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Abstract Memory effects are studied in the simplest
scalar–tensor theory, the Brans–Dicke (BD) theory. To this
end, we introduce, in BD theory, novel Kundt spacetimes
(without and with gyratonic terms), which serve as back-
grounds for the ensuing analysis on memory. The BD param-
eter ω and the scalar field (φ) profile, expectedly, dis-
tinguishes between different solutions. Choosing specific
localised forms for the free metric functions H ′(u) (related to
the wave profile) and J (u) (the gyraton) we obtain displace-
ment memory effects using both geodesics and geodesic devi-
ation. An interesting and easy-to-understand exactly solv-
able case arises when ω = −2 (with J (u) absent) which
we discuss in detail. For other ω (in the presence of J or
without), numerically obtained geodesics lead to results on
displacement memory which appear to match qualitatively
with those found from a deviation analysis. Thus, the issue
of how memory effects in BD theory may arise and also dif-
fer from their GR counterparts, is now partially addressed,
at least theoretically, within the context of this new class of
Kundt geometries.

1 Introduction

The detection of gravitational waves in binary mergers has
opened up new prospects for testing theories of gravity in the
strong field regime [1,2]. Gravitational wave memory is one
such as-yet-unobserved strong field effect that can be used
to test diverse theories of gravity. The gravitational wave
memory effect is the residual permanent shift in the position
(or velocity) caused due to the passage of a gravitational wave
pulse [3].

The study of memory effects began in the work of
Zel’dovich and Polnarev [4] who studied gravitational radia-
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tion emitted due to the motion of flybys/collapse of stars in a
globular cluster. A few years later, Braginsky and Grishchuk
[5] looked at the deviation of test particles in weak field, lin-
earized gravity and coined the term memory effect to denote
the change in the metric perturbation at early and late times.
Geodesic deviation of test particles due to low frequency
gravitational radiation at null infinity was investigated fur-
ther by Ludvigsen [6]. Christodoulou, using full nonlinear
GR, attributed the presence of memory to the transport of
energy and momentum of gravitational waves to null infinity
[7]. Further, this effect, related to non-linearity, was ascribed
to gravitons produced by the radiation itself [8]. Memory
effects are also possible in electrodynamics [9] and Yang-
Mills theories [10,11]. Interesting theoretical links to mem-
ory effects have been conjectured, of late, in the context of
soft theorems and BMS symmetries [12]. It has been noted
that the nonlinear memory effect can also be understood as
a BMS transformation relating two inequivalent Minkowski
vacua at future null infinity caused by the passage of gravi-
tational waves (see the review [13] and the references cited
therein).

Apart from spacetime boundaries, memory effects can
also be realized in the interior regions of a spacetime [14,15].
Such effects lead to permanent changes due to presence
of gravitational waves and have been termed as persistent
observables in [16]. Our work mainly focuses on one such
observable nameddisplacementmemory observable and tries
to calculate the memory in non-flat Kundt geometries.

Memory effects in non-flat backgrounds in GR have been
studied in both dS [17,18] (motivations from cosmology)
and AdS spacetimes [19]. In [19], the authors have showed
how to isolate the gravitational wave contribution from the
background spacetime by resorting to Fermi normal coor-
dinates and solving the geodesic deviation equation. They
treated the wave as a perturbation over AdS spacetime caused
due to scattering of massive/massless particles. In our work,
we adopt the same method for studying memory effects in

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09118-4&domain=pdf
mailto:siddhant@iitkgp.ac.in
mailto:indradeb@iitkgp.ac.in
mailto:sayan@phy.iitkgp.ac.in


350 Page 2 of 16 Eur. Phys. J. C (2021) 81 :350

Kundt spacetimes. However, in our case, the setting is non-
perturbative, since we deal with exact spacetimes represent-
ing gravitational waves.

Kundt spacetimes are exact radiative geometries consist-
ing of non-expanding, non-shearing and non-twisting null
geodesic congruences (NGC) [20–22]. They admit various
wave solutions (pp waves, Siklos waves [23,24]) related to
the presence of NGC whose tangent vector is usually not
covariantly constant. In general, the wave surfaces may not be
Cartesian planes. This non-planarity can signal the presence
of matter or a cosmological constant [25]. Gyratons (spinning
relativistic sources) are solutions obtained as a sub-class of
Kundt geometries [26–28]. Presence of gyratonic matter in
a Kundt geometry imparts an angular momentum due to its
intrinsic spin. Till date, most of the research around Kundt
geometries have largely been focused within the realm of GR
[29–34], though there is some recent work in Gauss-Bonnet
[35] and quadratic gravity [36]. As far as we know, not much
has been done on such geometries within the ambit of scalar
tensor theories. Our article is one such attempt towards (a)
contructing new Kundt-type solutions in the simplest scalar–
tensor theory, BD gravity and, more importantly, (b) verify-
ing/contrasting the presence/absence of memory effects w.r.t
similar ones in GR.

There does exist previous work on memory effects in BD
theory which are different from what we wish to pursue here.
As is well known, in linearised gravity, the BD scalar field
produces a breathing mode along with the two additional
polarizations (+,×) found in GR [37]. Lang computed GW
waveforms for scalar and tensor modes separately in the PN
approximation [38,39]. Du and Nishizawa proposed a test of
gravity for scalar tensor theories [40]. They found two dis-
tinct sets of memory contributions: T-memory (tensor) and
S-memory (scalar). Scalar memory is unique in such theories
and was used as a tool to understand the Vainshtein screening
mechanism in BD gravity [41]. Asymptotically flat space-
times in BD theory and memory have been recently studied
in [42,43]. The BMS group [44] is retained for the tenso-
rial case. There are degenerate vacua for the scalar sector
related via Lorentz transformations. The BMS charge alge-
bra is computed in [45].

Studying memory effects for such Kundt wave spacetimes
in GR was initiated by two of us in [46] through analysis of
geodesic motion. Similar to exact plane wave spacetimes,
one can construct sandwich waves here by choosing appro-
priate limiting profiles [14,15,22]. This serves as a qualitative
toy model of a gravitational wave burst. Interesting distinc-
tions occur between negative and positive constant curvature
solutions, particularly for the latter, where we found a new
frequency memory effect. In our analysis here, we consider
memory in Kundt geometries without and with gyratonic
terms. First, we construct explicit Kundt solutions for arbi-
trary ω. The case ω = −2 is special because it yields a

spacetime with constant negative scalar curvature. For other
ω we have variable positive or negative curvature. After con-
structing the solutions, we analyse geodesics with the intent
of studying displacement memory. Thereafter, we move on to
geodesic deviation. We do this by isolating the background,
wave and gyratonic contributions to the deviation vector and
their evolution equations. The coupled system of equations
are then solved to obtain the behaviour of the deviation which
helps us in analysing the presence of memory. We will also
see how displacement memory is related to the BD scalar field
and memory obtained via deviation shows the contributions
of the background, gravitational wave and/or the gyratonic
parts in the total deviation and hence, memory.

In our approach towards solving the deviation equa-
tion, our calculations are done in Fermi normal coordinates
[19]. Here the coordinate system is locally Minkowskian
and hence the notion of displacement and velocity memory
effect is qualitatively similar to exact plane wave spacetimes
[15,47,48]. In such Fermi coordinates, we construct paral-
lely transported tetrads along a given timelike geodesic. The
deviation vector is obtained w.r.t. the tetrad directions and
then transformed back to the coordinate basis. We demon-
strate the calculations in several specific cases (including an
exactly solvable example) in the relevant section below.

The organization of our paper is as follows. In Sect. 2 we
lay out the basic framework and the tools used in the paper.
Section 3 deals with Kundt wave solutions without gyratonic
terms and memory effects. Section 4 covers the Kundt metric
with gyratonic terms and aspects of memory. We summarise
our work in Sect. 5 with comments on possible extensions.
Relevant mathematical formulae used in the paper are listed
in an Appendix.

2 Basic framework

2.1 Brans–Dicke gravity

Brans and Dicke, seeking motivation from Mach’s principle,
proposed their alternative theory [49], where the Newtonian
gravitational constant (G) is related to the reciprocal of a
scalar field. This link is based on the idea of variability of
inertial mass at different points in spacetime. The action for
the BD theory in the Jordan frame is given below.

S =
∫ √−g

[
φR − ω

φ
∇αφ∇αφ + 16πLm

]
d4x (1)

Here, φ denotes the ambient scalar field, ω is the BD param-
eter and the Lm denotes the matter Lagrangian. ω is a dimen-
sionless parameter which is highly constrained from Solar
System observations [50]. Different values of ω correspond
to different theories.
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Since its arrival on the scene in the early sixties, BD theory
has been ruled out at times but has reappeared in different
avatars serving diverse needs. For example, its ω = −1 limit
is dilaton gravity, which emerges from string theory [51].
Similarly, extensions such as replacing a constant ω with
ω(φ) leads to a broader class of theories which are actively
pursued today in cosmological and astrophysical contexts
[52]. Much of the relevance of BD, as well as scalar–tensor
theories, rests on providing templates for comparative stud-
ies with GR, with the hope of discovering the new physics
embodied in the theoretical constructs or ruling them out. Our
work here, is also an attempt in a similar direction vis-a-vis
the memory effect.

As mentioned before, we study Kundt geometries [20–22]
in BD theory. Given our primary motivation with regard to
distinguishing memory effects arising in GR and BD theory
we first construct the solutions (Kundt-type). In our theoret-
ical setup, we do not restrict the value of ω. Instead we solve
the field equations for novel Kundt geometries in BD theory
and choose the value of ω to study specific cases. Interest-
ingly, we find that in both the Kundt waves and gyratonic
Kundt metric, the value of ω can be chosen freely. Hence,
we analyse memory for specific values ω = −2,+1. The
reasons for choosing such specific values are explicitly dis-
cussed in Sect. 2.2.3. In all the cases considered here, we find
vacuum solutions (Lm = 0).

The field equations are obtained by variation of gμν and
φ. After performing a little algebra, we can write them in the
standard form as shown below.

Gμν = ω

φ2

[
φ,μ φ,ν −1

2
gμνφ,α φ,α

]
+ 1

φ
(φ,μ;ν −gμν�φ)

(2)

�φ = 0 (3)

The box operator is constructed using the Kundt spacetime
metric.

2.2 Kundt geometries and the geodesic analysis of memory

Let us first introduce the class known as as Kundt geome-
tries. We also point out how geodesic analysis leads to our
understanding of memory effects for such geometries. Later
in Sects. 3 and 4 we provide explicit calculations of memory
for various solutions in BD theory which are special cases of
the spacetimes mentioned below.

2.2.1 Kundt wave metric

The line element for a Kundt wave geometry is given as,

ds2 = −H(u, x, y)du2 − 2dudv + dx2 + dy2

P(u, x, y)2 (4)

The waves (denoted via the term H(u, x, y)) are viewed as
propagating in the curved background spacetime [25,30,46].
The background curvature is dependent on P(u, x, y).

2.2.2 Kundt metric with gyraton/gyraton-like terms

The line element for a generalisation of the metric above is
given as,

ds2 = −Hdu2 − 2dudv − 2W1dudx − 2W2dudy

+ 1

P2 (dx2 + dy2) (5)

P ≡ P(u, x, y), H ≡ H(u, v, x, y),Wi ≡ Wi (u, v, x, y),
∀ i ε {x, y}

The vector field k = ∂v gives the NGC. The tangent
to the spatial surfaces (P∂x , P∂y) and k are orthogonal to
each other. In this paper, we specifically work with gyratonic
spacetimes where W1,W2, H are independent of coordinate
v [26,28]. The off-diagonal Wi act as sources of angular
momentum in the spacetime and hence, such line elements
correspond to spinning null sources. Note that Eq. (5) reduces
to Eq. (4) if the cross terms (W1,W2) are set to zero and
H,v = 0.

We obtain geometries in BD theory representing Kundt
waves without and with gyratons beginning with metric
ansatze given by Eqs. (4) or (5) respectively. The functional
dependencies of H and Wi are chosen as: H ≡ H(u, x, y)
and Wi ≡ Wi (u, x, y). In both cases, the BD parameter (ω)
can be set by hand and is not constrained by the field equa-
tions. Using this freedom we can construct spacetimes with
positive or negative curvature (Ricci scalar). Thereafter, we
study geodesics and geodesic deviation to infer about mem-
ory effects.

2.2.3 Geodesic analysis of memory

Zhang et al. [14,47] have recently studied memory effects
by analysing the evolution of geodesics in exact plane wave
spacetimes. By choosing a Gaussian pulse for the polariza-
tion (radiative) term in the line element, they solved the
geodesic equations numerically. The change in separation
and velocity caused due to the passage of such a pulse was
termed displacement and velocity memory effect. We further
extended their analysis on predicting memory from geodesic
analysis, for Kundt wave spacetimes in GR [46]. Expectedly,
it was found that there exists a link between memory effects
and the wave profile/curvature of the background spacetime.
In order to test this hypothesis in an alternative theory of grav-
ity, we construct and investigate memory for solutions in BD
gravity with constant (negative) and varying (positive) cur-
vature scalar. This indicates a direct comparison with results
on memory in GR within the Kundt class of geometries.
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2.3 Memory effects and geodesic deviation equation

Apart from a geodesic analysis, one can understand mem-
ory from geodesic deviation. In one of the seminal works
on memory effect, Braginsky and Grishchuk [5] studied
geodesic deviation between two test particles moving in a
weak gravitational wave. The set of equations following from
geodesic deviation was recast into an equation of a forced sys-
tem. The forcing was shown to be caused due to the passage
of the gravitational wave. Integrating the forced equation one
could obtain the change in separation between the two parti-
cles. This separation was caused only due to the gravitational
wave and hence was a residual change (memory) imprinted
on the spacetime.

In general, the deviation between two neighbouring
geodesics in curved spacetimes gets contributions from both
gravitational wave part and the non-flat background. Thus,
recovering the deviation solely due to the wave (to find the
memory effect) is nontrivial. A step along this direction of
calculating memory effect in AdS spacetime was initiated
in [19]. They considered linearized gravitational wave per-
turbations over AdS background spacetime. Constructing a
parallelly propagated tetrad along a timelike geodesic, they
employed Fermi normal coordinates to separate the gravi-
tational wave part from the background. We use the same
method as given in [19] for our analysis. The only differ-
ence here is that in our case the spacetime itself is a radiative
geometry while in the former case the perturbations act over a
nonradiative background (i.e. AdS). Fermi coordinates were
also used in [48] to find the memory for gravitational shock
waves and gyratonic pp-waves. Physically it corresponds to
a set of timelike inertial observers traversing along the cen-
tral geodesic whose spatial distance scales are very small
compared to the curvature length scale.

After obtaining the geodesic deviation in the tetrad basis,
we transform them back to the coordinate basis. Thus,
we determine separately, deviation arising due to different
sources (e.g. background or the wave) in the coordinate basis.
The total deviation will, of course, be qualitatively similar to
results obtained from the geodesic analysis.

Let us now explicitly define Fermi normal coordinates and
parallelly transported tetrads, which we will use to arrive at
memory effects. Consider the geodesic deviation equation

D2

dλ2 ξμ = −Rμ
νρσU

νξρUσ (6)

Here, ξμ is the deviation vector between neighbouring time-
like geodesics. Uμ is the tangent vector along one of the
geodesics. Rμ

νρσ being the Riemann curvature tensor. Along
a chosen geodesic one can set up a coordinate system {t, Zi }
such that the Christoffel connections are always zero along
that curve. The spacetime curvature manifests itself through
the Riemann curvature. Such basis sets are known as Fermi

bases [53]. Along the geodesic, t denotes the proper time
and Zi = 0. A parallely transported tetrad is denoted as
eμ

a . This satisfies

Uα∇αe
μ
a = 0 (7)

Construction of such a tetrad depends on the spacetime met-
ric. In the tetrad eμ

a , the Greek indices are the spacetime
coordinates while Latin indices are for the Fermi coordinates.
We have eμ

0 = Uμ (tangent vector) due to the geodesic
equation. In the vicinity of the central geodesic, a neighbour-
ing geodesic having separation ξμ is re-written in the Fermi
basis as,

ξμ = Zieμ
i (8)

Hence, the geodesic deviation equation in Fermi coordinates
(t = X0, Xi ) becomes:

d2Zi

dt2 = −Ri
0 j0Z

j (9)

t and λ both being affine parameters are related via affine
transformations. Equation (9) can be obtained by substitut-
ing Eq. (8) (and also using Eq. (7)) in Eq. (6). The spa-
tial indices associated with the frame are denoted by i, j
(Ri

0 j0 = Rμ
νρσ ei μeν

0eρ
j eσ

0). The tetrads and metric
are related via1ηi j = eα

i eβ
j gαβ .

Since the deviation has contributions both from back-
ground and gravitational radiation, we assume that the total
deviation vector is decomposed in the form: Zi = Zi

B + Zi
W ,

where the suffixes B,W are for background and wave respec-
tively. As already mentioned, a similar analysis has been car-
ried out in [19] to separate the radiation from background cur-
vature. The splitting of the Riemann tensor is done by noting
the terms which are proportional to H(u, x, y) or its deriva-
tives (Ri

0 j0 = (Ri
0 j0)B + (Ri

0 j0)W ). Such terms denote
the gravitational wave contribution while the other terms are
due to background curvature. Thus, Eq. (9) separates into the
two equations shown below.

d2Zi
B

dt2 = −(Ri
0 j0)B Z

j
B (10)

d2Zi
W

dt2 = −[(Ri
0 j0)B + (Ri

0 j0)W ]Z j
W − (Ri

0 j0)W Z j
B

(11)

Equation (10) is the deviation due to the background. This
would have been the complete geodesic deviation equation
if H(u, x, y) = 0 in the metric line element as given in
Eq. (4). Solving Eq. (11) gives the memory effect in the tetrad
frame. Once both background and wave deviation (i.e.Z i

B and
Zi
W ) are known, we revert back to the coordinate basis using

Eq. (8) to obtain ξ
μ
B , ξ

μ
W and ξμ(= ξ

μ
B + ξ

μ
W ).

1 ηi j denotes the Minkowski metric with signature (−1, 1, 1, 1).
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In the case of gyratons, we split the deviation vector as:
Zi = Zi

B + Zi
G + Zi

W . Apart from the familiar terms Zi
B

and Zi
W , we also have deviation due to gyratons denoted

by Zi
G . The Riemann tensor corresponding to this deviation

comprises of terms linked to Wi (u, x, y) given in Eq. (5).
The deviation equations corresponding to the three distinct
effects are given by the Eqs. (64), (65) and (66) in Sect. 4.2.
We then go on to calculate ξ

μ
B , ξ

μ
G and ξ

μ
W in coordinate basis.

The terms ξ
μ
G and ξ

μ
W correspond to coordinate memory effect

for the gyraton and the wave respectively.
We have already emphasized the advantage of using

Fermi-normal coordinates for our analysis. An important fea-
ture is that Eqs. (9), (10) and (11) take their respective forms
only when the constructed tetrads are parallely transported.

It is also important to note that the results on memory
from geodesic deviation are expected to match only qualita-
tively with those obtained from a geodesic analysis. This is
because the deviation equation is perturbative by construc-
tion. In contrast there is no such restriction when we consider
pairs of geodesics and differences in their separation caused
by a pulse.

3 Kundt wave metric

We now focus on finding solutions in BD theory which rep-
resent Kundt wave spacetimes generically given as in Eq. (4).
The BD scalar field is assumed to be independent of v and
hence, φ ≡ φ(u, x, y). The components of Eq. (2) which are
relevant for solving the field equations are listed below.

Gxx = ω

2φ2 (φ,2
x −φ,2

y )

+ 1

φ

(
φ,xx + P,x

P
φ,x − P,y

P
φ,y

)
(12)

Gyy = ω

2φ2 (φ,2
y −φ,2

x )

+ 1

φ

(
φ,yy + P,y

P
φ,y − P,x

P
φ,x

)
(13)

Guu = ω

φ2

(
φ,2

u +H

2
P2(φ,2

x +φ,2
y )

)

+ 1

φ

(
φ,uu −1

2
P2H,x φ,x −1

2
P2H,y φ,y

)
(14)

Guv = ω

2φ2 P
2(φ,2

x +φ,2
y ) (15)

Gxu = ω

φ2

(
φ,x φ,u

) + 1

φ

(
φ,xu + P,u

P
φ,x

)
(16)

Gyu = ω

φ2

(
φ,y φ,u

) + 1

φ

(
φ,yu + P,u

P
φ,y

)
(17)

We decompose the scalar field and the metric functions as:

φ(u, x, y) = α(u)ψ(x, y),

P(u, x, y) = P̃(x, y)

U (u)
,

H(u, x, y) = H ′(u)h(x, y). (18)

Adding Eqs. (13) and (14) and using separation of variables
from Eq. (18) results in ψ,xx +ψ,yy = 0 (we know that
Gxx = Gyy = 0 from the metric). The solution is,

ψ(x, y) = a + log(x2 + y2) (19)

From the metric, Guv = P2� log P (where, � = (∂xx +
∂yy)). Using this in Eq. (16) gives,

P̃ =
√
x2 + y2

[a + log(x2 + y2)]ω/2 (20)

Equation (20) shows that background curvature is explicitly
dependent on ω. The equations for the ‘xu’ and ‘yu’ com-
ponents, as in (16), (17) and given the metric (4) we end up
with

ω

φ2

(
φ,x φ,u

)
+ 1

φ

(
φ,xu + P,u

P
φ,x

)
=

(
P,u

P

)
,x (21)

ω

φ2

(
φ,y φ,u

)
+ 1

φ

(
φ,yu + P,u

P
φ,y

)
=

(
P,u

P

)
,y (22)

Both the above equations reduce to the same equation after
using the separation of variables. We have,

(ω + 1)
α,u

α
= U,u

U
(23)

The Ricci scalar curvature is

R = 2P2� log P = 4ω

U 2[a + log(x2 + y2)]ω+2 (24)

The component of Guu from the metric is given below.

Guu = P2

2
(H,xx +H,yy ) + 2

P,uu

P

−4

(
P,u

P

)2

+ H(−P,2
x −P,2

y +P(P,xx +P,yy ))

Using Eqs. (15) and (18) we get

P̃2

2U 2 H
′(u)(h,xx +h,yy )

−2
U,uu

U
+ H ′(u)h

(
P̃(P̃,xx +P̃,yy ) − P̃,2

x −P̃2
,y

U 2

)

= ω

[(
α,u

α

)2

+ H ′h P̃2

2U 2

((
ψ,x

ψ

)2

+
(

ψ,y

ψ

)2)]

+α,uu

α
− P̃2

2U 2 H
′(u)

(
h,x

ψ,x

ψ
+ h,y

ψ,y

ψ

)
(25)

We set U = 1. Hence, from Eq. (23) we get α(u) as a con-
stant. From Eqs. (19), (23) and (25) we find that H ′(u) is
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unconstrained. The xy dependent part of H(u, x, y) becomes

h(x, y) = log[a + log(x2 + y2)] (26)

This polarization term h(x, y) is different from GR. We will
point out the consequences of this difference on the nature
of the memory effect, contrasting it with GR. Thus from our
generic analysis we find that only H ′(u) and ω is uncon-
strained.

We now perform a coordinate transformation x =
eX−a/2 cos Y, y = eX−a/2 sin Y . The metric in the new coor-
dinates (u, v, X,Y ) becomes

ds2 =−H ′(u) log(2X)du2 − 2dudv+(2X)ω(dX2+dY 2)

(27)

The reverse transformation shows that X = 1
2 (a+ log[(x2 +

y2)]) ≡ 1
2ψ[X ]. This relation shows the imprint of the scalar

field in the solution of the metric, via coordinate X . Thus,
φ[X (u)] evaluated along the geodesic X (u) gives a measure
of the memory effect for the scalar field due to the gravita-
tional wave pulse.

3.1 Displacement memory using geodesics

The geodesic equations of coordinates X,Y for the metric
line element in Eq. (27) are given below.

d2X

du2 + ω

2X

[(
dX

du

)2

−
(
dY

du

)2]
+ H ′(u)

(2X)ω+1 = 0 (28)

d2Y

du2 + ω

X

(
dX

du

)(
dY

du

)
= 0 (29)

Geodesic equations for coordinate v is trivial (ü = 0). Hence,
u acts as an affine parameter. We try to solve Eqs. (28) and
(29) by setting the initial value of the transverse coordinate
velocities to zero (i.e. Ẋ = Ẏ = 0). Taking Ẏ = 0 in Eq. (29)
gives Ÿ = 0. Hence, Ẏ = 0 for the entire evolution of the
geodesic. The only non-trivial equation left is for the coor-
dinate X which is given as,

d2X

du2 + ω

2X

(
dX

du

)2

+ H ′(u)

(2X)ω+1 = 0 (30)

We use the transformation X = 1
2q

1
ω+2 for ω �= 2. Equa-

tion (30) is thus transformed to the equation

d2q

du2 − 1

2q

(
dq

du

)2

+ 2(ω + 2)H ′(u) = 0 (31)

The above equation resembles that of a forced Levinson–
Smith system which, generically, has an equation of the form
[54,55],

ẍ + a(x, ẋ)ẋ + g(x) = f (t) (32)

where a(x, ẋ), g(x) and f (t) need to be specified. A compar-
ison with the equation for q(u) given just above, shows the
correspondence. Explicit solutions are not quite available,
especially for the equation in our case, though a dynamical
systems analysis exists [55].

The nature of the forcing term H ′(u) (which encodes the
effect of the gravitational wave pulse) dictates the behaviour
of any solution. Therefore, it is likely that the analysis of
such forced equations with nonlinearities may play a role in
understanding the memory effect. Related discussion on the
relevance of a forced equation appeared much earlier (in the
context of the deviation equation) in the original work on
memory by Braginsky–Grishchuk [5]. Thus, this brief side
remark on the similarity of the geodesic equation for X (for
ω �= −2) with a known, nonlinear forced system, as noted
above, seems worth investigating further, in future.

In principle, the geodesic equation given in Eq. (30) can
be solved numerically for any value of ω for a given choice of
the pulse H ′(u). We have chosen H ′(u) = 1

2 sech2 u since it
qualitatively resembles a gravitational wave pulse. However,
as mentioned earlier, we are interested in observing memory
effects for different choices of ω corresponding to different
scalar curvature scenarios. The value ω = −2 is special
since it is the only case where the Ricci scalar is constant
and negative. For other ω one may have variable positive
or negative R. We have chosen to illustrate our analysis for
the ω �= −2 case with a ω value which yields a positive
but variable Ricci scalar. Results for variable negative Ricci
scalar are not very different and can be worked out easily too.
We discuss each case briefly with corresponding plots.

• ω = −2

We consider a scenario where the scalar curvature is con-
stant. Hence,ω = −2 and the scalar curvature is R = −8.
The geodesic equation (30) becomes

Ẍ

X
−

(
Ẋ

X

)2

+ sech2(u) = 0 (33)

One can solve Eq. (33) analytically. Setting Ẋ/X = p,
one finds that

p(u) = −(1 + tanh(u)) (34)

The constant is fixed by setting p = 0 at u → −∞ as
initially Ẋ also vanishes. Solving X from the analytical
form of p(u) yields

X (u) = A

1 + e2u (35)
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Fig. 1 Displacement memory
effect for Kundt waves with
ω = −2

(a) (b)

Here, A denotes the initial position of the particle. One
can check that as u → −∞, X = A whereas as
u → +∞, X = 0. Thus, two geodesics starting with
different initial coordinate values, eventually have a zero
X value, after the passage of the pulse.
Let us now consider two different geodesics having initial
X coordinate value as A1 and A2. We find, as u → −∞,
X1 = A1, X2 = A2. The change in initial separation is
X1 − X2 = A1 − A2. The final separation at u → +∞ is
zero . Thus. we have displacement memory for the coor-
dinate X .
A careful inspection reveals that Eq. (33) is invariant
under u → −u. Hence, the analytical solution, X (u) =

A
1+e−2u is also possible. Here, two geodesics both starting
from X = 0 settle to two different final values (depend-
ing on A1 − A2). We illustrate both the analytical results
below using plots.
We observe permanent displacement along X-direction
(see Fig. 1). This is qualitatively similar to GR (see [46])
where we also observed constant separation after the pas-
sage of the gravitational wave pulse. Thus, for negative
scalar curvature solutions, there is a qualitative agree-
ment in the nature of the memory effect as found in GR
and in BD (ω = −2) theory.

• ω �= −2

The earlier geodesic analysis reveals that constant nega-
tive curvature case of ω = −2 is integrable. We have not
been able to find analytical solutions for other values of
ω. Resorting to numerics, we study the behaviour of the
coordinate X for ω = +1. The motivation for choosing
ω = +1 is to compare between the results on memory
for positive curvature solutions as obtained here in BD
theory with those in GR. The Ricci scalar for ω = +1
becomes 4/(8X3). Thus, there is a possibility of having
negative scalar curvature in ω = +1 by choosing coordi-
nate ranges where X < 0. However, in our entire analy-
sis of memory effects, we have restricted our coordinate
range beyond the singular region so that the solution con-

Fig. 2 ω = 1: Initial position of X for the two geodesics are 5 (orange)
and 3 (blue) respectively

forms to the positive sign of scalar curvature. We have
thus avoided the negative scalar curvature region. Never-
theless, we have observed that the singularity does seem
to influence pairs of geodesics through their gradual con-
vergence towards it.
Equation (30) is solved numerically in Mathematica 10
and the evolution of coordinate X is shown below.
In Fig. 2, we find increasing separation between the
geodesics after the departure of the pulse. This is in sharp
contrast to the profiles obtained in GR. In the latter theory
we found from geodesic analysis that positive curvature
scenarios give rise to a frequencymemory effect [46]. This
is related to the different metric functions in the Kundt
wave line element for the two theories. In BD theory,
h(X,Y ) = log(2X) (obtained by solving the field equa-
tions) whereas in GR we took it as h(X,Y ) = 1

2 (X2−Y 2)

(usual expression found in + polarization). We also find
that the geodesics do not cross beyond X = 0. This is
due to the singular nature of the metric as mentioned just
above.

3.2 Geodesic deviation analysis of memory

We now turn towards discussing geodesic deviation follow-
ing the method outlined in Sect. 2.3. First, we construct an
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orthonormal tetrad for the metric line element (27).

e0
μ = [1, v̇, Ẋ , Ẏ ]

e1
μ = [0,−(2X)ω/2 Ẋ ,−(2X)−ω/2, 0]

e2
μ = [0,−(2X)ω/2Ẏ , 0,−(2X)−ω/2]

e3
μ = [−1, 1 − v̇,−Ẋ ,−Ẏ ]

(36)

A similar construction was carried out in [56] for a different
coordinate system. e0

μ gives the tangent to the geodesic.
The parallel transport condition (7) is only satisfied by e0

μ

(obeys the geodesic equations) and e3
μ. Both e1

μ, e2
μ are

not parallely transported. Hence, these two tetrads are rotated
by an angle θ̇p = ωẎ/(2X). Since we have Ẏ = 0 for all ω

from the geodesic analysis, θp is a constant. We take θp = 0
so that the two tetrads e1

μ, e2
μ also satisfy Eq. (7).

The non-zero Riemann tensor components in the tetrad
basis are shown below.

Background

(R1
010)B = ωẎ 2

2X2 (R1
020)B = −ωẎ Ẋ

2X2

(R2
010)B = −ωẎ Ẋ

2X2 (R2
020)B = ω Ẋ2

2X2

(37)

Wave

(R1
010)W = − (ω + 2)H ′(u)

(2X)ω+2

(R2
020)W = ωH ′(u)

(2X)ω+2 (38)

Substituting the expressions in Eq. (37) and Eq. (38) (for the
Riemann tensor components in the tetrad basis) in Eqs. (10)
and (11), we solve for the background and gravitational wave
contributions to the geodesic deviation.

As pointed out earlier, we ultimately go over to the coor-
dinate basis using Eq. (8). We find out ξ

μ
B , ξ

μ
W only along

X,Y directions. The total deviation ξμ is then obtained and
compared with the results obtained from geodesics.

This decomposition of deviation vectors into background
and wave parts can be done because the geodesic deviation
equation is linear. As the geodesic equations itself are non-
linear, this method of decomposition is not possible. One
may also directly integrate the geodesic deviation equation in
the coordinate basis and come to similar conclusions as ours.
However, using the tetrads, the equations simplify enough,
as can be seen by comparing Eqs. (6) and (9). Interestingly,
for ω = −2 we have an exact solution.

We now show that by solving the geodesic deviation equa-
tion we may obtain the memory effect. The change in the part
of the deviation vector related to the background arises due
to the P(u, x, y) term in Eq. (4). The change caused by the
pulse H(u, x, y) is conventionally related to memory, largely
because the pulse is viewed as the ‘cause’. Our choice of
Fermi coordinates simplifies the calculations to some extent,

though it is surely possible to do everything in the coordinate
basis as well.

Below, we use the previously chosen ω values (as in the
geodesic analysis) to carry out the deviation analysis. Since
u is an affine parameter we can replace the proper time t
mentioned earlier, with u.

•ω = −2 :
As we have seen, the geodesic equations are analytically
solvable in this case. We will use the solution X =

A

1 + e−2u , Ẏ = 0 for further investigation. In this scenario,

two geodesics starting from zero initial value have two dif-
ferent final separations (see Fig. 1b). Substituting ω = −2
in Eqs. (37) and (38) gives a nontrivial equation only along
Z2 direction. We have,

B̈ = [1 − tanh(u)]2B (39)

Ẅ = 2[1 − tanh(u)]W + sech2(u)B (40)

K̈ = 2[1 − tanh(u)]K (41)

where B = Z2
B,W = Z2

W , K = B + W . The analytical
solutions for Eqs. (39) and (41) are

B(u) = C1(1 + e−2u)
1−√

5
2

×2F1

[
− 1 + √

5

2
,

3 − √
5

2
, 1 − √

5,−(1 + e−2u)

]

+C2(1 + e−2u)
1+√

5
2

×2F1

[√
5 − 1

2
,

3 + √
5

2
, 1 + √

5,−(1 + e−2u)

]

(42)

K (u) = 1 + e−2u

C3
(43)

The solutions for B(u) has hypergeometric functions denoted
by 2F1. C1,C2,C3 are the constants of integration. We set
K̇ = 0 as u → −∞ to get rid of the other constant. W (u)

can be easily obtained by subtracting B(u) from K (u). Since
we start with zero initial velocities, we find Z1

B and Z1
W are

constants. Equation (43) shows that the total deviation K (u)

is inverse of the geodesic solution X (u).
Reverting back to the coordinate basis, the deviation along

coordinates X and Y becomes

ξ X
B = (−2X)Z1

B ξ X
W = (−2X)Z1

W (44)

ξYB = (−2X)B ξYW = (−2X)W (45)

Equation (44) shows how both the background and the
wave deviation are simply proportional to X . This also fol-
lows from the Fig. 3a. Thus, the nature of the three deviations
(background, wave and total) are all similar. The background
and the gravitational wave both sum up to enhance the ampli-
tude of the total deviation. Along the Y direction in Fig. 3b,
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Fig. 3 Plot of deviation vectors
along the coordinates X and Y
for ω = −2

(a) (b)

we observe that the wave and background deviations can-
cel each other. The total deviation is a constant. Thus, the
geodesic deviation analysis also gives the same qualitative
result on separation, as obtained from the geodesics. This
confirms our previous assertion that the geodesic analysis
can only ‘see’ a total deviation (or separation). It is unable
to retrieve the gravitational wave contribution from the total.
In both plots (Fig. 3), the blue line shows the gravitational
wave memory effect.

•ω �= −2 :
Similar to the geodesic analysis, we perform the deviation
analysis for ω = +1, which corresponds to a spacetime with
a positive (but varying) Ricci scalar. The deviation equation
is solved numerically. We follow the same steps as we did for
ω = −2. From Eq. (37), we get that Z1

B is a constant. The
evolution equations of Z2

B , Z1
W and Z2

W are solved numeri-
cally inMathematica 10. Finally, we go over to the coordinate
basis to state our results on memory.

The total deviation plot in Fig. 4b shows it to be constant,
a feature also obtained from the geodesics. In Fig. 4a for the
deviation vector component along the X direction, we find
that the deviation for the gravitational wave part is more than
that for the background. The net deviation grows monotoni-
cally with the onset of the pulse. This result is consistent with
the geodesic separation behaviour shown in Fig. 2. The two
analyses are not precisely equivalent due to the perturbative
nature of geodesic deviation. Also, we note that displace-
ment memory is seen along both directions while frequency
memory is not found.

4 Kundt metric with gyraton terms

Having discussed the nature of memory effect for the Kundt
wave geometry in Brans–Dicke theory, in this section we will
incorporate the contribution from the gyratonic terms in the
generalized Kundt metric. As, discussed in Sect. 2 B, such a
metric is generically given as:

ds2 = −Hdu2 − 2dudv − 2W1dudx − 2W2dudy

+ 1

P2 (dx2 + dy2)

where, P ≡ P(u, x, y), H ≡ H(u, x, y) and the gyratonic
terms Wi ≡ Wi (u, x, y), ∀ i ε {x, y}.

Gyratonic spacetimes are ascribed to gravitational fields of
spinning light beams [26,27]. The terms Wi are responsible
for angular momentum in the spacetime. Gauge transforma-
tions can locally set Wi to zero [57]. But, globally it is not
possible to remove Wi and, thus, the spacetime retains its
rotational nature.

As before, we first solve the field equations to obtain the
metric functions and the scalar field and thereafter, using
them, we study the memory effect via the geodesic equations
and also, geodesic deviation.

From the Gu
v component of Eq. (2) we have ω φ2

,v +
φ φ,vv = 0. We have considered a possible solution with
φ,v = 0, i.e. the scalar field is independent of the null coor-
dinate v. Adding the Gy

x and the Gy
y components of the

Einstein tensor, we get:

φ,xx + φ,yy = 0 (46)

which is the same as Eq. (3) in presence of a traceless matter
field. In our case here, since we are considering a vacuum
solution, this equation is consistent.

From the Gu
u component we get the following equation:

− P2� log P = − P2ω

2φ2

(
φ2

,x + φ2
,y

)
(47)

Similar to the previous analysis, in order to solve the above
equations we decompose the metric functions and the scalar
field as follows:

φ(u, x, y) = α(u)ψ(x, y),

P(u, x, y) = P ′(x, y)
U (u)

,

H(u, x, y) = H ′(u)h(x, y).

Using this decomposition in Eq. (46) we get:

ψ(x, y) = a + log[x2 + y2] (48)

Substituting the new functional forms in Eq. (47) we obtain:

P ′(x, y) =
√
x2 + y2

(a + log[x2 + y2]) ω
2

(49)
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Fig. 4 Plot of deviation vectors
along the coordinates X and Y
for ω = +1

(a) (b)

The equation that follows from the Gx
u component is:

[(
P,u

P

)
,x

+ PP,y(W1,y − W2,x ) + P2

2
(W1,yy − W2,xy)

]

=
[
(φ,xφ,u)

ω

φ2 + φ,xx

φ
+ P,u

P

φ,x

φ

− P2

2

φ,y

φ
(W1,y − W2,x )

]
(50)

To solve the above equation we decompose the cross terms
as follows:

W1(u, x, y) = − J (u)y

2[x2 + y2]
W2(u, x, y) = J (u)x

2[x2 + y2] (51)

where J (u) is some function of u. We will see, while solv-
ing the geodesic equations that J (u) may be associated with
angular momentum.

From Eq. (51) we note that

W1,y − W2,x = 0 (52)

Using the above result in Eq. (50) we find:

α,u

α

ψ,x

ψ
(ω + 1) − U,u

U

ψ,x

ψ
= 0

Thus, α(u) and U (u) satisfy:

α,u

α
(ω + 1) = U,u

U
(53)

This is the same as the Eq. (23) in the Kundt wave metric
case. The last equation that will constrain the metric function
is from the Guu component. It leads to,

1

8P2 [4P4(H,xx + H,yy) + 8P3H(P,xx + P,yy)

−8P2H(P2
,x + P2

,y) + 16P,uu P − 32P2
,u]

=
[
φ2

,u + H

2
P2(φ2

,x + φ2
,y)

]
ω

φ2

+ 1

φ

[
φ,uu − P2

2
(−2W1,u + H,x )φ,x

− P2

2
(−2W2,u + H,y)φ,y

]
(54)

From both the Eqs. (48) and (51) one can see that:

W1,uφ,x + W2,uφ,y = 0 (55)

As in Kundt metric case we solve for U (u)=constant. This
reduces Eq. (54) to:

h,xx + h,yy +
[
h,x

φ,x

φ
+ h,y

φ,y

φ

]
= 0

The solution is the same as for the Kundt wave case.

H(u, x, y) = H ′(u) log[a + log[x2 + y2]] (56)

Thus, on solving the field equations we have obtained all the
metric functions except H ′(u) and J (u). These functions are
unconstrained and are the source of the gravitational wave
and the gyratonic contribution respectively. We will choose
these functions judiciously while solving for the geodesics
and the geodesic deviation.

Following our approach for Kundt waves, we rewrite
the gyratonic metric in new coordinates defined via the
coordinate transformations: x = eX−a/2 cos Y and y =
eX−a/2 sin Y . As earlier, we find that the scalar ψ (related
to the φ) is twice of X .

The metric line element in coordinates (u,v,X,Y) is given
as:

ds2 = −H ′(u) log[2X ]du2 − 2dudv − J (u)dudY

+(2X)ω(dX2 + dY 2) (57)

We can see that on comparing with the Kundt wave metric,
the only difference is the presence of the J (u)dudY term in
the metric. We will see that this term will have its contribution
to the overall memory effect.

4.1 Displacement memory from geodesic analysis

The geodesic equations corresponding to X and Y , for the
metric line element given by Eq. (57) are as follows.

d2X

du2 + ω

2X

[(
dX

du

)2

−
(
dY

du

)2
]

+ H ′(u)

(2X)ω+1 = 0 (58)
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d2Y

du2 + ω

X

dX

du

dY

du
− 1

2(2X)ω

d J (u)

du
= 0 (59)

We find that ü = 0 from the geodesic equation of v. Therefore
u may be chosen as as an affine parameter. From Eq. (59), it
is clear that the geodesic along Y coordinate is dependent on
J (u). This is different from the Kundt wave scenario where
alongY there could be no evolution. Hence, Eq. (58) is depen-
dent on both J (u) and H ′(u). It is evident that the presence
of cross terms involving the gyratonic contribution will have
a significant impact on the evolution of the geodesics.

The displacement memory effect for coordinate X obtained
below is equivalent to the memory due to the scalar field, as
justified earlier.

Proceeding further, we note that the first integral of
Eq. (59) gives,

Ẏ = C + J (u)

2(2X)ω
. (60)

Here,C is a constant of integration which can be set to zero by
noting that Ẏ vanishes where J (u) = 0. Since X is function-
ally related to ψ[X (u)], we infer from Eq. (60) that the dis-
placement memory along coordinate Y is both due to scalar
field and the gyraton. As in the case without the gyraton term,
we can, for ω �= −2, convert the equation for X to that of a
generalised Levinson–Smith system with the added feature
that function g(x) in (32), is now g(x, t). We obtain,

d2q

du2 − 1

2q

(
dq

du

)2

+ −ω(ω + 2)

4q
ω

ω+2
J 2(u)

+2(ω + 2)H ′(u) = 0 (61)

Asymptotic behaviour of Eq. (61) has been studied in [58].
Such solutions are bounded and converge as u → +∞.

Let us now separately deal with the constant curvature
solution (ω = −2) and singular solutions (ω �= −2). The
Ricci scalar in each case turns out to be the same as for the
Kundt wave metric. We assume H ′(u) = sech2(u)

2 (same as in
the Kundt wave metric) and J (u) = b sech2(u).2 Thus, both
the wave and gyratonic terms are dominant for a limited and
finite duration of “time” (i.e. u).

• ω = −2

This case corresponds to R = −8, a constant negative
curvature solution. We solve the geodesic equations (58)
and (59) for this ω numerically in Mathematica 10 and
plot the solutions.
The geodesic evolution show a constant shift along u as
well as a displacement memory effect along both X andY
directions. Apart from the shift along u (which is present

2 We will set the parameter b = 1 for our analysis.

in the evolution of both X and Y ), Fig. 5b, i.e. the evo-
lution of Y , also shows the role the gyratonic terms in
the metric. The plot along the X direction in Fig. 5a is
similar (but shifted along u) to the Kundt wave case.

• ω �= −2

Since the Ricci scalar is the same as for the Kundt wave
metric, we find that for ω �= 2 there is a singularity at
X = 0. We have carefully restricted our geodesic analy-
sis in the domain X > 0. The plots for the geodesics are
shown below.
From Fig. 6 we see that the separation slowly builds
up along the X direction. We note from Eq. (60) that
Ẏ = J (u)/(4X). Since J (u) is a sech-squared pulse, we
find that Ẏ is zero at u → ±∞. The only significant
contribution of the gyratonic pulse is centered at u = 0.
Thus, for the gyratonic Kundt metric, both the X and Y
coordinates have memory effect around u = 0 in contrast
to memory only along the X direction for Kundt waves.

From the plots of the geodesics it is clear that the most
visible contribution of the gyratonic term is in the evolution
along for Y . As for the evolution along X, the plots are shifted
because of the additional term dependent on Ẏ 2 ∝ J [u]2 in
the Eq. (58).

4.2 Geodesic deviation analysis of the memory effect

The orthonormal tetrads for the gyratonic Kundt metric (57)
are written below.

e0
μ = [1, v̇, Ẋ , Ẏ ] e3

μ = [−1, 1 − v̇,−Ẋ ,−Ẏ ]
e1

μ = [0,−(2X)ω/2 Ẋ ,−(2X)−ω/2, 0]
e2

μ = [0,−(2X)ω/2Ẏ + (J/2)(2X)−ω/2, 0,−(2X)−ω/2]
(62)

The gyratonic term J (u) is only present in e2
μ. We now

check whether the constructed tetrads are parallely trans-
ported, i.e. (Uμ = e μ

0 ).

U · De μ
0 = 0, U · De μ

1 = ωẎ

2X
e μ

2 ,

U · De μ
2 = −ωẎ

2X
e μ

1 , U · De μ
3 = 0 (63)

Therefore, if we rotate e μ
1 and e μ

2 by an angle θp, such that

it satisfies θ̇p = ωẎ
2X , we will obtain a parallely propagating

tetrad. Thus, θp is dependent on the gyratonic term J (u),
following from Eq. (60). In the new tetrad basis, we calculate
the nonvanishing Riemann components and separate them
into background, gyratonic and the gravitational wave parts.
The deviation equation for the three parts are

d2Zi
B

du2 = −(Ri
0 j0)B Z

j
B (64)
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Fig. 5 Geodesics for gyratonic
Kundt metric with ω = −2

Fig. 6 Geodesics for gyratonic
Kundt metric with ω = +1

d2Zi
G

du2 = −[(Ri
0 j0)B + (Ri

0 j0)G]Z j
G − (Ri

0 j0)G Z j
B

(65)

d2Zi
W

du2 = −[(Ri
0 j0)B + (Ri

0 j0)G + (Ri
0 j0)W ]Z j

W

− (Ri
0 j0)W (Z j

B + Z j
G). (66)

The deviation equations for the gyratonic Kundt metric are
straightforward generalizations of Eqs. (10) and (11) where
there was no contribution coming from the term (Ri

0 j0)G .
The expressions for the Riemann tensor components in the
tetrad frame for these three components are given in the
Appendix [see Eqs. (72)–(80)]. The geodesic deviation equa-
tions (64), (65) and (66) were numerically solved in Mathe-
matica 10 and the deviation vectors were obtained first in the
tetrad basis. Specific initial values are assumed for each part
of the deviation vector (i.e. background, wave and gyraton)
at a u value reasonably far from where the pulse H ′(u) or the
gyratonic term J (u) is significant (i.e. near u = 0). There-
after, following the procedure adopted for the Kundt waves,
the deviation vectors are transformed back to the coordinate
basis where the evolution is analysed. The plots thus gener-
ated appear in Figs. 7, 8, 9 and 10 for ω = −2 and ω = 1
respectively.

The evolution of each part of the deviation vector (i.e.
background, wave and gyraton) as shown explicitly in Figs. 7

and 9, demonstrate their individual contributions. The quali-
tative similarity of the total deviation plots (Figs. 8, 10) with
the results found using geodesics (Figs. 5, 6) is quite evident.
On comparing the plots for deviation in Kundt wave metric
(Figs. 3, 4) with deviation plots for the gyratonic Kundt met-
ric we note that along the X direction, the plots are very sim-
ilar, except for the additional gyratonic contribution. How-
ever, along the Y direction the plots are significantly differ-
ent. In the Kundt wave case, background and gravitational
wave contributions cancel each other, whereas in the gyra-
tonic Kundt metric, the contribution sums up and gives an
effective displacement memory.

5 Conclusions

Let us now summarise pointwise, the main results obtained
in this article.

• In vacuum Brans–Dicke theory we have constructed solu-
tions representing a Kundt-type line element without and
with gyratonic terms. The solutions have the expected
feature of two unspecified functions H ′(u) and J (u)

which represent the wave-profile and the gyraton term
respectively. Both these functions can be specified while
writing down explicit solutions. We choose them to be
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Fig. 7 Deviation plots for
ω = −2

Fig. 8 Total deviation plots for
ω = −2

localised fucntions (eg. proportional to sech2u) with the
aim of studying memory effects.

• For both line elements with chosen profiles for the H ′(u)

and J (u) we first study geodesics and then geodesic devi-
ation in order to obtain memory effects. Logical similar-
ities between results using geodesics and geodesic devi-
ation are visible in our results. Displacement memory
via geodesics and memory found using solutions of the
deviation equation explicitly demonstrate the dependen-
cies on the presence and profiles of the functions H ′ and
J . The role of the gyraton term is clearly visible in the
memory effects.

• Displacement memory for ω = −2 and without the
gyraton term is exactly solvable and easy to understand
analytically–a feature we show while analysing this spe-
cific case with constant negative Ricci scalar.

• In our analysis of deviation we have used a parallely
transported Fermi basis where the equations simplify. We
have split the deviation vector into background, gravita-
tional wave and gyratonic parts and have shown how each
part influences the behaviour of the total deviation vector,
thereby ensuring the existence of memory.

• The identification of the main geodesic equation for gen-
eral ω with a known dynamical system, the Levinson–
Smith system, is an interesting observation in our work.
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Fig. 9 Deviation Plots for
ω = 1

Fig. 10 Total deviation plots
for ω = 1

The lack of exact solutions of such systems was a hin-
drance in using this correspondence for understanding
memory. As mentioned earlier, it may be possible to
extend and enrich our work along these lines using inputs
from mathematics and the theory of dynamical systems.

The memory effects shown here for the two different Kundt
metrics are characteristic features of BD theory itself. This is
apparent through the dependencies of memory on ω and/or
the BD scalar field. Thus, there is an intrinsic difference with

similar scenarios in GR at a qualitative as well as a quantita-
tive level.

The geodesic deviation analysis carried out here (using the
Fermi basis etc.) can readily be applied to calculate memory
effects for any spacetime, in particular those where radiative
behaviour is present. Further, one may also employ the B-
matrix formalism as introduced in [59] to study the behaviour
of the kinematic variables of timelike geodesic congruences.
One may also search for memories in impulsive gravita-
tional wave spacetimes [60,61] and compare with the results
obtained here, by setting appropriate limits.
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Finally, it may be worthwhile identifying Kundt geome-
tries in other alternative theories so that a comparison can be
made on the nature and distinguishing features of the mem-
ory effects manifest in each such theory. Even within BD
theory, there exists scope of finding newer Kundt spacetimes
for which memory effects can always be investigated using
the methods outlined here. We hope to return to these issues
in future work.
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Appendix

1. Einstein tensor components

The Einstein tensor components of the generalized Kundt
metric with gyratons are given below.

Gu
v = Gx

x = Gy
y = 0 (67)

Gu
u = −P2� log[P] (68)

Gx
u =

[(
P,u

P

)
,x

+ PP,y(W1,y − W2,x )

+ P2

2
(W1,yy − W2,xy)

]
(69)

Gy
u =

[(
P,u

P

)
,y

+ PP,y(W2,x − W1,y)

+ P2

2
(W2,xx − W1,xy)

]
(70)

Guu = 1

8P2 [4P4(H,xx + H,yy) + 8P3H(P,xx + P,yy)

− 8P2H(P2
,x + P2

,y) + 16P,uu P − 32P2
,u] (71)

Note that by setting W1 = W2 = 0 we get the Einstein
tensors for the Kundt wave metric given in Eq. (4).

2. Riemann tensor in tetrad frame for Kundt spacetimes
with gyraton terms

The Riemann tensor in the parallely propagated tetrad frame
for the gyratonic Kundt metric are as follows.

Background

(R1
010)B = ω

2X2 [sin(θp)Ẋ + cos(θp)Ẏ ]2 (72)

(R1
020)B = (R2

010)B = − ω

4X2 [sin(2θp)(Ẋ
2 − Ẏ 2)

+ 2 cos(2θp)Ẋ Ẏ ] (73)

(R2
020)B = ω

2X2 [cos(θp)Ẋ − sin(θp)Ẏ ]2 (74)

Gyraton

(R1
010)G = − ωX

(2X)ω+2 J̇ (u) sin(2θp) (75)

(R1
020)G = (R2

010)G = ωX

(2X)ω+2 J̇ (u) cos(2θp) (76)

(R2
020)G = ωX

(2X)ω+2 J̇ (u) sin(2θp) (77)

Gravitational wave

(R1
010)W = − H ′(u)

(2X)ω+2 [1 + (ω + 1) cos(2θp)] (78)

(R1
020)W = (R2

010)W = − ω + 1

(2X)ω+2 H
′(u) sin(2θp) (79)

(R2
020)W = H ′(u)

(2X)ω+2 [(ω + 1) cos(2θp) − 1] (80)

An overdot denotes differentiation w.r.t. u.
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