepen-
dent NP -dimensional basis vectors of the solution space of
the homogeneous linear algebraic system defined by Ĝ. The
length of this list of basis vectors is equal to the dimension of
Ĝ minus its matrix rank, i.e., NP − NR . For the information
we would like to extract,5 this null-space provides the com-
plete set of linear combination coefficients (being rational in
the external kinematics) of the column vectors of Ĝ that lead
to vanishing NP -dimensional vectors. After having removed
those linearly dependent columns (and their corresponding
transposed rows), we end up with a reduced full-rank Gram
matrix among the thus-selected linearly independent set of

5 To just identify the linearly dependent columns and/or rows of the
multivariate Gram matrix, numerical samples of this matrix at a few
test points are usually enough.
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Lorentz structures, denoted by TR . The set TR can then be
directly taken as the basis of the vector space of M̂.

Elimination of redundancies in the setTP forM̂ involving
external gauge bosons, e.g., due to Ward identities of local
gauge interactions, can be effectively accounted for by choos-
ing physical polarization sum rules for those external gauge
bosons (with their reference vectors chosen as momenta of
other external particles). This point can be easily seen once
we realize that any unphysical structure, which may happen
to be just one specific T̂n or a linear combination of some of
them (with rational coefficients in external kinematics), gets
nullified by the physical polarization sum rules of external
gauge bosons. Notice, however, reduction in the number of
linearly independent basis structures of M̂ due to additional
process-specific symmetries such as charge, parity, and/or
Bose symmetry is not achieved by analyzing Ĝ in this way.
Instead they have to be accounted for from the outset when
determining the primitive set TP in Eq. (2.1).

In terms of the thus-determined basis TR , the linear
decomposition of M̂ can be recast into

M̂ =
NR∑

n=1

c̃n T̂n, (2.3)

and the Gram matrix ĜR of TR with matrix elements defined
similarly as Eq. (2.2) is now an invertible NR × NR matrix.

Now we are ready to discuss projectors P̂n for the Lorentz
decomposition coefficients (or form factors) c̃n of T̂n in
Eq. (2.3). They are defined by

c̃n = 〈P̂†
n ,M̂〉 for any n ∈ {1, . . . , NR}, (2.4)

where the same Lorentz-invariant inner product operation as
in Eq. (2.2) is used in the above projection. The defining equa-
tion (2.4) of P̂n holds for any linear object from the vector
space spanned by the basis TR , rather than just for a particu-
lar scattering amplitude M̂. Inserting Eq. (2.3) into Eq. (2.4)
then, taking the aforementioned property into account, the
defining equation for the projectors translates into

〈P̂†
n , T̂m〉 = δnm for any n,m ∈ {1, . . . , NR}. (2.5)

Each projector P̂†
n can be expressed in terms of a linear

combination of hermitian conjugate members ofTR that span
also a vector space. We thus write

P̂†
n =

NR∑

k=1

Ĥnk T̂
†
k , (2.6)

where the elements Ĥnk are to be determined. Inserting
Eq. (2.6) into Eq. (2.5) and using the definition of Gram
matrix elements we get

NR∑

k=1

Ĥnk
(
ĜR

)
km = δnm, i.e., Ĥ ĜR = 1̂. (2.7)

Recall that ĜR is invertible by the aforementioned trimming
procedure. This then answers the question of how to con-
struct, in general, the projectors P̂†

n from linear combinations
of the hermitian conjugates ofTR in a systematic algorithmic
manner. In the special and ideal case of a norm-orthogonal
basis TR , its Gram matrix ĜR is equal to the identity matrix
of dimension NR and hence Ĥ = Ĝ−1

R = 1̂. Subsequently,

we have P̂†
n = T̂ †

n , as is well known for a norm-orthogonal
basis.

By taking the Dirac traces and keeping all Lorentz indices
in D dimensions in the projection, these Lorentz-invariant
tensor decomposition coefficients, or form factors, are eval-
uated in D dimensions. These form factors are independent
of the external polarization vectors, and all their non-rational
dependence on external momenta is confined to loop inte-
grals. Scalar loop integrals appearing in these form factors
can be reduced to a finite set of master integrals with the
aid of the linear integration-by-parts (IBP) identities [69,70].
Once these dimensionally regularized form factors have been
determined, external particles’ state vectors can be conve-
niently chosen in 4 dimensions, leading to helicity ampli-
tudes in accordance with the HV scheme. In fact, once the
(renormalized) virtual amplitudes are available at hand in
such a D-dimensional tensor-decomposed form (with all
Lorentz-invariant form factors computed in D dimensions),
then changing the regularization convention for the exter-
nal particles’ states consistently in both the virtual amplitude
and the corresponding IR-subtraction terms, should not alter
the finite remainder that is left after subtracting all poles,
although the individual singular pieces do change accord-
ingly.

2.2 Comments on the D-dimensional projection

We now discuss a few delicate aspects of the Lorentz ten-
sor decomposition in D dimensions that motivated the work
presented in this article.

In general, the Gram matrix Ĝ or ĜR computed using
Lorentz and Dirac algebra in CDR depends on the space-
time dimension D. We can examine its 4-dimensional limit
by inserting D = 4 − 2ε and check whether its determinant,
power-expanded in ε, is zero or not in the limit ε = 0. A deter-
minant vanishing at ε = 0 implies the presence of Lorentz
structures in the D-dimensional linearly independent basis
set TR that are redundant in 4 dimensions.

To be more specific, we can compute the matrix rank of
ĜR at D = 4, denoted by R[ĜD=4

R ], and the difference
NR − R[ĜD=4

R ] tells us the number of Lorentz structures
appearing in TR that are redundant in D = 4. Furthermore,
if we compute the null-space of the 4-dimensional limit of Ĝ,
then we can explicitly uncover all these special linear rela-
tions among T̂n due to the constraint of integer dimensional-
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ity6 in a similar way as one identifies TR out of TP . These
special linear relations can be used to construct exactly the
number NR −R[ĜD=4

R ] of evanescent Lorentz structures out
of TR that are non-vanishing in D dimensions but vanishing
in 4 dimensions.7 In this way, the original basis setTR can be
re-cast into a union of two subsets: one is linearly indepen-
dent and complete in 4 dimensions, and the other one only
consists of NR − R[ĜD=4

R ] evanescent Lorentz structures.
Such a reformulation of the Lorentz tensor decomposition
basis in D dimensions can thus be very useful in exhibiting
the additional non-four-dimensional structures involved in
the virtual amplitude.

In case the number of structures in TR is not very small
(say, not less than 10) and if there are several kinematic vari-
ables involved, algebraically inverting ĜR can be compu-
tationally quite cumbersome [52]. Moreover, the resulting
projectors constructed in the above fashion may be hardly
usable if the amplitudes themselves are already quite com-
plicated. This situation occurs naturally in multiple-parton
multiple-scale scattering processes. Possible simplifications
may be obtained by suitably recombining the linear basis
structures in TR classified into several groups, such that they
are mutually orthogonal or decoupled from each other [52].
For example, we could divide the set of tensor structures into
symmetric and anti-symmetric sectors, and also choose the
anti-symmetrized product basis for strings of Dirac matri-
ces [71,72]. This amounts to choosing the basis structures in
TR such that a partial triangularization of the corresponding
Gram matrix ĜR is achieved already by construction. This
will facilitate the subsequent inversion operation, and also
make the results simpler. In addition, in case the set of tensor
structures all observe factorized forms in terms of products
of a smaller set of lower rank tensor structures, then this fac-
torization can also be exploited to greatly facilitate the con-
struction of projectors [50]. Alternatively, it is also a good
practice to “compactify” the vector space as much as pos-
sible, before the aforementioned construction procedure is
applied, by employing all possible physical constraints and
symmetries, such as parity and/or charge symmetry of the
amplitudes in question, and also by fixing the gauge of the
external gauge bosons [52,68,73,74].

Other than the aforementioned technical complexity in
inverting the Gram matrix, there is another delicate point
about the Lorentz tensor decomposition approach in D
dimensions, as already briefly mentioned above. In cases
where the external state consists only of bosons, a list of
fixed number of Lorentz tensor structures is indeed linearly

6 Any potential non-linear relation among the T̂n is irrelevant here as
we use a linear basis.
7 Alternatively, one could achieve this by employing the Gram-Schmidt
orthogonalization procedure to NR − R[ĜD=4

R ] number of the (4-
dimensional) redundant structures in TR .

complete in D dimensions to all orders in perturbation the-
ory [50,73]. However, if external fermions are involved in
the scattering, the complete and linearly independent set of
basis structures will generally increase with the perturba-
tive order at which the scattering amplitude is computed,
because the Dirac algebra is formally infinite dimensional in
non-integer D dimensions, as discussed for the four-quark
scattering amplitude qq̄ → QQ̄ in [51,58]. Of course, at
each given perturbative order only a finite number of linearly
independent Lorentz structures can appear in an amplitude,
because the corresponding Feynman diagrams are just a set
of finite elements. These additional D-dimensional Lorentz
structures are either evanescent by themselves or will lead
to additional evanescent structures of the same number com-
puted by the procedure discussed above.

The last comment we would like to make about the projec-
tion method in D dimensions is the possible appearance of
intermediate spurious poles in these projectors [50,58,59],
which are closely related to the presence of the aforemen-
tioned evanescent Lorentz structures in the D-dimensional
linearly independent basis. Since the presence of evanes-
cent Lorentz structures in the D-dimensional basis implies
a Gram matrix that vanishes in 4 dimensions, one expects
that projectors resulting from its inverse can contain poles
in 4−D = 2ε, for instance in [50] for four-photon scatter-
ing. Of course, all intermediate spurious poles generated this
way in the individual form factors projected out should can-
cel in the physical amplitudes composed out of them, such
as helicity amplitudes or linearly polarized amplitudes.

All these sometimes cumbersome issues discussed above8

motivated the work that will be presented in the following:
the construction of simple and general polarized amplitude
projectors in D dimensions that avoids conventional Lorentz
tensor decomposition, yet is still fully compatible with CDR.

3 The prescription

The idea behind the proposed prescription to obtain polar-
ized dimensionally regularized scattering amplitudes can be
briefly outlined as follows, with details to be exposed in the
subsequent subsections.

For external gauge bosons of a scattering amplitude, mass-
less and/or massive, we decompose each external polariza-
tion vector in terms of external momenta. We then keep the
form of Lorentz covariant decomposition fixed while for-
mally promote all its open Lorentz indices, which are now
all carried by external momenta, from 4 dimensions to D

8 We remark that after the initial release of this work, Refs. [75–77]
managed to address some of the issues related to the conventional form
factor decomposition, highlighting the advantage of removing evanes-
cent tensor structures.
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dimensions, like every Lorentz vector in CDR. If external
fermions are present in the scattering amplitude, strings of
Dirac matrices sandwiched between external on-shell spinors
will show up. For each open fermion line, we first rewrite
this quantity as a trace of products of Dirac matrices with
the aid of external spinors’ Landau density matrices, up to
an overall Lorentz-invariant normalization factor. The space-
like polarization vectors of a massive spinor can also be rep-
resented in terms of external momenta. Again, once such a
momentum basis representation is established in 4 dimen-
sions, the Lorentz covariant form will be kept fixed while all
open Lorentz and Dirac indices, carried by external momenta
and/or Dirac matrices as well as the spacetime-metric tensor,
will be respectively promoted in accordance with CDR.

As scattering amplitudes are multi-linear in the state vec-
tors of the external particles to all loop orders in perturbation
theory, the tensor products of momentum basis representa-
tions of all external gauge bosons and all properly re-written
external spinor products, with their open indices promoted
accordingly as in CDR, will be taken as the external pro-
jectors for polarized amplitudes. Helicity amplitude projec-
tors of a generic scattering process defined in this way natu-
rally obey a simple factorized pattern as the tensor product of
the respective polarization projector of each external gauge
boson and open fermion line. Features and subtleties wor-
thy of attention during these rewriting procedures will be
discussed and explained below.

3.1 Momentum basis representations of polarization
vectors

Let us start with the cases where all external states are
bosons. We recall that the polarization vector ε

μ
λ (p) of a

physical vector-boson state of momentum pμ has to satisfy
ε
μ
λ (p) pμ = 0. Here the subscript λ labels the number of

physical spin degrees of freedom, i.e., λ = 1, 2, 3 in D = 4
dimensions. By convention the physical polarization state
vectors are orthogonal and normalized by ε∗

λ(p) · ελ′(p) =
−δλλ′ . The polarization vectors of a massless gauge boson
obey an additional condition in order to encode the correct
number of physical spin degrees of freedom. In practice,
this additional condition is usually implemented by intro-
ducing an auxiliary reference vector r̂μ that is not aligned
with the boson’s momentum but otherwise arbitrary, to which
the physical polarization vectors have to be orthogonal,
ε
μ
λ (p) r̂μ = 0. Thus, the reference vector r̂μ and the boson’s

momentum pμ define a plane to which the massless gauge
boson’s physical polarization vectors are orthogonal. We also
recall that in CDR the number of physical polarizations of a
massless gauge boson in D dimension is taken to be D−2.
This is in contrast to our prescription, where the number
of physical polarizations remains two in D dimensions, see
below.

3.1.1 The 2 → 2 scatterings among massless gauge bosons

Let us first consider a prototype 2 → 2 scattering among 4
external massless gauge bosons:

g1(p1) + g2(p2) → g3(p3) + g4(p4), (3.1)

with on-shell conditions p2
j = 0, j = 1, . . . , 4. The Man-

delstam variables associated with (3.1)

s ≡ (p1 + p2)
2 = (p3 + p4)

2 ,

t ≡ (p2 − p3)
2 = (p1 − p4)

2 (3.2)

encode the independent external kinematic invariants.
The representation of the gauge bosons’ polarization

state vectors in terms of three linearly independent exter-
nal momenta, p1, p2, p3 can be determined in the follow-
ing way. We first write down a Lorentz covariant parame-
terization ansatz for the linear representation and then solve
the aforementioned orthogonality and normalization condi-
tions for the linear decomposition coefficients. Once we have
established a definite Lorentz covariant decomposition form
initially in 4 dimensions solely in terms of external momenta
and kinematic invariants, this covariant form will be kept and
used as the definition of the corresponding polarization state
vector in D dimensions.

While the decomposition of polarization state vectors in
terms of external momenta is Lorentz covariant, it is very
helpful to have in mind a particular reference frame where
a clear geometric picture can be established to illustrate the
choices of and constraints on polarization state vectors. To
this end, we consider in the following discussion the center-
of-mass frame of the two incoming particles, as illustrated
in Fig. 1, where the beam axis is taken as the Z-axis with its
positive direction chosen along p1. Furthermore, the scatter-
ing plane determined by p1 and p3 is chosen as the X-O-Z
plane with p3 having a non-negative X-component by defi-
nition. The positive direction of the Y-axis of the coordinate
system will be determined according to the right-hand rule.
The reference frame is shown in Fig. 1.

Let’s now come to the momentum basis representations of
the polarization vectors in this reference frame. There are two
common basis choices regarding the transverse polarization
states, the linear and the circular polarization basis, the latter
represents helicity eigenstates of gauge bosons. These two
bases can be related via a π/2 rotation in the complex plane.
In the following, we will first establish a Lorentz covariant
decomposition of a set of elementary linear polarization state
vectors in terms of external 4-momenta and then compose
circular polarization states of all external gauge bosons, i.e.,
their helicity eigenstates, out of these elementary ones.

For the two initial-state massless gauge bosons g1(p1) and
g2(p2), whose momenta are taken as the reference momenta
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Fig. 1 The chosen coordinate system in the center-of-mass reference frame of the two incoming particles

for each other, we first introduce a common linear polariza-
tion state vector ε

μ
X along the X-axis direction, i.e., transverse

to the beam axis but within the X-O-Z plane. The set of equa-
tions that determines ε

μ
X reads:

ε
μ
X = cX1 pμ

1 + cX2 pμ
2 + cX3 pμ

3 ,

εX · p1 = 0,

εX · p2 = 0,

εX · εX = −1. (3.3)

Solving Eq. (3.3) for the coefficients cX1 , cX2 , cX3 , and subse-
quently inserting the solution back to the first line of Eq. (3.3),
we obtain the following momentum basis representation for
εX :

ε
μ
X = NX

(
t pμ

1 + (−s − t) pμ
2 + s pμ

3

)
, (3.4)

where N−2
X = −ts(s + t). Notice that one may choose

to include the overall Lorentz-invariant normalization fac-
tor NX in the very last step of the computation of polarized
loop amplitudes, for instance after UV renormalization and
IR subtraction if an IR subtraction method is employed. In
this way, we never have to deal with NX , i.e., with a square
root explicitly in the intermediate stages. If we choose to
incorporate the overall normalization factors only at the level
of squared amplitudes (or interferences), then square roots
of kinematic invariants never appear. Furthermore, we can
always by convenience define this overall normalization fac-
tor such that the coefficients exhibited in Eq. (3.4) are polyno-
mials in the external kinematic invariants (rather than rational
functions). This can be helpful as computer algebra systems
are typically more efficient when dealing with polynomials
only.

Concerning the two final-state massless gauge bosons
g3(p3) and g4(p4), whose momenta are also taken as ref-

erence momenta for each other, we can introduce a common
linear polarization state vector ε

μ
T defined to be transverse to

p3 and p4 but still lying within the X-O-Z plane, in analogy
to ε

μ
X . The definition of ε

μ
T then translates into the following

set of equations:

ε
μ
T = cT1 pμ

1 + cT2 pμ
2 + cT3 pμ

3 ,

εT · p3 = 0,

εT · p4 = 0,

εT · εT = −1. (3.5)

Solving Eq. (3.5) for the coefficients cT1 , cT2 , cT3 , one obtains

ε
μ
T = NT

(
t pμ

1 + (s + t) pμ
2 + (−s − 2t) pμ

3

)
, (3.6)

where N −2
T = −ts(s + t). The comments given above on

ε
μ
X apply here as well.

The last elementary polarization state vector needed for
constructing helicity eigenstates of all four external massless
gauge bosons is the one orthogonal to p1, p2, and p3, denoted
by εY , which is thus perpendicular to the X-O-Z plane. In 4
dimensions, we obtain it using the Levi-Civita tensor:

ε
μ
Y = NY 2ενρσμ p1ν p2ρ p3σ = NY 2εμ

p1 p2 p3
, (3.7)

where N −2
Y = −ts(s+ t), and in the last line we introduced

the short-hand notation ε
μ
p1 p2 p3 ≡ ενρσμ p1ν p2ρ p3σ .9 We

have introduced a factor 2 in Eq. (3.7) so that N 2
X = N 2

Y =
N 2

T = 1/(−ts(s + t)).
A comment concerning εμνρσ is appropriate here. The

above polarization state vectors will be eventually used in D-
dimensional calculations. To this end, following [21,22,78],
we will treat εμνρσ merely as a symbol denoting an object

9 We use the convention ε0123 = +1 and εμνρσ = −εμνρσ .
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whose algebraic manipulation rules consist of the following
two statements.

• Antisymmetry: it is completely anti-symmetric regarding
any odd permutation of its arguments.

• Contraction Rule10: the product of two εμνρσ is replaced
by a combination of products of spacetime-metric tensors
gμν of the same tensor rank according to the following
fixed pattern:

εμνρσ εμ′ν′ρ′σ ′ = Det
[
gαα′]

,

with α = μ, ν, ρ, σ and α′ = μ′, ν′, ρ′, σ ′,
(3.8)

which agrees with the well-known mathematical identity
for Levi-Civita tensors in 4 dimensions.

Using Eq. (3.8) with the D-dimensional spacetime-metric
tensor in determining NY in Eq. (3.7), one gets N−2

Y =
(3 − D)st (s + t) with D = 4 − 2ε. Because NY is an over-
all normalization factor which must be used consistently in
computing both the (singular) virtual loop amplitudes, the
UV-renormalization counter-terms, as well as potential IR
subtraction terms, it is merely a normalization convention
whether the explicit D appearing in NY is set to 4 or to
4 − 2ε, on which the final 4-dimensional finite remainder
should not depend (albeit the individual singular objects do
of course differ). This point can be made even more transpar-
ent if one chooses to incorporate this overall normalization
factor in the last stage of the consistent computation of finite
remainders where the 4-dimensional limit has already been
explicitly taken.

The circular polarization state vectors of all four external
massless gauge bosons, namely their helicity eigenstates, can
be easily constructed from the three linear polarization states
given above by a suitable π/2 rotation in the complex plane.
Here we take a convention where the two helicity eigenstates
of each gauge boson are given by11

ε±(p1; p2) = 1√
2

(εX±i εY ) ,

ε±(p2; p1) = 1√
2

(εX∓i εY ) ,

10 There is a subtle point concerning this when there are multiple Levi-
Civita tensors in the contraction, related to the choice of pairing, as will
be briefly commented on in Sect. 5.2.
11 Alternatively one could choose the more systematically formulated
Jacob-Wick phase convention as introduced in Ref. [79], although
physics in the end should not depend on artificial phase conventions
for quantum states as long as it is always the same convention adopted
consistently throughout the computation (see Sect. 3.4 for more discus-
sions).

ε±(p3; p4) = 1√
2

(εT±i εY ) ,

ε±(p4; p3) = 1√
2

(εT∓i εY ) , (3.9)

where the first argument of ε±(p; r) is the particle’s momen-
tum while the second shows the reference momentum.
Eq. (3.9) shows that the helicity flips once the particle’s
3-momentum gets reversed or if the polarization vector
is subject to complex conjugation. Furthermore, owing to
the Ward identities fulfilled by the gauge amplitudes, the
representations of helicity state vectors in Eq. (3.9) can
be further reduced respectively for each gauge boson by
removing the component proportional to the gauge boson’s
own 4-momentum. For instance, for the gauge boson g1

with 4-momentum p1, the component of εX proportional to
pμ

1 in Eq. (3.4) can be safely dropped when constructing
ε±(p1; p2), and similar reductions hold also for the other
gauge bosons. As will become clear in the following dis-
cussions, when loop integrals in amplitudes are kept in their
unreduced symbolic form, it is beneficial to first perform the
projection in the linear polarization basis, and then have the
helicity amplitudes composed while reducing the results (see
Sect. 3.4 for more comments on this). Since these elemen-
tary linear polarization state vectors will be used to con-
struct helicity states of several scattered particles, we should
keep their complete momentum basis representation forms
as given by Eqs. (3.4), (3.6), and (3.7).

We emphasize again that in our prescription the number of
physical polarizations in D dimensions of a massless gauge
boson remains two, see Eq. (3.9). In order to illustrate the
resulting differences to CDR, let us do a simple exercise about
polarization sums. In CDR the sum over the D-dimensional
polarization states of a massless gauge boson g1 with 4-
momentum pμ

1 and gauge reference vector rμ = pμ
2 (cf.

Eq. (3.1)) is

∑

λ̄=±, D−4

ε̄
μ

λ̄
(p1; p2)ε̄

∗ ν

λ̄
(p1; p2)

= −gμν + pμ
1 pν

2 + pμ
2 pν

1

p1 · p2

= −gμν + 2

s

(
pμ

1 pν
2 + pμ

2 pν
1

)
(3.10)

which is also the unpolarized Landau density matrix of the
polarization states of g1. All Lorentz indices in (3.10) are D
dimensional and the symbol λ̄ labels the D − 2 numbers of
polarization states ε̄

μ

λ̄
(p1; p2) in D dimensions. On the other

hand, in our prescription we sum over just the two transverse
polarization states of g1 that are defined by their respective
momentum basis representations in Eqs. (3.4), (3.6). We get
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∑

λ=X,Y

ε
μ

λ (p1; p2)ε
∗ ν
λ (p1; p2)

= 1

D − 3

(
−gμν + D − 2

s

(
pμ

1 pν
2 + pμ

2 pν
1

))

+4 − D

D − 3

( t

s(s + t)
pμ

1 pν
1 + s + t

st
pμ

2 pν
2 + s

t (s + t)
pμ

3 pν
3

+ 1

s + t

(
pμ

1 pν
3 + pμ

3 pν
1

) − 1

t

(
pμ

2 pν
3 + pμ

3 pν
2

)
,
)

(3.11)

where, as part of the definition of this expression, we
have rewritten the product of two Levi-Civita tensors in
ε
μ
Y (p1; p2) ε ∗ ν

Y (p1; p2) in terms of spacetime-metric ten-
sors. Apparently Eq. (3.11) is not identical to Eq. (3.10),12

but the two expressions agree of course in D = 4 dimensions.
Before we move on to establish explicit momentum basis

representations of longitudinal polarization vectors for mas-
sive vector bosons and also for massive fermions, let us
emphasize that by construction these momentum basis repre-
sentations of polarization state vectors fulfill all the defining
physical constraints, i.e., orthogonality to momenta and ref-
erence vectors, which are assured even if the open Lorentz
indices (carried by either the external momenta or the Levi-
Civita symbol) are taken to be D-dimensional.

Mathematically, the procedure of determining norm-
orthogonal polarization vectors Eqs. (3.3), (3.5) from a given
set of linearly independent momenta in 4 dimensions resem-
bles the Gram-Schmidt orthogonalization procedure. Our
key insight here is that we establish these Lorentz covari-
ant decomposition representations initially in 4 dimensions
in a form that facilitates the subsequent promotion of their
open Lorentz indices from 4 to D, resulting in expressions
which will be taken as their definitions in D dimensions.

3.1.2 Massive particles in the final state

Next we consider the scattering process Eq. (3.1) but with
massive final-state vector bosons, for instance W or Z bosons,
with on-shell conditions

p2
1 = p2

2 = 0, p2
3 = p2

4 = m2. (3.12)

Concerning the three elementary physical polarization
state vectors, ε

μ
X , ε

μ
T , ε

μ
Y , the above constructions can be

repeated but with slightly different kinematics. It is straight-

12 Note that with our prescription unpolarized squared amplitudes are
supposed to be computed by incoherently summing over squared helic-
ity amplitudes, and not by using polarization sums like (3.11).

forward to arrive at the following explicit representations:

ε
μ
X = NX

(
(t − m2) pμ

1 + (−s − t + m2) pμ
2 + s pμ

3

)
,

ε
μ
T = NT

(
(t + m2) pμ

1 + (s + t − 3m2) pμ
2

+(−s − 2t + 2m2) pμ
3

)
,

ε
μ
Y = NY 2εμ

p1 p2 p3
, (3.13)

with the normalization factors

N −2
X = s

(
−t (s + t) + 2m2t − m4

)
,

N −2
T = −st (s + t) + 2m2t (3s + 2t)

−m4(s + 8t) + 4m6,

N −2
Y = s

(
−t (s + t) + 2m2t − m4

)
, (3.14)

which, as already emphasized above, could be conveniently
chosen to be incorporated only at the last stage of the com-
putation.

Compared to the massless case, the helicity eigenstates
of massive gauge bosons are reference-frame dependent and
their helicities are not Lorentz-invariant. Helicity eigenstates
constructed from the above elementary linear polarization
state vectors are defined in the center-of-mass reference
frame of the two colliding particles. The third physical polar-
ization state of a massive gauge boson is described by the lon-
gitudinal polarization vector (defined in the same reference
frame), which has its spatial part aligned with the momentum
of the boson. For the massive particle g3(p3) these conditions
translate into the following set of equations for its longitudi-
nal polarization vector ε

μ
L3:

ε
μ
L3 = cL3

1

(
pμ

1 + pμ
2 − pμ

3

) + cL3
2 pμ

3 ,

ε
μ
L3 · p3 = 0,

εL3 · εL3 = −1. (3.15)

Solving Eq. (3.15) for cL3
1 , cL3

2 , one obtains

ε
μ
L3 = NL3

( − 2m2 (
pμ

1 + pμ
2

) + s pμ
3

)
, (3.16)

where N −2
L3 = sm2(s − 4m2). For the massive vector boson

g4(p4) one gets for its longitudinal polarization vector ε
μ
L4:

ε
μ
L4 = NL4

(
(s − 2m2)

(
pμ

1 + pμ
2

) − s pμ
3

)
, (3.17)

where NL4 = NL3. By construction the defining physical
properties, such as orthogonality to the momenta, are ful-
filled by these momentum basis representations, even if their
open Lorentz indices are taken to be D-dimensional. We
emaphasize that in our prescription the number of physical
polarizations of a massive vector boson remains three in D
dimensions.

There are also polarization vectors associated with mas-
sive fermions. The helicity eigenstate of a massive fermion
with 4-momentum k can be described by a Dirac spinor, e.g.
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u(k, Sk), characterized by the normalized space-like polar-
ization vector Sμ

k . Its components are

Sμ
k =

(
|�k|
m

,
k0

m

�k
|�k|

)
, (3.18)

where k0 and m are, respectively, the energy and mass of the
massive fermion, while �k represents its 3-momentum. Inter-
estingly, this polarization vector has the same momentum
basis decomposition form as the longitudinal polarization
vector of a massive vector boson (of the same momentum),
provided the same external kinematic configuration applies.
By identifying pμ

3 = kμ, Eq. (3.16) can be viewed as the
momentum basis representation of Sμ

k for the same external
kinematic configuration as above. Namely,

Sμ
k = NSk

(
− 2m2 (

pμ
1 + pμ

2

) + s kμ
)

(3.19)

with N −2
Sk

= sm2(s−4m2). This is because the set of norm-
orthogonal conditions that Sμ has to fulfill, namely k · S =
0, S · S = −1, �S ‖ �k, which are sufficient to determine it
up to an overall phase factor, are exactly the same as those
that the longitudinal polarization vector in Eq. (3.16) has to
fulfill.

3.2 Normalized tensor products of external spinors

In cases where external fermions are involved in scattering
amplitudes, strings of Dirac matrices sandwiched between
external on-shell spinors will show up. In order to evaluate
each open fermion line using trace techniques, we employ
the standard trick of multiplying and dividing this quantity
by appropriate auxiliary Lorentz-invariant spinor inner prod-
ucts, which can be traced back to Ref. [80]. Pulling out the
chosen overall Lorentz-invariant normalization factor, the
rest can be cast into a trace of products of Dirac matrices
with the aid of Landau density matrices of external spinors.
The momentum basis representations of space-like (mas-
sive) fermion polarization vectors, such as Eq. (3.19), can
be used in these density matrices. For massless fermions,
the spin density matrices are reduced to left- respectively
right-chirality projectors, which thus spares us from intro-
ducing any explicit polarization vector in this case. This is
because helicity states of massless fermions coincide with
chiral spinors.

From a single open fermion line in a Feynman diagram,
we get a contribution which can be generically written as
〈ψA| M̂ |ψB〉. The symbol M̂ denotes a product of Dirac
matrices with their Lorentz indices either contracted or left
open, and |ψA〉, |ψB〉 stand for the two external on-shell
Dirac spinors, either of u-type or v-type, of this open fermion
line. Viewed as a spinor inner product, 〈ψA| M̂ |ψB〉 can
always be rewritten as a trace of a product of Dirac-matrices

in the Dirac-spinor space:

〈ψA| M̂ |ψB〉 = Tr
[
|ψB〉〈ψA| M̂

]
. (3.20)

This formal rewriting is not really useful unless we can fur-
ther exploit the matrix structure of the external spinors’ tensor
product |ψB〉〈ψA| in the spinor space (explicitly in terms of
elementary Dirac matrices), so as to apply trace techniques.
To this end, we rewrite |ψB〉〈ψA| by introducing an auxiliary
spinor inner product along the following line:

|ψB〉〈ψA| = 〈ψB | N̂ |ψA〉
〈ψB | N̂ |ψA〉 |ψB〉〈ψA|

= 1

〈ψB | N̂ |ψA〉 |ψB〉〈ψB | N̂ |ψA〉〈ψA|

= NAB |ψB〉〈ψB | N̂ |ψA〉〈ψA|, (3.21)

where NAB ≡ (〈ψB | N̂ |ψA〉)−1. The auxiliary matrix N̂
is only required to have a non-vanishing matrix element
〈ψB |N̂|ψA〉, and otherwise can be chosen to be as simple as
desired. For instance, for massive external spinors of some
particular helicity configurations, N̂ may be chosen to be
the identity matrix in spinor space, provided that the spinor
inner product between those helicity spinors is not vanishing.
A generally valid and simple choice is N̂ = γμ pμ with a 4-
momentum pμ that is not linearly dependent on the on-shell
momenta pA and pB of 〈ψA| and |ψB〉, respectively.

We manipulate Eq. (3.21) further by first substituting the
Landau density matrices for |ψA〉〈ψA| and |ψB〉〈ψB |, con-
ventionally given by

u(p, Sp) ⊗ ū(p, Sp) = (
/p + m

) 1 + γ5/S p

2
,

v(p, Sp) ⊗ v̄(p, Sp) = (
/p − m

) 1 + γ5/S p

2
. (3.22)

Then we simplify the resulting composite Dirac matrix object
before finally obtaining a form that is suitable for being unam-
biguously used in Eq. (3.20) with the trace to be done in D
dimensions.

There are several equivalent forms of these on-shell Dirac-
spinors’ projectors in 4 dimensions. In particular, one may
commute the on-shell projection operator /p±m and the
polarization projection operator (1 + γ5/S p)/2 using p ·Sp =
0 and the anticommutativity of γ5. However, it is well known
that a fully anticommuting γ5 can not be thoroughly imple-
mented in dimensional regularization in an algebraically con-
sistent way (see e.g. [20]), if we still want this object to coin-
cide with the usualγ5 in 4 dimensions. In this article, we adopt
a particular variant of a non-anticommuting γ5 prescription
formulated in Refs. [21,22], conventionally known as Larin’s
scheme, whose equivalent but more efficient implementa-
tions in high-order perturbative calculations are discussed in
Ref. [78]. In principle, one could distinguish the γ5 appear-
ing in the external projectors and inside the amplitude. The
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prescription for the external projectors proposed here is not
tied to applying a non-anticommuting γ5 prescription to the
axial currents or other γ5-related objects inside the ampli-
tudes. Any appropriate γ5 prescription can of course be used
as long as its application to the amplitudes in question is jus-
tified. For the sake of clarity, the appearances of the symbol
γ5 in the following, in particular in the computations pre-
sented in the examples of this article, should be regarded
just for bookkeeping purposes and their interpretations is
based on [21,22,78]. As a consequence of this prescription,
γ5 no longer anticommutes with all Dirac γ matrices, and
4-dimensional equivalent forms of Eq. (3.22) are no longer
necessarily algebraically equivalent in D dimensions.

In order to eliminate potential ambiguities – after having
simplified Eqs. (3.20)–(3.22) using 4-dimensional Lorentz
and Dirac algebra as much as possible –, we should agree on
one definite fixed form of Eqs. (3.20)–(3.22), solely in terms
of a string of Diracγ matrices with fixed product ordering, the
Levi-Civita tensor, and external momenta. We may call these
their canonical forms in 4 dimensions. This allows an unam-
biguous interpretation13 of the expression in D dimensions
where it will be manipulated according to the D-dimensional
algebra after being inserted back into Eq. (3.20).

Let us now be more specific about this by working out
a representative case, a single open fermion line with two
massive external u-type spinors, u(pA, SA) and u(pB, SB).
We choose N̂ = /q where qμ is a 4-momentum that is linearly
independent of pA and pB . Pulling out the normalization
factor NAB = (

ū(pA, SA) /q u(pB, SB)
)−1, Eq. (3.21) reads

in this case:

1

NAB
u(pB, SB) ⊗ ū(pA, SA)

= (
/pB + m

) 1 + γ5/SB

2
/q

1 + γ5/SA

2

(
/pA + m

)
, (3.23)

which can be brought into the form

1

NAB
u(pB, SB) ⊗ ū(pA, SA)

= (
/pB + m

) 1

4
/q

(
/pA + m

)

+ (
/pB + m

) 1

4

(−i

3! εγ γ γ SB

)
/q

(
/pA + m

)

+ (
/pB + m

) 1

4
/q

(−i

3! εγ γ γ SA

) (
/pA + m

)

+ (
/pB + m

) 1

4
/SB /q/SA

(
/pA + m

)
. (3.24)

Strictly speaking, Eq. (3.24) is identical to (3.23) only in 4
dimensions. The unambiguous Eq. (3.24), which no longer

13 This is up to a potential subtlety related to the contraction order
among multiple Levi-Civita tensors [78], as will be commented on in
Sect. 5.2.

contains any explicit γ5, will be taken as the definition of
u(pB, SB)⊗ū(pA, SA) when it is inserted into Eq. (3.20) and
manipulated in accordance with the D-dimensional algebra.

Notice that in Eq. (3.23) the auxiliary matrix /q and the
polarization projection operators were placed inside the on-
shell projection operators /pI + m (I = A, B), a point
which will be explained and become clear in Sect. 4.1. We
emphasize again that the momentum basis representations
of the helicity polarization vectors Sμ

A and Sμ
B of massive

fermions will be eventually inserted, whose open Lorentz
indices are carried by external momenta that are assumed
to be D-dimensional. Similar rewritings and definitions like
Eq. (3.24) can be made also for fermion lines with external
v-type spinors, whose Landau density matrices are given in
Eq. (3.22).

In practice, it is very convenient to keep projections asso-
ciated with each of the four terms in Eq. (3.24) separate from
each other, at least in the initial stage with unreduced ampli-
tudes, for two reasons. First, this organization is in accor-
dance with the power of the Levi-Civita tensor appearing in
the terms, which is advantageous especially when the con-
tributing Feynman diagrams are also split into terms with
even and odd products of γ5 (arising from, e.g., axial ver-
tices). Second, for a fermion with fixed momentum, its polar-
ization vector, e.g. SA or SB in Eq. (3.24), changes just by
an overall minus sign when its helicity is flipped. Therefore,
the expressions of Eq. (3.20) for the four different helicity
configurations can all be obtained by suitably combining the
traces in Eq. (3.20) of the product of M̂ and each of the four
terms in Eq. (3.24). Using (3.24) we need to project these four
individual projections separately just once, out of which all
four different helicity configurations can be obtained. Notice
that in general the normalization factor NAB in Eq. (3.20)
depends on the helicities of the external fermions A and B,
as will be explicitly shown in the example given in Sect. 5.2.

Once a definite unambiguous form of the right-hand side
of Eq. (3.24) has been established in 4 dimensions, it will be
kept fixed while all open Lorentz and Dirac indices will be
promoted in accordance with computations in CDR. Addi-
tionally, just like the aforementioned normalization factors
associated with the gauge boson’s polarization vectors, the
factor NAB in Eq. (3.20) is an overall normalization factor
which must be adopted consistently in computing all ampli-
tudes involved in the calculations of finite remainders. If one
chooses to incorporate this overall normalization factor in
the very last stage of calculating finite remainders where the
four-dimensional limit can already be taken, it is then evi-
dent that we can evaluate these Lorentz invariant factors in 4
dimensions.

As already mentioned above, in the massless limit the spin
density matrices in Eq. (3.22) are reduced to left- or right-
chiral projectors. Thus no polarization vectors are needed.
For instance, the massless limit of Eq. (3.24) with++helicity
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configuration reads:

1

NAB
u(pB,+) ⊗ ū(pA,+)

= /pB
1 − γ5

2
/q

1 + γ5

2
/pA

= 1

2

(
/pB /q /pA − /pB

(−i

3! εγ γ γ q

)
/pA

)
. (3.25)

The remarks below Eq. (3.24) concerning the use of this
equation in D-dimensional calculations apply also to (3.25).
The above reformulations of tensor products of two exter-
nal helicity spinors, such as Eqs. (3.24) and (3.25), can be
applied to each single open fermion line, besides using for
each external boson the momentum basis representation of
its polarization vector.

To summarize, the tensor product of momentum basis rep-
resentations of all external gauge bosons’ polarization vec-
tors and all properly re-written external spinor products, such
as those given by Eqs. (3.4)–(3.7), and Eqs. (3.24) and (3.25),
with their open indices promoted in accordance with CDR,
will be taken as the external projectors for polarized ampli-
tudes. Polarized amplitudes, at least in their unreduced form,
are thus first projected in the linear polarization basis for
external gauge bosons and the basis indicated by Eqs. (3.24)
and (3.25) for each open fermion line, before being subse-
quently combined to form helicity amplitudes. It is a good
practice to first combine Levi-Civita tensors that appear in
external projectors in order to reach an unambiguous canoni-
cal form that is homogeneous in the Levi-Civita tensor whose
power is at most one, at least for scattering processes with less
than 5 external particles. (See the next section for discussions
of 2 → 3 processes.) As a consequence of this operation,
for some projectors new D-dimensional non-factorized ten-
sors may arise that are different from the original bookkeep-
ing forms. Helicity amplitudes can be subsequently obtained
from these polarized amplitudes by linear combinations, such
as those implied in Eq. (3.9) – although it may be case-
dependent when it is beneficial to perform this combina-
tion. (See Sect. 3.4 for more discussions.) The transforma-
tion matrix of polarized scattering amplitudes among four
massless gauge bosons from the linear to the circular polar-
ization basis is a 16×16 constant matrix that can be extracted
from Eq. (3.9). Likewise, constant transformation matrices
can also be extracted from Eq. (3.24) for massive fermion
lines and from Eq. (3.25) for massless fermion lines.

Eventually every helicity amplitude composed in this way
is manifestly given as a function of Lorentz invariant vari-
ables solely dependent on external momenta and the space-
time dimension D. This is owing to the fact that the momen-
tum basis representations of polarization vectors allow us to
find a Lorentz covariant representation of the tensor product
of external particle states solely in terms of external momenta
and algebraic constants, such as the space-time metric tensor,

the Levi-Civita tensor and Dirac matrices, which permits a
formal D-dimensional extension. Subsequently, this makes
it feasible to directly take these objects as the external polar-
ization projectors.

From the point of view of the projection method as out-
lined in Sect. 2.1, the set of external polarization projectors
described above might be loosely viewed as a special choice
of Lorentz decomposition basis which by construction are
orthogonal among each other. Consequently, the correspond-
ing Gram matrix is diagonal and its inversion is trivial. Fur-
thermore, each structure that arises from such a decomposi-
tion is directly related to a physical quantity, and therefore its
(explicit and/or implicit) singularity structure is protected by
physical constraints obeyed by these physical quantities. In
addition, the transformations from these primary projections
to the helicity amplitudes are constants that can be easily
extracted. In this way the issues related to the conventional
form-factor decomposition as discussed in Sect. 2.2 are cir-
cumvented, similar to how this is achieved in the computation
of polarized amplitudes using spinor-helicity representations
but now in a manifestly CDR-compatible way.

3.3 Projectors for 2 → 3 scattering processes

In the preceding sections we have discussed a prototype
2 → 2 scattering process where there are only three lin-
early independent external momenta, and consequently the
Lorentz-invariant projected amplitude cannot contain a term
composed of one Levi-Civita tensor fully contracted with
external momenta. This fact can lead to a reduction of terms
that are to be included in external projectors. For instance,
if the 2 → 2 scattering process is parity-invariant, then all
terms in the external projectors that are linear in Levi-Civita
tensor can be dropped from the outset. This simplification no
longer occurs if there are more than four particles involved in
the scattering, e.g., in a 2 → 3 process. However, having at
hand a complete set of linearly independent 4-momenta in the
4-dimensional Minkowski spacetime, offers an opportunity
to eliminate the explicit appearance of the Levi-Civita ten-
sor εμνρσ from the external projectors by applying the trick
used in defining the van Neerven–Vermaseren basis [81] (see,
e.g., Eq. (3.27) below). The same trick can be applied to any
other Lorentz tensors as well, including the spacetime-metric
tensor in 4 dimensions. Below we discuss a few technical
aspects of applying the proposed projection prescription to
the scattering process with 5 external particles. In partic-
ular, we mainly focus on the cases with 5 (massless) gauge
bosons, which has the highest rank as a Lorentz tensor, while
the presence of fermions can be dealt with by combining with
the discussion in Sect. 3.2.14

14 See Ref. [82] for how this prescription is applied in the computation
of the helicity amplitudes for the process qq̄ → γ γ γ at 2-loop order.

123



417 Page 14 of 33 Eur. Phys. J. C (2021) 81 :417

The construction procedure devised in Sect. 3.1 works for
a vector boson, massless or massive, with an arbitrary choice
of reference vectors in any scattering process. In particular,
the reference vector choice made in Sect. 3.1.1 amounts to
taking the “beam-axis” vector p1+ p2 as the reference vector
for all 4 external gauge bosons, because shifting a reference
vector rμ → rμ + α pμ, where pμ is the momentum of the
gauge boson, does not change any physical amplitude. (See
Appendix A for an extension to more general cases.) Here,
we would like to present a compact explicit formula for linear
polarization states of a (massless) gauge boson that can be
conveniently used in any multiple-parton scattering process
in massless QCD, e.g. 5-gluon scattering amplitudes.

Let us denote the light-like momentum of the gauge boson
by pμ and its gauge-reference vector rμ is chosen to be light-
like as well, just for the sake of simplicity, where r · p �= 0.
In addition, we assume that there exists another auxiliary
Lorentz vector, denoted by qμ, which is required to be lin-
early independent of pμ and rμ. Under this condition, one
can repeat the procedure of Sect. 3.1 and arrive at the follow-
ing formula for the two physical linear polarization states of
a gauge boson:

ε
μ
X = NX

(
p · r qμ − (

q · r pμ + q · p rμ
) )

,

ε
μ
Y = NY εμ

p q r . (3.26)

With a light-like qμ, the normalization factors read NX =
NY = 1/

√
2p · q p · r q · r . By the same procedure, a sim-

ilar formula can be derived also for the case with a non-
lightlike reference vector rμ. Equation (3.26) resembles the
Voronov polarization vectors [25,83], apart from the previ-
ously discussed promotion of open Lorentz indices formally
to D dimensions, the appearance of a term proportional to pμ

in ε
μ
X as well as the treatment of ε

μ
p q r to be discussed below.

With all three Lorentz vectors
{
pμ, rμ, qμ

}
being light-like

with a positive temporal component, the dot products under
the square root in the normalization factors are always non-
negative. As long as qμ is linearly independent of

{
pμ, rμ

}
,

ε
μ
X will not become identically zero. Geometrically it is not

hard to see that the direction of ε
μ
X in Eq. (3.26) is given by

qμ after subtracting from the latter all components that can
be linearly composed out of

{
pμ, rμ

}
. It is straightforward

to check that the two vectors defined in Eq. (3.26) satisfy all
requirements for being representations of the two physical
polarization states of a massless gauge boson with momen-
tum p and a reference vector r . In addition, their subscripts
X,Y indicate that the usual helicity states (or circular polar-
ization states) of this massless (incoming) gauge boson can
be obtained by ε

μ
± = 1√

2

(
ε
μ
X ± iεμ

Y

)
. One can go to the

center-of-mass frame of p + r to get an illustrative geomet-
ric picture of these polarization vectors. In particular, with
the term proportional to pμ included in Eq. (3.26), the nor-

malization factor NX in this reference frame has only spatial
components transverse to �p that are not vanishing.

The formula Eq. (3.26) works for any massless gauge
boson in an arbitrary multiple-parton scattering process in
massless QFT. However, as mentioned already, when there
are at least 5 external particles involved (non-trivially) in the
scattering, e.g., a 2 → 3 process, one has the opportunity
to eliminate the explicit appearance of the Levi-Civita ten-
sor εμνρσ from external projectors (i.e., in εY ), by applying
the trick used in defining the van Neerven–Vermaseren basis
[81]. To be more specific, let us consider a 2 → 3 scattering
process where the four linearly independent four-momenta
are denoted by p1, p2, p3, p4. A single power of εμνρσ in an
external polarization projector can be rewritten as

εμνρσ = εp1 p2 p3 p4

εp1 p2 p3 p4

εμνρσ

= 
(
pρ

1 p
ν
2 p

μ
3 pσ

4 − pν
1 p

ρ
2 p

μ
3 pσ

4 − pρ
1 p

μ
2 pν

3 p
σ
4

+pμ
1 pρ

2 p
ν
3 p

σ
4 + pν

1 p
μ
2 pρ

3 p
σ
4 − pμ

1 pν
2 p

ρ
3 p

σ
4

−pρ
1 p

ν
2 p

σ
3 pμ

4 + pν
1 p

ρ
2 p

σ
3 pμ

4 + pρ
1 p

σ
2 pν

3 p
μ
4

−pσ
1 pρ

2 p
ν
3 p

μ
4 − pν

1 p
σ
2 pρ

3 p
μ
4 + pσ

1 pν
2 p

ρ
3 p

μ
4

+pρ
1 p

μ
2 pσ

3 pν
4 − pμ

1 pρ
2 p

σ
3 pν

4 − pρ
1 p

σ
2 pμ

3 pν
4

+pσ
1 pρ

2 p
μ
3 pν

4 + pμ
1 pσ

2 pρ
3 p

ν
4 − pσ

1 pμ
2 pρ

3 p
ν
4

−pν
1 p

μ
2 pσ

3 pρ
4 + pμ

1 pν
2 p

σ
3 pρ

4 + pν
1 p

σ
2 pμ

3 pρ
4

−pσ
1 pν

2 p
μ
3 pρ

4 − pμ
1 pσ

2 pν
3 p

ρ
4 + pσ

1 pμ
2 pν

3 p
ρ
4

)
,

(3.27)

where the normalization factor  ≡ 1
εp1 p2 p3 p4

can be con-

veniently pulled out and grouped together with other nor-
malization factors of external projectors (and used consis-
tently throughout the whole calculation). The treatment of
the Levi-Civita tensor in Eq. (3.27) complies with the two
rules listed in Sect. 3.1. Equation (3.27) can be formally
regarded as the momentum basis representation of the Levi-
Civita tensor. This is made feasible because one now has
at hand a set of linearly independent four-momenta form-
ing a complete basis of the 4-dimensional Minkowski space-
time. This, of course, holds also for other Lorentz tensors
with a different rank (see Appendix 1), in particular the
space-time metric tensor in 4 dimensions. One can obtain
this decomposition either by performing the Gram-Schmidt
orthogonalization procedure, like in Sect. 3.1, or one can
even directly read off the decomposition by making use of
the van Neerven–Vermaseren basis [81]. With Eq. (3.27), no
Levi-Civita tensor appears in external polarization projec-
tors for 2 → 3 gluon-scattering amplitudes any more, up to
a global normalization factor, and hence it is manifest that
the form of external projectors can be unambiguously con-
structed. At this point, it is worthy to mention that FORM
[84] has a built-in (pseudo) Levi-Civita tensor where one has
ε_(p1, p2, p3, p4) = −iεp1 p2 p3 p4 = 1

4 Tr[γ5 /p1 /p2 /p3 /p4].
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The imaginary unit i in the linear superposition formula
connecting the linearly polarized amplitudes and helicity
(i.e., circularly polarized) amplitudes can thus always be
absorbed into quantities defined by a consistent usage of
FORM’s (pseudo) Levi-Civita tensor.

Thus when there are at least 5 external particles involved,
one could rewrite the ε

μ
p q r in Eq. (3.26) for ε

μ
Y by mak-

ing use of the momentum basis representation of the Levi-
Civita tensor Eq. (3.27). Afterwards, all open Lorentz indices
carried by the momenta therein are promoted to be D-
dimensional just as done in previous sections. Just as dis-
cussed in Sects. 3.1 and 3.2 for 2 → 2 scatterings, the polar-
ization projectors for a 2 → 3 scattering amplitude among
gauge bosons will be given conveniently by the tensor prod-
ucts of momentum basis representations of all external gauge
bosons’ polarization vectors as determined in Eq. (3.26) with
the aid of Eq. (3.27). Note that in this way, both ε

μ
X and ε

μ
Y are

given explicitly in terms of linear combinations of just exter-
nal momenta, and thus there is no more explicit appearance
of the space-time metric tensor gμν in the linear polarization
projectors.15 In consequence, the helicity amplitudes recon-
structed from these projections automatically comply with
those defined in the HV scheme.

With both ε
μ
X and ε

μ
Y given explicitly and solely in terms

of gauge bosons’ momenta, one could then trim the projec-
tors by the virtue of Ward identities in a local gauge theory.
To be more specific about this, one can drop in ε

μ
X and ε

μ
Y

terms proportional to the momentum of the corresponding
gauge boson (e.g. gluon). This kind of trimming on linear-
polarization projectors is allowed because the orthogonality
between each linear-polarization vector and the correspond-
ing gauge boson’s momentum is not affected by this. Note
that the contraction rule associated with this trimmed version
of linear-polarization projectors is still simply the space-time
metric tensor gμν . If one would use the physical polarization
sum rule for each external gauge boson in the contraction
between external projectors and the amplitude, one can drop
even more terms appearing in the projectors. However, this
does not necessarily reduce the complexity of the computa-
tion at all, because dressing all external gauge bosons by their
polarization sums is a very costly action in multiple-parton
scatterings.

15 Since there is no more need to contract pairs of Levi-Civita tensors
in this treatment, the polarization projector for the scattering amplitude
with N ≥5 gauge bosons as a whole remains strictly a factorized product
of the individual polarization vectors.

3.4 Comments

The complex phase factors

The specific linear combinations in Eq. (3.9) imply a defi-
nite choice of phase conventions for the vector boson helicity
states and hence for the helicity amplitudes composed out of
the original projected amplitudes. We know that, in principle,
the phase conventions for the helicity states of different exter-
nal particles in a scattering amplitude can be set differently
and independently of each other, without altering any gen-
uine physics. For an intermediate on-shell particle, e.g., an
intermediate particle produced approximately on-shell and
subsequently decays, its phase convention needs to be used
consistently throughout the computations of the two “on-
shell factorized” parts of the complete amplitude where this
particle state and its complex conjugate appear respectively.

Although the definite phase convention in use is not rel-
evant in many practical applications, there is still the ques-
tion of how one can quickly determine the appropriate com-
plex phase factors appearing in the linear combinations like
Eq. (3.9) needed to transform into helicity states defined with
a particular phase convention, e.g. , the Jacob-Wick phase
convention [79], especially without knowing the definite geo-
metric interpretations of the original linear polarization pro-
jectors used. This question can be most easily resolved by
appealing to the form-factor decomposition perspective of
the projections made using the linear-polarization projectors,
which was alluded to at the end of Sect. 3.2. From the point
of view of a form-factor decomposition, the set of linear-
polarization projectors represent precisely the Lorentz ten-
sor decomposition basis in use, and the projected linearly
polarized amplitudes (after dividing out the normalization
factors, if not accounted for in the projectors) are the cor-
responding form-factor coefficients, at least at the level of
the finite remainders in the four-dimensional limit. (This is
a consequence of the orthogonality among these projectors
by construction, although the linear completeness is only
ensured in the four-dimensional limit in general.) Just like
how one evaluates helicity amplitudes from a given form-
factor decomposition representation of the amplitude, the
expectation values of the chosen Lorentz-tensor decompo-
sition structures, which in our case are the tensor products
of the linear-polarization states, over the targeted helicity
states provide exactly the answer to the question of appro-
priate complex phases required in linear combinations like
Eq. (3.9). On the other hand, the knowledge of these so-
projected quantities as linearly polarized amplitudes offers
us a convenient short-cut to derive the linear combinations
needed to transform into the chosen helicity basis. From this
discussion, it is thus clear that with these “linear-polarization
form factors” at hand, one can also easily reproduce polarized
amplitudes defined in other helicity conventions or polariza-
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tion basis, just like how helicity amplitudes are computed
with the usual form-factor decomposition representation of
an amplitude.

Of course, instead of projectors for polarized amplitudes
in the linear-polarization basis, one could also choose to use
directly those corresponding to the helicity basis which can
be linearly composed from the former, as should be clear
from the discussions above. However, there may not be much
advantage in doing so at least in the initial stage of pro-
jecting out the raw unreduced amplitudes where all (scalar)
loop integrals therein are denoted just symbolically in terms
of some bookkeeping notations. On the other hand, if one
knows that the final results of the amplitudes in question
are simpler in the helicity basis than in other polarization
bases, it is then expected that it should be advantageous to
directly reconstruct the final explicit results in the helicity
basis. In particular, this means that substitution of the table
of IBP relations (even with the analytic results of all master
integrals involved) as well as simplifications of their rational
coefficients could be performed for amplitudes in the helic-
ity basis, linearly composed out of the original projections.
To this end, it is helpful to note the following points. The
imaginary unit i in the linear superposition formula Eq. (3.9)
connecting the linearly polarized amplitudes and helicity (cir-
cularly polarized) amplitudes can always be absorbed into
quantities defined by a consistent usage of FORM’s (pseudo)
Levi-Civita tensor. The possibly remaining square roots in
the products of normalization factors associated with linear-
polarization state vectors, e.g., Eqs. (3.14) and (A.3), could
be eliminated by a suitable re-parameterization of the exter-
nal kinematical variables.

1 → 2 decay

For a 1 → 2 decay amplitude, the conventional Lorentz
tensor decomposition and projection method can be carried
out quite simply (due to the limited number of basis structures
and scales). For instance, for the fermion gauge interaction
vertex a general form-factor decomposition can be found in
the literature, e.g., in [85]. Here we briefly comment on how
one can compute polarized 1 → 2 decay amplitudes if one
wants to use the above prescription.

The computation requires the introduction of an interme-
diate auxiliary reference vector, denoted by r̂μ, which will
be formally treated on the same footing as an external four-
momentum. The reference-vector r̂μ may be associated with
the polarization vector of the decaying particle (in which
case it has a physical meaning), or chosen to be an auxiliary
coordinate-frame dependent vector merely for intermediate
usage. The important point we would like to emphasize here
is that the definition of r̂μ can be achieved by simply specify-
ing the values of a complete set of quadratic Lorentz invariant
products between r̂μ and the two linearly independent exter-

nal momenta, which we denote by p1 and p2. For instance,
the normalized space-like r̂μ can be implicitly specified by

r̂ · p1 = 0, r̂ · p2 = 0, r̂ · r̂ = −1, (3.28)

which guarantees that it lies in the plane transverse to p1 and
p2. This set of assignments (3.28) is sufficient to algebraically
manipulate r̂ in the computation of polarized 1 → 2 decay
amplitudes. There is no need for its explicit component-wise
specification in a definite coordinate system. With the aid
of the thus-defined r̂ , all procedures outlined above for the
2 → 2 scattering processes, discussed in Sect. 3.1, can be
repeated here. To be a bit more specific, in this case the set of
three linearly independent four-vectors {p1, p2, r̂} will take
over the roles that were played by the three linearly indepen-
dent external momenta {p1, p2, p3} in the 2 → 2 scatter-
ing processes. In fact the r̂ defined in Eq. (3.28) fulfills the
same set of conditions that εX satisfies in Eq. (3.3). More-
over, it never appears in Feynman propagators,16 and the
Lorentz invariants appearing in the resulting projections are
still just those made out of p1 and p2 (as the right-hand side
of Eq. (3.28) are all constants). In the end the physical decay
rates are independent of the choice of this auxiliary vector
r̂ . In the case of a scalar decaying into a pair of fermions,
the introduction of such an auxiliary vector can be avoided
because the helicity polarization vector of a massive fermion,
Eq. (3.19), makes no reference at all to any transverse direc-
tion w.r.t. its momentum.

4 Unitarity of the prescription

The potential RS dependence of amplitudes is intimately con-
nected to the structure of their UV and IR singularities. For-
tunately, in QCD they obey a factorized form at the ampli-
tude level [8–19]. The final result for a physical quantity,
for instance a cross section, is of course finite and must not
depend on the RS used.

The usage of the polarization projectors defined in the pre-
vious sections yields helicity amplitudes that differ in general
from those defined in many existing dimensional regulariza-
tion variants, in particular the CDR. In this section, we argue
that our prescription of external state vectors will however
lead to the same RS-independent finite remainders as for
instance in CDR, and can therefore be used in a hybrid way
with CDR to achieve a maximal convenience owing to the
amplitude-level factorization of UV and IR singularities in
QCD amplitudes.

16 This means that the sectors of loop integrals appearing in the pro-
jected amplitudes will not be enlarged by the introduction of this external
reference-vector r̂ .
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4.1 Pole subtracted amplitudes

We recall that in the D-dimensional Lorentz decomposi-
tion representation of a scattering amplitude, the Lorentz-
invariant form factors encode all dependence on dimen-
sionally regularized loop integrals and are independent of
the external polarization vectors. Once the (renormalized)
loop amplitudes are available in such a tensor decomposed
form, with all (singular) Lorentz-invariant form factors com-
puted in D dimensions, then merely changing the RS for
the external particles’ state vectors, consistently both for the
loop amplitudes and the corresponding IR subtraction terms,
should not alter the finite remainders resulting from sub-
tracting all poles and subsequently taking the 4-dimensional
limit.17 Because in the form-factor representation of an
amplitude the loop-integral dependent part is separated from
the part depending on the external states, it is thus unambigu-
ous to implement whatever non-CDR convention for external
state vectors in the computation of singular amplitudes. The
crucial question for our purpose is whether our non-CDR
prescription for external state vectors can still be unambigu-
ously and directly applied in the computation of amplitudes
without performing the form-factor decomposition first.

In our prescription all open Lorentz indices of the polariza-
tion projectors defined in Sect. 3 are set to be D-dimensional
and no dimensional splitting is ever introduced, just like in
CDR. Thus, commutation between Lorentz index contrac-
tion and loop integration is preserved within our prescription.
This means that applying our polarization projectors directly
to the original Feynman-diagrammatic representation of a
loop amplitude should lead to the same polarized ampli-
tudes as those that are obtained by applying these projectors
to the D-dimensional form-factor decomposition representa-
tion of that amplitude. No matter whether or not evanescent
Lorentz structures appear explicitly or implicitly in the form-
factor decomposition of the loop amplitude, they are taken
into account exactly as they appear in the original Feynman-
diagrammatic representation of this amplitude. From this per-
spective we could already expect to end up with the same
(4-dimensional) finite remainder as the one obtained from a
computation purely within CDR.

Below we demonstrate this crucial point more clearly
via providing an alternative formulation of finite remainders
introduced in the proposed prescription, which also helps
to clarify a few points alluded in the preceding section. Let
us consider the finite remainders of amplitudes in CDR as
defined by the celebrated amplitude-level factorization for-
mula. Singularities in the dimensionally regularized QCD

17 The equivalence between CDR and HV in leading to the same RS-
independent finite remainders with the identical set of renormalization
constants and anomalous dimensions [40,46] can be appreciated this
way, and the same arguments apply here as well.

amplitudes are known to factorize [8–19]. For our purpose,
we can sketch this factorization property of a bare QCD scat-
tering amplitude Â(ε) among several resolved external par-
ticles (with fixed external kinematics) schematically as fol-
lows:

Â(ε) = ẐIR(ε) ZUV(ε) F̂(ε), (4.1)

where18 we have suppressed the dependence of the quanti-
ties on external kinematics and masses as well as on auxil-
iary dimensional scales except the dimensional regulator ε,
(for a detailed exposition, see e.g. [10,19,46,86] and refer-
ences therein). The bare amplitude Â(ε) and the finite pole-
subtracted amplitude F̂(ε) should be viewed as vectors in
the color space of the external particles, and the multiplica-
tive singular IR-factor ẐIR(ε) is a matrix. The RS-dependent
singular factors ZUV(ε) and ẐIR(ε) encode all UV and IR
pole-singularities of Â(ε). What is essential for our discus-
sion below is that these singular factors are independent of
the detailed kinematic configuration, in particular the polar-
ization states, of the external resolved particles. By the very
meaning of pole factorization in Eq. (4.1), F̂(ε) is regular
in ε and has a finite 4-dimensional limit, F̂(ε = 0). We call
this quantity the (4-dimensional) finite remainder of Â(ε)

defined by subtracting all poles minimally by the multiplica-
tive factors as sketched in Eq. (4.1).

We may summarize this by the following expression for
the finite remainder F̂4 ≡ F̂(ε = 0), namely

F̂4 =
(
Ẑ−1

IR;CDR(ε) Z−1
UV;CDR(ε) ÂCDR(ε)

)

ε=0
, (4.2)

where we added the subscript “CDR” to all singular RS-
dependent quantities given in CDR. For the point to be
demonstrated here, the concrete expressions of these sin-
gular multiplicative factors taken from CDR are irrelevant.
The claim is that replacing all CDR-regularized external
states of the fixed-angle bare scattering amplitude ÂCDR(ε)

by their respective counterparts given in terms of momen-
tum basis representations defined in Sect. 3 will still result
in the same finite remainder F̂4, where all poles have
been subtracted in a minimal way by the same untouched
Ẑ−1

IR;CDR(ε) Z−1
UV;CDR(ε), without appealing to the Lorentz

tensor decomposition representation of ÂCDR(ε).
In order to facilitate the discussion, let us exhibit the

dependence of ÂCDR(ε) on the CDR-regularized polariza-
tion state ε̄λ̄(pi , ri ) of a representative external massless
gauge boson with momentum pi and reference vector ri .
Because the bare scattering amplitude ÂCDR is linear in
ε̄λ̄(pi , ri ), we write

ÂCDR
(
ε; ε̄λ̄(pi , ri )

) = gμν

(ÂCDR
)μ

ε̄ ν

λ̄
(pi , ri ), (4.3)

18 The need of mass renormalizations in the case of massive quarks is
understood.
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where we have introduced a compact notation
(ÂCDR

)μ. For
the pole-subtracted amplitude we have

F̂CDR
(
ε; ε̄λ̄(pi , ri )

)

≡ Ẑ−1
IR;CDR (ε) Z−1

UV;CDR (ε) ÂCDR
(
ε; ε̄λ̄(pi , ri )

)

= F̂4
(
ελ(pi , ri )

) + O(ε), (4.4)

whose limit at ε = 0 is precisely the finite remainder F̂4

in Eq. (4.2) with 4-dimensional external polarization vec-
tor ελ(pi , ri ). Now we multiply this regular finite quan-
tity by a generalized D-dependent Lorentz-invariant norm-
orthogonal factor λ̄λ defined by

λ̄λ ≡ −ε̄ ∗
λ̄

(pi , ri ) · εMBR
λ (pi , ri )

= δλ̄λ + O(ε). (4.5)

Here εMBR
λ refers to a polarization vector for a massless gauge

boson of our prescription19 of Sect. 3, and the dot product in
(4.5) refers to the D-dimensional Minkowski scalar product.
We recall that the polarization index λ̄ labels the D−2 polar-
ization states of CDR while in our prescription the index λ of
εMBR
λ takes only two values for massless gauge bosons (and

three for massive ones), which are ± in the helicity basis.
The 4-dimensional limits of these simple Lorentz-invariant
contractions λ̄λ are the norm-orthogonal factors (i.e. the
Kronecker deltas) among different 4-dimensional physical
polarization/helicity states.

Next we consider the sum of products

∑

λ̄=±, D−4

F̂CDR
(
ε; ε̄λ̄(pi , ri )

)
λ̄λ. (4.6)

As exhibited in Eqs. (4.4) and (4.5), both F̂CDR
(
ε; ε̄λ̄(pi , ri )

)

andλ̄λ are regular in ε. Thus they can be expanded in powers
of ε, and their four-dimensional limits can be taken separately
before being multiplied together and subsequently summed
over polarizations. Proceeding in this way, we first insert the
ε-expanded expressions of these two factors given above,
and the resulting quantity is precisely the finite remainder
F̂4

(
ελ(pi , ri )

)
of Eq. (4.2):

∑

λ̄=±, D−4

F̂CDR
(
ε; ε̄λ̄(pi , ri )

)
λ̄λ

= F̂4
(
ελ(pi , ri )

) + O(ε). (4.7)

On the other hand, we can first perform the polarization
sum in (4.6) in D dimensions and take the 4-dimensional

19 The acronym “MBR” denotes momentum basis representation.

limit afterwards. Proceeding this way, we have
∑

λ̄=±, D−4

F̂CDR
(
ε; ε̄λ̄(pi , ri )

)
λ̄λ

= −
∑

λ̄=±, D−4

Ẑ−1
IR;CDR (ε) Z−1

UV;CDR (ε)

×ÂCDR
(
ε; ε̄λ̄(pi , ri )

)
ε̄ ∗
λ̄

(pi , ri ) · εMBR
λ (pi , ri )

= −Ẑ−1
IR;CDR (ε) Z−1

UV;CDR (ε)
∑

λ̄=±, D−4

×(ÂCDR
)
μ

ε̄
μ

λ̄
(pi , ri ) ε̄ ∗ν

λ̄
(pi , ri ) εMBR

λ, ν (pi , ri ),

(4.8)

where we have used the fact that ÂCDR
(
ε; ε̄λ̄(pi , ri )

)
is

linear in the external polarization vector ε̄λ̄(pi , ri ). Now we
employ Eq. (3.10) for summing over the D − 2 polarization
states of the CDR-regularized external gauge boson20 and
obtain

−
∑

λ̄=±, D−4

(ÂCDR
)
μ

ε̄
μ

λ̄
(pi , ri ) ε̄ ∗ν

λ̄
(pi , ri ) εMBR

λ, ν (pi , ri )

= (ÂCDR
)
μ

(
gμν − pμ

i r
ν
i + rμ

i pν
i

pi · ri
)

εMBR
λ, ν (pi , ri )

= ÂCDR
(
ε; εMBR

λ (pi , ri )
)
, (4.9)

where we have used the orthogonality of εMBR
λ (pi , ri ) w.r.t.

the particle’s momentum pi and its reference vector ri in D
dimensions, which εMBR

λ (pi , ri ) has to satisfy by construc-
tion. Inserting Eq. (4.9) back into Eq. (4.8) we end up with

∑

λ̄=±, D−4

F̂CDR
(
ε; ε̄λ̄(pi , ri )

)
λ̄λ

= F̂CDR
(
ε; εMBR

λ (pi , ri )
)
, (4.10)

whose left-hand side has, according to Eq. (4.7), a 4-
dimensional limit that is equal to the finite remainder

F̂4

(
ελ(pi , ri )

)
given in Eq. (4.2). Notice that Eq. (4.10) is

an identity holding to all orders in ε. The right-hand side of
(4.10), more explicitly,

F̂CDR
(
ε; εMBR

λ (pi , ri )
)

= Ẑ−1
IR;CDR (ε) Z−1

UV;CDR (ε) ÂCDR
(
ε; εMBR

λ (pi , ri )
)

(4.11)

is precisely the quantity suggested by our prescription. In
order to avoid confusion we emphasize that the subscript
“CDR” on F̂CDR at the right-hand side of (4.10), and on

20 Note that here we should sum over physical polarizations only, espe-
cially in the case of gluons, which ensures that unphysical components
such as scalar and longitudinal polarizations are absent from the out-
set. With this choice there is no need to incorporate diagrams involving
ghost fields in the external states (when there are multiple external non-
Abelian gauge bosons).
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F̂CDR and ÂCDR in Eq. (4.11) means that these are the respec-
tive CDR expressions with the exception that the CDR polar-
ization vector of the external gluon with momentum pi is
replaced by the polarization vector of our hybrid MBR pre-
scription. If there are more gluons in the external state then
the procedure outlined by Eqs. (4.3)–(4.11) can be iterated.

What the above reformulations show is that, to all orders
in ε, the F̂CDR

(
ε; εMBR

λ (pi , ri )
)

can be formally viewed

as an unpolarized interference between F̂CDR
(
ε; ε̄λ̄(pi , ri )

)

and the Lorentz-invariant generalized norm-orthogonal fac-
tor defined in Eq. (4.5), using physical polarization sum rules
for all CDR external states. The unpolarized Landau den-
sity matrices of external gauge bosons reduce to the unique
space-time metric tensor by virtue of the built-in orthogonal-
ity between εMBR

λ (pi , ri ) and pi , ri .
An analogous reformulation can be made for external

fermions in the scattering amplitude. In fact, for each open
fermion line such a reformulation is more straightforward
than in the above gauge boson case, because there is no
redundancy in the spinor representation of the Lorentz alge-
bra, and the number of the polarization/helicity states of a
fermion is two both in CDR and in our prescription. The
unpolarized Landau density matrix of an external fermion
is the well-known projection operator onto the space of on-
shell Dirac-spinors. After performing a similar reformulation
of an open fermion line in the scattering amplitude, denoted
by 〈ψA| M̂ |ψB〉 as in Eq. (3.20), we end up with the follow-
ing replacement:

〈ψCDR
A | M̂ |ψCDR

B 〉 −→ Tr
[

M̂
P̂on (pB,mB)

2λB mB
(

|ψMBR
B 〉〈ψMBR

A |
) P̂on (pA,mA)

2λA mA

]
, (4.12)

where P̂on(p,m) = (/p±m) denotes the aforementioned on-
shell projection operator for a u- respectively v-type Dirac
spinor with momentum p and mass m, and |ψMBR

B 〉〈ψMBR
A |

is exactly the matrix (3.21) that was further discussed in
Eqs. (3.22)–(3.24). The appearance of 1/(2λA mA) and
1/(2λB mB) in Eq. (4.12) is due to the conventional choice
of normalization factors of on-shell Dirac spinors. Here the
factors λA, λB = 1 (−1) when the fermion A respectively B
is associated with a u-type (v-type) spinor.

Quantities that are sandwiched between the pair of on-
shell projection operators, P̂on(pA,mA) and P̂on(pB,mB),
associated with the two external spinors of the open fermion
line, can be manipulated and simplified according to the 4-
dimensional Lorentz/Dirac-algebra. We just have to agree on
one definite form that will be taken as its canonical form (out
of all the forms that are equivalent in 4 dimensions) and used
unambiguously in D-dimensional algebraic computations.
This pair of on-shell projection operators sets the domain
where matrices related to external fermions’ states, namely

|ψMBR
B 〉〈ψMBR

A |, can be manipulated and moved around
using just 4 dimensional Lorentz/Dirac-algebra. While, in
general and to be on the safe side, moving any of these matri-
ces beyond this range must be done in accordance with the
D-dimensional Lorentz/Dirac-algebra in order not to intro-
duce artificial terms by mistake. For instance, the object
γμγνγρSσ εμνρσ commutes with /P in 4 dimensions because
of the orthogonality condition S · P = 0. However, this is
no longer true w.r.t. the D-dimensional algebra (with a non-
anticommuting γ5), and there is thus a non-vanishing evanes-
cent commutator resulting from interchanging the product
order between the two. In Sect. 5.2 we will briefly comment
on this subtle point again in context of a practical 1-loop
example.

Finally, in order to bring the external projector in Eq. (4.12)
into a form analogous to Eq. (3.20) with the tensor product
of external spinors given by Eq. (3.24), the following defin-
ing property of the on-shell projection operators, valid for
p2 = m2 in D dimensions, can be used:

P̂on(p,m)
P̂on(p,m)

2λ f m
= P̂on(p,m), (4.13)

where λ f = ±1 depending on whether P̂on is associated
with a u-type or v-type spinor. Notice also that such an iden-
tity has a continuous limit at m → 0, despite the superficial
appearance of the singular 1/m factor which does prevent
setting m = 0 directly in Eq. (4.13). Such an alternative per-
spective thus helps to explain the choice made in Eq. (3.24)
where the polarization projection operators, especially those
with Dirac matrices contracted with the Levi-Civita tensor,
were placed inside the on-shell projection operators.

We thus achieved what we aimed at in this subsection.
We found an alternative formulation of pole-subtracted finite
amplitudes which helps to prove the following claim: despite
the fact that usage of the polarization projectors defined in
and manipulated according to Sect. 3 results in (bare) helicity
amplitudes different from those in CDR (or HV), replacing
all CDR-regularized external polarization states of ÂCDR(ε)

in Eq. (4.1) by their counterparts given in terms of momen-
tum basis representations constructed in Sect. 3 still results
in the same RS-independent finite remainder, where all poles
are chosen to be subtracted by the same factorized (singu-
lar) coefficients given in CDR, without appealing to Lorentz
tensor decomposition representations of ÂCDR(ε). The valid-
ity of this statement is not confined to one-loop or next-to-
leading order (NLO) corrections to a Born-level scattering
amplitude, but holds as long as the amplitude-level factor-
ization formula sketched in Eq. (4.1) holds in CDR. Since
the 4-dimensional limit of the properly defined IR-subtracted
finite remainder of a renormalized virtual amplitude should
remain the same in different variants of unitary dimensional
regularization schemes, the aforementioned equivalence car-

123



417 Page 20 of 33 Eur. Phys. J. C (2021) 81 :417

ries out automatically to other unitary dimensional schemes
as well, in particular the HV scheme.

4.2 Finite remainders in an IR subtraction framework

In this subsection, we move on and analyze finite remain-
ders defined in an IR-subtraction method that are obtained
with our hybrid MBR prescription for external polarization
vectors. We will then show that this hybrid CDR-compatible
prescription is unitary as defined in the sense of Refs. [54,61].

In practice the finite RS-independent physical observables
at NLO and beyond are usually computed as combinations of
separate, in general UV and/or IR divergent contributions liv-
ing in different partonic phase spaces. (UV renormalization
is understood in what follows.) To render individual contri-
butions from each partonic phase space IR-finite and RS-
independent, one can add and subtract properly defined aux-
iliary IR-subtraction terms. The introduction of these aux-
iliary terms are designed to ensure the cancellation of all
intermediate IR-divergences of amplitudes in each partonic
phase space, while on the other hand they leave no trace in
the final properly combined physical observables. This is the
idea of IR-subtraction methods [87,88], which are nowadays
available in many different versions (e.g., [67,89–99]).

Let us now sketch an IR-subtraction method by only being
explicit about aspects that are relevant for showing that our
hybrid MBR prescription of external states is unitary.

Assume that the Born-level scattering amplitude An lives
in a n-particle phase space, and we consider an IR-safe
observable defined by the measurement function FJ . The
leading-order (LO) observable σLO is given by

σLO =
∫

d�n

|An|2 F (n)
J , (4.14)

where we suppressed all prefactors related to spin averag-
ing for the initial state and the incident flux. The NLO QCD
correction σNLO consists of real radiations

∫
d�n+1

dσR
NLO in

the (n + 1)-particle phase space and the (renormalized) vir-
tual corrections

∫
d�n

dσV
NLO in the n-particle phase space. To

render individual contributions in each of these two partonic
phase spaces finite, one adds and subtracts an appropriate
IR-subtraction term dσS . Subsequently σNLO can then be
rewritten in an IR subtraction method as follows21:

σNLO =
∫

d�n+1

dσR
NLO +

∫

d�n
dσV

NLO

=
∫

d�n+1

|AR
n+1|2 F (n+1)

J

21 For the sake of simplicity, we suppressed here an initial-state
collinear subtraction term related to the (re)definition of parton-
distribution functions, which does not add any additional conceptual
complexity to what we want to show.

+
( ∫

d�n+1

dσS F (n)
J −

∫

d�n+1

dσS F (n)
J

)

+
∫

d�n
2Re

[
A∗
nAV

n

]
F (n)
J

=
∫

d�n+1

[ (
|AR

n+1|2 F (n+1)
J

)

ε=0
−

(
dσS F (n)

J

)

ε=0

]

+
∫

d�n

[
2 Re

[
A∗
nAV

n

]
+

∫

1
dσS

]

ε=0
F (n)
J . (4.15)

By construction, the subtraction term dσS should have
the same local IR-singular behavior as the squared real-
radiation matrix |AR

n+1|2 everywhere in the (n + 1)-particle
phase space (subject to the constraint implied by FJ ). Con-
sequently, the resulting subtracted phase-space integrand[(|AR

n+1|2 F (n+1)
J

)
ε=0−

(
dσS F (n)

J

)
ε=0

]
can be numerically

evaluated and integrated over the phase space in 4 dimen-
sions, as indicated by ε = 0. Notice that F (n)

J associated
with dσS is the same as for the virtual corrections living
in the n-particle phase space. The integration of dσS over
the unresolved phase space has to be done in D dimensions
with the IR unresolved partonic d.o.f. regularized in the same
way as those in the virtual correction 2 Re

[A∗
nAV

n

]
, follow-

ing from the unitarity constraint. The resulting IR singular-
ities that appear as poles in ε must cancel those appearing
in 2 Re

[A∗
nAV

n

]
, which renders the quantity in the second

square bracket of the last line of Eq. (4.15) finite in 4 dimen-
sions as well.

In order that Eq. (4.15) is useful in practice, one must
be able to perform the D-dimensional integration

∫
1 dσS ,

either analytically or numerically. Thanks to the IR factor-
ization, dσS and likewise its integrated counterpart

∫
1 dσS

can be constructed, schematically, as a convoluted product of
certain universal (process-independent) multiplicative coef-
ficient and the (process-specific) squared Born amplitude
|An|2:

dσS =
(
d ÎRS

)
⊗ |An|2,

∫

1
dσS = ÎRS ⊗ |An|2. (4.16)

The factor ÎRS plays a similar role as the multiplicative fac-
tors ẐIR(ε) in Eq. (4.1). At NLO it encodes all IR pole-
singularities and is to be viewed as an operator in the color
space of the external particles.

In fact each variant of an IR-subtraction method can be
seen as providing a concrete constructive prescription for
the integral representations of the factorized IR-subtraction
coefficients, like the factor ÎRS , that contain all the explicit
pole-singularities of the loop amplitudes (after multiplica-
tion with certain relevant process-dependent hard-scattering
amplitudes). The crucial point relevant for the following dis-
cussion is that these integral representations are based on the
amplitude-level IR factorization, and are manifestly inde-
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pendent of the polarization states of external particles which
appear in the (remaining) hard-scattering matrix elements.22

All quantities in Eq. (4.15) that contain explicit IR-
divergences, i.e. poles in ε, contain RS-dependent pieces
in their truncated Laurent series to order ε0, especially the
integrated ÎRS . At NLO, this concerns only

∫
d�n

dσV
NLO and

∫
1 dσS = ÎRS ⊗ |An|2 that live in the same n-particle phase

space. By appealing to an IR-subtraction method the unitar-
ity constraint, originally imposed between the calculations of∫
d�n+1

dσR
NLO and

∫
d�n

dσV
NLO is translated into the follow-

ing “locally distributed” version: we just need to make sure
that contributions associated with the same partonic phase
space are computed consistently with a unitarity-respecting
prescription, while pole-subtracted 4-dimensional remain-
ders living in different partonic phase spaces can be com-
puted independently of each other (using different methods).
Thus, as argued in Ref. [61], IR subtraction methods offer a
convenient way to isolate and investigate the RS-dependence
of individual singular pieces and subsequently ensure the uni-
tarity of regularization prescriptions used in the calculation.

With the above sketch of essential aspects of an IR-
subtraction framework ready, we can discuss how each of
the two square brackets in the last line of Eq. (4.15) should
be evaluated with our proposed prescription in order to ensure
a correct NLO observable σNLO.

First, the subtraction of implicit IR-singularities in dσR
NLO,

i.e. terms in the first square bracket of the last line of
Eq. (4.15), is to be done at the integrand level of phase-
space integrals. This results in a subtracted real-radiation
contribution that is numerically integrable in 4 dimensions.
In the 4-dimensional limit (ε = 0) the external polariza-
tion states defined by the momentum basis representations
given in Sect. 3, all coincide with their respective standard
4-dimensional expressions. Therefore the RS-independence
of the finite remainders of real-radiation contributions asso-
ciated with the 4-dimensional (n + 1)-particle phase space is
manifest as dimensional regularization can be avoided from
the outset. Thus we just have to make sure that in this hybrid
prescription, the integral-level subtraction of the explicit ε-
pole singularities in 2 Re

[A∗
nAV

n

]
, i.e. the second square

bracket of the last line of Eq. (4.15), is also done in a unitarity-
respecting way so as to lead to the correct RS-independent
finite remainder in the n-particle phase space.

To this end, we can proceed in two ways. We could devise
a proof analogous to the previous subsection, but now applied

to the finite remainder
[
2Re

[A∗
nAV

n

] + ÎRS ⊗ |An|2
]

ε=0
,

22 The dependence of factorized collinear singularities on the polar-
ization of a parent parton in the real-radiation diagrams drops once
one sums over the polarizations of all other particles and also integrates
over all unresolved degrees of freedom in the collinear limit, notably the
transverse plane of the radiated partons (which essentially eliminates
any preference in the transverse direction).

where the integrated factor ÎRS plays a similar role as
the perturbatively-expanded multiplicative factor ẐIR(ε) in
Eq. (4.1). Alternatively, we argue in this subsection that the
unitarization recipe of Ref. [61] is indeed respected by our
hybrid prescription. We examine this now one by one.

1. The external partons in the Born-level hard-scattering
matrix element An of the factorized IR-subtraction term
ÎRS ⊗|An|2 have to be treated in the same way as for the
external partons in the virtual loop amplitude AV

n (of the
same external kinematic configuration).
This is guaranteed by applying the same set of polariza-
tion projectors defined in Sect. 3 consistently to An at
LO and AV

n at NLO in the same partonic phase space,
computed respectively to the required powers in ε.

2. The parent parton and its (soft and collinear) daughter
partons involved in the integral representation of the fac-
torized process-independent (singular) coefficient func-
tion ÎRS have to be treated like the corresponding partons
inside the loop integrals of AV

n .
This is guaranteed by performing integrals involving IR-
unresolved d.o.f. consistently regularized with CDR. In
particular, the phase-space integrals in ÎRS are done in D
dimensions like D-dimensional loop integrals subject to
Cutkosky cuts.

Concerning the first point, as long as there is an unambigu-
ous and consistent way of directly applying such a non-CDR
regularization convention of external states in the compu-
tation of the virtual loop amplitude AV

n (without appealing
to its Lorentz tensor decomposition representation), then the
demonstration is completed. Similar as in Sect. 4.1, this point
is guaranteed in our projection prescription by the fact that all
open Lorentz indices of the polarization projectors defined in
Sect. 3 are taken to be a D-dimensional and no dimensional
splitting is ever introduced, just like in CDR.

Thus we have argued that our hybrid prescription can
be conveniently used in a NLO IR subtraction frame-
work to correctly obtain all RS-independent finite remain-
ders needed for computing physical observables, with the
(process-independent) integrated IR-subtraction coefficients
directly taken from CDR. In other words, we have argued
that our hybrid CDR-compatible prescription is unitary.

Although beyond the scope of this article, it is possible, by
analogy to the NLO case, to ensure unitarity of the prescrip-
tion at NNLO and beyond, owing to the following generic
features of an IR subtraction method (on which the above
NLO discussions essentially rely).

• In a typical IR subtraction framework, all explicit IR-
singularities in loop amplitudes, manifested as poles in
ε, are always subtracted by IR subtraction terms whose
constructions are based on amplitude-level singularity
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factorization formulae, and the factorized IR-subtraction
coefficients are independent of all external polarization
states;

• Any potential implicit IR singularity of the (ε-pole-free)
finite remainders will always be further subtracted at the
integrand level of phase-space integrals over the external
kinematics, and will be directly evaluated in 4 dimensions
without employing dimensional regularization.

Thus concerning the 4-dimensional integrand level sub-
tractions of implicit IR-singularities in those finite remain-
ders, their ε-suppressed terms are never needed because the
phase-space integration over the external kinematics is done
(numerically) in 4 dimensions. We leave a detailed exposition
of this issue at NNLO for a future publication.

5 A few examples

The polarization projectors constructed in Sect. 3 are inde-
pendent of the loop order of virtual amplitudes, regardless
of possible evanescent Lorentz structures that may be gen-
erated in D dimensions. To illustrate its usage without being
overwhelmed by irrelevant complications, we consider two
prototype examples, virtual 2-loop corrections to gg → gg
in massless QCD and e+e− → QQ̄ at order αs , in order
to show that the finite remainders obtained are indeed RS-
independent as discussed in the preceding sections. We will
comment along the way points worthy of attention.

5.1 gg → gg

We consider the scattering process among 4 gluons in mass-
less QCD:

g1(p1) + g2(p2) → g3(p3) + g4(p4). (5.1)

The Mandelstam variables are given in Eq. (3.2). The corre-
sponding scattering amplitude perturbatively expanded up to
2-loop order reads
∣∣∣Agggg

〉
=

∣∣∣A[0]
gggg

〉
+

∣∣∣A[1]
gggg

〉
+

∣∣∣A[2]
gggg

〉
+ O(α4

s ), (5.2)

which can be viewed as a vector in the color space of the exter-
nal gluons. The virtual corrections to the 4-gluon scattering
amplitude to 2-loop order were computed in Refs. [23,100–
105]. For representing color structures of multi-gluon scat-
tering amplitudes, like Eq. (5.2), it is very convenient to per-
form a color decomposition using the choice of basis of Refs.
[62–66]. It is well known that the amplitude Eq. (5.2) at
the tree level can be decomposed into color-ordered partial
amplitudes, multiplied by associated single color traces (over
all noncyclic permutations of fundamental color generators).

Decomposition of color structures of the 4-gluon scattering
amplitude at higher orders in QCD can be done in a similar
way but with an extended color basis including products of
two color traces.23

We decompose the amplitude Eq. (5.2) as follows:

∣∣∣A[0]
gggg

〉
=

6∑

i=1

A[0,i]
gggg |ci 〉,

∣∣∣A[1]
gggg

〉
=

9∑

i=1

A[1,i]
gggg |ci 〉,

∣∣∣A[2]
gggg

〉
=

9∑

i=1

A[2,i]
gggg |ci 〉, (5.3)

using the following basis of 9 color structures,

|c1〉 = Tr
[
T1 T2 T3 T4

]
, |c2〉 = Tr

[
T1 T2 T4 T3

]
,

|c3〉 = Tr
[
T1 T3 T4 T2

]
,

|c4〉 = Tr
[
T1 T3 T2 T4

]
, |c5〉 = Tr

[
T1 T4 T3 T2

]
,

|c6〉 = Tr
[
T1 T4 T2 T3

]
,

|c7〉 = Tr
[
T1 T2

]
Tr

[
T3 T4

]
, |c8〉 = Tr

[
T1 T3

]
Tr

[
T2 T4

]
,

|c9〉 = Tr
[
T1 T4

]
Tr

[
T2 T3

]
. (5.4)

The subscripts of these color generators label the associ-
ated gluons while their color indices are suppressed. These 9
color structures are linearly independent, as can be checked
by computing its Gram matrix. The tree-level amplitude∣∣A[0]

gggg
〉

involves only the first 6 non-cyclic single color
traces given in Eq. (5.4), which can be further reduced
to 4 structures by reflection symmetries. The color struc-
tures |c7〉, |c8〉, |c9〉 are needed in addition to represent the
loop amplitudes

∣∣A[1]
gggg

〉
and

∣∣A[2]
gggg

〉
. If the Bose symmetry

among the external gluons are explicitly taken into account,
the linear basis of the color space for the 4-gluon scatter-
ing amplitude has only 6 elements, which we choose to be{
|c1〉 + |c5〉, |c2〉 + |c3〉, |c4〉 + |c6〉, |c7〉, |c8〉, |c9〉

}
.

Each of the color decomposition coefficients A[l,i]
gggg (with

l = 1, 2) in Eq. (5.3) is a function of external kinematics and
polarization state vectors, to which we now apply the polar-
ization projectors prescribed in Sect. 3. We extract polarized
amplitudes in the linear polarization basis for all four exter-
nal gluons (cf. Sect. 3.1.1), from which helicity amplitudes
can be easily obtained. Because the reaction (5.1) is parity-
invariant the scattering amplitude does not contain terms
involving γ5 or an odd number of Levi-Civita tensors. We

23 This can be easily understood by combing the statement about tree-
level color decomposition and the Fierz identities of SU(N) color alge-
bra.
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thus need to consider only the following 8 linear polarization
projectors, which are even in εY , respectively in the number
of Levi-Civita tensors:

ε
μ1
X ε

μ2
X ε

μ3
T ε

μ4
T , ε

μ1
X ε

μ2
X ε

μ3
Y ε

μ4
Y , ε

μ1
X ε

μ2
Y ε

μ3
T ε

μ4
Y , ε

μ1
X ε

μ2
Y ε

μ3
Y ε

μ4
T ,

ε
μ1
Y ε

μ2
X ε

μ3
T ε

μ4
Y , ε

μ1
Y ε

μ2
X ε

μ3
Y ε

μ4
T , ε

μ1
Y ε

μ2
Y ε

μ3
T ε

μ4
T , ε

μ1
Y ε

μ2
Y ε

μ3
Y ε

μ4
Y .

(5.5)

For the sake of simplicity of notation, the arguments of these
polarization vectors are suppressed while their subscripts at
the open Lorentz indices indicate the associated gluons.

The number of linear polarization projectors in Eq. (5.5)
equals the number of independent helicity amplitudes, tak-
ing into account the parity symmetry of the scattering ampli-
tude. We do not consider additional relations among the lin-
ear polarized amplitudes arising from Bose symmetry, which
involve kinematic crossings. The 8 linear polarization pro-
jectors in Eq. (5.5) are sufficient for any parity-even scatter-
ing amplitude among four external massless bosons to any
loop order, irrespective of any possible (evanescent) Lorentz
structures therein.24 We insert in (5.5) the expressions (3.4),
(3.6), and (3.7) for the polarization vectors. Let us emphasize
again that, in order to avoid possible ambiguities in the def-
inition and application of these external projectors, all pairs
of Levi-Civita tensors in Eq. (5.5) are replaced according to
the contraction rule Eq. (3.8) before being used in the pro-
jection, especially the projector ε

μ1
Y ε

μ2
Y ε

μ3
Y ε

μ4
Y with 4 Levi-

Civita tensors. Then the projectors (5.5) are expressed solely
in terms of external momenta and space-time metric tensors,
which have an unambiguous extension in D dimensions.25

After pulling out the normalization factors as prescribed in
Sect. 3, the resulting tensor projectors (which have only a
polynomial dependence on external momenta and kinemat-
ics) will be applied to the color stripped amplitudes A[l,i]

gggg .
We use the convention to set the variable D = 4 in the pro-
jectors (5.5), in particular in the normalization factors that
are pulled out. Of course, this convention is used both for
the bare virtual amplitudes and the associated UV and/or
IR subtraction terms (where amplitudes at lower loop orders
occur). Then the normalization factors pulled out from the
respective projectors (5.5) are equal in this case and given by
1/(s2t2(s + t)2).

The linear polarized amplitudes projected out by applying
Eq. (5.5) to A[1,i]

gggg and A[2,i]
gggg contain both UV and IR singu-

larities, manifested as poles in ε. We are only interested in the

24 In case a 2 → 2 scattering amplitude involves parity-violating cou-
plings, 8 linear polarization projectors containing an odd number of εY
(or Levi-Civita tensors) can be used in addition.
25 As a consequence of this operation, for those polarization projectors
with multiple εY , new non-factorized forms arise. Because of this, one
may not be able to single out dot products with individual polarization
vectors and rewrite them, in contrast to the computations done in FDH
using the spinor-helicity representations of polarization vectors.

finite remainders defined by subtracting all these singulari-
ties in accordance with a certain convention. For our purpose,
there is no need to stick to a specific IR-subtraction scheme.
All we need to know is a factorization formula providing
us with a set of terms that capture all singularities in A[l,i]

gggg

(with the process-independent singular coefficients obtained
in CDR as explained in previous sections). We choose to
define the finite remainders of the virtual amplitude

∣∣Agggg
〉

in accordance with the IR factorization formulae in Refs.
[10–13,16], conveniently denoted by

∣∣∣A[fin]
gggg

〉
= ẐIR

(
αs, ε, {pi }

) ∣∣∣Agggg
(
αB
s → Zαs αs

)〉
, (5.6)

where αB
s is the bare QCD coupling, subsequently renor-

malized in the MS scheme (with the renormalization scale
μ = 1), and {pi } denotes collectively the external momenta
in Eq. (5.1). The UV divergence of the on-shell 4-gluon
amplitude

∣∣Agggg
〉

in massless QCD are removed by the
renormalization of the QCD coupling αs , which we need
to 2-loop order. Unlike the UV divergence, the IR factoriza-
tion or subtraction coefficients ẐIR

(
αs, ε, {pi }

)
needed for∣∣Agggg

〉
is not proportional to a unit matrix in the color space:

it is a 6 × 6 dimensional matrix of (kinematic-dependent) IR
singular factors in this color space, given explicitly in Ref.
[105], which we use. The crucial point relevant here is that
both Zαs and ẐIR

(
αs, ε, {pi }

)
, which capture the UV and IR

divergences (regularized as poles in ε) in the virtual ampli-
tude with fixed legs, are independent of the polarization states
of the external particles. We emphasize again that we use the
expressions of these universal factors as defined in the CDR
scheme.

Regarding the technical aspect of the computation, we
obtain the unreduced symbolic form of the projected 4-
gluon amplitudes using an extension of the program GoSam
[106–108] at 1-loop and 2-loop order. In particular, all the
Lorentz and Dirac algebra involved in the projection are car-
ried out using FORM [84]. The list of unreduced loop inte-
grals appearing is then extracted and fed to Kira [109,110]
to obtain a table of IBP rules. Insertion of the IBP table and
subsequent simplification of rational coefficients in front of
master integrals are performed with an in-house routine based
on a parallelized usage of Mathematica and fermat [111].
Analytic expressions of the 1- and 2-loop master integrals
involved, sufficiently expanded in ε to get the 2-loop finite
remainders of the 4-gluon amplitudes, are taken from Ref.
[105].26

With this computational set-up, we get the analytic results
for all 8 non-vanishing finite remainders of the interferences
between

∣∣A[2]
gggg

〉
,
∣∣A[1]

gggg
〉

and
∣∣A[0]

gggg
〉

in linear polarization

26 Private communication of Taushif Ahmed.
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basis.27 The finite remainder of the unpolarized interference
in 4 dimensions is obtained by summing over these 8 quanti-
ties. On the other hand, one can compute this finite remainder
within CDR using a polarization sum formula like (3.10) for
each of the 4 external gluons. We have checked analytically
that both ways lead to the same finite remainders, while the
unsubtracted bare results differ starting from the sub-leading
power in ε due to the usage of our hybrid dimensional regu-
larization scheme.

In addition, we have composed the helicity amplitudes
with the aid of the constant transformation matrix from the
linearly polarized amplitudes projected out using Eq. (5.5).
We confirm that for all helicity amplitudes we have obtained
the same finite remainders analytically as those computed
in Ref. [105] where the helicity amplitudes in HV scheme
are computed conventionally by first obtaining the Lorentz
tensor decomposition representation of the 4-gluon ampli-
tudes using the form-factor projectors and then evaluating
contractions between Lorentz structures and external polar-
ization vectors in 4 dimensions.

5.2 e+e− → QQ̄

Next we consider quark-pair production in e+e− collisions:

e−(p1) + e+(p2) → Z∗ → Q(p3) + Q̄(p4), (5.7)

mediated by a Z-boson where Q denotes a massive quark with
mass m, i.e., p2

3 = p2
4 = m2, and the electron (positron)

is taken to be massless. The corresponding bare scattering
amplitude perturbatively expanded to NLO in QCD reads

∣∣∣AeeQQ

〉
= A[tree]

eeQQ(1e− , 2e+ , 3Q, 4Q̄) δi3i4

+ αs

4π
C̄(ε)A[1-loop]

eeQQ (1e− , 2e+ , 3Q, 4Q̄)

2CFδi3i4 + O(α2
s ), (5.8)

where i3 (i4) denotes the color index of the heavy quark (anti-
quark), CF = (N 2

c − 1)/(2Nc), and C̄(ε) ≡ (4π)εe−εγE

with γE = 0.57721 . . . denoting the Euler–Mascheroni con-
stant. In Eq. (5.8) we introduced symbolic labels iX in order
to encode the dependence on the momentum pi and helicity
λi of an external particle i of type X . These 1-loop QCD
corrections were first computed in Ref. [114].

Because we work to the lowest order in electroweak cou-
plings, the UV renormalization counterterms can be intro-

27 Up to 1-loop order, the projections and computations of the 4-gluon
amplitudes are cross-checked with an alternative set-up using QGRAF
[112], FORM [84] and Package-X [113].

duced by the following replacement of the bare coupling
vertex of the Z boson and the heavy quark:

(
vQγ μ + aQγ μγ5

)

→ Z [1]
ψ,OS(ε, αs )

(
vQγ μ + Zns

5 (αs ) aQ
−i

3! εμνρσ γνγργσ

)
. (5.9)

Here vQ and aQ denote the vector and axial vector couplings
of Q,

Z [1]
ψ,OS(ε, αs) = − αs

4π
(4π)ε �(1 + ε)

1

ε

(
μ2
DR

m2

)ε

×CF
(3 − 2ε)

(1 − 2ε)
+ O(α2

s ),

and we use Larin’s prescription [21,22] for the non-singlet
axial vector current which involves Zns

5 (αs) = 1 +
αs
4π

(−4CF ) + O(α2
s ).

For subtracting the IR singularities of the renormalized
1-loop amplitude A[1-loop,R]

eeQQ , we use the antenna subtraction
method [91,92]. The antenna subtraction term needed here
reads [115]:

∣∣A[IR]
eeQQ

〉 = αs

4π
C̄(ε)A0

3

(
ε,

μ2
DR

s
; y)

×A[tree]
eeQQ(1e− , 2e+ , 3Q, 4Q̄) 2CFδi3i4 + O(α2

s ), (5.10)

where y = 1−β
1+β

, β = √
1 − 4m2/s, and A0

3

(
ε,

μ2
DR
s ; y)

denotes the integrated three-parton tree-level massive quark–
antiquark antenna function given in Refs. [115,116].

Because we take the leptons to be massless, there are only
8 non-vanishing helicity amplitudes which, in the absence of
parity symmetry,28 differ from each other. We now consider
the extraction of polarized amplitudes in the helicity basis
both at the tree level and the 1-loop level. Following the dis-
cussion of Sect. 3.2, we choose to attach an auxiliary spinor
inner product

NλeλQλQ̄
=ū(p1, λe)/p3v(p2,−λe)⊗v̄(p4, λQ̄)/p1u(p3, λQ)

(5.11)

to each helicity amplitude characterized by λe, λQ, λQ̄ . This
factor is to be removed by numerical division at the end of
the computation in 4 dimensions. Pulling off N −1

λeλQλQ̄
from

each helicity amplitude, the polarization projections can be
most conveniently performed, in analogy to Eq. (3.20), using

28 In the Standard Model the 1-loop scattering amplitude of (5.7) still
respects the combined symmetry of parity and charge conjugation,
which relates the helicity amplitude with helicity configuration +−++
to + − −−, and similarly − + ++ to − + −−.
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the following 8 regrouped projectors according to Eqs. (3.24)
and (3.25):

P̂1 =
(
/p1 /p3 /p2

)
⊗

( (
/p4 − m

)
/p1

(
/p3 + m

) )
,

P̂2 =
(
/p1 /p3 /p2

)
⊗

( (
/p4 − m

) ( −i

3! εγ γ γ SQ̄

)
/p1

(
/p3 + m

) )
,

P̂3 =
(
/p1 /p3 /p2

)
⊗

( (
/p4 − m

)
/p1

( −i

3! εγ γ γ SQ

) (
/p3 + m

) )
,

P̂4 =
(
/p1 /p3 /p2

)
⊗

( (
/p4 − m

)
/SQ̄ /p1/SQ

(
/p3 + m

) )
,

P̂5 =
(
/p1

i

3! εγ γ γ p3 /p2

)
⊗

( (
/p4 − m

)
/p1

(
/p3 + m

) )
,

P̂6 =
(
/p1

i

3! εγ γ γ p3 /p2

)
⊗

( (
/p4 − m

) ( −i

3! εγ γ γ SQ̄

)
/p1

(
/p3 + m

) )
,

P̂7 =
(
/p1

i

3! εγ γ γ p3 /p2

)
⊗

( (
/p4 − m

)
/p1

( −i

3! εγ γ γ SQ

) (
/p3 + m

) )
,

P̂8 =
(
/p1

i

3! εγ γ γ p3 /p2

)
⊗

( (
/p4 − m

)
/SQ̄ /p1/SQ

(
/p3 + m

) )
, (5.12)

where the momentum basis representations of the two helic-
ity polarization vectors Sμ

Q and Sμ

Q̄
, in analogy to Eq. (3.19),

will be inserted during the computation29 so that eventu-
ally the resulting projections are functions of the external
momenta only. Of course, the manipulation of Dirac matri-
ces associated with two disconnected fermion lines (sepa-
rated by ⊗ in Eq. (5.12)) can be performed independently
and should not be confused. Notice that the set of polar-
ization projectors in Eq. (5.12) is also sufficient for com-
puting virtual amplitudes that involve box contributions, for
instance q(p1) q̄(p2) → Q(p3) Q̄(p4) in QCD, irrespec-
tive of any possible evanescent Lorentz structure that can
be generated at high loop orders in D dimensions. In case
q(p1) q̄(p2) → Q(p3) Q̄(p4) is parity invariant, which
is the case if one considers only QCD interactions, then
P̂2 , P̂3 , P̂5 , P̂8 can be safely discarded and only 4 projectors
are needed.

In the simple example considered here, where the ampli-
tude (5.8) involves only 3-point vertex functions, there is not
much technical advantage in using Eq. (5.12) instead of the
conventional form-factor decomposition. If one nevertheless
chooses to use the projectors (5.12) for computing helicity
amplitudes including QCD corrections, one can compute the
trace (3.20) of the string of Dirac matrices along the lepton
line, both for the renormalized amplitude and the IR sub-
traction term (5.10), in 4 dimensions, because the lepton line
receives no QCD correction and remains purely tree level. In
this case we can replace i

3!εγ γ γ p3 in Eq. (5.12) by /p3γ5.
Helicity amplitudes can be assembled by linear combi-

nations of the projections made with (5.12), and the linear
combination coefficients can be read off from Eqs. (3.24),
(3.25). It is convenient to perform such a transformation at a
later stage of the computation where explicit analytic results
have been inserted. The explicit form of the overall normal-

29 This insertion can conveniently be done after having performed the
Dirac traces and having used p3 · SQ = p4 · SQ̄ = 0 and SQ · SQ =
SQ̄ · SQ̄ = −1.

ization factor given in Eq. (5.11) is usually needed only at the
level of squared amplitudes (or interferences). The squared
modulus of NλeλQλQ̄

is

∣∣∣NλeλQλQ̄

∣∣∣
2 = −m4 − 2m2t + t (s + t)

2

(
λQλQ̄

(
2(m2 − t)

×(p1 · SQ p3 · SQ̄ − p1 · SQ̄ p4 · SQ)

+2s (p1 · SQ̄ p4 · SQ − p1 · SQ p1 · SQ̄)
)

+(m2 − t)(m2 − s − t)
(
−1 + λQλQ̄ SQ · SQ̄

) )

= 1

2
(m2 − t)(m2 − s − t)(m4 − 2m2t + t (s + t))

−
λQλQ̄

2(s − 4m2)
(m4 − 2m2t + t (s + t))(4m6 + st (s + t)

−m4(3s + 8t) + m2(s2 + 2st + 4t2)) (5.13)

where in the last line we have inserted momentum basis
representations of Sμ

Q and Sμ

Q̄
that are given in analogy to

Eq. (3.19). In case the normalization factors are to be included
at the amplitude level, we can use for their computation
either the concrete 4-dimensional representations of spinors
and Dirac matrices, as listed for instance in Ref. [117], or
employ the 4-dimensional spinor-helicity representation of
these objects [27–33].

With the ingredients just outlined we computed the finite
remainders of the interferences between the tree-level and 1-
loop helicity amplitudes, multiplied, for convenience, with
the inverse square of the Z-boson propagator:
(
s − m2

Z

)2 × 2 Re
[
A[tree]∗

eeQQ (1e− , 2e+ , 3Q , 4Q̄) A[1-loop]
eeQQ (1e− , 2e+ , 3Q , 4Q̄)

]
.

(5.14)

We calculated (5.14) analytically using FORM [84] and the
involved loop integrals with Package-X [113]. Table 1 con-
tains the finite remainders of (5.14) for all helicity configu-
rations evaluated at the test point m = 17.3 GeV, s = 106

( GeV)2, t = −90 ( GeV)2. (ve and ae denote the vector and
axial vector couplings of electron.)

The interferences were computed to about 30 significant
digits while only the first 8 significant digits are shown in
Table 1 for simplicity. (There is no rounding in the shown
digits.) CP invariance dictates that the helicity configurations
+−++ and +−−− yield identical expressions, and likewise
− + ++ and − + −−. The large differences between the
values of these helicity amplitudes are due to the particular
kinematic point considered: it corresponds to a high-energy
(small mass) limit of the scattering amplitude in the near-
forward scattering region.

We computed also the finite remainder of the unpolarized
interferences (5.14) within CDR at the same kinematic point
with the renormalized virtual amplitudes from Refs. [118,
119] available in a form-factor decomposed form. For this
unpolarized interference we obtain
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Table 1 Numerical values of the finite remainders of the interferences (5.14) at the test point m = 17.3 GeV, s = 106 ( GeV)2, t = −90 ( GeV)2

Helicities Finite remainders of the interferences (5.14) in units of ( GeV)2

+−,++ −1.4211829 ∗ 106 a2
e v

2
Q − 2.8423658 ∗ 106 aevev2

Q − 1.4211829 ∗ 106 v2
e v

2
Q

+−,+− 2.4731876 ∗ 104 a2
e a

2
Q + 4.9463752 ∗ 104 aea2

Qve + 2.4731876 ∗ 104 a2
Qv2

e + 4.9178930 ∗ 104 a2
e aQvQ + 9.8357861 ∗ 104 aeaQvevQ

+4.9178930 ∗ 104 aQv2
evQ + 2.4446875 ∗ 104 a2

e v
2
Q + 4.8893750 ∗ 104 aevev2

Q + 2.4446875 ∗ 104 v2
e v

2
Q

+−,−+ 3.0551961∗1012 a2
e a

2
Q+6.1103923∗1012 aea2

Qve+3.0551961∗1012 a2
Qv2

e +6.0752075∗1012 a2
e aQvQ−1.2150415∗1013 aeaQvevQ

−6.0752075 ∗ 1012 aQv2
e vQ + 3.0199891 ∗ 1012 a2

e v
2
Q + 6.0399783 ∗ 1012 aevev2

Q + 3.0199891 ∗ 1012 v2
ev

2
Q

+−,−− −1.4211829 ∗ 106 a2
e v

2
Q − 2.8423658 ∗ 106 aevev2

Q − 1.4211829 ∗ 106 v2
e v

2
Q

−+,++ −1.4211829 ∗ 106 a2
e v

2
Q + 2.8423658 ∗ 106 aevev2

Q − 1.4211829 ∗ 106 v2
e v

2
Q

−+,+− 3.0551961∗1012 a2
e a

2
Q−6.1103923∗1012 aea2

Qve+3.0551961∗1012 a2
Qv2

e +6.0752075∗1012 a2
e aQvQ−1.2150415∗1013 aeaQvevQ

+6.0752075 ∗ 1012 aQv2
e vQ + 3.0199891 ∗ 1012 a2

e v
2
Q − 6.0399783 ∗ 1012 aevev2

Q + 3.0199891 ∗ 1012 v2
ev

2
Q

−+,−+ 2.4731876 ∗ 104 a2
e a

2
Q − 4.9463752 ∗ 104 aea2

Qve + 2.4731876 ∗ 104 a2
Qv2

e + 4.9178930 ∗ 104 a2
e aQvQ + 9.8357861 ∗ 104 aeaQvevQ

−4.9178930 ∗ 104 aQv2
evQ + 2.4446875 ∗ 104 a2

e v
2
Q − 4.8893750 ∗ 104 aevev2

Q + 2.4446875 ∗ 104 v2
e v

2
Q

−+,−− −1.4211829 ∗ 106 a2
e v

2
Q + 2.8423658 ∗ 106 aevev2

Q − 1.4211829 ∗ 106 v2
e v

2
Q

6.1103923 ∗ 1012 (
a2
e a

2
Q + v2

e a
2
Q

)

−2.4300829 ∗ 1013 aeveaQvQ

+6.0399727 ∗ 1012 (
a2
ev

2
Q + v2

ev
2
Q

)
,

which precisely reproduces the sum of all helicity configu-
rations listed in Table 1.

Let us comment on a point that was already alluded to in
Sect. 3.2 and discussed in Sect. 4.1. It concerns the placing
of Dirac matrices between pairs of on-shell projection oper-
ators. Moving the matrix

(−i
3! εγ γ γ SQ

)
around in the external

projectors in Eq. (5.12) in accordance with the 4-dimensional
algebra between the pair of on-shell projection operators,(
/p4−m

)
and

(
/p3+m

)
, always leads to the same finite remain-

ders documented in Table 1. Yet, as expected, these different
choices result in different bare (unsubtracted) virtual ampli-
tudes. Once we decide to move

(−i
3! εγ γ γ SQ

)
beyond

(
/p4−m

)

or
(
/p3+m

)
, this operation has to be made in accordance with

the D-dimensional algebra in order to end up with the same
finite remainders (with the same IR subtraction coefficients).
For instance, the commutator between

(−i
3! εγ γ γ SQ

)
and /p3,

which vanishes in 4 dimensions because of p3 ·SQ = 0, must
not be omitted.

We conclude this subsection with a remark on a subtle
point concerning the specification of a definite contraction
order among multiple Levi-Civita tensors, in order to reach
an unambiguous canonical form for a projector as well as
for the resulting projection in D dimensions. As discussed in
Ref. [78], the contraction of four Levi-Civita tensors can lead
to different expressions in D dimensions depending on the
choice of pairings, which are not algebraically identical due
to the lack of a Schouten identity. This issue is of no concern
for the amplitude of Eq. (5.8), especially if we do the trace
over the lepton line using 4-dimensional Dirac algebra before
dealing with the heavy quark line. Nevertheless, in more gen-

eral situations to which our projector prescriptions also apply,
one clear and safe choice would be to pair Levi-Civita tensors
from inner vertices (of the same fermion line) in the contrac-
tion [78], leaving all other Levi-Civita tensors appearing in
the external projectors in a different category that are to be
manipulated among themselves (in 4 dimensions). Once a
definite choice of pairing and ordering of Levi-Civita tensors
in the contraction is made, it should be consistently applied in
the computations of all terms that contribute to a (renormal-
ized and subtracted) helicity amplitude. Let us stress again
that the prescription for the external projectors proposed here
is not tied to applying a non-anticommuting γ5 prescription
to the axial currents or other γ5-related objects inside the
amplitudes (stripped off external states). Any appropriate
γ5 prescription, such as those featuring an anticommuting
γ5 to some extent [53,120–123], can of course be used as
long as its application to the amplitudes in question is care-
fully implemented. In particular, for an open fermion line to
which an external projector with Dirac matrices, like those
in Eqs. (3.21) and (3.22), is applied, if several γ5 from non-
singlet axial-current vertices and/or pseudoscalar vertices are
present on the same line, including possibly the one from the
external projector, one can resort to a fully anti-commuting
γ5 and use the rule γ 2

5 = 1 in D dimensions [120] to reduce
them. Furthermore, if the total number of γ5 on this open
fermion line is odd, one can choose to move the remaining
single γ5 after the above anticommuting manipulation into
the external projector and placed in accordance with the pre-
scription formulated in Sect. 3.2 and the related comments
given in Sect. 4.1. This shall lead to the same final result
one would get with a thorough implementation of Larin’s
prescription of non-singlet axial vector vertices and pseu-
doscalar vertices [22,78], albeit it is computationally more
convenient.
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6 Conclusions

The aim of this article was to formulate a prescription for
obtaining polarized dimensionally regularized amplitudes
and to provide a recipe for constructing simple and general
polarized amplitude projectors in D dimensions, which cir-
cumvents the conventional Lorentz tensor decomposition,
and difficulties associated with it, in a manifestly CDR-
compatible way. The polarization projectors devised in this
article are based on the momentum basis representations of
external state vectors, and all their open Lorentz indices are
taken to be D-dimensional. This avoids dimensional splitting
when applied to loop amplitudes. The momentum basis rep-
resentations of external gauge bosons’ polarization vectors
as well as polarization vectors of massive fermions were dis-
cussed in detail in the first half of this article. In particular,
the way of dealing with massive external polarized fermions,
i.e., by inserting momentum basis representations of their
polarization vectors appearing in Landau density matrices,
has not been discussed before in the literature. Subtleties
related to the proper arrangement of pieces in the respective
projectors in D-dimensional computations are discussed for
the first time in this article. It is also worth pointing out that
this treatment is fully compatible with Larin’s prescription
of γ5 in D dimensions, and hence it is convenient to use
when there are axial (or pseudoscalar) couplings involved in
the loop amplitude in dimensional regularization. It is, how-
ever, worth emphasizing that the prescription for the exter-
nal projectors proposed here is not tied to applying a non-
anticommuting γ5 prescription to the axial currents or other
γ5-related objects inside an amplitude.

As shown in Sect. 3, it is quite straightforward to con-
struct these projectors, and their structures depend only on
the masses and spins of the external particles. The construc-
tion procedure requires almost no knowledge of the Lorentz
structures present in the loop amplitude, nor whether or not
they are linearly independent of each other (in D dimensions).
In particular, there is no need to trim any unphysical Lorentz
structure off the original Feynman-diagrammatic represen-
tation of the amplitude before applying these external pro-
jectors. The number and forms of these projectors are truly
independent of the loop order of the virtual amplitude as
well as of possible evanescent Lorentz structures that may
be generated in D dimensions. In fact, the number of these
projections needed are equal to the number of independent
helicity amplitudes in 4 dimensions. Constraints from sym-
metry properties such as parity symmetry can be accounted
for in a simple way in terms of this set of projectors.

From the point of view of the projection method as
recapped in Sects. 2.1 and 3.4, the set of projectors pre-
scribed in this article may be loosely viewed as a special
choice of Lorentz decomposition basis structures which by
construction are orthogonal to each other. This perspective

is also very useful in showing how one can easily reproduce
polarized amplitudes defined in other helicity conventions or
polarization bases, starting from the original projections with
the proposed projectors. Furthermore, each of these decom-
position structures is directly related to a physical quantity, a
linearly polarized amplitude up to a normalization factor, and
thus patterns of (explicit and/or implicit) singularities therein
are protected by physical conditions observed by these phys-
ical quantities. In this way the issues related to the conven-
tional form-factor decomposition as discussed in Sect. 2.2
are avoided.

The usage of these D-dimensional polarized amplitude
projectors results in helicity amplitudes which are eventu-
ally expressed solely in terms of Lorentz invariants made out
of external momenta. The resulting (bare) helicity ampli-
tudes (and the incoherent sum of their squared moduli)
are, however, different from those defined in many exist-
ing dimensional regularization schemes, in particular CDR.
Despite being different from CDR, owing to the amplitude-
level factorization of UV and IR singularities (which are
independent of polarization states of external particles),
combined with the commutation between D-dimensional
Lorentz-index contraction and loop integration, our prescrip-
tion for external states can be used in a hybrid way with
CDR to obtain the same finite remainders of loop ampli-
tudes as in CDR, without having to re-calculate the (process-
independent) pole-subtraction coefficients. This was demon-
strated in Sect. 4.1 in a formal way for minimally pole-
subtracted amplitudes where a few subtle points related to
manipulating fermions are discussed along the way. The
validity of our argumentation is not confined to one-loop
corrections to Born amplitudes, but persists as long as
the amplitude-level factorization formulas hold in CDR, as
sketched in Eq. (4.1).

Subsequently, the same issue was discussed in Sect. 4.2
for finite remainders defined in an IR subtraction framework,
where we argued that the unitarization recipe of Ref. [61]
is properly respected by our method. Thus we have shown
that our hybrid CDR-compatible prescription is unitary. We
emphasize again that in order to unambiguously and consis-
tently apply our prescription for external states to the calcu-
lation of loop amplitudes in D dimensions, there is no need to
appeal to their Lorentz tensor decomposition representations.

In order to illustrate the usage of our hybrid prescription
in practical applications, we discussed in Sect. 5 the con-
struction of polarization projectors for e+e− → QQ̄ and
gg → gg, and computed their RS-independent finite remain-
ders respectively to 1-loop and 2-loop order in QCD. While
the arguments presented in Sect. 4.2, as well as the exam-
ples of Sect. 5, mainly focus on NLO computations, it is
possible to ensure unitarity of the prescription at NNLO in
QCD and beyond, with the aid of an IR-subtraction method
as briefly commented on at the end of the Sect. 4.2. This
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is, however, beyond the scope of the current article, and we
leave a detailed exposition of this in a future publication.

Given the impressive list of calculations of unpolarized
observables done using CDR, we hope that, with this add-
on, the resulting hybrid CDR-compatible prescription formu-
lated in this article offers a convenient and efficient set-up for
computing physical observables associated with polarization
effects for phenomenologically interesting processes in per-
turbative QCD.
Note added While this work was under reversion, there
appeared Refs. [75–77] aimed to address some of the issues
related to the evanescent tensor structures in the conven-
tional form factor decomposition formalism, highlighting the
advantage of removing evanescent tensor structures in a scat-
tering amplitude.
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Appendix A: An explicit formula for linear polarization
states of a (massive) gauge boson

We have seen in Sects. 3.1 and 3.2 that three linearly inde-
pendent external momenta are sufficient to build momentum
basis representations of external polarization vectors, regard-
less of their masses, and the concrete decomposition coeffi-
cients depend on the particular kinematics.

In Sect. 3.3, we have provided a compact formula for lin-
ear polarization states of a massless gauge boson that can
be conveniently used in any multiple-parton scattering pro-
cess in massless QCD with a flexible choice of the (lightlike)

reference vectors as well as the additional auxiliary vectors.
For constructing momentum basis representations of polar-
ization vectors for final-state vector bosons in general, it is
also convenient to take a group of three linearly indepen-
dent external momenta of which two are always chosen to
be the momenta of the initial-state (massless) particles and
the third one is the particular final-state particle in question.
Using this approach, we document here the momentum basis
representations of linear polarization vectors introduced in
Sect. 3.1, but without specializing the concrete external kine-
matic configuration. We consider a generic configuration
with two massless initial state particles with momenta p1

and p2, applicable to most of the phenomenologically inter-
esting high-energy scattering processes, while the mass of
the particular final state particle, with momentum p3 is left
unspecified. These three external momenta are assumed to be
linearly independent. No specification is made of the kine-
matics of the other particles in the final state.

For the kinematic invariants required here are

s12 = 2 p1 · p2, s13 = 2 p1 · p3,

s23 = 2 p2 · p3, m2 = p3 · p3, (A.1)

which are assumed to be independent of each other. Repeat-
ing the construction made in Sect. 3.1, we obtain for this
generic kinematic setting:

ε
μ
X = NX

(
(−s23) pμ

1 + (−s13) pμ
2 + s12 pμ

3

)
,

ε
μ
T = NT

(
(−s23(s13 + s23) + 2m2s12) pμ

1

+(s13(s13 + s23) − 2m2s12) pμ
2

+(s12(−s13 + s23)) pμ
3

)
,

ε
μ
Y = NY 2εμ

p1 p2 p3
,

ε
μ
L3 = NL3

(
− 2m2 (

pμ
1 + pμ

2

) + (s13 + s23) pμ
3

)
, (A.2)

with the respective normalization factors

N −2
X = s12

(
s13s23 − m2s12

)
,

N −2
T = s12

(
s13s23(s13 + s23)

2

−m2s12(s
2
13 + 6s13s23 + s2

23) + 4m4s2
12

)
,

N −2
Y = s12

(
s13s23 − m2s12

)
,

N −2
L3 = m2

(
(s13 + s23)

2 − 4m2s12

)
. (A.3)

The comments on polarization vectors and normalization fac-
tors made in Sect. 3.3 apply here as well. In particular, when
there are no less than 3 particles in the final state of the
scattering, one could rewrite the ε

μ
p1 p2 p3 in Eq. (A.2) for

ε
μ
Y by making use of the momentum basis representation of

the Levi-Civita tensor Eq. (3.27). If the target particle with
momentum p3 is a light-like gauge boson, then there will be
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no longitudinal polarization mode, and the transverse polar-
ization vectors given above amount to taking the “beam-axis”
vector p1 + p2 as the reference vector.

Appendix B: Conventional form-factor projectors for
N(≥ 5) vector-boson scattering from the van Neerven–
Vermaseren basis

Although this article is mainly concerned with a constructive
prescription for projectors that directly project out polarized
amplitudes in a new hybrid CDR-compatible scheme, it is
still interesting to see how the van Neerven–Vermaseren basis
[81] allows us to read off conventional form-factor projec-
tors for scattering amplitudes among N ≥ 5 vector bosons,
straightforwardly at almost zero computational cost.

The single most important quantity in the construction of
the van Neerven–Vermaseren basis is the generalized Kro-
necker delta δ

μ1···μn
ν1···νn , which can be written as the determinant

of n × n space-time metric tensors:

δμ1...μn
ν1...νn

=

∣∣∣∣∣∣∣

g μ1
ν1 · · · g μ1

νn
...

. . .
...

g μn
ν1 · · · g μn

νn

∣∣∣∣∣∣∣
. (B.1)

In the case of n = 4, the dimension of the Minkowski space,
one has δ

μ1···μ4
ν1···ν4 = εμ1μ2μ3μ4 εν1ν2ν3ν4 , i.e., the contraction

given in Eq. (3.8). Note that if one takes Eq. (B.1) as the
definition of the symbol δ

μ1···μn
ν1···νn , it then has, unlike the Levi-

Civita tensor, a straightforward extension to D dimensions,
because the r.h.s. consists of only the space-time metric
tensors. To simplify the discussion of form-factor projec-
tors below, let us confine ourselves to the scattering among
exactly N=5 vector bosons where the 4 linearly indepen-
dent external momenta are denoted by {p1, p2, p3, p4}.30

The close relation between the generalized Kronecker delta
and the Gram matrix of {p1, p2, p3, p4} makes this object
very useful for constructing the dual vectors, or the van
Neerven–Vermaseren basis, {P1,P2,P3,P4} of the linear
space spanned by {p1, p2, p3, p4}. To be specific, this vec-
tor basis is given by

Pμ
1 = δ

μ p2 p3 p4
p1 p2 p3 p4

δ
p1 p2 p3 p4
p1 p2 p3 p4

, Pμ
2 = δ

p1 μ p3 p4
p1 p2 p3 p4

δ
p1 p2 p3 p4
p1 p2 p3 p4

,

Pμ
3 = δ

p1 p2 μ p4
p1 p2 p3 p4

δ
p1 p2 p3 p4
p1 p2 p3 p4

, Pμ
4 = δ

p1 p2 p3 μ
p1 p2 p3 p4

δ
p1 p2 p3 p4
p1 p2 p3 p4

, (B.2)

where a compact notation for the generalized Kronecker delta
contracted with momenta has been used, namely δ

pμ2...μn
q ν2...νn ≡

pμ1 q
ν1 δ

μ1...μn
ν1...νn . One recognizes the common denominator

δ
p1 p2 p3 p4
p1 p2 p3 p4 as the Gram determinant of the list of independent

30 On the boundaries of the phase space, the number of linearly inde-
pendent momenta is known to become smaller.

momenta {p1, p2, p3, p4}. It is straightforward to see that
Pi · p j = δi j for i, j ∈ {1, 2, 3, 4}. Consequently, for a rank-
5 Lorentz tensor Mμ1···μ5 that can be linearly decomposed in
terms of a set of Lorentz structures formed by tensor products
of 5 momenta from {p1, p2, p3, p4},
Mμ1μ2μ3μ4μ5 =

∑

in∈{1,2,3,4}
Ci1i2i3i4i5 pμ1

i1
pμ2
i2

pμ3
i3

pμ4
i4

pμ5
i5

,

(B.3)

the projectors for the linear decomposition coefficients
Ci1i2i3i4i5 can be composed simply by tensor products of the
van Neerven–Vermaseren basis {P1,P2,P3,P4}:
Pi1i2i3i4i5 = Pμ1

i1
Pμ2
i2

Pμ3
i3

Pμ4
i4

Pμ5
i5

. (B.4)

In this way, the form-factor projectors for 5-vector-boson
scattering amplitudes are obtained bypassing completely the
explicit procedure of building up and inverting the Gram
matrix of a large set of Lorentz structures (such as those
discussed in Sect. 2.1), at almost zero computational cost. See
Ref. [76] for a detailed discussion of how one can determine
the form factor projectors for 5 gluon scattering amplitudes in
the HV scheme alternatively via solving the linear equations
involved with finite-field methods.

The identity operator of the linear space spanned by the
momenta basis {p1, . . . , pn} (with n ≤ 4) can also be easily
composed as [81,124]

Î μν
n =

n∑

i=1

pμ
i Pν

i , (B.5)

owing to Pi · p j = δi j . In the case of n = 4, Eq. (B.5)
provides the momentum basis representation of the space-
time metric tensor gμν in the four-dimensional Minkowski
space.31 In Eq. (3.27), the momentum basis representation
of the rank-4 Levi-Civita tensor was given. From the dis-
cussions of Sect. 3.3 and the points made in Ref. [75], it
should be clear that the Lorentz tensor structures needed for
scattering amplitudes among N ≥ 5 vector bosons, regard-
less of whether or not the interactions are parity-even, can
all be expressed in terms products of the 4 linearly inde-
pendent external momenta. Indeed, the projectors given in
Eq. (B.4) hold in general: the tensor amplitude Mμ1···μ5 can
contain, apart from the structures given in Eq. (B.3), terms
involving the space-time metric tensor and the Levi-Civita
tensor. The possible appearances of any additional momen-
tum, the space-time metric tensor, and also the Levi-Civita
tensor in the original Mμ1μ2μ3μ4μ5 , given directly by Feyn-
man diagrams, are effectively seen by the projectorsPi1i2i3i4i5

31 Projection operators to the complementary subspace that is orthogo-
nal to the subspace spanned by the given vector basis (with n < 4) can
also be composed by subtracting the identity operator Eq. (B.5) of the
subspace spanned by {p1, . . . , pn} from the underlying gμν . This can
also be conveniently achieved by making use of δ

μ1...μn
ν1...νn .
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in Eq. (B.4) as merely intermediate short-hand notations
of composite objects made out of pμ1

i1
pμ2
i2

pμ3
i3

pμ4
i4

pμ5
i5

,
because they are all linearly dependent on the later, clearly
shown by Eqs. (3.27) and (B.5). Furthermore, one only needs
to project out the form-factor coefficients in front of the set of
Lorentz tensor structures that survive and contribute under
the chosen reference vectors. One important and nice fea-
ture about the form-factor projectors in Eq. (B.4) is that their
contraction with the tensor amplitude Mμ1···μ5 can be done
with the spacetime-metric tensor gμν , i.e. no need to insert
the physical polarization sum rules of all 5 external gauge
bosons. Note that there are no explicit appearances of the
space-time metric tensor in the form-factor projectors given
in Eq. (B.4), but only the external momenta. Consequently,
the helicity amplitudes reconstructed from form factors pro-
jected out by this type of projectors are automatically those
of the HV scheme.

Under the condition that one would first dress the multiple-
parton scattering amplitudes by the physical polarization
sums for each external gauge boson before being contracted
with the external projectors in Eq. (B.4), these projectors can
be dramatically reduced by dropping terms that are nulli-
fied by these physical polarization sums. However, this does
not necessarily reduce the complexity of the computation,
because dressing all external gauge bosons by their polariza-
tion sums is a very costly action in multiple-parton scatter-
ings.
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