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Abstract We explore the potential of measurements of
cosmological effects, such as neutrino spectral distortions
from the neutrino decoupling and neutrino clustering in our
Galaxy, via cosmic neutrino capture on tritium. We compute
the precise capture rates of each neutrino species including
such cosmological effects to probe them. These precise esti-
mates of capture rates are also important in that the would-
be deviation of the estimated capture rate could suggest new
neutrino physics and/or a non-standard evolution of the uni-
verse. In addition, we discuss the precise differences between
the capture rates of Dirac and Majorana neutrinos for each
species, the required energy resolutions to detect each neu-
trino species and the method of reconstruction of the spec-
trum of cosmic neutrinos via the spectrum of emitted elec-
trons, with emphasis on the PTOLEMY experiment.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Cosmology of the CνB . . . . . . . . . . . . . . . . 2

2.1 Neutrino cosmology in the instantaneous decou-
pling limit . . . . . . . . . . . . . . . . . . . . 3

2.2 Neutrino spectral distortion in the neutrino
decoupling . . . . . . . . . . . . . . . . . . . . 4

2.3 Gravitational clustering . . . . . . . . . . . . . 5
3 Precise neutrino capture rate including cosmological

effects . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Estimating the neutrino capture rate and the spectrum 9

4.1 The capture rate . . . . . . . . . . . . . . . . . 9
4.1.1 The normal hierarchy case . . . . . . . . 9
4.1.2 The inverted hierarchy case . . . . . . . . 10

4.2 The would-be spectra of an electron and the reconstruc-

tion of the spectrum of a cosmic neutrino . . . . . . . 10

a e-mail: kensuke@th.phys.titech.ac.jp (corresponding author)
b e-mail: hurwitz.s.aa@m.titech.ac.jp
c e-mail: gucci@phys.titech.ac.jp

5 Summary and discussion . . . . . . . . . . . . . . . 13
Appendix A: Exact neutrino capture rate at tree level . 14
Appendix B: Kinematics . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction

Garnering massive predictive success, the standard big bang
theory is adept at explaining a plethora of cosmological and
astrophysical phenomena. If the model is correct, at around
1 second after the formation of the universe, neutrinos would
have decoupled from the interacting particles in the universe.
Analogous to photons that make up the CMB, these decou-
pled neutrinos are expected to have been free streaming until
today, and can provide information from the time they decou-
pled at MeV scale temperature. If these relic neutrinos, col-
lectively called the cosmic neutrino background (CνB), are
detected, then we can probe information about our universe
at much earlier times than we are currently able as well as
uncovering the properties of neutrinos themselves. The exis-
tence of these neutrinos is strongly supported by indirect
evidence such as the observational data of the primordial
abundances of light elements from Big Bang Nucleosynthe-
sis (BBN), the anisotropies of the Cosmic Microwave Back-
ground (CMB) and the distribution of Large Scale Structure
(LSS) in the universe. In particular, observations from the
Planck satellite impose the severe constraint on the effec-
tive number of relativistic species, Neff , and the sum of the
neutrino masses at 95% CL as [1]

Neff ≡ 8

7

(
11

4

)4/3 [
ρr

ργ

− 1

]
= 2.99+0.34

−0.33

and
∑

mν < 0.12 eV, (1)

where ρr and ργ are the energy densities of radiation and
photons, respectively. The theoretical value for this parame-
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ter in the Standard Model (SM) is Neff = 3.044 [2–5], (for
the most precise calculations see [6,7]), which is consistent
with the above constraints. The next generation of cosmo-
logical observations are expected to determine Neff with 1%
precision in the near future [8–12].

Unfortunately, the CνB has not yet been observed in a
direct way. Owing to the expansion of the universe, these
neutrinos would have lost most of their momenta, and will
have very low energies, and so are very difficult to detect.
Nevertheless, it is conceivable that the relic neutrinos would
one day be detected directly. Such a direct probe of the CνB
would not only confirm that these neutrinos still exist in
the present universe but also complement our knowledge
of cosmology and neutrinos. Through the direct observa-
tion of cosmic neutrinos, we would distinguish whether the
origin of Neff lies in neutrino species or exotic relativis-
tic species and/or from thermal or non-thermal neutrinos.
In other words, it would test many cosmological models
wherein cosmic neutrinos decayed during some period of the
universe in the majoron models [13–15]. It would also test if
they were produced less in very low reheating scenarios [16–
21]; if their spectra and energy densities were modified by the
decay of a heavy particle into neutrinos (see e.g. [22–25]);
or if some dark radiation contributes to Neff .

The most promising method of a direct detection of the
CνB is via neutrino capture on β-decaying nuclei (NCB)
[26,27], in particular on tritium [28–33], through the inverse
β-decay process, ν + n → p + e−. Since there is no thresh-
old energy in this process, the inverse β-decay processes
for neutrinos with arbitrary energies are always allowed.
The challenges of the NCB method include the availabil-
ity of β-decaying nuclei with long lifetimes and the need for
extremely high precision in measuring the outgoing electron
energy. As a β-decaying nucleus, tritium is an appropriate
candidate due to its availability, high neutrino capture cross
section, low Q-value and long lifetime with a half-life of
t1/2 = 12.32 years. In this method using a tritium target,
provided that an extremely good energy resolution can be
obtained, the signature of the capture of one neutrino species
νi with energy Eνi is a peak in the electron energy spec-
trum at an energy of (mlightest + Eνi ) above the β decay
endpoint1 , where mlightest is the lightest mass species of
neutrinos. A planned project, formerly known as PTOLEMY
(PonTecorvo Tritium Observatory for Light, Early-Universe,
Massive-Neutrino Yield) has begun developing an innovative
technology that can improve the energy resolution, envisag-
ing the use of a 100 g tritium target [34–36].

The theoretical calculation of the rate at which this exper-
iment will detect cosmic neutrinos is vital for extracting
the various properties of neutrinos from the experimental

1 If the captured neutrinos with massmνi are non-relativistic,mlightest +
Eνi � mlightest + mνi .

data, including their actual masses, whether they are Dirac
or Majorana fermions, and the number of species. In addition,
this capture rate is also important for probing and constrain-
ing cosmological effects on neutrinos such as gravitational
clustering of neutrinos by our Galaxy, the nonequilibrium
corrections to the neutrino spectra in the early universe, and
lepton asymmetry in the neutrino sector.

In this paper, we explore the potential of measurements
and constraints on such cosmological effects via cosmic neu-
trino capture on tritium in more detail. In particular, we give
the precise estimate of cosmic neutrino capture rates on tri-
tium. For this purpose, we go beyond the leading order calcu-
lations of these capture rates, which have been done before,
and give the sub-leading order corrections including neutrino
spectral distortions from their decoupling and the gravita-
tional clustering of neutrinos. In fact, the possible deviation
of the would-be observed capture rate from the estimated
precise one could allow us to distinguish more accurately
new neutrino physics and/or non-standard evolution of the
universe from the standard cosmology. In addition, we com-
prehensively discuss the precise differences between the cap-
ture rates of Dirac and Majorana neutrinos and the required
energy resolutions of the detector for each neutrino species of
mass-eigenstate since one signal from the CνB would come
from one mass-eigenstate of neutrino. In this discussion, we
consider both the normal and inverted mass hierarchies of
neutrinos. We also consider the reconstruction method of the
neutrino spectrum from the observed spectrum of the emitted
electrons.

This paper is organized as follows. In the next section,
we discuss the properties of the cosmic neutrino background
including cosmological effects such as the neutrino spectral
distortion in the neutrino decoupling and gravitational clus-
tering of relic neutrinos. In particular, we estimate the pre-
cise number densities of neutrinos in the current universe,
including such cosmological effects. In Sect. 3, the formulae
of the neutrino capture rate including cosmological effects
are given. In Sect. 4, the precise estimate of the neutrino
capture rate as well as the required energy resolution for the
actual observation is given. The reconstruction method of
the neutrino spectrum from the would-be observed spectrum
of electrons is also discussed. The final section is devoted
to summary and discussion. In the appendix, the exact neu-
trino capture rate at tree level on the tritium target as well as
the kinematics of tritium beta decay and inverse tritium beta
decay for cosmic neutrinos are discussed.

2 Cosmology of the CνB

In this section, we consider the cosmology of relic neutrinos.
First, we review the history of the CνB in the instantaneous
decoupling limit. Then, we discuss the sub-leading cosmo-
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logical effects such as the neutrino spectral distortions in the
neutrino decoupling and gravitational clustering of relic neu-
trinos. In particular, we calculate the precise number density
of cosmic neutrinos in the present universe, including the
neutrino spectral distortions in the decoupling and gravita-
tional clustering.

2.1 Neutrino cosmology in the instantaneous decoupling
limit

First, we consider the production and decoupling processes
of neutrinos in the early universe. After that, we discuss the
properties of neutrinos in the current universe. Finally, with
emphasis on the distinction between Dirac and Majorana neu-
trinos, we discuss which spin states of neutrinos are popu-
lated in the current universe. Here we basically follow the
arguments given in [31].

It is predicted that at early times in the universe, when tem-
peratures were much higher, that left-handed neutrinos and
right-handed anti-neutrinos reacted and were produced con-
stantly in thermal equilibrium with themselves and charged
leptons via the weak interaction. In this epoch, left-handed
neutrinos and right-handed anti-neutrinos were in thermal
equilibrium and the shape of the spectrum for these massive
neutrinos is the Fermi–Dirac distribution,

fFD( p, T ) = 1

eE/T + 1
, E =

√
p2 + m2

ν, (2)

where T is the temperature of the thermal plasma. Here and
hereafter, we assume lepton asymmetry is negligibly small.
This assumption is reasonable since neutrino oscillations
leading to flavor equilibrium before BBN impose a strin-
gent constraint on this asymmetry [37–42]. In addition, the
standard baryogenesis scenarios via the sphaleron process in
leptogenesis models predict that the lepton asymmetry is of
the order of the current baryon asymmetry, nB/nγ ∼ 10−10,
which is much smaller than the above constraint.

Since neutrino masses are much smaller than the temper-
ature in the early universe, the number density of one flavor
(or mass) eigenstate for left-handed neutrinos is given by

nν(T ) = 3ζ(3)

4π2 T 3. (3)

When the temperature of the plasma decreased due to
the expansion of the universe, neutrinos did not interact
with other particles and deviated from thermal equilibrium.
This decoupling happened when the mean free travel time
of neutrinos would have been comparable to the Hubble
time. We can estimate a ball-park figure for this decoupling
time using the mean free time, τ ≈ 1

G2
F T

5 , and the Hub-

ble time, tH ≡ H−1 ≈ MP
T 2 , where GF is the Fermi cou-

pling constant and MP is the reduced Planck mass. Then, we
find the approximate decoupling temperature to be around
2 MeV, which corresponds to the period when the universe
was around 1 second old.

After the decoupling, since the time dependence of the
distribution function of free particles is determined only by
the redshift of momenta, the neutrino distribution function is
given by

fν( p, t) = 1

e| p|/Tν (t) + 1
, (4)

where Tν is the effective neutrino temperature,

Tν(t) = a(tdec)

a(t)
Tdec. (5)

Here a(t) is the scale factor of the universe, tdec is the time
of the decoupling, and Tdec ∼ 2 MeV is the decoupling tem-
perature of neutrinos. Here, we have assumed that the neutri-
nos were decoupled instantaneously without any momentum
dependence. After the decoupling of neutrinos, the photon
temperature also decreased. When the photon temperature
dropped below the electron mass, electrons and positrons
annihilated into photons, injecting energy into this compo-
nent. Due to this process, the photon temperature below the
electron mass satisfies the following relation with the effec-
tive neutrino temperature, using entropy conservation,

Tγ (t)

Tν(t)
=

(
g∗(tdec)

g∗(t)

)1/3

=
(

11

4

)1/3

, (6)

where g∗(t) is the effective number of degrees of freedom in
the plasma.

Next, we can extrapolate the properties of neutrinos in
the present universe. Since the present CMB temperature is
observed to be Tγ (t0) � 2.7255 K [43], the present neutrino
temperature Tν(t0) and the present neutrino distribution func-
tion f0( p) are evaluated through Eq. (6) as

Tν(t0) � 1.9454 K, (7)

f0( p) = 1

e| p|/Tν (t0) + 1
. (8)

Using Eqs. (3) and (7), the current neutrino number density
per one degree of freedom is estimated as

n0 = 3ζ(3)

4π2 Tν(t0)
3 � 56.01 cm−3. (9)

We can also calculate the average magnitude of a cosmic
neutrino’s momentum in the present universe,
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〈p0〉= 1

n0

∫
d3 p

(2π)3 | p| f0( p)≈3.15Tν(t0)≈5.3 × 10−4eV. (10)

Since 〈p0〉 is much smaller than
√

	m2
21 and

√
|	m2

3l | (l =
1, 2), where 	m2

i j = m2
i − m2

j are the mass squared differ-
ences of two neutrino species, at least two mass-eigenstates
of neutrinos are non-relativistic today. From this, it is easier to
follow the evolution of neutrinos in the mass-diagonal basis
because we can easily quantize non-relativistic neutrinos and
calculate this capture rate.

Finally, we consider the history of neutrino spin states
and which neutrino spin states are populated in the present
universe. In the early universe, since the weak interaction
is chiral, only left-handed neutrinos and right-handed anti-
neutrinos were produced in thermal equilibrium with the
other standard model particles. On the other hand, since right-
handed neutrinos and left-handed anti-neutrinos cannot inter-
act with other particles via the weak interaction, we call these
neutrinos sterile. Since these sterile neutrinos could not be
produced in thermal equilibrium through the weak interac-
tion, we assume that their number densities are negligibly
small.

In the early universe, the chirality states of these ultra-
relativistic neutrinos are conserved owing to the negligibility
of their masses. However, in the current universe, the chi-
rality states of neutrinos are not necessarily conserved since
some neutrinos are non-relativistic. In this epoch, it is easier
to follow the evolution of helicity states of neutrinos since
their helicity states are conserved while non-relativistic neu-
trinos are freely streaming. The helicity of a particle is defined
by the projection of its spin vector onto the direction of its
momentum.

Thus, in the present universe, left-helical neutrinos (right-
helical neutrinos) would be populated, which coincide with
left-handed neutrinos (right-handed anti-neutrinos for Dirac
type and right-handed neutrinos for Majorana type) in the
early universe.

So, if neutrinos are Dirac fermions and neglecting the
possible mixing of neutrino helicity (discussed further in
Sect. 2.3), the number density for each spin state in the cur-
rent universe is

nνl = nν̄r = n0,

nνr ≈ nν̄l ≈ 0, (11)

where νl (ν̄r ) denotes left-helical neutrinos (right-helical
anti-neutrinos) while νr (ν̄l ) denotes right-helical sterile neu-
trinos (left-helical sterile anti-neutrinos). The present distri-
bution function for each spin state of Dirac neutrino is

fνl = fν̄r = f0( p),

fνr ≈ fν̄l ≈ 0. (12)

If neutrinos are Majorana fermions, there is no distinction
between neutrinos and anti-neutrinos, and the lepton number
is violated. In addition, Majorana sterile neutrinos are typi-
cally much heavier than active neutrinos through the see-saw
mechanism [44–48] and completely decay into other parti-
cles in the early universe. Then the number density for each
spin state in the current universe is

nνl = nνr = n0,

nNr = nNl = 0, (13)

where νl (νr ) denotes left-helical neutrinos (right-helical neu-
trinos) while Nr (Nl ) denotes right-helical sterile neutrinos
(left-helical sterile neutrinos). In terms of the present distri-
bution function, each spin state of Majorana neutrino has

fνl = fνr = f0( p),

fNr = fNl = 0. (14)

2.2 Neutrino spectral distortion in the neutrino decoupling

In the previous section, we assumed that all neutrinos instan-
taneously stopped interacting with other particles. However,
since the decoupling time actually depends on the momenta
of neutrinos, neutrinos decoupled gradually. In particular, the
decoupling temperature of neutrinos and the temperature of
annihilation of e±-pairs are so close that some e±-pairs anni-
hilate into neutrinos, injecting their energies into neutrinos.
These annihilation processes become more efficient for neu-
trinos with higher energies because the interaction rates of
relativistic particles with higher energies are larger [49,50].
Due to this energy injection, the neutrinos’ distribution func-
tion after decoupling is distorted as

f dνi ( p, t) = 1

e| p|/T̄ν (t) + 1

(
1 + δ f̄ dνi ( p, t)

)
, (15)

where i denotes the mass-eigenstate of a neutrino. Since the
energy injection into neutrinos makes the decrease of the
neutrino temperature effectively slower, the ratio of the pho-
ton temperature, Tγ , to the actual neutrino temperature, T̄ν ,
is smaller, and it is given by the latest calculation in [6],2

Tγ (t0)

T̄ν(t0)
= 1.39797,

T̄ν(t0) = 1.9496 K. (16)

2 Since the actual neutrino spectrum also deviates from the Fermi–Dirac
distribution, the neutrino temperature is not uniquely defined. Here we
determine the neutrino temperature by requiring that it simply decreases
in proportion to the inverse of the scale factor while the photon temper-
ature does not due to the e±-pair annihilation and the non-instantaneous
decoupling effects.
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Table 1 The deviation of present number densities of neutrinos from
the Fermi–Dirac distribution [e| p|/T̄ (t0) + 1]−1 in the mass basis in the
SM [6]

δn̄dν1
(%) δn̄dν2

(%) δn̄dν3
(%)

0.468 0.350 0.248

Hereafter we only consider the quantities in the present uni-
verse. These corrections to the Fermi–Dirac distribution for
the mass-eigenstates of neutrinos in the SM are studied in
Fig. 5 of Ref. [6]. These corrections also modify the number
densities of neutrinos in the current universe, which affect the
neutrino capture rate on tritium. Including these corrections,
the number densities of neutrinos in the current universe are
given by

ndνi = n̄0

(
1 + δn̄dνi

)
, (17)

where

n̄0 = 3ζ(3)

4π2 T̄ν(t0)
3 � 56.376 cm−3. (18)

This difference in neutrino temperature, when compared
to the instantaneous decoupling limit, induces a change of
0.65% in the current neutrino number density. The values of
δn̄i in the SM are listed in Table 1. These values do not depend
on the neutrino mass ordering. We can also parametrize the
deviation of the current distribution functions and number
densities from those in the instantaneous decoupling limit as

f dνi ( p, t0) = f0( p)
(
1 + δ f dνi ( p, t0)

)
,

ndνi = n0

(
1 + δndνi

)
. (19)

The values of ndνi and δndνi are listed in Table 2.
Detecting these corrections to neutrino number densities

would reveal not only precise number densities but also the
contribution of neutrinos to Neff . Thus, the detection of the
distortions of neutrino spectra and number densities will
enable us to distinguish between models of the early uni-
verse more precisely.

2.3 Gravitational clustering

After the decoupling, neutrinos freely streamed until today.
However, near the Earth, non-relativistic neutrinos can clus-
ter locally in the gravitational potential of our Galaxy and
nearby galaxies. Due to this clustering, the local distribu-
tion function is modified and the local number density is
enhanced when compared with the global distribution func-
tion and number density, which also enhance the capture

rate of cosmic neutrinos. The local distribution function and
number density in the present universe are parametrized as

fνi ( p, t0) = f dνi ( p, t0)
(
1 + δ f cνi ( p, t0)

)
,

nνi = ndνi
(
1 + δncνi

)
. (20)

Using the linear approximation, Eq. (20) in the present uni-
verse can be rewritten as

fνi ( p, t0) � f0( p)
(
1 + δ f cνi ( p, t0) + δ f dνi ( p, t0)

)
,

nνi � n0

(
1 + δncνi + δndνi

)
. (21)

Note that δ f cνi has not yet been estimated in previous works,
although we can in principle estimate this modification in
the same way as one estimates the enhancement of the neu-
trino number density. We too leave this estimation of δ f cνi
to future work. δncνi was estimated by a method to solve the
collisionless Boltzmann equation for a system including cold
dark matter halos and neutrinos in Ref. [51], and by a method
called N-one-body simulations in Refs. [52–55]. Through the
latter method, they computed the time evolution of trajecto-
ries of N -independent neutrinos in the gravitational potential
of the Milky Way, Virgo cluster, and Andromeda galaxy in
the latest calculation [55]. This study shows that the differ-
ence between a Navarro–Frenk–White (NFW) and an Einasto
profile for the dark matter around our galaxy is negligibly
small. For the case of the SM neutrinos, δncνi have been also
calculated in [55] and we display some of these values in
Table 3 for reference. From Tables 2 and 3, one can observe
that the clustering effect of the mass-eigenstates of neutrinos
with m � 50 meV is dominant compared to the non-thermal
effect in the early universe, while the clustering effect of neu-
trinos with m � 10 meV is slightly less than the non-thermal
effect in the early universe. However, since the lightest mass
of neutrino has not yet been determined, the lightest neutrino
could be light enough not to cluster well, and the non-thermal
effect in the early universe can be dominant compared to the
clustering effect for the lightest neutrinos. Thus, it may be
easier to detect the non-thermal neutrino spectral distortion
through the capture of the lightest neutrino species using the
tritium target, albeit requiring an extremely good energy res-
olution (approximately 0.4 meV, shown in Sect. 4.2).

In addition, gravitational clustering of massive neutri-
nos may induce the mixing of neutrino helicity [31,33,56],
although the quantitative calculation has also not yet been
achieved. Since neutrinos orbit around our Galaxy in the
gravitational potential, its direction of momentum would
change whereas its spin does not, which would induce the
change of its helicity. If the helicities of neutrinos change
completely, the distribution functions and number densities
of all Dirac neutrinos become fνl = fν̄r = fνr = fν̄l =
fνi /2 and nνl = nν̄r = nνr = nν̄l = nνi /2, respectively. On
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Table 2 The present number densities of neutrinos and the deviation of those from the instantaneous decoupling limit in the mass basis including
neutrino spectral distortions in the SM

δndν1
(%) δndν2

(%) δndν3
(%) ndν1

(cm−3) ndν2
(cm−3) ndν3

(cm−3)

1.13 1.01 0.91 56.64 56.57 56.52

Table 3 The current number densities of neutrinos and the deviation of
those from the instantaneous decoupling limit with a mass m including
clustering effect by our Galaxy and not including neutrinos’ spectral
distortions [55]

m (meV) δnc (%) n (cm−3)

10 0.53 56.31

50 12 62.73

the other hand, since the helicities of Majorana neutrinos ini-
tially mixed completely, the distribution functions and num-
ber densities of Majorana neutrinos remain unchanged. In
spite of the possible helicity flipping for massive neutrinos,
the capture rate would not change much since this capture
rate depends mainly on the number density summed over
helicities at leading order. Therefore, in the following, we
will neglect the effect of helicity flipping for the estimation
of the capture rate.

3 Precise neutrino capture rate including cosmological
effects

In this section, including cosmological effects such as neu-
trino spectral distortion from the neutrino decoupling and
gravitational clustering, we formulate the expected capture
rate of neutrinos from the CνB on a tritium target through
the following process,

νi + 3H → 3He + e−, (22)

where νi denotes a neutrino in the mass-diagonal basis.
In this calculation, we take the neutrino velocity vν into
account, which contributes to the capture rate as the next-
to-leading order effect and is comparable with these cosmo-
logical effects. In addition, the full expression of the capture
rate at the tree-level is shown in Appendix A.

In order to derive the neutrino capture rate including such
cosmological effects, we begin by considering the scattering
amplitude for the process in Eq. (22). Since we are interested
in the reaction at an energy much lower than the weak boson
masses, the approximate four-Fermi interaction process can
be used to calculate the amplitude. In this case, the matrix
element is given by

iMi = −i
GF√

2
VudU

∗
ei

[
ūeγ

μ(1 − γ 5)uνi

]

×
[
ū3Hγμ

(
〈 fF 〉 − gA√

3gV
〈gGT 〉γ 5

)
u3He

]
, (23)

where uα denotes the Dirac spinor for species α, Vud �
0.9740 [57] is a component of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, and Uei is an element of the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. gA �
1.2723 and gV � 1 are the axial and vector coupling con-
stants respectively, and 〈 fF 〉 � 0.9998 and 〈gGT 〉 � √

3 ×
(0.9511±0.0013) denote the reduced matrix elements of the
Fermi and Gamow–Teller (GT) operators respectively [58].
The above value of 〈gGT 〉 is estimated through the observa-
tion of the tritium half-life and the value of 〈 fF 〉. Although
the uncertainty of this “experimental” value is 0.1%, the the-
oretical calculation of 〈gGT〉 still includes an uncertainty of
a few % [58].

In the inverse β-decay experiment, the spins of the outgo-
ing electron and nucleus would not be measured. In addition,
the spin of the initial nucleus would not be identified either.
However, particularly in the case of Dirac neutrino, the initial
number density for each spin state of neutrino can be seen in
Eq. (11), although the number density for each spin state of
Majorana neutrino is the same. For these reasons, we calcu-
late the squared scattering amplitude summed over the spin
of e and 3He and averaged over 3H. In the rest frame of 3H,
the result is

1

2

∑
se,s3He,s3H=± 1

2

|M|2i (sν)

= 8G2
F |Vud |2|Uei |2m3Hem3HEeEνi

×
[
(1 − 2sνvνi )

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

+ (vνi − 2sν) cos θve

(
〈 fF 〉2 − g2

A

3g2
V

〈gGT 〉2

) ]
, (24)

where m3He � 2808.391 MeV and m3H � 2808.921 MeV
are the nuclear masses3 of the 3He and 3H respectively, sα =
1
2 (− 1

2 ) denotes the right (left) helicity for species α , vα =

3 The nuclear masses m3He and m3H are obtained from the atomic
masses M3He � 2809.413 MeV and M3H � 2809.432 MeV [59],
using the following relations, m3He = M3He − 2me + 24.58678 eV and
m3H = M3H −me+13.59811 eV. The last values on the right hand side
in the previous two equations represent the atomic binding energies.
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| pα |
Eα

is the velocity for species α, and cos θ = pe· pν| pe|| pν | is the
angle between the electron and neutrino momenta.

We derive the differential cross section from Eq. (24) (see
also Appendix A) up to the next-to-leading order as

dσi (sν)

d cos θ
=G2

F

4π
|Vud |2|Uei |2 m3He

m3Hvνi

F(2, Ee)Ee| pe|

×
[
(1 − 2sνvνi )

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

+ (vνi − 2sν) cos θve

(
〈 fF 〉2 − g2

A

3g2
V

〈gGT 〉2

)]
,

(25)

where F(Z , Ee) is the Fermi function expressed as

F(Z , Ee) = 2παZEe/| pe|
1 − e−2παZEe/| pe| . (26)

This function represents an enhancement factor by an
Coulombic attraction of the out going electron and proton
[60]. Z is the atomic number of the daughter nucleus and
Z = 2 in our case. α � 1/137.036 is the fine structure
constant. After integrating over the angle θ , the total cross
section multiplied by the neutrino velocity is given by

σi (sν)vνi =G2
F

2π
|Vud |2|Uei |2 m3He

m3H
F(2, Ee)Ee| pe|

× (1 − 2sνvνi )

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)
. (27)

Although |sνvν | � 1 for non-relativistic neutrinos, the cross
section for each helicity state of neutrino is slightly different.
Then, the cross sections for Dirac and Majorana neutrinos
also are different since the abundance of the helicity states
of these neutrinos are different as in Eqs. (11) and (13).

We now calculate the total capture rate of cosmic neutrinos
�CνB for some tritium sample with NT = MT

M3H
particles,

where MT is the total mass of the experimental setup of
tritium and M3H � 2809.432 MeV is the atomic mass of
tritium [59]. This total capture rate �CνB can be rewritten as

�CνB =
Nν∑
i=1

�i , (28)

where Nν is the number of (mass) species of neutrinos. �i is
the total capture rate of a given mass-eigenstate of neutrino
νi , given by

�i = NT

∑
sν=± 1

2

∫
d3 pν

(2π)3 σi ( pν, sν)vνi fνi ( pν, sν), (29)

where fνi (pν, sν) is the distribution function for νi in the
present universe. Plugging Eq. (27) into Eq. (29) yields

�i =NT
G2

F
2π

|Vud |2|Uei |2 m3He
m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

×
∑

sν=± 1
2

∫
d3 pν

(2π)3 fνi ( pν, sν)F(2, Ee)Ee| pe|(1 − 2sνvνi ),

(30)

where, for left-helical Dirac neutrinos, left-helical Majorana
neutrinos and right-helical Majorana neutrinos

fνi ( pν, sν) = f0( pν)
(
1 + δ f cνi ( pν, t0) + δ f dνi ( pν, t0)

)
,

(31)

and for other sterile neutrinos

fνi ( pν, sν) = 0. (32)

Here f0( p) is the current neutrino distribution function in the
instantaneous decoupling limit, defined as Eq. (8). It should
be again noted that we have neglected the possible helicity
flip effects for massive neutrinos by the neutrino clustering
since the helicity-dependent part of �i is already suppressed
by vνi .

The energy and momentum of an electron in Eq. (30)
depend on the neutrino masses and energies because of
energy–momentum conservation. In the rest frame of 3H,
the electron energy and momentum are written as (see
Appendix B)

Ee � K 0
end + me + Eνi ,

| pe| =
√
E2
e − m2

e, (33)

where K 0
end is the beta decay endpoint kinetic energy for

massless neutrinos given by

K 0
end = (m3H − me)

2 − m2
3He

2m3H
. (34)

The average value of Eνi is so small compared to K 0
end and

me that we can safely neglect this dependence in Eq. (30).
In particular, the correction to the total capture rate from

the cosmological effects, δ�i , is given by

δ�i = NT
G2

F

2π
|Vud |2|Uei |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

×
∑

sν=± 1
2

∫
d3 pν

(2π)3 f0( pν)(δ f
c
νi

+ δ f dνi )F(2, Ee)
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× Ee| pe|(1 − 2sνvνi ). (35)

In Eq. (33), the contribution of the neutrino momentum
is very small, roughly 〈p0〉/me × me ∼ 10−9me. When we
neglect the neutrino momentum in Eq. (33), Eq. (30) reduces
to a much simpler form with

�i �NT
G2

F

2π
|Vud |2|Uei |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

× F(2, Ẽe)Ẽe| p̃e|
∑

sν=± 1
2

(
nνi − 2sν〈vνi 〉

)
, (36)

where 〈vνi 〉 is the (unnormalized) average magnitude of
velocity for νi given by

〈vνi 〉 =
∫

d3 pν

(2π)3 fνi ( pν, sν)vνi , (37)

and

Ẽe = K 0
end + me + mνi ,

| p̃e| =
√
Ẽ2
e − m2

e . (38)

The corrections to the total capture rate from cosmological
effects also become

δ�i =NT
G2

F

2π
|Vud |2|Uei |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

× F(2, Ẽe)Ẽe| p̃e|
∑

sν=± 1
2

(δnνi − 2sν〈δvνi 〉), (39)

where

δnνi = δndνi + δncνi ,

〈δvνi 〉 =
∫

d3 pν

(2π)3 f0( pν)
(
δ f dνi + δ f cνi

)
vνi . (40)

We can represent Eq. (40) as a linear combination of the spec-
tral distortion in the neutrino decoupling and the contribution
from gravitational clustering,

δ�i = δ�d
i + δ�c

i ,

δ�d
i = NT

G2
F

2π
|Vud |2|Uei |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

× F(2, Ẽe)Ẽe| p̃e|
∑

sν=± 1
2

(δndνi − 2sν〈δvdνi 〉),

δ�c
i = NT

G2
F

2π
|Vud |2|Uei |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

× F(2, Ẽe)Ẽe| p̃e|
∑

sν=± 1
2

(δncνi − 2sν〈δvcνi 〉), (41)

where

〈δvdνi 〉 =
∫

d3 pν

(2π)3 f0( pν)δ f
d
νi

vνi ,

〈δvcνi 〉 =
∫

d3 pν

(2π)3 f0( pν)δ f
c
νi

vνi . (42)

We comment on the order of each term in Eq. (30)
in terms of dimensionless parameters, δ f cνi , δ f dνi , vνi and
| pe|2/(m3HeEe). Here, we assume δ f dνi ∼ δndνi and δ f cνi ∼
δncνi for the estimation of the order. The value of δ f cνi is 10−1

for mνi ∼ 50 meV and 5 × 10−4 for mνi ∼ 10 meV as in
Table 3. For mνi < 10 meV, we can neglect δ f cνi when com-
pared with the other dimensionless parameters. The value of
δ f dνi is O(10−2) as in Table 2. If mνi < 10 meV, δ f dνi is larger
than δ f cνi . If mνi ∼ 10 meV, δ f cνi is comparable with δ f dνi .
Otherwise, δ f cνi dominates over δ f dνi . The average value of
vνi ∼ 〈p0〉/mνi is 10−2 for mνi ∼ 50 meV and 5 × 10−2

for mνi ∼ 10 meV. In order to calculate the capture rate
precisely, we should include the neutrino velocity vνi .

In order to see easily and clearly the signature of the dis-
tortions owing to interactions in the early universe, we would
need that their clustering effect is much smaller than the
effect of the distortions, which is the case for mνi < 10 meV.
Though we are unsure whether there exists a neutrino species
with mνi < 10 meV, the lightest neutrinos can have such a
tiny mass. In particular, for the case of mνi = 0 (or any
extremely small mass), we can take δ f cνi = 0 and vνi = 1,
and neglect the other smaller corrections. Then we get a sim-
ple form of the capture rate of the massless neutrino �

mν=0
i :

�
mν=0
i � NT

G2
F

π
|Vud |2|Uei |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

F(2, Ẽ0
e )Ẽ

0
e | p̃0

e |(n0 + δni ), (43)

where

Ẽ0
e = K 0

end + me,

| p̃0
e | =

√
(Ẽ0

e )
2 − m2

e . (44)

Note that in the case with mνi = 0, only left-helical, that is,
left-chiral (massless) neutrinos can be captured by tritium.
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4 Estimating the neutrino capture rate and the
spectrum

4.1 The capture rate

In this section, we estimate the value of the neutrino cap-
ture rate on a 100 g tritium target, including cosmological
effects. Here we mainly focus on the case that the lightest
neutrinos are (effectively) massless and hence there is no
effect of gravitational clustering for them. Under this assump-
tion, we consider both the normal and inverted hierarchies of
neutrino masses. In addition, we consider both Dirac and
Majorana neutrinos. For massive neutrinos, we consider the
capture rate including both the neutrino spectral distortion
in the early universe and the gravitational clustering effect.
For (effectively) massless neutrinos, we calculate the cap-
ture rate with the spectral distortion and without the clus-
tering effect. In the cases for massive neutrinos, we take

〈vνi 〉 � 〈v0
νi

〉 = ∫ d3 p
(2π)3 f0( p)vνi and 〈δvνi 〉 � 0, which

is the (unnormalized) average magnitude of velocity with-
out the clustering effect and spectral distortion in the early
universe because such effects on the average velocity corre-
spond at most to the next-to-next-to leading order (NNLO).
As repeated before, we also neglect the helicity flip effect
by the neutrino clustering, which is also at most an NNLO
effect.

4.1.1 The normal hierarchy case

First, the observed values of neutrino squared-mass differ-
ences from neutrino oscillation experiments are [61]

	m2
21 � (8.6 meV)2 and |	m2

3l | � (50 meV)2. (45)

Due to the unknown sign of 	m2
3l , two possible mass hierar-

chies are allowed. One of them is called the normal hierarchy:

Normal hierarchy (NH) : 	m2
31 > 0, m1 < m2 < m3,

(46)

where we define 	m2
3l = 	m2

31 as in Ref. [61]. In the normal
hierarchy, ν1 can be massless. If we set m1 = 0, we get the
three masses of neutrinos as

m1 � 0 meV, m2 � 8.6 meV, and m3 � 50 meV. (47)

In this case, we calculate the capture rate for ν2 and ν3, includ-
ing both the neutrino spectral distortion in the early universe
and the gravitational clustering effect whereas the calculation
of the capture rate for ν1 involves only the neutrino spectral
distortion.

In the case of Majorana neutrinos, the total capture rate,
�M
i , its deviation originating from the spectral distortion

from the decoupling, δ�Md
i , and that from the gravitational

clustering effects, δ�Mc
i , are given by, considering 100 g of

tritium,

�M
1 � 5.48 year−1, �M

2 � 2.40 year−1, �M
3 � 0.200 year−1,

(48)

δ�Md
1 � 0.061 year−1, δ�Md

2 � 0.024 year−1,

δ�Md
3 � 1.6 × 10−3 year−1, (49)

δ�Mc
1 � 0 year−1, δ�Mc

2 � 0.013 year−1, δ�Mc
3 � 0.021 year−1,

(50)

where we take the following values of the PMNS matrix,

|Ue1|2 � 0.681, |Ue2|2 � 0.297, |Ue3|2 � 0.0222.

(51)

Note that the current errors of the PMNS matrix and the
neutrino masses are about 10% at 3σ level [61]. In particular,
in the Majorana case, Eq. (48) is insensitive to the neutrino
mass except for the gravitational clustering effect because
the mass-dependent terms, which corresponds the velocity-
dependent terms in Eq. (36), are canceled for the Majorana
neutrinos by summing over helicities. In order to observe
the effects of Eqs. (49) and (50), we need to have about 104

events of cosmic neutrino capture since these cosmological
effects modify the capture rates at a 1% level. For 100 g
of tritium, we cannot experimentally observe these effects
since the half-life of tritium is 12.32 years. To observe these
contributions, we would need an experiment with about 10
kg of tritium.

In the case of Dirac neutrinos, the total capture rate, �D
i ,

its deviation originating from the spectral distortion from the
decoupling, δ�Dd

i , and that from the gravitational clustering
effects, δ�Dc

i , are also given by, considering 100 g of tritium,

�D
1 � 5.48 year−1, �D

2 � 1.27 year−1,

�D
3 � 0.101 yr−1, (52)

δ�Dd
1 � 0.061 year−1, δ�Dd

2 � 0.012 year−1,

δ�Dd
3 � 8.0 × 10−4 year−1, (53)

δ�Dc
1 � 0 year−1, δ�Dc

2 � 6.3 × 10−3 year−1,

δ�Dc
3 � 0.011 year−1. (54)

Finally, the ratios between the capture rates for Dirac and
Majorana neutrinos are

�M
1 /�D

1 = 1, �M
2 /�D

2 � 1.89, �M
3 /�D

3 � 1.98.

(55)
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4.1.2 The inverted hierarchy case

The other possibility of neutrino mass hierarchy is the
inverted ordering, which is

Inverted hierarchy (IH) : 	m2
32 < 0, m3 < m1 < m2,

(56)

where we define 	m2
3l = 	m2

32 [61]. In the inverted hierar-
chy, ν3 can be massless. If we set m3 = 0, we get the three
masses of neutrinos as

m1 � 49.3 meV, m2 � 50 meV and m3 � 0 meV. (57)

In the case of Majorana neutrinos, the total capture rate,
�M
i , its deviation originating from the spectral distortion

from the decoupling, δ�Md
i , and that from the gravitational

clustering effects, δ�Mc
i , are given by, considering 100 g of

tritium,

�M
1 � 6.13 year−1, �M

2 � 2.67 year−1, �M
3 � 0.178 yr−1,

(58)

δ�Md
1 � 0.061 year−1, δ�Md

2 � 0.024 year−1,

δ�Md
3 � 1.6 × 10−3 year−1, (59)

δ�Mc
1 � 0.65 year−1, δ�Mc

2 � 0.28 year−1, δ�Mc
3 � 0 year−1,

(60)

where we also take the same values of the PMNS matrix as
in Eq. (51). Note that we take the same values of δnc1 for
m1 = 49.3 meV and δnc2 for m2 = 50 meV.

In the case of Dirac neutrinos, the total capture rate, �D
i ,

its deviation originating from the spectral distortion from the
decoupling, δ�Dd

i , and that from the gravitational clustering
effects, δ�Dc

i , are also given by, considering 100 g of tritium,

�D
1 � 3.10 year−1, �D

2 � 1.35 year−1, �D
3 � 0.178 yr−1, (61)

δ�Dd
1 � 0.031 year−1, δ�Dd

2 � 0.012 year−1,

δ�Dd
3 � 1.6 × 10−3 year−1, (62)

δ�Dc
1 � 0.33 year−1, δ�Dc

2 � 0.14 year−1, δ�Dc
3 � 0 year−1.

(63)

The ratios between the capture rates for Dirac and Majorana
neutrinos are

�M
1 /�D

1 � 1.98, �M
2 /�D

2 � 1.98, �M
3 /�D

3 = 1.

(64)

Since the masses of ν1 and ν2 are almost the same, it is
difficult to distinguish between these two signals. We discuss
the possibility to distinguish between degenerate signals of
two neutrino species in the next section.

As pointed out in Ref. [33], the capture rate for the lightest
neutrino in the case of Dirac neutrinos significantly depends
on the lightest mass through the (unnormalized) average
magnitude of velocity, 〈vνi 〉 in Eq. (36) although, in the case
of Majorana neutrinos, the dependence of velocity in Eq. (36)
is canceled due to the same populations of the left and right
helical neutrinos. In Fig. 1, we show the capture rate for
the lightest neutrinos in both hierarchies as a function of the
lightest mass. From this figure, the capture rates for the light-
est Dirac neutrinos with masses less than 0.01 meV are the
same as those for the lightest Majorana neutrinos. On the
other hand, the capture rates for Dirac neutrinos with masses
more than 10 meV are almost half of those for Majorana
neutrinos.

4.2 The would-be spectra of an electron and the
reconstruction of the spectrum of a cosmic neutrino

Here, we first discuss the would-be observed spectrum of an
electron emitted from the inverse β-decay process of tritium
for the CνB. In particular, one of the main challenges for
observing the signal of the CνB is the distinction of the sig-
nal from background. The main source of this background is
tritium β-decay. Since tritium β-decay is a three-body pro-
cess, 3H → 3He + e− + ν̄i , the emitted electrons can have
various energies. An emitted electron has the maximum pos-
sible energy when the electron is emitted anti-parallel to both
the helium-3 nucleus and the neutrino. Then, the maximum
electron energy called the endpoint energy is given by

Eend � K 0
end + me − mlightest, (65)

where mlightest is the mass of the lightest neutrino. We need
to distinguish the background around this endpoint from the
emitted electron spectrum from the CνB with the energy,
ECνB,i
e � K 0

end + me + Eνi (see Eq. (38)), since this spec-
trum of the inverse β-decay contains larger energies than this
endpoint, ECνB,i

e − Eend � mlightest + Eνi . In order to esti-
mate the rate of the background, we consider the β-decay
spectrum near the endpoint [62]

d�β

dEe
= σ̄

π2 NT

3∑
i=1

|Uei |2H(Ee,mνi ), (66)

where σ̄ is the average cross section at the leading order for
neutrino capture, which is given by

σ̄ =G2
F

2π
|Vud |2 m3He

m3H

(
〈 fF 〉2 + g2

A

g2
V

〈gGT 〉2

)

F(2, Ee)Ee| pe|. (67)
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Fig. 1 The capture rate for the lightest neutrinos on a 100 g tritium
experiment in the NH (left panel) and IH (right panel) cases as a func-
tion of the lightest mass. We include the neutrino spectral distortion from

the neutrino decoupling, using the results of Ref. [6], but neglect the
gravitational clustering effect since the lightest neutrinos are expected
not to be affected by the gravitational clustering

H(Ee,mνi ) takes the following form,

H(Ee,mνi ) = 1 − m2
e/(Eem3H)

(1 − 2Ee/m3H + m2
e/m

2
3H

)2

×
√
yi

(
yi + 2mνi m3He

m3H

)

×
[
yi + mνi

m3H
(m3He + mνi )

]
, (68)

with yi � K 0
end + me − mν j − Ee.

In order to take into account the energy resolution of the
detector 	, we model the measured spectrum as a Gaussian-
smeared version of the actual spectrum. This is achieved by
a convolution of both the inverse β-decay spectrum and the
β-decay spectrum with a Gaussian with a full width at half
maximum (FWHM) equal to 	. The Gaussian-smeared ver-
sions of the neutrino capture event rate and β-decay event
rate are given by, respectively,

d�̃i

dEe
= 1√

2πσ

∫ ∞

−∞
dE ′

e �i (E
′
e) δ[E ′

e − (Eend

+ Eνi + mlightest)] exp

[
− (E ′

e − Ee)
2

2σ 2

]
, (69)

d�̃β

dEe
= 1√

2πσ

∫ ∞

−∞
dE ′

e
d�β

dEe
(E ′

e) exp

[
− (E ′

e − Ee)
2

2σ 2

]
,

(70)

where σ = 	/
√

8 ln 2 is a standard deviation, not a cross
section. After substituting Eq. (29) into Eq. (69), the smeared

neutrino capture rate can be written as

d�̃i

dEe
= NT√

2πσ

∑
sν=± 1

2

∫
d3 p

(2π)3 σi ( p, sν)vνi fνi ( p, sν)

× exp

{
−[Ee − (Eend + mlightest + Eνi )]2

2σ 2

}
, (71)

where

σi ( p, sν) = σi ( p, sν, E ′
e)

= σi ( p, sν, Eend + mlightest + Eνi ). (72)

Since Eq. (71) is a Fredholm integral equation of the first

kind and d�̃i
dEe

is a would-be observed quantity, after solving
Eq. (71) inversely, the spectrum of a cosmic neutrino back-
ground, fνi ( p, sν), can be in principle reconstructed.

In order to discuss the potential to distinguish the CνB
signal from the β-decay event, we estimate the ratio between
the CνB signal and the β-decay event as done in [31].
We define the CνB signal and β-decay event rates within
a measured energy bin of width 	 centered at ECνB,i

e �
Eend + mlightest + Eνi as

�̃i (	) =
∫ ECνB,i

e +	/2

ECνB,i
e −	/2

dEe
d�̃i

dEe
(Ee), (73)

�̃β,i (	) =
∫ 〈ECνB,i

e 〉+	/2

〈ECνB,i
e 〉−	/2

dEe
d�̃β

dEe
(Ee). (74)

Since cosmic neutrinos have various momenta, we define
〈ECνB,i

e 〉 as

〈ECνB,i
e 〉 = Eend + mlightest +

√
〈p0〉2 + m2

νi
. (75)
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Table 4 The required 	 to distinguish the CνB signal and the β-decay
background for the various νi with the mass mνi , rCνB and Dirac and
Majorana cases in the normal mass ordering. Here we neglect the neu-

trino spectral distortions from the neutrino decoupling, δ f dνi , and the
effect of the gravitational clustering on the spectrum, δ f cνi , since we
only estimate the leading order of the required 	

NH case rMCνB = 1 rMCνB = 100 r DCνB = 1 r DCνB = 100

ν1 (mν1 = 0 meV) 	 = 0.83 meV 	 = 0.46 meV 	 = 0.83 meV 	 = 0.46 meV

ν2 (mν2 = 8.6 meV) 	 = 5.3 meV 	 = 4.2 meV 	 = 5.1 meV 	 = 4.1 meV

ν3 (mν3 = 50 meV) 	 = 21 meV 	 = 19 meV 	 = 21 meV 	 = 18 meV

Table 5 The required 	 to distinguish the CνB signal and the β-decay background for the several νi with the mass mνi , rCνB and Dirac and
Majorana cases in the inverted mass ordering. Here we also neglect δ f dνi and δ f cνi since we only estimate the leading order of the required 	

IH case rMCνB = 1 rMCνB = 100 r DCνB = 1 r DCνB = 100

ν1 + ν2 	 = 29 meV 	 = 23 meV 	 = 28 meV 	 = 22 meV

(mν1,ν2 = 49.3, 50 meV)

ν3 (mν3 = 0 meV) 	 = 0.83 meV 	 = 0.46 meV 	 = 0.83 meV 	 = 0.46 meV

Then the ratio between Eqs. (73) and (74) is defined by

r iCνB(	) = �̃i (	)

�̃β,i (	)
. (76)

To probe cosmological effects, such as neutrino spectral dis-
tortions from the neutrino decoupling and neutrino clustering
in our Galaxy, we would have to observe CνB signals with
1% precision. Precise detection of a CνB signal within a 1%
precision would be successful if r iCνB � 100 and be impos-
sible if r iCνB � 100. However, this estimation is almost the
same as whether r iCνB � 1 or not, because r iCνB is an expo-
nentially rising function of 	.

Unfortunately, the precise calculation of the Gaussian
smeared neutrino capture rate, Eq. (71), requires the knowl-
edge of the neutrino spectral distortion from the neutrino
decoupling, δ f dνi , and the effect of the gravitational cluster-
ing on the spectrum, δ f cνi , although the calculation of δ f cνi is
one of future work. Hereafter, we neglect these sub-leading
effects, δ f dνi and δ f cνi since we only know the leading order of
the required 	 to distinguish the signals and the background,
and δ f dνi and δ f cνi would not affect 	 significantly.

In Tables 4 and 5, we show the required 	 to distinguish
the signals and the background in Dirac and Majorana cases
for r iCνB = 1 and r iCνB = 100, considering the normal and
inverted mass ordering, respectively. In the Majorana case,
we denote the ratio between the CνB signal and β-decay
event as rMCνB while we denote this ratio as r DCνB in the Dirac
case. Both in the Dirac and Majorana cases, we find almost
the same required 	. In the NH case, the required 	 values
for ν1 with mν1 = 0 meV, ν2 with mν1 = 8.6 meV and ν3

with mν1 = 50 meV are 0.46 meV, 4.2 meV and 19 meV
respectively. In the IH case, it is difficult to distinguish the

signals for ν1 and ν2 due to the degenerate masses, so we esti-
mate the required 	 to distinguish the degenerate signals for
ν1 and ν2 and the β-decay background, using the following
ratio,

rCνB = r1
CνB + r2

CνB for ν1 and ν2 in the IH case. (77)

The required 	 values for ν1 and ν2 with mν1 = 49.3 meV
and mν2 = 50 meV, and ν3 with mν3 = 0 meV are 23 meV
and 0.46 meV respectively. If the lightest neutrino is massive,
the required tiny energy resolution for the lightest neutrino
becomes larger and the difficulty more relaxed. Although the
capture rate for massive Majorana neutrinos is approximately
twice the rate for massive Dirac neutrinos, the required 	 val-
ues in both cases are the same, which implies that the neu-
trino spectral distortions from the decoupling and the neu-
trino clustering would not affect these 	s.

In order to estimate the required 	 to distinguish the two
degenerate cosmic neutrinos in the IH case, we estimate the
following ratio,

r12(	) =
∫ ECνB,1

e +	/2

ECνB,1
e −	/2

dEe
d�̃1
dEe

(Ee)

∫ ECνB,1
e +	/2

ECνB,1
e −	/2

dEe
d�̃2
dEe

(Ee)

, (78)

r21(	) =
∫ ECνB,2

e +	/2

ECνB,2
e −	/2

dEe
d�̃2
dEe

(Ee)

∫ ECνB,2
e +	/2

ECνB,2
e −	/2

dEe
d�̃1
dEe

(Ee)

. (79)

Equation (78) characterizes the distinguishability of ν1 from
ν2 from whereas Eq. (79) characterizes that of ν2 from ν1.
Using this, we find both in the Dirac and Majorana cases
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Fig. 2 The expected spectra of the electron kinetic energy, Ke =
Ee −me, for the CνB signals (solid lines) and the β-decay background
(dashed lines) in a tritium experiment, assuming 100 g of tritium, with
the energy resolution 	 = 20 meV in the case of Dirac neutrinos. Bold
blue lines represent the NH case and fine red lines represent the IH case.
We set mlightest = 0 meV and neglect the neutrino spectral distortions
from the decoupling and the gravitational clustering effects

	 � 0.50 meV for r12 = 100,

	 � 0.42 meV for r21 = 100. (80)

With this energy resolution, we would be able to distinguish
the signals for ν1 and ν2 in the inverted hierarchy.

In fact, we can see that the CνB signals and the background
would be separated with these values of 	. In Figs. 2 and 3,
we show the expected CνB spectra and background of the
electron kinetic energy, Ke = Ee − me, for 	 = 20 meV
and 0.4 meV respectively, considering Dirac neutrinos and
both hierarchies. In these figures, we also neglect the neutrino
spectral distortions from the decoupling and the gravitational
clustering effects. The characteristic peaks of the CνB signals
exist at KCνB,i

e − K 0
end � Eνi .

For the case of 	 = 20 meV, the capture events for the
heaviest neutrinos can be resolved from the β-decay back-
ground in both hierarchies. The β-decay background near the
end point, Eend, in the NH case is larger than that in the IH
case since the lightest neutrinos contribute to the endpoint
most efficiently through |Uei |2, and |Uei |2 for the lightest
neutrinos in the NH case is larger than that of the IH case.

For the extremely small energy resolution of 	 =
0.4 meV, we can completely distinguish the spectra of all
three mass eigenstates of cosmic neutrinos and the back-
ground. In addition, in the IH case, the degenerate spectra of
ν1 and ν2 can also be resolved when 	 = 0.4 meV. From
these results, we can conclude that the bound on the required
	 is 	 = 0.4 meV in a neutrino capture experiment on
tritium.

Fig. 3 The expected spectra for the CνB signals (solid lines) and the
β-decay background (dashed lines) in a tritium experiment, assuming
100 g of tritium, with the energy resolution 	 = 0.4 meV in the case of
Dirac neutrinos. We also set mlightest = 0 meV and neglect the neutrino
spectral distortions from the decoupling and the gravitational clustering
effects

5 Summary and discussion

We have discussed precise estimates of the expected capture
rate of neutrinos from the CνB on a tritium target, includ-
ing cosmological effects such as neutrino spectral distortions
from the neutrino decoupling and the gravitational cluster-
ing in our Galaxy. After formulating such a capture rate,
we have concretely computed the capture rates of each neu-
trino species for both Dirac and Majorana neutrinos in both
the normal and the inverted hierarchies of the neutrino mass
spectrum.

These precise estimates of the capture rates are important
in two ways. Firstly, this precise calculation, once matched
with observation, will allow for a probe into the early uni-
verse. That is, the detailed process of the neutrino decoupling
as well as the dark matter distribution through the clustering
effects of non-relativistic neutrinos will be illuminated. Sec-
ondly, once one would be able to find the deviation from
this precise estimate of the capture rate, the possible devia-
tion might suggest new neutrino physics and/or non-standard
evolution of the universe.

Such cosmological effects modify the neutrino capture
rates mainly through the neutrino number densities. In order
to estimate the impact on the capture rates, we have com-
puted the precise number densities of neutrinos in the current
universe. The neutrino spectral distortions from the neutrino
decoupling change the number densities by 1.1% for ν1, 1.0%
for ν2 and 0.9% for ν3 whereas the gravitational clustering
effects modify those by 12% for mνi = 50 meV and 0.53%
for mνi = 10 meV [54]. The estimated errors of the neutrino
capture rates mainly come from the uncertainties of param-
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eters of neutrino mixing, |Uei |2, and the reduced matrix ele-
ment of the GT operator of tritium, 〈gGT〉. The current errors
of the PMNS matrix are about 10% at 3σ level [61]. The
theoretical calculation of 〈gGT〉 still includes the uncertainty
of a few %, although the estimation of 〈gGT〉 through the
observation of the tritium half-life and the value of the Fermi
operator, 〈 fF 〉, only involves an uncertainty of 0.1% [58].
In order to observe such cosmological effects through cos-
mic neutrino capture on tritium, one needs to have about 104

events since one needs to measure the signal with 1% pre-
cision. To achieve this goal, one would need about 10 kg of
tritium due to the half-life of tritium of 12.32 years, and the
uncertainties of the PMNS matrix and the reduced matrix
element of GT operator must be improved to within 0.1%
level in future. Planned neutrino oscillation experiments are
expected to improve the precision of the PMNS matrix in
the near future (see e.g. [63–65]). In addition, to distinguish
between the gravitational clustering effect and the spectral
distortions from the neutrino decoupling for massive neutri-
nos, we will need to improve the computation of gravitational
clustering and spectral distortions from the neutrino decou-
pling on neutrino number densities. Since the lightest cosmic
neutrinos in the Standard Model are expected not to cluster
significantly in our Galaxy while massive neutrinos are, the
lightest ones can contain a wealth of clean information about
the physics in the early universe. To this end, much better
energy resolution is required than is currently attainable.

We have also comprehensively discussed the required
energy resolutions of 	 to detect each neutrino species as
well as the reconstruction of the spectrum of a cosmic neu-
trino background. To distinguish the CνB signals for mass-
less neutrinos from the β-decay background, we find the
required 	 is 	 � 0.4 meV. In addition, to resolve the
CνB signals for degenerate ν1 and ν2 in the IH case, we also
identify the required 	 as 	 � 0.4 meV. With this energy
resolution, one can completely resolve the signals for the
mass-eigenstates of neutrinos and the background.
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Appendix A: Exact neutrino capture rate at tree level

In this appendix, we consider the exact neutrino capture rate
at tree level on a tritium target for the first time. This exact
capture rate at tree level may be useful for estimating the
value of the capture rate including tiny cosmological effect
such as the anisotropy of the CνB in the early universe. To
begin, following the path of [31], we calculate the polarized
neutrino capture cross section of inverse beta decay of a sin-
gle neutron: ν + n → p + e−. The matrix element in the
cross section comes from the 4-Fermi Lagrangian, which is
applicable here as the energies of the particles are all much
lower than the weak scale. In this case, the matrix element
for each species is given by

iMi = −i
GF√

2
VudU

∗
ei

[
ūeγ

α(1 − γ 5)uνi

]

×
[
ū pγα( f − gγ 5)un

]
. (81)

In the above, the f = f (q = 0) and g = g(q = 0) constants
are nucleonic form factors for the proton and neutron in the
limit of small momentum transition. Thus, the squared matrix
element becomes

|Mi |2 = G2
F

2
|Vud |2|Uei |2N αβ

1 N2αβ (82)

wherein we have

N αβ
1 = tr

[
γ α(1 − γ 5)uν ūνγ

β(1 − γ 5)ueūe
]
, (83)

N γ δ
2 = tr

[
γ γ ( f − gγ 5)unūnγ

δ( f − gγ 5)u pū p

]
. (84)

After summing the spins of the outgoing electron and proton
and averaging the spins of incoming neutron, the squared
matrix element is given by

1

2

∑
sn ,se,sp=±1/2

|Mi |2 = G2
F

4
|Vud |2|Uei |2Ñ αβ

1 Ñ2αβ, (85)

where

Ñ αβ
1 =

∑
se=±1/2

tr
[
γ α(1 − γ 5)uνi ūνi γ

β(1 − γ 5)ueūe
]
, (86)
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Ñ γ δ
2 =

∑
sn ,sp=±1/2

tr
[
γ γ ( f − gγ 5)unūnγ

δ( f − gγ 5)u pū p

]
.

(87)

Using the completeness relations, we get the relation of a
Dirac spinor for a neutron, a proton, and an electron,

∑
s j=±1/2

u j ū j = (/p j + m j ), (88)

and for neutrinos,

uνi uνi = 1

2

(
/pνi

+ mνi

)(
1 + 2sνγ

5/Sνi

)
(89)

where Sνi is the spin vector of a neutrino given by

(Sνi )
α =

( | pν |
mνi

,
Eν

mνi

pν

| pν |
)

. (90)

Note that in the massless limit, the previous relation of the
Dirac spinor for neutrinos becomes

uνi uνi = 1

2
/pνi

(
1 − 2sγ 5

)
, (91)

where we used mSμ = pμ and pμSμ = 0. Using the above
relations, we get Eq. (87) as

Ñ αβ
1 = 1

2
tr

[
γ α

(
1 − γ 5)(

/pνi
+ mνi

)

×(
1 + 2sνγ

5/Sνi

)
γ β

(
1 − γ 5)(

/pe + me
)]

, (92)

Ñ γ δ
2 = tr

[
γ γ

(
f − gγ 5)(

/pn + mn
)
γ δ

×(
f − gγ 5)(

/pp + mp
)]

. (93)

Putting Eqs. (92) and (93) together, we have

Ñ αβ
1 Ñ2αβ =32

{
(g + f )2 [(

pe · pp
) (

pνi · pn
)]

+ (g − f )2 [
(pe · pn)

(
pνi · pp

)]
+

(
g2 − f 2

)
mnmp

(
pe · pνi

)}

− 64sνmνi

{
(g + f )2 [(

pe · pp
) (

Sνi · pn
)]

+ (g − f )2 [
(pe · pn)

(
Sνi · pp

)]
+

(
g2 − f 2

)
mnmp

(
pe · Sνi

)}
. (94)

In the following, we consider the rest frame of the neutron
where

(pn)
α =(mn, 0), (pν)

α = (Eν, pν),

(pp)
α =(Ep, pp), (pe)

α = (Ee, pe). (95)

In this frame, we obtain

Ñ αβ
1 Ñ2αβ

= 32mnEpEeEνi

{
(g + f )2

(
1 − pe · pp

EeEp

)

+ (g − f )2
(

1 − pν · pp
Eνi E p

)

+ (g2 − f 2)
mp

Ep

(
1 − pe · pν

EeEνi

) }
−64sνmnEpEeEνi

×
{
vνi (g + f )2

(
1 − pe · pp

EeEp

)

+ (g − f )2
(

vνi − pν · pp
| pν |Ep

)
+ (g2 − f 2)

× mp

Ep

(
vνi − pν · pe

| pν |Ee

) }

= 32mnEpEeEνi

{
2

(
g2 + f 2

) (
1 − 2sνvνi

)

+
(
g2 − f 2

) mp

Ep

(
1 − 2sνvνi

)

+
(
f 2 − g2

) mp

Ep

(
vνi − 2sν

)
ve cos θeν

− (g + f )2 (1 − 2sνvνi )vevp cos θep

− (g − f )2 (vνi − 2sν)vp cos θνp

}
, (96)

where v j = | p j |/E j and cos θ jk = p j · pk/(| p j || pk |).
Note that we do not neglect the proton recoil here. Due to
the energy–momentum conservation, we can rewrite cos θep
and cos θνp as

cos θep = − | pe|
| pp|

+ | pν |
| pp|

cos θeν,

cos θνp = | pν |
| pp|

− | pe|
| pp|

cos θeν. (97)

Substituting Eq. (97) into Eq. (96), we have

Ñ αβ
1 Ñ2αβ

= 32mnEpEeEνi

{
2

(
g2 + f 2

) (
1 − 2sνvνi

)

+
(
g2 − f 2

) mp

Ep

(
1 − 2sνvνi

)

+
(
f 2 − g2

) mp

Ep

(
vνi − 2sν

)
ve cos θeν

+ (g + f )2 (1 − 2sνvνi )ve

( | pe|
Ep

− | pν |
Ep

cos θeν

)

− (g − f )2 (vνi − 2sν)

( | pν |
Ep

− | pe|
Ep

cos θeν

)}
. (98)
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The squared matrix amplitude is given by

1

2

∑
sn ,se,sp=±1/2

|Mi |2

= 8G2
F |Vud |2|Uei |2mnEpEeEνi

×
{

2
(
g2 + f 2

) (
1 − 2sνvνi

)

+
(
g2 − f 2

) mp

Ep

(
1 − 2sνvνi

)

+
(
f 2 − g2

) mp

Ep

(
vνi − 2sν

)
ve cos θeν

+ (g + f )2 (1 − 2sνvνi )ve

( | pe|
Ep

− | pν |
Ep

cos θeν

)

− (g − f )2 (vνi − 2sν)

( | pν |
Ep

− | pe|
Ep

cos θeν

)}
. (99)

In the center-of-mass frame, the differential cross section
is

dσi

dt
= 1

64πs

1

| pcm
ν |2

1

2

∑
sn ,se,sp=±1/2

|Mi |2, (100)

where s = (pn + pνi )
2 and d� = d cos θeνdψ . pcm denotes

a momentum in the center-of-mass frame. t and pcm
ν can be

expressed in the rest frame of neutron as

t = (Ee − Eνi )
2 − | pe − pν |2

= (Ee − Eνi )
2 − | pe|2 − | p2

ν | + 2| pe|| pν | cos θeνi ,

pcm
ν = pν

mn√
s
. (101)

Then the differential cross section in the rest frame of the
neutron is given by

dσi

d cos θeνi
= 1

32π

1

m2
n

| pe|
| pν |

1

2

∑
sn ,se,sp=±1/2

|Mi |2. (102)

Using Eq. (99) in Eq. (102) and including the Fermi function,
we obtain

dσi

d cos θeνi
=G2

F

4π
|Vud |2|Uei |2F(Z , Ee)

EpEe| pe|
mnvνi

×
{

2
(
g2 + f 2

) (
1 − 2sνvνi

)

+
(
g2 − f 2

) mp

Ep

(
1 − 2sνvνi

)

+
(
f 2 − g2

) mp

Ep

(
vνi − 2sν

)
ve cos θeν

+ (g + f )2 (1 − 2sνvνi )ve

( | pe|
Ep

− | pν |
Ep

cos θeν

)

− (g − f )2 (vνi − 2sν)

( | pν |
Ep

− | pe|
Ep

cos θeν

)}
. (103)

After integrating over θeνi , the total capture cross section is

σi =G2
F

2π
|Vud |2|Uei |2F(Z , Ee)

EpEe| pe|
mnvνi

×
{

2
(
g2 + f 2

) (
1 − 2sνvνi

)

+
(
g2 − f 2

) mp

Ep

(
1 − 2sνvνi

)

+ (g + f )2 (1 − 2sνvνi )ve
| pe|
Ep

− (g − f )2 (vνi − 2sν)
| pν |
Ep

}
. (104)

Note that we neglect an angular dependence of Ep for sim-
plicity since the angular dependence is extremely small as

Ep � mp

(
1 + | pp|

2m2
p

)
,

� mp

(
1 + | pe|2

2m2
p

− | pe|| pν |
m2

p
cos θeνi

)
, (105)

where | pp| = | pe − pν |. From Eq. (105), the angle-
dependent term is suppressed by O(10−18) compared to the
leading order contribution.

Finally, we comment on the magnitude of each term in
Eq. (104). The leading order terms independent of vνi come
from the second line in Eq. (104) under the approxima-
tion of Ep � mp. The next-to-leading order contributions
come from the terms proportional to νi in the second line
in Eq. (104) under the approximation of Ep � mp, which
depend on mνi and are suppressed by O(1 − 10−2) when
compared with the leading order. The next-to-next-to lead-
ing order (NNLO) terms are those proportional to | pe|/Ep �
| pe|/mp, which are suppressed by about O(10−5 − 10−7)

when compared with the leading terms. The NNNLO terms
are the terms proportional to | pe|/(2m2

p), which is O(10−9).
The NNNNLO terms come from those proportional to
| pν |/Ep, which is O(10−13). The last contribution comes
from those proportional to | pe|| pν |/m2

p, which is O(10−18).
But it should be noted that one-loop corrections to the cross
section and other atomic corrections might be larger than
them.

To account for tritium inverse beta decay rather than that
of a neutron, the following changes are made: the neutron
and proton masses become the tritium and helium-3 masses
respectively, and the nucleonic form factors are replaced by
transition probabilities, with f 2 becoming 〈 fF 〉2 and 3g2

becoming
g2
A

g2
V
〈gGT 〉2 [58].
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Appendix B: Kinematics

In this appendix, we evaluate the kinematics of tritium beta
decay and inverse tritium beta decay for cosmic neutrinos. In
particular, we investigate the maximal kinetic energy of an
electron emitted from β-decay, called the β-decay endpoint
kinetic energy, and the kinetic energy of an electron emitted
from the inverse β-decay process for the CνB. Here we only
consider the nuclear process, although what we really should
discuss is the atomic process.

We first consider the kinematics of tritium beta decay,
3H → 3He + e− + ν̄i , in the rest frame of 3H. From 4-
momentum conservation, the kinetic energy of the electron,
which is defined as Ke = Ee − me, is

Ke =
(m3H−me)

2 − m2
νi

− m2
3He

− 2Eνi E3He+2| pν || p3He| cos θν3He

2m3H
.

(106)

The maximal kinetic energy, Kend, is achieved when the emit-
ted anti-neutrino is the lightest and cos θν3He = 1 (θν3He =
0). When the neutrino and the helium-3 nucleus are emit-
ted in parallel, the electron is produced in anti-parallel. In
addition, the maximization condition of the electron energy
corresponds to the minimization condition of (Eν + E3He),
which yields

| pν |
| p3He|

= mνi

m3He
. (107)

From these conditions, the maximal kinetic energy of the
electron is given by

Kend = (m3H − me)
2 − (mlightest + m3He)

2

2m3H
. (108)

If the lightest neutrino is massless, the endpoint kinetic
energy is identified as

K 0
end = (m3H − me)

2 − m2
3He

2m3H
. (109)

Under the approximation, m3H � m3He, the difference
between the endpoint kinetic energy for massive and mass-
less neutrinos is

	K 0 = Kend − K 0
end

� −mlightest. (110)

Next we investigate the kinematics of inverse tritium beta
decay for relic neutrinos, νi + 3H → 3He + e−. In the rest-
frame of 3H, we similarly get the kinetic energy of the elec-
tron as

KCνB
e = (Eνi + m3H − me)

2 − | pν |2 + 2| pν || pe| cos θeν − m2
3He

2(Eνi + m3H)

� (Eνi + m3H − me)
2 − m2

3He

2(Eνi + m3H)
. (111)

where we neglect the terms proportional to | pν |2 and | pν || pe|
and leave the term proportional to Eνi m3H because ofm3H �
| pe| � | pν |. For m3H � me, the difference between KCνB

e
and K 0

end is

	KCνB = KCνB
e − K 0

end

� Eνi . (112)

Since 	K 0 and 	KCνB are (approximately) not functions of
any nuclear masses, they are insensitive to the uncertainties
in the nuclear masses which are calculated from the measured
values of atomic masses.
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