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Abstract In completely generic four-dimensional gauge-
Yukawa theories, the renormalization group β-functions are
known to the 3–2–2 loop order in gauge, Yukawa, and quartic
couplings, respectively. It does, however, remain difficult to
apply these results to realistic models without the use of dedi-
cated computer tools. We describe a procedure for extracting
β-functions using the general results and introduce RGBeta,
a dedicated Mathematica package for extracting the MS β-
functions in broad classes of models. The package and exam-
ple notebooks are available from the GitHub repository.

1 Introduction

The renormalization group (RG) functions are fundamental
quantities in quantum field theories (QFTs), governing how
the dynamics of models change with energy. Theβ-functions,
in particular, determine the flow of couplings gwith the renor-
malization scale μ. They are a staple of BSM physics used in
grand unification to extrapolate low-energy couplings to the
unification scale or to generate mass spectra from high-scale
input in supersymmetric models. Other applications involve
the study of the ultimate ultraviolet fates of models in the
search of fundamental theories (see e.g. [1,2]). It is, there-
fore, not surprising that the β-functions were computed to
the first few orders in perturbation theory several decades
ago. In the general case of four-dimensional gauge-Yukawa
theories, they were calculated to the 2-loop order in both
gauge, Yukawa, and quartic couplings already in the 80’s [3–
6]. What is perhaps more surprising is that it took another 20
years for the 3-loop result for the gauge β-function [7], which
represents the current state-of-the-art in generic theories.

One contributing cause for this measured pace might be
that although the general results for the β-function have long
been known, it is an often time-consuming endeavor to apply
the results to specific models. Typically, model builders write,

a e-mail: thomsen@itp.unibe.ch (corresponding author)

and work with, their models in terms of various matter fields,
each in their separate irreducible representation of the model
gauge group. On the other hand, the generic Lagrangian
employed in the general result is framed in terms of but one
real scalar and one Weyl fermion multiplet in reducible rep-
resentations of the symmetry, encompassing all the matter
fields of the model. Matching the specific model onto the
general theory is in principle straightforward; however, in
practice, it almost always turns into an arduous exercise and
is the primary obstacle in applying the general formulas. Typ-
ical computations in the generic framework would be done
by explicit construction of the coupling tensors, which are
mostly large and sparse. In the SM for instance, the general-
ized Yukawa coupling Yai j is a sparse 4×45×45 tensor and
the fermion gauge generator (T A

� )i j an 11 × 45 × 45 tensor.
Every term in the β-functions corresponds to a monomial
in these tensors, contracting all internal indices, and com-
putations quickly become computationally expensive and/or
cumbersome to set up.

For all of the above reasons, a number of computer
tools have been developed for extracting model-specific β-
functions, of which RGBeta is but the latest. There is
the general-purpose Mathematica1 package SARAH 4 [8,9],
which includes a 2-loop implementation of the β-functions
based on the original 2-loop formulas [4,10]. Then there is
the dedicated python code PyR@TE 3 [11–13], which in its
latest iteration, based on the completely general set of basis
tensors [14,15] up to the 3-loop order in the gaugeβ-function,
is blazingly fast. With the PyLie module based on SUSYNO
[16], PyR@TE 3 is capable of dealing with arbitrary gauge
group representations, but it does not have the flexibility of
e.g. using SU(N ) with N left unspecified. Finally, during the
completion of this manuscript, we became aware of the inde-
pendent, dedicated Mathematica package ARGES [17] with
a significant overlap with the scope of RGBeta (even as it
pertains to dedicated computation tools for RG functions)

1 Mathematica is a product of Wolfram Research, Inc.
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and a good degree of flexibility in the implementation of the
gauge groups. Internally ARGES is based on the original RG
formulation [3–5,7,10,18], where RGBeta is based on Ref.
[14] implemented with the structure deltas of Ref. [19]. More
noticeable to the user,ARGES implements the running of vac-
uum expectation values [20,21], whereas RGBeta includes
kinetic mixing between Abelian gauge fields. Also recently,
the C++ library RGE++ was introduced to provide an easy-
to-use framework for numerically solving RG equations in
an efficient manner [22]. Although most of the new features
of RGBeta has been covered in the latest PyR@TE release
and ARGES, we still believe it worthwhile to release this lat-
est tool in the line. With multiple available tools, the user can
ultimately choose whichever fits them and their project best.
Furthermore, with multiple independent codes, it becomes
possible to cross-check the outputs. This is sorely needed
considering that in all cases reliability of the output is subject
to the user not making any errors in the (often complicated)
input. There is also the black-box factor to consider, that is,
the implementation in the various programs cannot easily be
tested by the users.

RGBeta was originally developed to test the general β-
function basis used and developed in Ref. [14] and is used
in ongoing work on higher-order β-functions [23]. It is an
implementation of the generally applicable MS β-function
formulas for gauge-Yukawa theories presented in Ref. [14],
which in turn is an extension of the general 2-loop results
[3–6,10] and 3-loop gauge β-function [7] to allow for com-
pletely generic gauge groups. The new formulas use a revised
basis, which easily generalizes to the case with multiple
Abelian gauge group factors and has been checked for incon-
sistencies with the Weyl consistency conditions (cf. Refs.
[24–26]). RGBeta uses an implicit construction of the gen-
eral coupling tensors to avoid large sparse tensors in the eval-
uation, and all group index contractions are evaluated with a
handful of simplification rules and Fierz identities. Although
this limits the scope of the package to fields in some of the
more common representations of the ordinary Lie groups (cf.
Sect. 3.4), it does come with the benefit of a usually quick
evaluation time and the possibility of leaving group indices
unspecified, meaning that it can handle e.g. SU(N ) groups
without fixing N . This makes RGBeta ideal for using in the
Mathematica notebook environment, where it is easy for the
user to manipulate the output and/or make changes to the
model on the fly.

The rest of the paper is organized as follows: the follow-
ing section details the matching procedure from a specific
model to the general framework. It provides background and
insight into the underlying procedure but can be skipped by
the impatient reader, who wants to learn how to use RGBeta.
Section 3 explains the basic objects of the package, instal-
lation, and implementation of group theory. Next, Sect. 4
outlines the routines of RGBeta and how to implement a

model, using the Standard Model (SM) as a detailed exam-
ple. Finally, we round off with a short conclusion while the
appendix contains more full-fledged documentation of the
routines.

2 Formalism

2.1 Generic four-dimensional renormalizable theories

The derivation of the general formulas for β-functions pre-
supposes a certain generic formulation of the QFT. To include
all marginal couplings of any four-dimensional theory, the
generic Lagrangian (GL) used in the formulation of the gen-
eral β-function results is compactly put on the form [14]

L = − 1
4a

−1
AB F

A
μνF

Bμν

+ 1
2 (Dμ�)a(D

μ�)a + i�†
i σ̄

μ(Dμ�)i

− 1
2

(
Yai j�

i� j + H.c.
)

�a

− 1
24�abcd�a�b�c�d .

(2.1)

The Fermion field � i is of the Weyl type, as any Dirac
spinor can be decomposed into two 2-component spinors.
All fermion fields are gathered into this one multiplet in
a, generally speaking, reducible representation of the flavor
and gauge group, and lower-case Latin indices starting from
i, j, . . . are used for the fermion indices. The scalar field �a

is taken to be real: complex fields can be decomposed to
real fields but not vice versa. �a , labeled with small Latin
letters beginning with a, b, . . ., is one multiplet containing
all scalar fields and is also generically a reducible repre-
sentation of the gauge and flavor groups. Finally, all gauge
fields are gathered into a multiplet AA

μ with upper-case Latin
indices A, B, . . . running over all adjoint representations of
the individual product groups. F A

μν is the field-strength tensor
associated with the corresponding multiplet.

As for the couplings, the Yukawa couplingYai j is symmet-
ric in the two fermion indices i and j and the quartic coupling
�abcd is completely symmetric. The gauge couplings have
been absorbed into the gauge kinetic term and placed in the
coupling matrix a−1

AB , which is proportional to the identity
in the case of a simple gauge group and otherwise block
diagonal (except for kinetic mixing terms between Abelian
groups).2 Thus, the covariant derivatives of the matter fields
read

Dμ�a = ∂μ�a − i AA
μ(T A

� )ab�b and

Dμ� i = ∂μ� i − i AA
μ(T A

� )i j�
j . (2.2)

In contrast to the GL, the model builder’s Lagrangian
(MBL), as it is commonly used in model building, is written

2 Further details on this construction can be found in Ref. [14].
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in terms of multiple fields in irreducible representations of
the gauge and global symmetry groups of the model. It takes
the form

L = − 1
4

∑
n

FUn
n,μνF

Uuμν
n +

∑
α

(Dμφα)
†
Aα

(Dμφα)Aα

+i
∑
ρ

(ψ†
ρ)Iρ

σ̄ μ(Dμψρ)Iρ

−
∑

couplings

(
yAαIρJσ

φAα
α ψ

Iρ
ρ ψJσ

σ + H.c.
)

−
∑

couplings

λAαBβCγDδ
φAα

α φ
Bβ

β φ
Cγ
γ φ

Dδ

δ , (2.3)

where n labels the various products of the gauge group
G = ×nGn , and all repeated indices are summed over. This
notation is generalized and – unfortunately – rather incom-
prehensible at a glance.3 The Greek subscripts on the fields
label the various irreducible representations of the scalar and
fermion fields. Each field has a set of indices collectively
denoted with a calligraphic letter, which comprises all gauge
and flavor indices of the respective fields. As an example, the

SM left-handed quark doublet would be written as ψ
Iq
q with

the collective index Iq = (i, c, α) labeling generation, color,

and isospin. For the gauge fields, AUnμ
n is the field of prod-

uct group Gn with corresponding adjoint index Un . To apply
known results and extract the β-functions for the coupling in
the MBL, one must construct a mapping between it and the
GL.

2.2 Mapping onto the generic Lagrangian

Let us proceed with the construction of a mapping of the
MBL onto the GL. One approach would be to do an explicit
construction of the �a and � i multiplets with each entry
being filled with a particular gauge and flavor component of
the fields φα and ψρ .4 Instead, we will employ and expand on
the use of the structure deltas introduced by Mølgaard [19]
in an approach that allows for treating most sums (matrix
multiplications) of the program in a mostly implicit manner.

The peculiar form of the gauge kinetic term in the GL (2.1)
is a compact way of including all the product groups of a
generic semi-simple gauge group G = ×nGn . The gauge
couplings have been placed in the kinetic term of the gauge
fields by rescaling the gauge fields AUn

nμ → g−1
n AUn

nμ. Next, all
the gauge fields are collected into a single multiplet AA

μ . The
structure deltas �[An] are introduced as projection operators

3 No doubt this is what we get for recklessly constructing a generic
specific theory: a contradiction in terms.
4 See e.g. App. D of Ref. [18] for how this would be done in the SM.
The reader will no doubt appreciate the effort underlying such explicit
constructions and why one might wish to avoid this.

satisfying

AUn
nμ = �[An]Un A AA

μ and

AA
μ =

∑
n

AUn
nμ�[An]Un A. (2.4)

As projection operators they fulfill the completeness relations

�[Am]Um A�[An]Vn A = δmnδ
UmVn and∑

n

�[An]Un A�[An]Un B = δAB . (2.5)

Using the structure delta, one may write the gauge kinetic
term

− 1
4a

−1
AB F

A
μνF

Bμν

= − 1
4

∑
u

g−2
u FUu

u,μνF
Uuμν
u , (2.6)

by identifying

a−1
AB =

∑
n

g−2
n �[An]AUn�[An]BVnδUnVn , (2.7)

FABC =
∑
n

�[An]AUn�[An]BVn�[An]CWn f
UnVnWn
n .

(2.8)

for the gauge couplings and group structure constants,
respectively. One may think of a−1

AB as a block diagonal
matrix, where gauge invariance ensures that the value of
the coupling is the same for all the gauge fields across the
adjoint representation of any one of the product groups Gn .
The gauge self-interactions always depend on the generalized
structure constant FABC , which also vanish between gauge
fields of different product groups.

Moving on to the interactions with matter fields, the struc-
ture deltas are implemented with the purpose of projecting
out the specific fields (in the phenomenological sense) φα

or ψρ from the general multiplets � or �, respectively. We
define them by

φAα
α = 1√

2
�[φα]Aα

a �a,

�a = 1√
2

∑
α

(
�[φ†

α]aAα
φAα

α + �[φ]Aα
aφ

∗
α,Aα

)
, (2.9)

ψ
Iρ
ρ = �[ψρ]Iρ

i �
i ,

� i =
∑
ρ

�[ψ†
ρ ]iIρ

ψ
Iρ
ρ , (2.10)

where e.g. (�[φα]†)aAα
= �[φ†

α]aAα
. The

√
2 accounts for

the different normalization of the kinetic terms of the real
and complex scalar fields. Since no degrees of freedom are
lost or gained from packing the fields into multiplets, the
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structure deltas obey the usual summation rules for projection
matrices:

�[φα]Aα
a�[φ†

β ]aBβ
= 2δαβδAαBα

,
∑
α

(
�[φ†

α]aAα
�[φα]Aα

b + �[φ†
α]bAα

�[φα]Aα
a

)
= 2δab,

�[ψρ]Iρ
i�[ψ†

σ ]iJσ
= δρσ δIρJρ

,
∑
ρ

�[ψ†
ρ ]iIα

�[ψρ]Iα
j = δi j . (2.11)

As one would expect, the complex scalars satisfy5

�[φα]Aα
a�[φβ ]Bβ

a = 0. (2.12)

Using the structure deltas, the interaction terms of the
MBL can be recast as

L ⊃ − 1√
2

∑
couplings

(
yAαIρJσ

�[φα]Aα
a

×�[ψρ]Iρ
i�[ψσ ]Jσ

j�
i� j + H.c.

)
�a

− 1

4

∑
couplings

λAαBβCγDδ
�[φα]Aα

a�[φβ ]Bβ
b�[φγ ]Cγ

c

× �[φδ]Dδ
d�a�b�c�d .

(2.13)

Through direct comparison with the GL (2.1), one then finds

Yai j = 1√
2

∑
{i, j}

∑
couplings

yAαIρJσ
�[φα]Aα

a�[ψρ]Iρ
i

× �[ψσ ]Jσ
j , (2.14)

�abcd = 1

4

∑
{a,b,c,d}

∑
couplings

λAαBβCγDδ
�[φα]Aα

a�[φβ ]

× Bβ
b�[φγ ]Cγ

c�[φδ]Dδ
d . (2.15)

The sums over {i, j} and {a, b, c, d} are taken to be over all 2
and 24 permutations of the indices, respectively. In a similar
manner, the kinetic terms can be made to match the GL form
by inserting an identity with a pair of structure deltas. For the
fermions it follows that
∑
ρ

�[ψ†
ρ ]iIρ

(Dμψρ)Iρ

=
(

δi j∂μ − i AA
μ

∑
ρ

�[ψ†
ρ ]iIρ

(T A
ρ )IρJρ

�[ψρ]Jρ
j

)
� j ,

(2.16)

which allows for identifying the gauge generator (T A
� )i j of

the fermion field multiplet. For the scalars there is a small
complication due to the matching from real to complex fields.

5 The same applies for fermion fields, but such contractions do not
occur in the formalism in the first place.

Observe first that the scalar kinetic term can be put on the
form
∑
α

(Dμφ†
α)Aα

(Dμφα)Aα

= 1

4

∑
α,β

[
(Dμφ†

α)Aα
�[φα]Aα

a + H.c.
]

×
[
�[φ†

β ]aBβ
(Dμφβ)Bβ + H.c.

]
. (2.17)

Only then do we match to the GL, with

1
2

∑
α

[
�[φ†

α]aAα
(Dμφα)Aα + H.c.

]

= 1

2
√

2

∑
α

(
�[φ†

α]aAα
Dμ

AαBα
�[φα]Bα

b + H.c.
)

�b

= 1√
2

(
δab∂μ − i

2
AA

μ

∑
α

[
�[φ†

α]aAα
(T A

α )AαBα

�[φα]Bα
b − (a ↔ b)

])
�b.

(2.18)

From here we can identify the generators (T A
� )ab of the

generic scalar multiplet. They are antisymmetric in a, b as
indeed they should be for any real representation.

It should be mentioned that any MBL could, of course,
contain real scalars in addition to (or instead of) the complex
ones. The formalism presented here is easily extended to
accommodate such cases by identifying �[φα] and �[φ†

α]
for the appropriate fields and getting rid of the corresponding√

2. One great advantage of using the structure deltas is that
they never need to be constructed explicitly as matrices. It is
sufficient to invoke the completeness relations whenever GL
indices are contracted to obtain a sum of contractions with
MBL indices.

2.3 β-functions

Having established a mapping procedure between the MBL
and GL, the known results for the Beta functions [3–7,10]
can be applied to determine the β-functions. Specifically, the
implementation of the β-functions in RGBeta uses the form
given in [14], as it supports completely generic gauge groups
including the effects of kinetic mixing up to the 3-loop order.
In the GL notation, the general formula for the β-functions
produces

βAB = daAB
dt

, βai j = dYai j
dt

, and

βabcd = d�abcd

dt
, t = ln μ (2.19)

in terms of the couplings aAB , Yai j , and �abcd and gauge
group generators (T A

� )ab, (T A
� )i j , and FABC . As we saw, all

of these objects can be expressed with their MBL counter-
parts and structure deltas, leaving only the task of projecting
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the generic β-functions back onto the specific couplings of
the MBL.

The structure deltas are applied to map back from GL β-
functions to the β-functions of the specific MBL couplings.
For the gauge couplings we invert Eq. (2.7), giving

dg2
n

dt
= 1

d(Gn)
βAB�[An]AUn�[An]BUn . (2.20)

For the Yukawa and quartic interactions, a similar compari-
son to Eqs. (2.14) and (2.15) shows that

dyAαIρJσ

dt

= 1√
2S2(ρ, σ )

βai j�[φ†
α]aAα

�[ψ†
ρ ]iIρ

�[ψ†
σ ] jJσ

, (2.21)

dλAαBβCγ Dδ

dt

= 1

4S4(α, β, γ, δ)
βabcd�[φ†

α]aAα
�[φ†

β ]aBβ
�[φ†

γ ]aCγ
�[φ†

δ ]aDδ
.

(2.22)

Here we must introduce symmetry factors Sn to compensate
for double counting when multiple fields coincide.6 Contrary
to the gauge β-function, both the Yukawa and quartic β-
functions still have free indices. Some of these are coupling
indices, such as the generation indices on the SM Yukawa
couplings, and should be retained. However, all free gauge
(and flavor indices irrelevant to said coupling) will have to
be projected out.

One should keep in mind a potential problem in project-
ing out the remaining symmetry indices of Eqs. (2.21) and
(2.22). If the gauge and global symmetry representations of
the fields allow for multiple invariants, the naive projection
of one coupling may have a non-trivial overlap with the oth-
ers. In such cases, one must take care to define linear com-
binations that pick out particular couplings. One example
where this becomes relevant is in the single-trace/double-
trace terms in quartic potentials.

2.4 Treatment of other renormalization group functions

We should like to make some additional comments regard-
ing what RG functions can be extracted with the methods
discussed in this section. First of all, as pointed out in Ref.
[14], the formulation of the gauge Lagrangian with a matrix
gauge coupling generalizes easily to include kinetic mix-
ing terms between multiple Abelian gauge groups, making
it possible to treat any gauge group. In contrast to previous
formulations of the kinetic-mixing as something other than
the gauge coupling [27,28], we can include it by allowing for
a matrix gauge coupling between all Abelian field-strength

6 Sn(α, β, . . .) = n!/the number of unique permutations of the argu-
ments. Thus, e.g. S4(α, α, β, β) = 4.

tensors in the gauge potential: L ⊃ −1

4
Fr,μνh

−1
rs F

μν
s , where

r, s run over all Abelian gauge fields. This includes all infor-
mation of the mixing between the groups, and hrs can be
embedded as a block in the general gauge coupling aAB .

Thus far we have only discussed the β-functions of the
marginal couplings. Relevant couplings are also allowed in
renormalizable theories, and their running is also governed
by β-functions. The most general Lagrangian term for the
relevant couplings take the form

Lrel = − 1
2

(
Mi j�

i� j + H.c.
) − 1

2m
2
ab�a�b

− 1
6habc�a�b�c, (2.23)

in the GL or

Lrel = −
∑

masses

(
MIρJσ

ψ
Iρ
ρ ψJσ

σ + H.c.
)

−
∑

masses

m2
AαBβ

φAα
α φ

Bβ

β

−
∑

couplings

hAαBβCγ
φAα

α φ
Bβ

β φ
Cγ
γ (2.24)

in the MBL. The structure delta technique can be applied
to establish a mapping between the GL and MBL relevant
terms in a similar manner to what was just discussed for the
marginal couplings.

The actual β-functions for the relevant terms can be recov-
ered from the Yukawa and quartic β-functions using the
dummy field method [10,29]. It entails introducing non-
dynamic faux scalar fields to the relevant couplings to match
them with marginal couplings whose β-functions can then
be used for the relevant couplings. The main pitfall is that
as the faux field is not dynamical, it does not receive any
field-strength renormalization; all such contributions have to
be removed from the corresponding β-function. At the 2-
loop order, one can unambiguously identify what terms in
the β-function basis corresponds to the (neutral) scalar field
anomalous dimensions, and these can therefore be removed
without any specific knowledge of the underlying loop cal-
culation. This method was also used by Sartore [15] for the
new β-function basis [14].

The anomalous dimension of the matter fields are also
known up to the 2-loop order. For a matter field η, the bare
field is related to the renormalized field by

η0 = Zηη, (2.25)

where Zη is the field-strength renormalization. The anoma-
lous dimension of the field is then given as

γη = Z−1
η

d

dt
Zη. (2.26)

The general 2-loop expressions found in Luo et al. [10] are
easily adapted to the notation of Ref. [14] used in RGBeta.
It should be pointed out that γη is gauge dependent, and that
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they have been computed using the Rξ gauges (with ξ = 0
being the Lorenz/Landau gauge and ξ = 1 the Feynman
gauge).

3 Package overview

3.1 RGBeta in a nutshell

RGBeta is a Mathematica package aimed at allowing the-
orists to easily extract the MS β-functions of their favorite
models, be it for BSM physics or field-theoretic applications.
The package implements the state-of-the-art β-functions for
general four-dimensional renormalizable theories, which are
known up to loop order 3–2–2, for gauge, Yukawa, and quar-
tic couplings, respectively. The intent is to provide Mathe-
matica users with an easy-to-use, one-stop implementation
of the β-function formulas directly in Mathematica, which is
already widely used in the community for many computer-
algebra tasks. Specifying a model to the package can be done
in a rather compact manner and can easily be done directly
in a Mathematica notebook, in which the user can proceed
to extract and manipulate the various β-functions. The β-
functions can be obtained modularly for the users who wish
to experiment with them in the Mathematica notebook envi-
ronment.

The core of RGBeta is set up to evaluate the tensor
structures of the general β-function formulas with Einstein
summation conventions and various group identities. This
approach is similar to what a person might do and is effec-
tive because many of the index contractions are in fact Kro-
necker deltas or group generators, which can be contracted
with the pattern matching functionality of Mathematica. The
performance of this strategy is generally very good, evaluat-
ing e.g. the full set of SM β-functions to highest loop order
in less than 10 seconds on a decent laptop.7,8 On top of that,
it allows the user to keep the number of colors or genera-
tions arbitrary during the evaluation. The price of the imple-
mentation strategy is that it does require hard-coding vari-
ous representation-specific identities. For this reason, only
a selection of common representations have presently been
implemented; cf. Sect. 3.4.

7 With an Intel CoreTM i7-7700HQ CPU @ 2.8 GHz.
8 Other models with matter in the fundamental representations are sim-
ilarly fast, though needless to say that evaluation time increases with
the complexity of the model. The main obstacle to a fast evaluation is
when the scalar quartic sector becomes complicated, either because of
there being a large number of quartic couplings in the model or because
of scalars in non-fundamental representations.

3.2 Definition of the β-functions

It pays to be explicit about the definition of the β-functions
used in RGBeta, as many different normalizations are used
throughout the literature. To reiterate, the package exclu-
sively provides the MS (or equivalently MS) β-functions.
In all cases we associate a loop expansion to the β-functions,
writing

βg =
∑

�

β
(�)
g

(4π)2�
. (3.1)

For all non-gauge couplings, both relevant and marginal, the
β-functions are defined as the logarithmic derivative of the
coupling wrt. the renormalization scale:

βg = d

d ln μ

{
yai j for g = y ∈ {Yukawas}
λabcd for g = λ ∈ {quartics} (3.2)

and

βg = d

d ln μ

⎧⎪⎨
⎪⎩

Mi j for g = M ∈ {fermion masses}
m2

ab for g = m2 ∈ {scalar masses}
habc for g = h ∈ {trilinears}

, (3.3)

where the ordering of flavor indices corresponds to the order-
ing of fields in the associated coupling. In all cases, the cou-
pling will be the reference name of the β-function used in
the package.

The only deviation from this pattern of β-function defini-
tions is the gauge couplings. We will assume that the kinetic
terms of the gauge fields and their β-functions are normalized
as

L ⊃
∑
n

− 1

4g2
n
(FUn ,μν

n )2, βgn = dg2
n

d ln μ
(3.4)

for the fields of non-Abelian gauge groups or the Abelian
gauge group in a model with at most one Abelian group. For
a model with multiple Abelian gauge groups, which therefore
features kinetic mixing, the kinetic term for all the Abelian
gauge fields is written jointly as

L ⊃ −1

4
Fr,μνh−1

rs F
μν
s , βh = dhrs

d ln μ
, (3.5)

where hi j is the symmetric coupling matrix.9 The β-function
βh of the coupling matrix contains all information of the
running of couplings and mixing. With the normalization
of the gauge fields employed in this notation, the covariant
derivative of a matter field can be written as

Dμη = ∂μη − i
∑
n

AUn
n,μT

Un
n η − i

∑
r

qr Ar,μη, (3.6)

9 For further details on how this compares to previous implementations
of the kinetic mixing, we refer to the appendix of Ref. [14].
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where T A
n are Hermitian generators of the non-Abelian repre-

sentations and qi Abelian charges. In particular, using a cou-
pling matrix for the Abelian kinetic term allows for keeping
the coupling of the Abelian gauge fields to the matter fields
“diagonal”.

The matter field anomalous dimensions are loop expanded
as well, parameterizing

γη =
∑

�

γ
(�)
η

(4π)2�
. (3.7)

They are defined in Eq. (2.26), and the indices in RGBeta
are

γη =
{

γ i
j for η ∈ {fermions}

γab for η ∈ {scalars} , (3.8)

all calculated in the Rξ gauges.

3.3 Installation

RGBeta can be installed directly to the /Applications
folder in Mathematica’s

� �

Import["https://raw.githubusercontent.com/aethomsen/
RGBeta/master/Install.m"]

� �

in a Mathematica notebook. Once installed, the package can
be loaded into the kernel of any notebook with
� �

<< RGBetà
� �

As an alternative to a true installation,RGBeta can be down-
loaded from the GitHub repository github.com/aethomsen/
RGBeta. It can then be loaded by simple plug-and-play: put
the package in any directory, point a Mathematica notebook
in the right direction, and load the package. Most simply,
RGBeta can be loaded from a Mathematica notebook in the
base directory of the package (the one with README.md)
with
� �

SetDirectory@ NotebookDirectory[ ];
<< RGBetà

� �

In all cases, RGBeta ought to be loaded into a freshly ini-
tialized Mathematica kernel to avoid clashing symbol defi-
nitions.

3.4 Group theory

RGBeta is set up to evaluate the tensor structures in the
β-function formulas in a manner similar to what a person
would do if asked to use the 1-loop formulas by hand for a
particular model (something which is typically doable with
a bit of patience). That is to say, it avoids all explicit sum-
mation/matrix multiplication, except over the various field

types, in favor of relying on implicit summation with Einstein
summation convention for gauge and flavor indices. This is
possible, and fast, for several of the common representations
for the ordinary Lie groups, where gauge indices are typi-
cally contracted with Kronecker deltas or generators of the
fundamental representations, which can be dealt with using
Fierz identities. This approach has the benefit that it allows
for keeping e.g. the index of the gauge group unspecified
throughout the evaluation.

Using implicit summation, RGBeta is set up with a num-
ber of symbols with internal summation rules set as Mathe-
matica up-values,10 a list of which is presented in Table 1.
The most basic symbol used in the package is the Kronecker
delta δab, which is represented by del[rep, a, b] with the first
argument specifying the type of the indices a, b. The sum-
mation conventions assigned to the Kronecker delta makes
contractions evaluate as e.g.

In[1] := del[rep, a, b] del[rep, c, b] del[rep, c, a]
Out[1] := Dim[rep]

for any representation rep. Identically named indices of dif-
ferent types do not contract, so e.g.

In[2] := del[rep1, a, b] del[rep2, a, b] del[rep2, c, b] del[rep1
, b, a]

Out[2] := del[rep2,a,c] Dim[rep1]

allowing for reusing index names.
The up-value approach is extended to the treatment of

gauge generators tGen[rep, A, a, b] with rules for simplifying
to group constants. With an irreducible representation G[rep]

of group G, RGBeta therefore gives

In[3] := tGen[G@ rep, A, a, b] tGen[G@ rep, A, b, c]
In[4] := tGen[G@ rep, A, a, b] tGen[G@ rep, B, b, a]
Out[3] := Casimir2[G[rep]] del[G[rep], a, c]
Out[4] := TraceNormalization[G[rep]] del[G[adj], A, B]

Here Casimir2[G[rep]] is the value of the quadratic Casimir
of the representation, and TraceNormalization[G[rep]] is the
trace normalization/Dynkin index. The values of Casimir
operators and Dynkin indices are predefined for all the imple-
mented representations and are available in Table 2.

The tensor structures used for the 3–2–2 β-functions have
been chosen such as to minimize the occurrence of non-
trivial group structures stemming from the gauge groups [14].
Despite this, there remains a couple of them that cannot be
evaluated by identifying factors of quadratic Casimir opera-
tors or Dynkin indices. These tensors are dealt with by imple-
menting the Fierz identities of the fundamental representa-
tions of the groups (Table 3). In the SM, these are necessary
in the 3-loop gauge β-functions and the quartic β-function
already from 1-loop order.

10 An up-value instructs Mathematica on how to treat the symbol when
encountered as argument inside another expression, in this case Times.
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Table 1 List of various symbols used in RGBeta and their meaning. For details of the various representation we refer to Table 2

Symbol Interpretation

Bar[x] Complex conjugation, x∗. It is used general purpose for both fields, couplings, and group
representations.

Trans[x] Symbolic transposition of matrix couplings.

del[rep, a, b] The Kronecker delta δab with indices running in the group representation or over flavor
indices as specified by rep.

delA2[group, i, a, b] The Clebsch–Gordan coefficient between indices i in A2 and a, b in N (or i in A2 and
a, b in N) representations of group.

delIndex[rep, a, b] The Kronecker delta δab, where one of a, b is an integer pointing to a definite index value,
e.g. δa2.

delS2[group, i, a, b] The Clebsch–Gordan coefficient between indices i in S2 and a, b in N (or i in S2 and a, b
in N) representations of group.

eps[rep, a, b] The 2-index antisymmetric invariant εab of a pseudoreal representation, rep, such as the
fundamental of an Sp(N ) group.

lcSymb[rep, a, b,. . .] The Levi-Civita symbol with indices in the given representation.

tGen[rep, A, a, b]. The Hermitian group generator T Aa
b for the corresponding representation. The first index,

A, is always taken to be in the adjoint representation, while the other two belong to rep.

Dim[rep] The dimension of a representation or flavor index. The gauge representations are mostly
predefined, but the dimension of flavor indices can be set by the user.

Matrix[A, B,. . .][a, b] The matrix product of multiple couplings with 2 or fewer indices, e.g. (AB)ab = AacBcb.
Couplings with 1 index are interpreted as column vectors.

Tensor[A][a,. . .] The tensor coupling, A, with three or more indices. No coupling contractions involving
tensors are supported.

Table 2 Group constants for the Lie Groups representations imple-
mented in RGBeta: N for fundamental, G for adjoint, S2 for two-index
symmetric (traceless in the case of SO(N )), and A2 for two-index anti-
symmetric representations (vanishing upon contraction with εab in the

case of Sp(N )). The group representations are all referred to by Gr[rep
] in RGBeta, where Gr is the user-chosen name for the group of the
specific type. Conjugate representations are referred to as Bar[Gr[rep]]

Representation d(R) S2(R) C2(R) RGBeta reference

SU(N ) N N
1

2

N 2 − 1

2N
Gr[fund]

G N 2 − 1 N N Gr[adj]

S2
N (N + 1)

2

N + 2

2

(N − 1)(N + 2)

N
Gr[S2]

A2
(N − 1)N

2

N − 2

2

(N − 2)(N + 1)

N
Gr[A2]

SO(N ) N N
1

2

(N − 1)

4
Gr[fund]

G
(N − 1)N

2

N − 2

2

N − 2

2
Gr[adj]

S2
(N − 1)(N + 2)

2

N + 2

2

N

2
Gr[S2]

Sp(N ) N N
1

2

(N + 1)

4
Gr[fund]

G
N (N + 1)

2

N + 2

2

N + 2

2
Gr[adj]

A2
(N − 2)(N + 1)

2

N − 2

2

N

2
Gr[A2]

U(1) q 1 q2 q2 Gr[q]

Un(1) (q1, . . . , qn) 1 – – 1, q2,...Gr[q]
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Table 3 Fierz identities for the fundamental representations of the ordi-
nary, compact Lie groups. We employ the convention εi j = ε j i

Group Fierz identity

SU(N ) T Ai
j T Ak

� = 1

2
δi �δ

k
j − 1

2N
δi j δ

k
�

SO(N ) T A
i j T

A
k� = 1

4

(
δi�δ jk − δikδ j�

)

Sp(N ) T Ai
j T Ak

� = 1
4

(
εikε j� + δi �δ

k
j
)

The need for Fierz identities and systematic symbolic
treatment of group invariants are the main obstacles to imple-
menting arbitrary representations of the gauge groups. At
present RGBeta is, thus, restricted to the representations
and groups listed in Table 2. In addition to fundamental and
adjoint representations, N and G, of the ordinary groups,
it includes the two-index symmetric and antisymmetric, S2

and A2, of SU(N ); the traceless two-index symmetric S2

of SO(N ); and the two-index antisymmetric that vanishes
upon contraction with εab, A2, of Sp(N ). For all these rep-
resentations, the generators can be decomposed in terms of
the generators of the fundamental representation after which
the Fierz identities can be employed. The Un(1) groups sup-
port representations with any charge assignments. The limit
to these few, if frequently used, representations of the Lie
groups is the primary limitation of RGBeta. None of the
exceptional Lie groups or their representations are presently
implemented.

The 2-index representations A2 and S2 are implemented
using a single index in RGBeta (when referring to them
as 2-index representation, it is because they can be written
in terms of 2 fundamental indices, similar to how an adjoint
representation can be written with a fundamental and an anti-
fundamental index). We need a way to contract e.g. the A2

label with two fundamental indices to use as an invariant
in various interactions. For this purpose RGBeta includes
the Clebsch–Gordan coefficients delA2 and delS2 (Table 1).
These are really just shortcuts and could easily be constructed
using the regular del by accessing the “subindices” a[1] and
a[2] of e.g. the A2 index a. Thus, delA2[G, i, a, b] can be
reproduced as (del[G[fund], i[1], a] del[G[fund], i[2], b] -(del[G
[fund], i[2], a] del[G[fund], i[1], b])/2 for any group G with an
A2 representation (similarly for S2). It is always preferred to
use delA2 and delS2 directly, as they have additional internal
identities.

3.5 Validation of the program

Like any other computer tool, RGBeta is for all intents a
black box to the user. It does not matter that the underlying
theory is sound, if there is a mistake in the implementation,
something which can easily go unnoticed. To avoid this kind
of errors, we have validated RGBeta against several results

from literature and PyR@TE 3. The RGBeta implementa-
tion of all the models used for validation are included with the
package in /Documentation/Sample_Models.nb.

First, we compared directly with the SM and type-III
2HDM (two-Higgs-doublet model) computation [30] up to
order 3–2–1 with matrix Yukawa couplings. This compari-
son allowed us to settle a discrepancy in the 2-loop Yukawa
β-function between Refs. [4,6,10,14], settling in favor of
Refs. [6,14] (recall that RGBeta is based on Ref. [14]).11

The terms in question are degenerate in the SM but not in the
2HDM. Furthermore, a comparison with the 2HDM result
[30] revealed a typo in the 3-loop gauge β-functions of their
result, which has since been fixed. We also have agreement
with the 2-loop SM quartic result of Ref. [31].

To test the handling of unspecified gauge and flavor
groups, we reproduced the 3–2–1 β-functions of the Litim-
Sannino model, keeping N f and Nc as free variables, and
found complete agreement with Ref. [2]. The implementation
of gauge kinetic mixing was tested in the SM with a gauged
U(1)B−L symmetry (see e.g. [32]) against the PyR@TE 3
results [11]. Likewise, we compared the results for the SU(5)

grand unified theory (GUT).12 In both cases complete agree-
ment was found up to order 3–2–2.

4 Using RGBeta

This section describes how to use RGBeta in some detail.
We heartily recommend prospective users to have a look
at the tutorial notebook /Documentation/Tutorial.
nb, which illustrates some practical use cases in the form of
the SM and Litim-Sannino model [2] with comments.

4.1 Package routines

To use the RGBeta package, one should start by specifying a
model. First, the user should define symmetries of the model
with the routines

� AddGaugeGroup[coupling, groupName, lieGroup[n], Options
] defines a gauge group of type lieGroup[n] with reference
name groupName and associated coupling;

11 The 2-loop Yukawa β-functions of Refs. [4,10] can be corrected by
substituting −4κYac

2 (S)YbY †cY b → −4κYbc
2 (S)YbY †aY c. The origi-

nal term corresponds neither to a 1PI leg or a 1PI vertex contribution,
suggesting that it was indeed a typo.
12 The 2-loop SU(5) quartic β-functions evaluate dreadfully slow (well
over an hour on a laptop) in RGBeta. This is due to the model involving
scalars in the adjoint representation, where there are no available Fierz
identities. Instead, the generators, where necessary, are expressed as
traces over fundamental generators. This is much less of a problem in
the 2-loop Yukawa β-function, as the tensors reduce to simple group
invariants.
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� DefineLieGroup[groupName, lieGroup[n]] defines a global
symmetry group of type lieGroup[n] with reference name
groupName.

Next, the matter fields are specified with

� AddFermion[field, Options] defines a Weyl fermion field;
� AddScalar[field, Options] defines a scalar field.

At this point one can proceed to add the remaining couplings:

� AddFermionMass[coupling, psi1, psi2, Options] defines a
mass term between two fermion fields, psi1 and psi2;

� AddQuartic[coupling, phi1, phi2, phi3, phi4, Options]
defines a quartic coupling between four scalar fields;

� AddScalarMass[coupling, psi1, psi2, Options] defines a
scalar mass term between two scalar fields;

� AddTrilinear[coupling, phi1, phi2, phi3, Options] defines a
trilinear coupling between three scalar fields;

� AddYukawa[coupling, phi, psi1, psi2, Options] defines a
Yukawa coupling between a scalar field, phi, and two
fermion fields, psi1 and psi2.

A few other routines might be helpful at this point:

� CheckProjection[coupling] returns the specific coupling
projector applied to the generic vertex of the appropriate
type. It is useful for checking if everything is correctly
implemented;

� ResetModel[] clears the kernel of all model definitions.
This should be called before implementing a new model
in the same session;

� SetReal[symbol,...] sets a symbol, i.e. a coupling, to be
treated as being real.

This is all that is necessary for defining the model. Once the
model has been loaded into the kernel, the RG functions can
be extracted with a minimum of effort using the routines

� AnomalousDimension[field, loop, Options] returns the
anomalous dimension of the matter field up to loop order
loop;

� AnomalousDimTerm[field, loop] returns the loop-loop term
of the field anomalous dimension;

� BetaFunction[coupling, loop, Options] returns the full β-
function of the coupling evaluated up to loop order loop;

� BetaTerm[coupling, loop] returns the loop-loop term of the
coupling β-function;

� Finalize[expr, Options] returns a refined version of expr,
such as β-functions or anomalous dimension terms;

� QuarticBetaFunctions[loop, Options] returns all the quar-
tic β-functions up to the given loop order, fully diagonal-
izing the coupling projectors.

The Appendix contains more detailed documentation for the
various routines. Here, we explain the basic use of the pack-
age in the next subsections with a detailed example.

4.2 Setting up a model

We detail the core use of RGBeta with the SM as a con-
crete example, as it will be familiar to most/all users. The
package is set to work with Weyl spinors to be able to treat
all fermions in the same manner. The SM matter fields have
charge assignments

q ∈ (3, 2, 1/6), ū ∈ (3, 1, 2/3), d̄ ∈ (3, 1, −1/3),

� ∈ (1, 2, 1/2), ē ∈ (1, 1, −1), H ∈ (1, 2, 1/2)

(4.1)

under the gauge group GSM = SU(3)c × SU(2)L × U(1)Y .
There are three Yukawa couplings given by

Lyuk = −yi ju H∗
α εαβq†i

cβ ū
† jc − yi jd Hαq†i

cα d̄
† jc

−yi je Hα�†i
α ē

† j + H.c. , (4.2)

where c is a color index, α, β SU(2)L indices, and i, j gen-
eration indices. The reason for specifying the Yukawa cou-
plings with right-handed (Hermitian-conjugated) fermions is
to match the conventional definition of the couplings in the
Dirac notation.13 The SM also contains a scalar potential
with a quartic Higgs interaction and a Higgs mass term:

LV = −M2H∗
α H

α − 1
2λ(H∗

α H
α)2. (4.3)

The RGBeta package automates most of the process of
getting the β-functions. It is, however, unavoidable that the
user will have to input the model in a precise manner. Spec-
ifying gauge groups and scalar and fermion field content is
fairly straightforward. Arguably, the most difficult part in
using RGBeta is specifying the Yukawa and quartic inter-
action: the user must manually specify how the flavor and
gauge indices are contracted, which is a potential source of
errors.

The first thing to do when defining a model is to specify the
gauge groups to RGBeta with AddGaugeGroup. For each
product group, one needs simply to specify the coupling,
group name, and Lie group. The choice of Lie group will
then set up the group invariants and generator properties of
the supported representations. The unique name of the group
is used for referencing the group representations. For the SM,
the SU(3)c × SU(2)L × U(1)Y gauge group is added with
� �

1 AddGaugeGroup[g1, U1Y, U1]
2 AddGaugeGroup[g2, SU2L, SU[2]]
3 AddGaugeGroup[g3, SU3c, SU[3]]

� �

13 With Dirac fields, the SM Yukawa couplings are typically written as

Lyuk = −yi ju H∗
α εαβQL

i
cβUR

jc − yi jd HαQL
i
cαDR

jc

−yi je HαLL
i
αER

j + H.c. ,
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Having set up the gauge group, the next step is adding the
matter content with AddFermion and AddScalar. It is suffi-
cient to know the charges and flavor indices of the fields to
do so. As previously mentioned, all fermions must be added
as left-handed chiral fields. If any of the fields in the model
are given as right-handed fermions, simply add it as a left-
handed spinor in the conjugate representation under the sym-
metries. The fermions are specified with a field name, and
all their non-trivial gauge charges are given as a list with the
GaugeRep option (the default being no gauge charges). A full
list of the available representations is given in Table 2. Given
that the fields come in three generation, they are also given
a single flavor index with the FlavorIndices option.14 To add
the fermions to the model, we call
� �

4 AddFermion[q, GaugeRep→ {U1Y[1/6], SU2L[fund],
SU3c[fund]}, FlavorIndices→ {gen}]

5 AddFermion[u, GaugeRep→ {U1Y[−2/3], Bar@ SU3c[
fund]}, FlavorIndices→ {gen}]

6 AddFermion[d, GaugeRep→ {U1Y[1/3], Bar@ SU3c[
fund]}, FlavorIndices→ {gen}]

7 AddFermion[l, GaugeRep→ {U1Y[−1/2], SU2L[fund]},
FlavorIndices→ {gen}]

8 AddFermion[e, GaugeRep→ {U1Y[1]}, FlavorIndices→
{gen}]

9 Dim[gen] = ng; (∗ 3 ∗)
� �

The last line may seem a bit curious. It is simply there to
specify the dimension of the flavor index “gen.” In the SM
there are, of course, three generations, but it is often kept as
a free parameter in β-function computations. Either can be
used in RGBeta.

We proceed to add the Higgs field in a similar manner.
It has just one generation, so there is no need to give it any
flavor indices:
� �

10 AddScalar[H, GaugeRep→ {U1Y[1/2], SU2L[fund]}]
� �

The package assumes scalar fields to be complex-valued by
default, as is the SM Higgs field. If we wished to add a real
scalar field, we should give the option SelfConjugate→ True
. In models with exact global symmetries, the flavor group
can be added with DefineLieGroup, and the field representa-
tions can be specified by using the group representation in
theFlavorIndices option for the fields.

The most involved part of defining the model is setting up
the couplings. In particular, one must take great care when
defining the contraction of all field indices and specify the
indices of the couplings. The particulars of this should be
passed to the package in terms of pure functions. It is impor-
tant to always remember to surround pure functions given as
options with parentheses. Otherwise, the function call will

14 The flavor group of the SM is really U(3)5, so one can argue that
there really are five distinct generation indices. This does not matter for
our purposes here, and would only serve as a needless complication.

not properly evaluate. Let us begin by listing the code needed
to specify the SM Yukawa couplings before we dissect it:
� �

11 AddYukawa[yu, {H, q, u},
12 GroupInvariant→ (del[SU3c@ fund, #2, #3] eps[

SU2L@ fund, #1, #2] &),
13 CouplingIndices→ ({gen[#2], gen[#3]} &),
14 Chirality→ Right]
15 AddYukawa[yd, {Bar@ H, q, d},
16 GroupInvariant→ (del[SU3c@ fund, #2, #3] del[

SU2L@ fund, #1, #2] &),
17 CouplingIndices→ ({gen[#2], gen[#3]} &),
18 Chirality→ Right]
19 AddYukawa[ye, {Bar@ H, l, e},
20 GroupInvariant→ (del[SU2L@ fund, #1, #2] &),
21 CouplingIndices→ ({gen[#2], gen[#3]} &),
22 Chirality→ Right]

� �

The first AddYukawa call specifies the up-type Yukawa cou-
pling. The first two arguments gives the coupling name, yu,
and the fields entering the interaction, H, q, u, the first of
which is always taken to be the scalar. Do bear in mind that the
order of the fields matter for the construction of the index con-
tractions. The Yukawa couplings are defined with left-handed
spinors by convention. It is, therefore, the conjugated terms
of the Yukawa Lagrangian (4.2), which are used as input.

The GroupInvariant option should be given a function with
three arguments that specify the contraction between the
indices of the fields. As the name suggests, this should
be an invariant of the gauge and global symmetries. It is
a function because it will be called every time the cou-
pling appears in the β-function formulas to give appropri-
ate labels to the invariant. For the up-type Yukawa, the
del[SU3c@fund, #2, #3] part of the group invariant estab-
lishes that the fundamental SU(3)c indices of the second
and third fields are contracted with a Kronecker delta. Fur-
thermore, the fundamental SU(2)L index of the Higgs (the
first field) is contracted by an ε-invariant of SU(2)L with
the left-handed quark (second field) as specified by eps
[SU2L@fund, #1, #2].15 The remaining free indices of the
fields are the generation indices of the quarks. The cou-
pling itself carries these indices, which we spell out with
the option . This
option should be passed a function of 3 arguments (one for
each field) that returns a list of the indices of the coupling.
In practice we can almost think of the arguments #1, #2, and
#3 as the indices of the fields, and it is not a problem to
have e.g. multiple #2 indices when they belong to different
representations: there is no ambiguity.

The last option passed to AddYukawa is more of a quality-
of-life option than strictly necessary. The Yukawa couplings
in RGBeta are always given in terms of left-handed spinors
as in the MBL (2.3), but conventionally the SM defines the
Yukawa couplings on the right-handed spinors, and the com-

15 The various invariants are multiplied with each other in the function.
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plex conjugate of the coupling appears with the left-handed
fermions. To tell RGBeta that the un-conjugated coupling
should be placed with the right-handed spinors, we need to
pass it the option Chirality→ Right (Left by default). The other
two Yukawa couplings follow in mostly the same manner
as the up-type Yukawa, the main difference being that they
involve the complex conjugated Higgs field. This is specified
by using Bar@H for the scalar field in AddYukawa. With the
conjugated Higgs field, the SU(2)L contraction is done with
a Kronecker delta instead of the antisymmetric invariant.

The quartic Higgs coupling is added to the model with the
call
� �

23 AddQuartic[λ, {Bar@ H, H, Bar@ H, H},
24 GroupInvariant→ (del[SU2L@ fund, #1, #2] del[

SU2L@ fund, #3, #4] /2 &)]
� �

Again, the function takes the coupling and the fields (four
scalars this time) as arguments. In contrast to the matrix
Yukawa couplings of the SM, λ is a scalar coupling, so no
coupling indices have to be passed to the function. The 1/2
normalization of the Higgs self-coupling in Eq. (4.3) is put
in the group invariant. RGBeta never assumes any normal-
ization factors even when, as is the case with the SM, there
is a symmetry factor associated with the coupling.

In MS the relevant couplings do not influence the running
of the marginal couplings. However, if we wish to explore
the running of the Higgs mass parameter, we can add it to
the model with
� �

25 AddScalarMass[M2, {Bar@ H, H},
26 GroupInvariant→ (del[SU2L@ fund, #1, #2] &)]

� �

completely parallel to the implementation of the other cou-
plings. This concludes the implementation of the SM.

Before proceeding to extract the SM β-functions, we
would like comment on cases with other invariants in the cou-
plings. In some cases, it is possible to construct new invariants
using the group invariants already implemented in RGBeta.
In such cases, the user can manually define the relevant con-
tractions, but it is important to avoid repeating index names in
the internal contractions. The best way to avoid this is to use
a combination of SetDelayed and Module to ensure unique
naming of the indices every time the invariant is called. An
example is SU(5) GUT, where there is an adjoint scalar �,
which has two independent invariants with four fields, one of
them being (�a�a)

2. For the second, independent invariant,
one often uses a trace over 4 fundamental generators, which
can be implemented in the program as

In[1] := adj4inv[A_, B_, C_, D_ ] := Module[{a, b, c, d},
tGen[SU5@fund, A, a, b] tGen[SU5@fund, B, b, c]
tGen[SU5@fund, C, c, d] tGen[SU5@fund, D, d, a] ];

In[2] := AddQuartic[λ�, {�, �, �, �},
GroupInvariant → (adj4inv[#1, #2, #3, #4] &) ]

The full SU(5) implementation is included with the package
in /Documentation/Sample_Models.nb.

4.3 Producing the β-functions

Once the SM model has been loaded into the Mathematica
kernel, extracting the β-function is as simple as anything.
To obtain, for instance, the 2-loop β-function of the down-
type Yukawa coupling, one simply has to call the function
BetaFunction[yd, 2]. This function returns the β-function as
defined in Eqs. (3.2–3.5).

A typical use of BetaFunction (selected for minimality)
will look like

In[1] := BetaFunction[ye, 1]

Out[1] :=
1

16π2

(−15
4
g12ye$i,$j −

9

4
g22ye$i,$j +3Tr[yd.yd

†]ye$i,$j

+Tr[ye.ye†]ye$i,$j +3Tr[yu.yu
†]ye$i,$j +

3

2
ye.ye†.ye

$i,$j
)

for the lepton Yukawa β-function at 1-loop order. The for-
matting of the output (in the Mathematica StandardForm)
has been set up to make the output readable to the user. To
see the underlying Mathematica expression, one can use the
InputForm command. The $i and $j indices are the flavor
indices carried by the ye coupling. These correspond to the
open indices of the yeβ-function. $i is used to denote an index
of the first fermion of the coupling and $j is an index of the
second fermion (as they are given when specifying the cou-
pling).16 With how we implemented the ye coupling, these
are the l and e generation indices, respectively. For further
manipulation with the β-function, one will typically wish
to remove such explicit indices to leave the matrix structure
implicit. This can be done with the Finalize routine, which
can also be used to substitute Matrix/vector couplings with
a list of their entries. We should mention that BetaTerm can
be used to single out the contribution to a β-function at a
particular loop order, β

(�)
g .

In many models, there will be multiple singlets in the
product of the same four scalars allowing for multiple cou-
plings. The quintessential example of this behavior is the
single-/double-trace coupling of scalars in the fundamen-
tal representation of two different groups. In such events,
the naive operators used in RGBeta to project out specific
couplings will mix the couplings in question and BetaTerm
/BetaFunction cannot be relied on to produce the correct β-
functions for these couplings. This behavior can also be seen
with CheckProjection, which will mix the couplings in ques-
tion. In such cases, one should rely on QuarticBetaFunctions
, which extracts all quartic β-functions simultaneously and
accounts for the mixing by identifying the correct linear com-
bination of the projection operators.

This concludes our discussion of the functionality of
RGBeta. Examples of further manipulation of the β-
functions can be found in/Documentation/Tutorial.

16 Using InputForm the user will be able to tell that these indices are
both of the gen type.
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nb. Here one can also find an example of how matrix cou-
plings can be parametrized to obtain e.g. the β-function of
the charm Yukawa coupling.

5 Summary and conclusions

In recent years there has been a renewed interest in higher-
order β-functions for model building and precision physics.
The theory of the general β-function has also matured to the
point where we now have a completely general formalism
that treats the couplings in a unified way, correcting several
mistakes along the way [7,14,15,29]. RGBeta is a Mathe-
matica package that leverages these theory advances along
with the structure delta approach to Lagrangian matching
[19] in a minimal yet fairly general tool for the automatic
computation of β-functions in four-dimensional renormaliz-
able models.

TheRGBeta package presented in this paper is an attempt
at striking a balance between having an intuitive and minimal
way of implementing models (the problematic part of using
any RG tool) and maintaining a good degree of generality. It
is fast enough that it can typically be evaluated directly in the
notebook environment, allowing the user to experiment with
the resulting β-functions. It also has the advantage that group
indices can be kept arbitrary. It is our ambition to implement
the full set of β-functions up to order 4–3–2 in RGBeta
pending ongoing work with Davies and Herren [23].
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Appendix

Here we include an overview of the routines of RGBeta and
their options presented in alphabetical order. All options of
the routines are given with their default value.

AddFermion[field, Options]

adds a Weyl fermion field to the model with specified charge
and flavor.
field is the name of the field.
Options

GaugeRep → {} is a list of representations under the
gauge product groups.

FlavorIndices → {} is a list of the flavor indices and rep-
resentations of global symmetries of the field.

AddFermionMass[coupling, {psi1, psi2}, Options]

defines a fermion mass term in the model.
coupling names the mass parameter of the mass terms.
{psi1, psi2} is the list consisting of the two fermions psi1 and

psi2 of the mass term.
Options

GroupInvariant → (1 &) is a pure function of 2 arguments
defining the group invariants of the coupling.

MassIndices → (Null &) is a pure function of 2 arguments
that specifies the tensor indices of the coupling.

Chirality → Left sets whether the coupling appears with
left-handed or right-handed fields in the Lagrangian.

AddGaugeGroup[coupling, groupName, lieGroup[n], Options]

adds a gauge group to the current model.
coupling specifies the coupling of the gauge group.
groupName specifies the reference name associated to the

group and its representations.
lieGroup[n] specifies what Lie Group is gauged. The options

are U1=U1[1], U1[n], SU[n], Sp[n], and SO[n], with n either
an integer or a symbol. While the other group names are
self explanatory, U1[n] is used to denote a Un(1) group.

Options
CouplingMatrix → Automatic determines the naming of

the coupling matrix if the Lie group is Un(1). Any
symmetric n × n matrix can be supplied instead of
the automatic naming.

AddQuartic[coupling, {phi1, phi2, phi3, phi4}, Options]

defines a quartic coupling in the model.
coupling specifies the coupling constant of the quartic inter-

action.
{phi1, phi2, phi3, phi4} is a list consisting of the four scalar

fields involved in the interaction. They can be individu-
ally conjugated with Bar.

Options
GroupInvariant → (1 &) is a pure function of 4 arguments

defining the group invariants of the coupling.
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CouplingIndices → (Null &) is a pure function of 4 argu-
ments that specifies the tensor indices of the coupling.

SelfConjugate → True sets if the interaction is real, or
whether the Hermitian conjugate appears in the
Lagrangian as well.

AddScalar[field, Options]

adds a scalar field to the model with specified charge and
flavor.
field is the name of the field.
Options

GaugeRep → {} is a list of representations under the
gauge groups.

FlavorIndices → {} is a list of the flavor indices and rep-
resentations of global symmetries of the field.

SelfConjugate → False determines if the fields is com-
plex or real.

AddScalarMass[coupling, {phi1, phi2}, Options]

defines a scalar mass term in the model.
coupling denotes the mass parameter of the mass term

assumed to have mass-dimension two.
{phi1, phi2} is the list consisting of two scalar fields. They

can be be conjugated individually with Bar
Options

GroupInvariant → (1 &) is a pure function of 2 arguments
defining the group invariants of the coupling.

CouplingIndices → (Null &) is a pure function of 2 argu-
ments that specifies the tensor indices of the coupling.

SelfConjugate → True sets if the interaction is real, or
whether the Hermitian conjugate appears in the
Lagrangian as well.

AddTrilinear[coupling, {phi1, phi2, phi3}, Options]

defines a trilinear scalar coupling in the model.
coupling specifies the coupling constant of the trilinear inter-

action.
{phi1, phi2, phi3} is the list consisting of three scalar fields.

They can be be conjugated with Bar
Options

GroupInvariant → (1 &) is a pure function of 3 arguments
defining the group invariants of the coupling.

CouplingIndices → (Null &) is a pure function of 3 argu-
ments that specifies the tensor indices of the coupling.

SelfConjugate → True sets if the interaction is real, or
whether the Hermitian conjugate appears in the
Lagrangian as well.

AddYukawa[coupling, {phi, psi1, psi2}, Options]

defines a Yukawa coupling in the model.
coupling specifies the coupling constant of the Yukawa inter-

action.

{phi, psi1, psi2} is the list consisting of the scalar phi and two
fermions psi1 and psi2 of the interaction. The scalar can
be conjugated with Bar.

Options
GroupInvariant → (1 &) is a pure function of 3 arguments

defining the group invariants of the coupling.
CouplingIndices → (Null &) is a pure function of 3 argu-

ments that specifies the tensor indices of the coupling.
Chirality → Left sets whether the coupling appears with

left-handed or right-handed fields in the Lagrangian.

AnomalousDimension[field, loop, Options]

gives the full anomalous dimension of a field up to the given
loop order.
field the field one wishes to find the anomalous dimensions

of.
loop is either 1 or 2 specifying to what loop order.
Options

RescaledCouplings → Falsedetermines whether the cou-
plings should all be rescaled with g → 4πg, y →
4πy, and λ → (4π)2λ in the output.

AnomalousDimTerm[field, loop]

gives the term γ
(�)
φ in the anomalous dimension.

field the field one wishes to find the anomalous dimensions
of.

loop is either 1 or 2 specifying the loop order.

BetaFunction[coupling, loop, Options]

gives the full β-function of a coupling up to the given loop
order.
coupling the coupling one wishes to find the β-function of.
loop is an integer specifying to what loop order.
Options

FourDimensions → True determines if the β-function is
strictly four-dimensional or whether it should include
the zeroth order O(ε) term in (4 − ε) dimensions.

RescaledCouplings → Falsedetermines whether the cou-
plings should all be rescaled with g → 4πg, y →
4πy, and λ → (4π)2λ.

BetaTerm[coupling, loop]

gives the term β
(�)
g in the β-function.

coupling is a symbol corresponding to the coupling of the
relevant β-function.

loop is an integer specifying the loop order.

CheckProjection[coupling]
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returns the value of the internal projection operator applied
to the general coupling.
coupling specifies the coupling to be checked.

DefineLieGroup[groupName, lieGroup[n]]

sets up all group constants associated to the a Lie group of
the specified kind. This can be used e.g. if the model contains
a global symmetry.
groupName specifies the name of the added gauge group.
lieGroup[n] specifies the type Lie Group. It can either be SU

[n], Sp[n], or SO[n] with n either an integer or symbol.

Finalize[expr, Options]

further manipulates the expression (typically a β-function),
removing indices unnecessary indices and allowing for cou-
plings substitutions.
expr an expression on the form such as given by BetaTerm.
Options

Parametrizations → {} a set of substitution rules, to
replace the coupling symbols with e.g. coupling
matrices.

BarToConjugate → False replaces the RGBeta head Bar
with the standard Mathematica Conjugate, giving an
expression more suitable for further numerical anal-
ysis.

QuarticBetaFunctions[loop, Options]

gives the full β-functions of all quartic couplings using fully
diagonalized projectors.
loop is an integer specifying to what loop order.
Options

FourDimensions → True determines if the β-function is
strictly four-dimensional or whether it should include
the zeroth order O(ε) term in (4 − ε) dimensions.

RescaledCouplings → Falsedetermines whether the cou-
plings should all be rescaled with g → 4πg, y →
4πy, and λ → (4π)2λ.

ResetModel[ ]

clears all current model definitions, allowing for defining
another model without having to quit the kernel and reloading
RGBeta.

SetReal[symbol,...]

instructs RGBeta to treat one or more symbols (typically
couplings) as being real by setting Bar@symb = symb.
symbol the symbol that will be defined to be real.
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