
Eur. Phys. J. C (2021) 81:353
https://doi.org/10.1140/epjc/s10052-021-09134-4

Regular Article - Theoretical Physics

1 + 3 covariant perturbations in power-law f (R) gravity

Beatrice Murorunkwere1,a, Joseph Ntahompagaze2, Edward Jurua1

1 Department of Physics, Mbarara University of Science and Technology, Mbarara, Uganda
2 Department of Physics, College of Science and Technology, University of Rwanda, Kigali, Rwanda

Received: 24 December 2020 / Accepted: 10 April 2021 / Published online: 23 April 2021
© The Author(s) 2021

Abstract We applied the 1+3 covariant approach around
the Friedmann–Lemaître–Robertson–Walker (FLRW) back-
ground, together with the equivalence between f (R) grav-
ity and scalar-tensor theory to study cosmological perturba-
tions. We defined the gradient variables in the 1 + 3 covariant
approach which we used to derive a set of evolution equa-
tions. Harmonic decomposition was applied to partial dif-
ferential equations to obtain ordinary differential equations
used to analyse the behavior of the perturbation quantities.
We focused on dust dominated area and the perturbation
equations were applied to background solution of αR+βRn

model, n being a positive constant. The transformation of the
perturbation equations into redshift dependence was done.
After numerical solutions, it was found that the evolution of
energy-density perturbations in a dust-dominated universe
for different values of n decays with increasing redshift.

1 Introduction

The standard model of cosmology, ΛCDM, is by far the
most successful model in explaining the origin of cosmic
microwave background (CMB) radiations, the observations
of Type I a supernovae, the formation and distribution of
large-scale structures, the synthesis of light elements in the
universe and the expansion of the universe [1–4].

Although ΛCDM fits most of current cosmological data, it
does not describe for instance, the horizon problem the flat-
ness problem and the structure (homogeneity/smoothness)
problem. It also does not describe the mechanism for dark
energy production and the current acceleration of the uni-
verse. Some of these cosmological problems emerge in the
early universe and others in the late universe [5–8].

The greatest challenge to the standard model of cosmology
came when observation of type I a supernovae showed that
we live in an accelerated expanding universe where space-
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time between galaxies is continuously growing. This epoch
in the evolution of the universe can not be explained by the
presence of baryonic matter. The observational data showed
that 4% of the energy content of the universe is baryonic
matter, 23% is dark matter and 72% is dark energy that is
believed to be the root cause of the cosmic expansion of the
universe [9,10].

Different theories have been constructed in attempt to
explain the above mentioned problems such as exotic scalar
fields, cosmological constant and modified theories of grav-
ity [11,12]. There have been several proposed modified the-
ories of gravity such as theories of gravity with extra fields,
higher-dimensional theories of gravity and higher-order theo-
ries of gravity [13]. One of the classes of higher order theories
that explains the shortcomings of general relativity (GR) are
fourth-order gravity models and they are generally obtained
by including higher-order curvature invariant in the Einstein–
Hilbert action. Some of the higher order theories of gravity
are f (R) theories of gravity in which the Hilbert–Einstein
action of general relativity is modified where R represents
the Ricci scalar and f (R) is the arbitrary function of Ricci
scalar [14]. This way of modification was first instituted by
Buchdahl in 1970s, see his original work in [15]. The f (R)

theories are the most explored alternatives to general rela-
tivity GR in the context of late-time accelerated expansion
of the universe and they became popular due to their ability
of producing late-time acceleration of the universe without
introduction of cosmological constant [16,17].

Evolution of small density perturbations lead to large scale
structures in the universe. The 1 + 3 covariant approach is
chosen to study the evolution of the scalar perturbation equa-
tions and it has been introduced by Ellis and Bruni in 1980s
[18]. One of the importance of this approach is that, it allows
one to define gradient variables that describe the inhomo-
geneity and anisotropy of the universe. The 1 + 3 covari-
ant approach has been applied to study scalar perturbations
in f (R) gravity [9,19–21]. It is also studied in [22], where
the approach was used to explore the equivalence between
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scalar-tensor theory and f (R) gravity but they used a differ-
ent definition of the scalar field.

Linear perturbations have severally been discussed in
f (R) models in different studies using different approach
[19,21–26]. In these studies, the investigation between dark
energy and f (R) models was done by analysing the behav-
ior of scalar perturbations around FLRW background. They
found that for all values of positive n of Rn model, there is
always a growing mode for energy density perturbations. In
particular, the αR + βRn model has been analysed at the
level of background and perturbation using many different
approaches [19,20,24,27,28].

Different types of scalar fields have been used in modi-
fied theories of gravity for different studies, for instance the
study of perturbations in scalar-tensor theory, focusing on the
Brans–Dicke theory of gravity as subclass of scalar-tensor-
theory of gravity was done using the scalar field φ = f ′ − 1
[22], the same authors studied f (R) theory in scalar-tensor
theory of gravity limiting only to inflationary parameters
using the scalar field φ = f ′ − 1 [29].

The investigation of the relationship between scalar-tensor
theory and f (R) theories of gravity for palatini formalism
using the scalar field φ = ln f ′ was done [30] and the study of
how to solve higher field equations in higher curvature grav-
ity theory using the scalar field φ = ln f ′ was done [31].
However, the study of 1+3 covariant perturbations using the
scalar field φ = ln f ′ in αR + βRn model has not been
explored.Therefore, there is a need to study if the scalar
field φ = ln f ′ at perturbation level produce also significant
results.

In this work, we study the evolution of the matter energy-
density fluctuations in the universe using the 1 + 3 covariant
approach and their effect on structures formation (galaxies,
clusters and superclusters) by considering φ = ln f ′. Using
the gradient variables defined in 1 + 3 covariant approach,
we will derive the perturbation equations and subject them
to αR+βRn model. We will study the dynamics of the mat-
ter energy-density perturbations both in the short-and long-
wavelength limits of αR + βRn model of gravity.

This paper is organised as follows: In Sect. 2, we describe
the 1+3 covariant approach. In Sect. 3, f (R) theory and
scalar-tensor theory and their equivalence are reviewed. In
Sect. 4, gradient variables are defined. In Sect. 5, evolu-
tion equations are generated. Sect. 6 is devoted for har-
monic decomposition. In Sect. 7, we look for the solutions
in αR + βRn theory of gravity, In Sect. 8, we provide dis-
cussion. Section 9 summarises our conclusion.
The adopted spacetime signature is (− + ++) and unless
stated otherwise. The symbol ∇ refer to covariant derivative,
∂ is partial differentiation and the over dot shows differenti-
ation with respect to cosmic time.

2 The 1+ 3 covariant approach

The 1 + 3 covariant approach is a framework for studying
the linear evolution of the cosmological perturbations. In this
approach, a fundamental observer divides space-time into
hyper-surfaces and a perpendicular 4-velocity field vector
where 1 + 3 indicate the number of dimensions involved
in each slice. One of the importance of the 1 + 3 covariant
approach is to identity a set of covariant variables which
describe the inhomogeneity and anisotropy of the universe .

The 4-velocity field vector ua is defined as [22,32–34]

ua = dxa

dτ
, (1)

where τ is the proper time such that uaua = −1. From the
4-velocity ua , we construct a projection tensor that projects
perpendicular to ua and is given by

hab = gab + uaub, (2)

where gab is the metric of the spacetime. The projection ten-
sor that projects parallel to ua is given by

Ua
b = −uaub ⇒ Ua

c U
c
b

= Ua
b ,Ua

a = 1, uabU
b = ua . (3)

The covariant time derivative along the fundamental word-
lines is defined as

Ṫ a....b
c....d = ue∇eT

a....b
c....d . (4)

The kinematic quantities that define the dynamics of space-
time, expansion, shear and vorticity are obtained by splitting
∇aub into irreducible parts, as follows [35]

∇aub = ∇̃aub − uau̇b

= 1

3
θhab + σab + wab − uau̇b, (5)

where wab = ∇[aub] is the vorticity tensor which satis-
fies uawab = 0 which describes the rotation of the mat-
ter relative to a non-rotating frame, σab is the shear tensor
which describes the rate of distortion of the matter flow,
θ = ∇aua = 3H is the rate of expansion of the fluid where
H = θ

3 = ȧ
a , H is the hubble parameter, and u̇a is the accel-

eration.
The volume element for 3-restspaces is given by

ηabc = uaηabcd , ηabc = η[abc], ηabcuc = 0, (6)

where ηabcd is the 4-dimensional volume element.
The matter stress energy tensor that describes the matter-

energy content of the universe is decomposed irreducible
with respect to ua as [35,36]

Tab = ρuaub + qaub + qbua + Phab + πab, (7)

where ρ is the energy-density measured by the observer
moving with 4-velocity ua , qa is the relativistic energy flux
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(momentum density), P is the anisotropic pressure of the
matter and πab is the trace-free anisotropic pressure.

In the FLRW limit , qa and πab vanish since the stress
energy tensor is restricted to perfect fluid form. The tensor
Tab then reduces to

Tab = ρuaub + phab, (8)

where the equation of state for perfect fluid is p = p(ρ).

3 The f (R) theory of gravity

The action of f (R) theory of gravity is given by the following
equation [30,37]

S f (R) = 1

2k

∫
d4x

√−g
[
f (R) + 2Lm(gμν, ψ)

]
, (9)

where k = 8πG, G is the gravitational constant, R is the
Ricci scalar, Lm is the Lagrangian that contains matter (nor-
mal matter, CDM and radiation), gμν is the metric, ψ is the
matter fields, g is the determinant of the metric and f is the
general differentiable function of the Ricci scalar. The arbi-
trary function introduced in the Lagrangian gives us more
freedom to explain the observed cosmic acceleration and for-
mation of large-scale structures without inclusion of the cos-
mological constant. The variation of the action given by Eq.
(9) with respect to the metric, gives

f ′Gμν = f ′(Rμν − 1

2
gμνR

)
= Tm

μν + 1

2
gμν

(
f − R f ′)

+∇ν∇μ f ′ − gμν∇c∇c f ′, (10)

where f = f (R), f ′ = d f (R)
dR , Tm

μν = 2∂
√−gLm√−g∂Gμν

, Rμν is the

Ricci tensor and ∇c∇c = � is the D’Alembert operator.
The term Tm

μν represent the stress energy tensor of standard
matter and the Eq. (10) reduces to the standard Einstein field
equation when f (R) = R.

The general action that represents the scalar-tensor theory
is given by [30]

SST = 1

2k

∫
d4x

√−g

[
y(φ)

2
R

−W (φ)

2
∇μφ∇μφ −U (φ) + 2Lm(gμν, ψ)

]
, (11)

where U (φ) is the potential of the scalar field φ, y(φ) and
W (φ) are some function of φ. Setting y(φ) = φ

k , W (φ) = W
kφ

and U (φ) = V (φ)
φ

, the scalar-tensor theory reduces to Brans-
Dicke theory of gravity as

SBD = 1

2k

∫
d4x

√−g
[
φR − W

φ
∇μφ∇μφ − V (φ)

+2Lm(gμν, ψ)
]
. (12)

For vanishing coupling parameter, W = 0, the Brans-Dicke
theory reduces to

SBD = 1

2k

∫
d4x

√−g
[
φR − V (φ) + 2Lm(gμν, ψ)

]
.(13)

For a given f (R) lagrangian, one can define an auxiliarly
field χ such that it is a function of the scalar field φ as χ(φ)

so that the action of f (R) gravity given by Eq. (9) becomes

S f (R) = 1

2k

∫ √−g
[
f (χ) + f ′(χ)(R − χ) + 2Lm(gμν, ψ)

]
,

(14)

where variation with respect to χ gives f ′′(χ)(R−χ) = 0, if
f ′′(χ) = 0, therefore χ = R if f ′′ �= 0. Setting the potential
as

V (φ) = χ(φ)φ − f (χ(φ)), (15)

the action of f (R) gravity given by Eq. (14) takes the form

S f (R) = 1

2k

∫
d4x

√−g
[
φR − V (φ) + 2Lm(gμν, ψ)

]
.

(16)

The action given by Eq. (16) is equal to the action of Brans-
Dicke theory for vanishing coupling parameter given by Eq.
(13), hence f (R) is a special case of the scalar-tensor theory.

4 The gradient variables

The following are gradient variables defined in 1 + 3 covari-
ant approach. These variables are used in analysis of the
cosmological perturbation and they are defined as follow
[19,36,38]:

The gradient variable responsible for perturbation in scalar
field is given by

Φa = a∇̃aφ, (17)

where a is the FLRW cosmological scale factor that shows
the dynamics of the universe with time and ∇̃ is 3-spatial
gradient.

The gradient variable that characterises perturbation due
to the momentum of the scalar field is given by

Ψa = a∇̃a φ̇. (18)

The comoving volume expansion gradient variable is given
by

Za = a∇̃aθ. (19)
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The comoving fractional gradient in the energy density is
given by

Dm
a = a∇̃aρm

ρm
. (20)

The quantities with index m refer to matter (dust and radi-
ation) and these gradient variables contains both scalar and
vector variables.

The scalar variables are believed to be the ones that lead
to the structure formation that we see in the universe such as
galaxies, clusters and super-clusters and they are obtained by
taking the divergence of the vector quantities.

The local decomposition method is defined as [19]

a∇̃bXa = Xab = 1

3
habX +

X∑
ab

+X[ab], (21)

where
∑X

ab describes shear and X[ab] describes vorticity and
they describe the rotation of the fluid relative to a non-rotating
frame and distortion of the fluid flow respectively. Using this
decomposition method, the scalar variables are defined as:
[9]

Φ = a∇̃aΦa, (22)

Ψ = a∇̃aΨa, (23)

Z = a∇̃a Za, (24)

Δm = a∇̃aDm
a . (25)

The background under consideration is FLRW spacetime;
and the background quantities: energy-density and isotropic
pressure are given by [22]:

ρm = 1

f ′
[1

2
(R f ′ − f ) − θ f ′′ Ṙ

]
, (26)

pm = 1

f ′
[1

2
( f − R f ′) + f ′′ R̈ + f ′′′ Ṙ2 + 2

3
θ f ′′ Ṙ

]
. (27)

For a scalar field, the energy-density and isotropic pressure
are given as

ρφ = 1

eφ

[1

2
(Reφ − f ) − θφ′eφ Ṙ

]
, (28)

pφ = 1

eφ

[1

2
( f − Reφ) + φ′eφ R̈ + φ′′eφ Ṙ2 + φ′2eφ Ṙ2

+2

3
θφ′eφ Ṙ

]
. (29)

The four velocity is given by

u̇a = −∇̃a pm
(ρm + pm)

. (30)

These background quantities together with the gradient vari-
ables are used to derive 1+3 covariant perturbation equations
for the universe.

5 The 1+ 3 covariant perturbation equations

The derivation of the perturbation equations around an homo-
geneous and isotropic background is done by derivating gra-
dient variables with respect to cosmic time. Using Eqs. (26–
30), one can derive the evolution equations of the vector vari-
ables (17–20) as follow:

The linear evolution equation for the gradient variable
responsible for the perturbation in the energy-density is given
by

Ḋm
a = −(1 + w)Za + wθDm

a . (31)

The Eq. (31) can be found in the existing literatures [9,19,20].
The linear evolution equation for the gradient variable

responsible for the perturbation in the volume expansion is
given by

Ża =
(−w∇̃2

1 + w
− (1 + 3w)

ρm

2eφ
− wθ̇

1 + w

)
Dm
a

−
(2

3
θ + φ′ Ṙ

2

)
Za +

[
1

2
+ (1 + 3w)

ρmφ′

2eφ

+ f φ′

2eφ
− θ Ṙφ′′

2
+ Kφ′

a2 − 3R̈φ′′

2

− 3Ṙ2φ′′′

2
− 3Ṙ2φ′

]
Ra + φ′∇̃2

2
Ra

−
[

3φ′...R
2φ̇

+ 3Ṙ R̈φ′′

φ̇
+ 3Ṙ R̈(φ′)2

φ̇
+ θφ′ R̈

2φ̇
+ 1

2φ′

]
Φa .

(32)

The linear evolution equation for the gradient variable
responsible for perturbation in the scalar field is given by

Φ̇a = Ψa − wφ̇

(w + 1)
Dm
a . (33)

The linear evolution equation for the gradient variable that
characterises the perturbation due to momentum of the scalar
field is given by

Ψ̇a = φ̈′
φ′ Φa − wφ̈

(w + 1)
Dm
a . (34)

The system of Eqs. (31–34) describe the evolution equations
of the vector gradient variables and they determine the evo-
lution of every single perturbation variable.

The scalar evolution equations that characterise the evo-
lution of the spherical symmetry of the gradient variables are
given by taking time derivative of Eqs. (22–25) and they are
given by

Δ̇m = −(1 + w)Z + θwΔm, (35)

Φ̇ = Ψ − wφ̇

(1 + w)
Δm, (36)
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Ψ̇ = φ̈′

φ′ Φ − wφ̈

(1 + w)
Δm, (37)

Ż =
[ w∇̃2

(1 + w)
− (1 + 3w)

ρm

2eφ

− wθ̇

(1 + w)

]
Δm −

(2

3
θ + φ′ Ṙ

2

)
Z

+
[ 1

2φ′ + (1 + 3w)
ρm

2eφ
+ f

2eφ
− θ Ṙφ′′

2φ′

+ K

a2 + ∇̃2

2
− 3R̈φ′′

2φ′ − 3Ṙ2φ′′′

2φ′ − 3Ṙ2

−3φ′...R
2φ̇

− 3Ṙ R̈φ′′

φ̇
− 3Ṙ R̈(φ′)2

φ̇
− θφ′ R̈

2φ̇
− 1

2φ′
]
Φ.

(38)

From the scalar evolution equations, we get their second
order evolution equations by derivating them with respect
to cosmic time.

The second order evolution equation for the gradient vari-
able responsible for perturbation in the scalar field is given
by the time derivative of Eq. (36) as

Φ̈ = φ̈′

φ′ φ − wφ̇

(w + 1)
Δ̇m − 2wφ̈

(w + 1)
Δm . (39)

The second order evolution equation for the gradient variable
responsible for the perturbation in the energy-density is given
by time derivative of Eq. (35) as

Δ̈m =
[
(1 + w)(1 + 3w)

ρm

2eφ
+ w∇̃2 + wθ̇

+wθ
(2

3
θ + φ′ Ṙ

2

)]
Δm −

(2

3
θ + φ′ Ṙ

2

)
Δ̇m

−(1 + w)

[
1

2φ′ + (1 + 3w)
ρm

2eφ
+ f

2eφ

−θ Ṙφ′′

2φ′ + K

a2 + ∇̃2

2
− 3R̈φ′′

2φ′ − 3Ṙ2φ′′′

2φ′

−3Ṙ2 − 3φ′...R
2φ̇

− 3Ṙ R̈φ′′

φ̇

−3Ṙ R̈(φ′)2
φ̇

− θφ′ R̈
2φ̇

− 1

2φ′

]
Φ. (40)

These second order differential Eqs. (39) and (40) are to be
analyzed after getting their harmonic decomposed equations
by considering different scales.

6 Harmonic decomposition

Harmonic decomposition analysis is a way of reducing par-
tial differential equations into ordinary differential equations
which are easier to be solved [22,36]. The evolution Eqs.
(39) and (40) can be thought as a coupled system of har-
monic oscillators of the form [36,39]

Ẍ + AẊ + BX = C(Y, Ẏ ), (41)

where the A represents the friction (damping) term, the B
represents the restoring force while C represents the source
forcing term. Harmonic analysis applies the separation of
variables techniques such that

X (x, t) = X (x)X (t), (42)

Y (x, t) = Y (x)Y (t). (43)

and write

X =
∑

Xk(t)Qk(x), (44)

Y =
∑

Y k(t)Qk(x), (45)

where Qk are the eigenfunctions of the covariantly defined
Laplace–Beltrami operator on FLRW spacetime that is given
by

∇̃2Qk = −k2

a2 Q, (46)

The wave-number given by k = 2πa
λ

and λ is the wavelength
of the mode. In this way the evolution Eqs. (35–40) can be
converted into ordinary differential equations

Δ̇k
m = −(1 + w)Zk + wθΔk

m, (47)

Φ̇k = Ψ k − wφ̇

(1 + w)
Δk

m, (48)

Ψ̇ k = φ̈′
φ′ Φ

k − wφ̈

(1 + w)
Δk

m, (49)

Ż k =
[ −wk2

a2(1 + w)
− (1 + 3w)

ρm

2eφ
− wθ̇

(1 + w)

]
Δk

m

−
(2

3
θ + φ′ Ṙ

2

)
Zk +

[
(1 + 3w)

ρm

2eφ

+ f

2eφ
− θ Ṙφ′′

2φ′ + K

a2 − k2

2a2

−3R̈φ′′

2φ′ − 3Ṙ2φ′′′

2φ′ − 3Ṙ2 − 3φ′...R
2φ̇

−3Ṙ R̈φ′′

φ̇
− 3Ṙ R̈(φ′)2

φ̇
− θφ′ R̈

2φ̇
− k2

2a2

]
Φk, (50)

Φ̈k = φ̈′
φ′ Φ

k − 2wφ̈

(1 + w)
Δk

m − wφ̇

(1 + w)
Δ̇k

m, (51)

Δ̈k
m =

[
(1 + w)(1 + 3w)

ρm

2eφ
− wk2

a2 + wθ̇

+wθ(
2

3
θ + φ′ Ṙ

2
)

]
Δk

m +
(
θw − 2

3
θ − φ′ Ṙ

2

)
Δ̇k

m

−(1 + w)

[
(1 + 3w)

ρm

2eφ
+ f

2eφ

−θ Ṙφ′′

2φ′ + K

a2 − k2

2a2 − 3R̈φ′′

2φ′
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−3Ṙ2φ′′′

2φ′ − 3Ṙ2 − 3φ′...R
2φ̇

−3Ṙ R̈φ′′

φ̇
− 3Ṙ R̈(φ′)2

φ̇
− θφ′ R̈

2φ̇

]
Φk . (52)

We note that Eqs. (47–49) can be found in the existing lit-
erature [22]. The Eqs. (51) and (52) are the ones responsi-
ble for evolution of linear perturbations of single content.
The harmonic decomposed quantities are associated with
the wave-number k with the corresponding wavelength, so
we can make analysis by considering different scale such as
short-wavelength and long-wavelength limit.

7 The case of f (R) = αR + βRn

Consider the case where f (R) theory of gravity is defined as

f (R) = αR + βH2
0

( R

H2
0

)n
, (53)

where α and β are some constants parameter, n is a positive
constant and H0 is the present Hubble parameter. This f (R)

theory is characterised by the following action

L = 1

2k

∫
dx4√−g

[
αR + βH2

0

( R

H2
0

)n + 2Lm(gμν, ψ)
]
.

(54)

This type of f (R) theory of gravity is the generalization of
both GR and Rn action. If α = 1 and β = 0, this reduces
to GR theory of gravity and for α = 0 and β different from
0, it reduces to Rn gravity. This model has been analyzed
using the dynamical system approach [40] and proved that
like Rn gravity, it has unstable fixed point associated with
the Friedmann like solution given by the following equation.

a = t
2m

3(1+w) , (55)

where w is the equation of state parameter, m is a positive
constant and n = m . This phase was argued to be suitable
for the structure formation to take place and it is for this
reason we used Eq. (55) as background. The expression for
the volume expansion, the Ricci scalar and matter energy
density in this model are respectively given by [41]

θ = 2n

(1 + w)t
, (56)

R =
4n

[
4n − 3(1 + w)

]

3(1 + w)2t2 , (57)

ρm =
(3

4

)1−n
[

4n − 3n(1 + w)

(1 + w)2t2

]n−1

×
4n3 − 2n(n − 1)

[
2n(3w + 5) − 3(1 + w)

]

3(1 + w)2t2 . (58)

The f (R) = αR + βH2
0

(
R
H2

0

)n
model has been used in

different studies using different approach [40,42] and it is
a fourth order gravity theory with additional scale for the
gravitational interaction so we are going to apply perturbation
equations to this background and check the behavior of the
solutions.

7.1 Long-wavelength limit

In the analysis of the evolution of scalar perturbation equa-
tions in long-wavelength limit, the wave-number k is consid-
ered to be small so that the wavelength λ = 2πa

k associated
with it is much larger than the Hubble radius [9]. From Eq.
(46), it implies that all laplacian term can be neglected and the
spatial dependence of the perturbation variable can be fac-
tored out. So In this limit, we study the evolution of energy-
density perturbation equations by considering scales which
have wavelength much larger than the Jean’s wavelength that
is to say λ � λJ .

7.1.1 Dust-dominated universe

After the epoch of radiation, the Universe was dominated by
pressureless matter (dust) fluid. In such epoch, the density of
dust is much greater than the density of the radiation (ρd >>

ρr ). Due to the fact that the matter content in the universe is
dominated by the dust, the equation of state parameter w = 0,
since dust is pressureless. Consequently Eqs. (51) and (52)
read:

Φ̈k = φ̈′
φ′ Φ

k, (59)

Δ̈k
d = ρd

2eφ
Δk

d −
(2

3
θ + φ′ Ṙ

2

)
Δ̇k

d

−
[

ρd

2eφ
+ f

2eφ
− θ Ṙφ′′

2φ′ − 3R̈φ′′

2φ′

−3Ṙ2φ′′′

2φ′ − 3Ṙ2 − 3φ′...R
2φ̇

−3Ṙ R̈φ′′

φ̇
− 3Ṙ R̈(φ′)2

φ̇
− θφ′ R̈

2φ̇

]
Φ. (60)

To transform any time derivative function f and H into red-
shift dependence, it follows as

ḟ

H
= d f

dN
, (61)

where N = ln a and a is the scale factor that is related to
cosmological redshift as

a = 1

(1 + z)
, (62)
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and

ḟ = −(1 + z)H
d f

dz
, (63)

f̈ = (1 + z)2H

(
dH

dz

d f

dz
+ d2 f

dz2

)
. (64)

We apply the Eqs. (63) and (64) to perturbation equations to
get them in redshift dependence.

Then we have perturbation Eqs. (59) and (60) in redshift
space as

Φ(z)′′ + 3

2n(1 + z)
Φ(z)′ − 4

9n2(1 + z)
3
n +2

×
[
(−2n + 4)(−2n + 3)(1 + z)

3
n

−
βn(−2n + 4)(−2n + 2)

(
4n(4n−3)

3

)n−1
(1 + z)3

α + βn
(

4n(4n−3)
3

)n−1
(1 + z)

3n−3
n

−
βn(−4n + 5)(−2n + 2)

(
4n(4n−3)

3

)n−1
(1 + z)3

α + βn
(

4n(4n−3)
3

)n−1
(1 + z)

3n−3
n

+
2β2n2(−2n + 2)2

(
4n(4n−3)

3

)2n−2
(1 + z)

3n−3
n

(
α + βn

(
4n(4n−3)

3

)n−1
(1 + z)

3n−3
n

)2

]
Φ(z) = 0,

(65)

Δ(z)′′ +
[

3

2n(1 + z)
− 2

(1 + z)

+
2n(n − 1)β(4n − 3)

(
4n(4n−3)

3

)n−2
(1 + z)

3
n −1

α + βn
(

4n(4n−3)
3 (1 + z)

3
n

)n−1

]
Δ(z)′

+ 2n2(1 + z)
3
n Ωd

3eφ
Δ(z)

− 9

4n2(1 + z)
3
n +2

[
2n2(1 + z)

3
n Ωd

3eφ

+ f

2eφ
+ 2n(n − 2)(1 + z)

3
n

−
8n3β(n − 1)(4n − 3)

(
4n(4n−3)

3 (1 + z)3
)

3

(
α + βn

(
4n(4n−3)

3 (1 + z)
3
n

)n−1
)

− 9(n − 2)(1 + z)
3
n − 64n2

3
(4n − 3)2(1 + z)

9
n

+
12n2β(n − 1)(4n − 3)

(
4n(4n−3)

3 (1 + z)
3
n

)n−2

(1 + z)
6
n

α + βn

(
4n(4n−3)

3 (1 + z)
3
n

)n−1

− 12(n − 2)(n − 3)(1 + z)
3
n

+
64n3β(n − 1)(4n − 3)2

(
4n(4n−3)

3

)n−1
(1 + z)

9
n

α + βn

(
4n(4n−3)

3 (1 + z)
3
n

)n−1

− 18(1 + z)
3
n + 3n(1 + z)

3
n

+
128n4β2(n − 1)2(4n − 3)2

(
4n(4n−3)

3 (1 + z)
3
n

)2n−4

(1 + z)
9
n

3

(
α + βn

(
4n(4n−3)

3 (1 + z)
3
n

)n−1
)2

− 18(n − 2)(1 + z)
3
n

]
Φ(z) = 0. (66)

For the case of f (R) = R − 2Λ, known as Lagrangian for
general relativity with a cosmological constant, the Eq. (66)
reduces to [1]:

Δ′′ − 1

2(1 + z)
Δ′ − 27

8(1 + z)5
H2

0 ΩΛΔ = 0, (67)

where the density parameter of cosmological constant fluid
is given by

ΩΛ = Λ

3H2
0

. (68)

The Eq. (67) admits the following solution

Δ(z) = C1(1 + z)
3
2 sin

( √
6ΩΛH0

2(−1 − z)
3
2

)

+C2(1 + z)
3
2 cos

( √
6ΩΛH0

2(−1 − z)
3
2

)
. (69)

When Λ = 0, this reduces to the original field equations
of general relativity, then Eq. (67) reduces to [43]:

Δ′′ − 1

2(1 + z)
Δ′ − 3Ωd

2(1 + z)2 Δ = 0, (70)

and it admits the following solution

Δ(z) = C3(1 + z)

(
3
4 +

√
9+24Ωd

24

)

+C4(1 + z)

(
3
4 −

√
9+24Ωd

24

)
. (71)

C1, C2, C3 and C4 are constants of intergration and they are
obtained using some initial conditions.

A graphic representation of the behavior of the Eq. (66) as
n changes for f (R) theory of gravity is given by Fig. 1. We
plot the normalized dust density on the vertical axis δ(z) =

Δk
d

Δk
d (z0)

versus redshift where z0 = 2000 is the initial redshift.

7.2 Short-wavelength limit

In small scale limit, we study the evolution of the short-
wavelength modes, that is to say large values of the wave-
number k using the equations for scalar field fluid-dust sys-
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Fig. 1 The plots show the evolution of the energy-density fluctuations
of dust given by by Eq. (66) of the long-wavelength modes for αR+βRn

model (black, blue and pink) together with ΛCDM case (green) given
by Eq.(69); for β = 0.0005, α = 0.01, Ωd = 0.32, ΩΛ = 0.68 and
H0 = 73 km s−1 M pc−1

tem. The quasi-static approximation for the matter pertur-
bations is used. In this approximation all time derivative of
gradient variable responsible for perturbation in scalar field
and momentum of the scalar field are discarded that is to say
Φ̇(z) = 0 and Ψ̇ (z) = 0 and only those including energy-
density perturbations are kept. This approximation method
has been widely used in different literatures such as [44,45].
In this limit, we study the evolution of energy-density per-
turbation equations by considering scales which have wave-
length much smaller than the Jean’s wavelength that is to say
λ � λJ .

7.2.1 Dust-dominated universe

If, we assume that the universe is dominated by dust as mat-
ter fluid, then the barotropic factor of dust wd = 0. Apply-
ing quasi-static approximation method where Φ̇(z) = 0 and
Ψ̇ (z) = 0 and the equation of state parameter wd = 0 to the
Eq. (51) gives

Φ̇(z) = 0. (72)

Substituting the value of Φ(z) given by Eq.(72) into the
energy-density perturbation equation given by Eq. (52), the
following expression is obtained

Δ̈k
d = ρd

2eφ
−

(
2θ

3
+ φ′ Ṙ

2

)
Δ̇k

d . (73)

In redshift space, the Eq. (73) becomes

Δ(z)′′ +
[

3

2n(1 + z)
− 2

(1 + z)

+ 2nβ(n − 1)(4n − 3)(
4n(4n−3)

3 (1 + z)
3
n )n−2(1 + z)

3
n −1

α + βn(
4n(4n−3)

3 (1 + z)
3
n )n−1

]
Δ(z)′

Fig. 2 The plots show the evolution of the energy-density fluctua-
tions of dust given by Eq. (74) of the short-wavelength modes for
αR + βRn model (black, blue and pink) together with ΛCDM case
(green); for β = 0.00005, α = 0.001, Ωd = 0.32, ΩΛ = 0.68 and
H0 = 73 km s−1 M pc−1. Note that there is a decrease of energy density
perturbations with the increase of redshift

− 3Ωd

2eφ(1 + z)2 Δ(z) = 0. (74)

The plots in Fig. 2 show the dynamics of energy density
fluctuations of dust obtained by solving numerically the full
systems Eq. (69) for ΛCDM case and (74) for αR + βRn

model. We plot the normalized energy-density of dust on the

vertical axis δ(z) = Δk
d

Δk
d (z0)

versus redshift.

8 Discussions

The evolution of energy-density perturbations is studied by
solving numerically different perturbation equations for both
the long-wavelength and short-wavelength limits. And dust
dominated universe was taken into account.

In the long-wavelength limit, the wave-number k is so
small that the k2 terms are neglected because they are too
small compared to other terms. The wavelength λ = 2πa

k �
λJ where λJ is the Jean’s length given by [46] λJ = Cs

√
π
Gρ

,

Cs is the speed of sound, G is the gravitational constant and
ρ is the energy-density. Thus, we considered the scales of the
fluid inhomogeneity which are larger than the Jean’s length.
In the short-wavelength limit, we considered the scales which
are less than the Jean’s length that is λ = 2πa

k � λJ and
quasi-static approximation has been used in this limit. In the
small scales limits, we have fixed the wavelenght λ to be less
than the Jean’s wavelength λJ as λ = 1.5 Mpc.

We obtained the numerical solutions of energy-density
perturbations equations for different values of the parameter
n such as n = 1.1, n = 1.2, n = 1.3 for αR+βRn model and
n = 1 for ΛCDM case. The choice of n was made according
to [9,20].
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We solved the perturbation equations setting the initial
values to be Δ̇(z0) = 0, Δ(z0) = 0.00001, Φ̇(z0) = 0 and
Φ(z0) = 0.000001 where z0 is the initial redshift when the
radiation and dust were equal in the universe, that is approx-
imately z0 = 2000. We computed the numerical solutions
of the energy-density perturbation equations for αR + βRn

model using α = 0.01 in the long-wavelength mode and
α = 0.001 in the short-wavelength model for different val-
ues of the constant β. The density parameter Ωd = 0.32 and
the hubble parameter H0 = 73 km s−1 M pc−1 were used to
get numerical solutions.

The scalar field φ = ln f ′ has been used as extra degree of
freedom to develop perturbation equations. The prime indi-
cates derivative of f (R) with respect to R, knowing that in
GR case, we do not have scalar field since f ′ = 1.

The evolution of the energy-density perturbation Eq. (66)
in the long-wavelength limit and the Eq. (74) in the short-
wavelength limit for αR + βRn model in dust-dominated
universe together with Eq. (69) of Λ CDM case is plotted
in Figs. 1 and 2 respectively. From these figures, we found
that the perturbations of the energy density decrease with
increasing redshift for different values of constant n. The
figures shows that the evolution of density perturbations for
f (R) models is above the one of GR, which indicates that
the modified gravity exhibits the overdensity referring to the
one produced by GR. It appears that we have an increase
in the energy-density perturbations as we move from early
universe to late universe and this implies that there are more
structure formations (galaxies, clusters and super-clusters)
and more distanced galaxies in the present universe. This is
in agreement with the existing literature about f (R) models
[9,19,22,35]. The formation of structures in the universe is
one of the characteristics of cosmic expansion, because of
this, one could observe the advantage of having more degree
of freedom in considering f (R) theory than in GR.

9 Conclusions

In this work, we presented a detailed analysis of 1+3 covari-
ant approach where the universe is described by dust-fluid
system . We used the equivalence between metric f (R) grav-
ity and scalar-tensor theory with the definition of the scalar-
field φ = ln f ′. We developed 1 + 3 covariant perturbation
equations based on the gradient variables. We applied Har-
monic decomposition method to partial differential equations
to obtain ordinary differential equations for easier analysis.
The background solutions of αR + βRn model was taken
into account for fluid system dominated by dust and checked
for solutions in short and long-wavelength limit. We used
quasi-static approximation in the short-wavelength limit. We
transformed time dependent perturbation equations into red-
shift dependence and we obtained numerical solutions using

Maple software. Both in the short-and long-wavelength lim-
its, we found that perturbations of the energy-density in dusts
decay exponentially with increasing redshift for different val-
ues of n of αR + βRn model.

As an extension to this work however, further research
is required on multi-fluid systems and other forms of f (R)

gravity models.
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Appendix

Expansion propagation (generalized Raychaudhur) equation
is given by

θ̇ + 1

2
θ2 + σabσ

ab − 2waw
a − ∇̃au̇a

+u̇a u̇
a + 1

2
(ρm + 3pm) = 1

2
(ρφ + 3pφ). (75)

The relationship between the curvature gradient Ra and Φa

is given by

Ra = Φa

φ′ . (76)

The relationship between the curvature momentum gradient
	a and Φ is

	a = R̈

φ̇
Φa . (77)

Where

Ra = a∇̃a R. (78)

and

	a = a∇̃a Ṙ. (79)
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The Equations (103–106) can be found in the existing liter-
ature [22].

To deal with the evolution of projected gradients we use
the identity equation

(∇̃a f )̇ = ∇̃a ḟ − 1

3
θ∇̃a + u̇a ḟ . (80)
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