
Eur. Phys. J. C (2021) 81:319
https://doi.org/10.1140/epjc/s10052-021-09112-w

Regular Article - Theoretical Physics

Quasilocal Smarr relation for an asymptotically flat spacetime

Yein Lee1,a, Matthew Richards2,b, Sean Stotyn3,c, Miok Park4,d

1 Department of Physics and Research Institute of Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
2 Department of Physics and Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
3 Department of Physics and Astronomy, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
4 School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

Received: 2 February 2021 / Accepted: 31 March 2021 / Published online: 15 April 2021
© The Author(s) 2021

Abstract We investigate the thermodynamics of Einstein–
Maxwell (-dilaton) theory for an asymptotically flat space-
time in a quasilocal frame. We firstly define a quasilocal ther-
modynamic potential via the Euclidean on-shell action and
formulate a quasilocal Smarr relation from Euler’s theorem.
Then we calculate the quasilocal energy and surface pres-
sure by employing a Brown–York quasilocal method along
with Mann–Marolf counterterm and find entropy from the
quasilocal thermodynamic potential. These quasilocal vari-
ables are consistent with the Tolman temperature and the
entropy in a quasilocal frame turns out to be same as the
Bekenstein–Hawking entropy. As a result, we found that a
surface pressure term and its conjugate variable, a quasilocal
area, do not participate in a quasilocal thermodynamic poten-
tial, but should be present in a quasilocal Smarr relation and
the quasilocal first law of black hole thermodynamics. For
dyonic black hole solutions having dynamic dilaton field, a
non-trivial dilaton contribution should occur in the quasilocal
first law but not in the quasilocal Smarr relation.
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1 Introduction

In curved spacetime, conserved energy for matter fields can
be obtained from the energy–momentum tensor of the Ein-
stein equation, but this is not applicable for a gravitational
field. Instead, we should extract the conserved energy from
the metric or the Riemann tensor, but constructing the con-
cept of gravitational energy was an arduous task in the early
days of general relativity due to the unification of space and
time. Another difficulty was that in curved spacetime physi-
cal quantities are computed locally, whereas there is no mean-
ingful local notion of energy density of the gravitational field
to construct a conserved charge in general relativity.

Notwithstanding these difficulties, the global charge for a
gravitational field was first successfully obtained in 1959 by
Arnowitt, Deser, and Misner, which is known as the ADM
mass [1–4]. Through this approach, spacetime is decomposed
into a spatial hypersurface foliated by time so that the tradi-
tional canonical method is applied for a gravitational field at
spatial infinity. The ADM result implies that a global charge
is independent of the choice of a coordinate. Based on this
success Komar alternatively constructed a conserved charge
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formula by using a Killing vector field,

Qξ = c

16πG
lim

St→∞

∮
St

∇αξβdSαβ (1)

where c = −2 for a timelike Killing vector field and c = 1 for
a rotational Killing vector field which give mass and angu-
lar momentum for a gravitational field, respectively. Later,
various methods such as the AD(T) method [5,6], Brown–
York’s quasilocal method [7], and the covariant phase space
method [8,9] have been developed for calculating a global
charge of a gravitational field. Nevertheless there are cases
that are technically involved when applying these methods
to systems such as the charged rotating black hole. For that
case, in 1973 [10] Smarr found that a mass parameter, M , can
be expressed by a simple algebraic relation between physical
variables. By applying Euler’s theorem the black hole charge
M is written as

M = 2TeffA + 2�L + �Q (2)

where Teff = κ̃
8π

is an effective surface gravity, A is the
black hole area, � is an angular velocity, L is an angular
momentum, � is an electromagnetic potential, and Q is the
charge of the electromagnetic field. It is important to note
that the mass is expressed in a bilinear form of other physical
variables. The differential form of mass, dM , was also shown
in the paper to be

dM = TeffdA + �dL + �dQ. (3)

Soon afterward, Bardeen et al. published the same results as
(2) and they interpreted (3) in an analogous way to the first
law of thermodynamics by correspondence of 4Teff = T =
κ̃

2π
to the real temperature and S = A

4G to the entropy [11].
At that time, those authors considered that T and S should be
distinct from real temperature and entropy. Later Bekenstein
argued that S could be the real entropy of black holes [12–
14], and Hawking further corroborated this by showing that
black holes radiate as thermal objects at a temperature of
precisely κ̃

2π
[15,16].

All of this work was developed using asymptotic charges.
However, it is important to describe the physical variables
of a gravitational system in a quasilocal frame for several
reasons. First, the quasilocal quantities could describe more
realistic and detailed physical situations, such as binary stars
or black hole mergers. Second, spatial infinity cannot be
realized in numerical work, but rather finite domains are
always required. Numerical studies of collapse also often
track apparent horizons which are quasilocal in nature, to
be compared to event horizons [17,18]. Several quasilocal
formalisms have been suggested [19], and the first law of
black hole thermodynamics in a quasilocal frame is studied in

Brown–York’s work [7]. In such work, the subtraction back-
ground method is employed to render the gravity action finite,
and the boundary energy–momentum stress tensor is con-
structed so as to define quasilocal quantities. They showed
that the first law of thermodynamics in a finite domain for
the four-dimensional Schwarzchild black hole is

dE = TTolmandS + PdA (4)

where the Bekenstein–Hawking entropy S is used, satisfying
the area law. P is the surface pressure and A is the area
of a quasilocal surface with a certain radius, for example
r = R. E is the quasilocal energy and TTolman is the Tolman
temperature, defined by

TTolman = 1

N (R)
THawking = 1

N (R)

κ̃

2π
(5)

where κ̃ is the surface gravity at the black hole horizon and
N (R) is the lapse function evaluated on the quasilocal bound-
ary. Hereafter we denote the Tolman temperature TTolman as
TR, which means the temperature measured at r = R and the
Hawking temperature THawking as TH which is measured by
an observer at infinity.

Historically the Smarr relation was discovered as a conse-
quence of the scaling relations present amongst the param-
eters in black hole thermodynamics and it can be obtained
by geometric means. In this development the Smarr relation
has been only associated with the Hawking temperature but
not with the Tolman temperature. Thus we here aim to com-
pletely and consistently describe the Smarr relation and other
thermodynamic relations by extending their notion at infinity
to a quasilocal frame. In order to do so, we firstly employ the
Brown–York qusilocal formalism and adopt a Mann–Marolf
(MM) counterterm to construct a renormalized gravity action
rather than using the subtraction method. This is because
the MM-counterterm is more widely applicable to compli-
cated spacetimes such as a spacetime with dilaton. We also
show the electric and magnetic potential form in a quasilocal
frame. Next we define a quasilocal thermodynamic potential
through the Euclidean action combined with the Tolman tem-
perature to obtain the entropy in a quasilocal frame. Here the
quasilocal thermodynamic potential takes a different form
for electrically or magnetically charged cases. Since they
impose a different boundary condition on the Euclidean on-
shell action the formal case yields the thermodynamic poten-
tial with the fixed gauge potential (grand potential) but the
latter one yields the thermodynamic potential with the fixed
charge (free energy) in [20] unless introducing the boundary
term for the gauge field. From this construction we found that
the surface pressure and its conjugate variable do not occur
in the quasilocal thermodynamic potential and the entropy
in a quasilocal frame agrees with the Bekenstein–Hawking
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entropy. For the case of a dilaton field, we found that there
is no dilaton contribution in the thermodynamic potential.
Then we formulate a quasilocal Smarr relation from Euler’s
theorem. While the surface pressure and its quasilocal area
occur in the relation, the dilaton field and its conjugate poten-
tial do not enter the relation since the length dimension of
the dilaton field is zero. In the quasilocal first law the surface
pressure terms are present but dilaton terms are only present
for dynamical dilaton case. Thus the quasilocal thermody-
namic relations can be summarized as follows:

FR = E − TRS − �R,eQe (6)

E = 2TRS + 2PA + �R,eQe + �R,mQm, (7)

dE = TRdS + PdA + �R,edQe + �R,mdQm + 
RdφR,

(8)

for the four-dimensional dyonic black hole with dynamic
dilaton and where φR and 
R are the dilaton field and its
conjugate potential in a quasilocal frame, respectively, and

FR = E − TRS − �R,eQe (9)

(n − 3)E = (n − 2)TRS + (n − 2)PA + (n − 3)�R,eQe,

(10)

dE = TRdS + PdA + �R,edQe + 
RdφR, (11)

for an n-dimensional electrically charged black hole with a
dynamic dilaton. For the non-dynamic dilaton case, there is
no dilaton contribution in the first law. Based on this for-
mulation, we investigate the quasilocal thermodynamics for
various black hole spacetimes in Einstein–Maxwell-dilaton
theory.

This paper is organized as follows. In Sect. 2, we intro-
duce the quasilocal formulations which are used in this paper.
Firstly the Mann–Marolf counterterm and Brown–York’s for-
malism are briefly explained along with the construction of
the renormalized gravity action, and the free energy (or ther-
modynamic potential) in a quasilocal frame is defined by
the Euclidean method to derive the entropy in a quasilo-
cal frame. Then a quasilocal Smarr relation is constructed
from the Eulerian theorem for an electrically charged black
hole in n-dimensional spacetime. In Sects. 3 and 4, we check
these quasilocal thermodynamic relations with various black
hole solutions from the Einstein–Maxwell (-dilaton) theory.
Lastly, we summarize our results and discuss future work.

2 The quasilocal formulation

In this section we provide the quasilocal thermodynamic rela-
tions. Throughout this paper we consider an n-dimensional
spacetime (M, g) and denote its index μ = 0, . . . , n − 1.
The timelike boundary (∂M, h) is a timelike hypersurface

defined by a spacelike normal vector nμ and we denote its
index a = 0, 2, . . . , n − 1. Finally, the spatial boundary
of a constant time slice (B, σ ) is a spacelike hypersurface
which is normal to both of the spacelike normal vector nμ

and a timelike normal vector ua and we denote its index
by A = 2, . . . , n − 1. Physically, B is the geometry of the
quasilocal boundary and ∂M is the evolution of B through
time.

2.1 Mann–Marolf counterterm

It is well known that a gravity action diverges for a non-
compact spacetime as r goes to infinity, while a compact
spacetime does not have such a divergence. For an asymp-
totically flat spacetime, this divergence is mainly due to a
surface term which is known as the Gibbons–Hawking (GH)
term. As a remedy, a non-dynamical term is introduced in
the action so as to remove the divergence. Here the non-
dynamical term should not alter the equation of motion but
render the total gravity action finite,

Iremormailzed = IEH + IGH + Inon-dynamical. (12)

To generate this non-dynamical term, the reference back-
ground approach was suggested in [21]. However, if the
dimension of spacetime is higher than three, the existence or
uniqueness of such embeddings of a hypersurface (∂M, h)

into a proper reference frame (MRef, gRef) is not clear. On the
other hand, as the interest in AdS/CFT theory has increased,
the algorithm to generate counterterms as a non-dynamical
term have been well constructed for AdS spacetime firstly in
[22] and later also studied in [23–26]. The same algorithm
for generating counterterms, unfortunately, is not applica-
ble to an asymptotically flat spacetime. However, the Mann–
Marolf (MM) counterterm method provides one way to gen-
erate counterterms for an asymptotically flat spacetime and
is described as follows.

The gravity action is written as

I = 1

κ2

∫
M

√−gR + 2

κ2

∫
∂M

√−h(K − K̂ ) (13)

where K̂ is a solution of

Rab = K̂ab K̂ − K̂ c
a K̂cb (14)

where Rab is the Ricci tensor on the boundary ∂M. This
counterterm is known to be local and covariant. Equation (14)
is motivated by the Gauss–Codazzi equation for a timelike
hypersurface, which is described as follows:

Racbd = RRef
acbd + KabKcd − KcbKad (15)
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where Racbd is the Riemann tensor on ∂M compatible with
the induced metric h and RRef

acbd is the Riemann tensor of
(MRef, gRef) pulled back to ∂M, and is obtained by taking
advantage of a reference background approach on a hyper-
surface near infinity. Taking the Minkowski spacetime as a
reference frame, then RRef

acbd becomes zero and contracting
(15) with gcd yields (14).

Considering a general form of the metric in n-dimensional
spacetime,

ds2 = N 2dr2 + habdxadxb

=
(

1 + α

rn−3

)2

dr2

+
(
h(0)
ab + 1

rn−3 h
(1)
ab + 1

rn−2 h
(2)
ab + · · ·

)
dxadxb

(16)

where

habdxadxb =

−
(

1 + γ (1)

rn−3 + γ (2)

rn−2 + · · ·
)

dt2

+ r2
(

μ
(0)
AB + 1

rn−3 μ
(1)
AB + 1

rn−2 μ
(2)
AB + · · ·

)
dηAdηB .

(17)

Choosing ∂M to be cylindrical �cyl such as

�cyl = r + O(r0), (18)

the solution of (14) is calculated for four dimensions and for
more than four dimensions,

(n = 4) K̂ab = rμ(0)
ab + 1

2
μ

(1)
ab + DaDbα + · · · (19)

(n > 4) K̂ab = rμ(0)
ab + 1

(n − 4)rn−5

[
(n − 4)μ

(1)
ab

+ αμ
(0)
ab + γ (1)μ

(0)
ab + DaDbα

]
+ · · · (20)

where the higher sub-leading terms of order of r are omitted
here, but up to the sub-sub-leading term of order of r are
computed in [27]. In the asymptotically flat case, the leading
term of the counterterm removes the divergence of the gravity
action and sub-leading terms give corrections to the finite
parts of the action. In this paper we consider up to the first sub-
leading term of the MM-counterterm solutions, as displayed
in (19) and (20). Even in the presence of matter fields, the
MM-counterterm (19) and (20) can be still utilized, as long
as the matter fields do not generate any divergent behavior
in the action as r goes to infinity and a metric form is taken
into (16).

2.2 BY method and electric/magnetic charge potential

The Hawking temperature is defined relative to an observer
located where a timelike Killing vector field has unit norm,√−ξμξμ = 1, which indicates the observer is located at
infinity in an asymptotically flat spacetime. As a conse-
quence, any stationary observer at finite radius will measure
a redshifted temperature known as the Tolman temperature
(5). Associated with this local temperature, quasilocal ther-
modynamic quantities should be defined accordingly.

One of the quasilocal formalisms was constructed by
Brown and York in [7]. Here we employ their method.
In order to construct the renormalized action, the MM-
counterterm is taken as follows:

Iremormailzed = IEH + IGH + IMM-counterterm, (21)

and this produces the Brown–York boundary stress energy–
momentum tensor, which is defined as

τ ab = 2√−h

δ Icl
δhab

= 2

κ2 (πab − π̂ab) (22)

where Icl is the on-shell action of Iremormailzed, πab = Kab −
Khab, and π̂ab = K̂ab−K̂ hab. This tensor yields a quasilocal
energy density ε, proper momentum surface density jA and
boundary stress s AB as follows:

ε ≡ uaubτ
ab, jA ≡ −σAaubτ

ab, s AB ≡ σ A
a σ B

b τ ab,

(23)

where ua is a timelike normal vector field, σAB is an induced
metric on the hypersurface B. In n-dimensional spacetime,
surface pressure is defined by

P = − 1

(n − 2)
τabσ

ab (24)

where σ ab is the pull-back of σ AB . The quasilocal energy
contained within B is obtained by surface integration,

E =
∫
B
dn−2x

√
σε, (25)

and the conserved quantity along the Killing vector field, ξ ,
is defined by

Qξ =
∫
B
dn−2x

√
σ(εui + j i )ξi . (26)

In the presence of matter fields such as a non-abelian gauge
fieldAμ, the total electric charge Qe which is confined inside
of an event horizon is defined as

Qe =
∫

∗F (27)
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where F is a field strength, which is

Fμν = ∂μAν −∂νAμ, ∗F = 1

2
εμναβFαβdxμ ∧dxν . (28)

An electric potential measured by an observer with a four-
velocity uμ is given by [28]

�e(r) = Aμ(r)uμ(r)

∣∣∣∣
rh

r
. (29)

A magnetic charge in four dimensions is defined as

Qm =
∫

F , (30)

and due to the electromagnetic duality we can construct A∗
μ

as follows:

∗Fμν = ∂μA∗
ν − ∂νA∗

μ, (31)

and a magnetic potential measured by an observer with a
four-velocity uμ can be defined as

�m(r) = A∗
μ(r)uμ(r)

∣∣∣∣
rh

r
. (32)

2.3 Quasilocal thermodynamic potential

Here we aim to find the black hole entropy in a quasilocal
frame. In order to do so, we define a quasilocal thermody-
namic potential via the Euclidean method.

Black hole thermodynamics can be understood by a path
integral at finite temperature in Euclidean space, which is
generated by doing a Wick rotation τ → i t from the
Lorentzian one. Then the partition function is written as

Z =
∫

D[g]D[�]e−IE [g,�]/h̄ (33)

where g is a fluctuation of the metric and � are matter fields.
Taking a saddle point approximation the partition function is
approximated to

Z ∼ e−IE [g,�]/h̄ . (34)

In the calculation of the Euclidean action IE , when we con-
sider the boundary of spacetime at infinity, the radial coor-
dinate r is integrated from the black hole horizon to infin-
ity. The Euclidean time integration should give the periodic-
ity β at the black hole horizon to avoid a conical singular-
ity. Then it yields the inverse of the Hawking temperature,∫

dτ = β = 1
TH

, which is consistent with the surface gravity
having unit norm of the timelike Killing vector field. That is,
the Euclidean time periodicity β is imposed at the horizon

relative to the observer at infinity. Then we define the free
energy (or thermodynamic potential) as follows:

F = −TH log Z ∼ TH IE,(rh ,∞) = M − THS(−�eQe),

(35)

where M is the conserved charge and�e is measured between
the horizon and infinity.

Now we extend this formula to a quasilocal frame by
considering the boundary of spacetime at the finite domain
r = R. The radial coordinate r is integrated from the horizon
to the finite distance of r = R and then the time periodic-
ity should be relative to the observer at r = R, which is
described by

∫
dτ ′ = N (R)

∫
dτ = N (R)β = 1

TR
. Thus the

Hawking temperature is replaced by the Tolman temperature.
By doing so we define quasilocal free energy as follows:

FR ≡ −TR log Z ∼ TR IE,(rh ,R) = E − TRS(−�R,eQe)

(36)

where E is quasilocal energy and the electric potential, �R,e,
is measured to the finite distance r = R. By obtaining this
quasilocal free energy from the Euclidean on-shell action
value we can derive the entropy in a quasilocal frame, which
turns out to be the same as the Bekenstein–Hawking entropy
from our examples in next sections.

2.4 Quasilocal Smarr relation by Euler’s theorem

In [10], Euler’s theorem on homogeneous functions is used
to obtain the Smarr relation. Euler’s theorem states that, if a
function f (x, y, z) obeys the scaling relation

f (α px, αq y, αk z) = αr f (x, y, z), (37)

it satisfies

r f (x, y, z) = p

(
∂ f

∂x

)
x + q

(
∂ f

∂y

)
y + k

(
∂ f

∂z

)
z. (38)

Applying this theorem to black hole systems for Einstein–
Maxwell theory in four dimensions, a black hole charge M
can be considered as a homogeneous function of entropy S
and the Maxwell charge Q. These variables have the follow-
ing scaling properties:

M ∝ [L], S ∝ [L]2, Q ∝ [L] (39)

where [L] is length dimension. Then Euler’s theorem yields

M = 2

(
∂M

∂S

)
S +

(
∂M

∂Q

)
Q = 2THS + �Q. (40)
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Note that here we employ the natural units, c = h̄ = 1, and
additionally impose the gravitational constant G = 1, which
leads to a dimensionful action, I ∝ [L]2.

Let us extend this argument to a quasilocal frame. In
this case a family of timelike hypersurfaces exists for r =
constant and one specific hypersurface can be chosen, for
example r = R. Thus the quasilocal energy E becomes a
homogeneous function of entropy S and the Maxwell charge
Q, but also a quasilocal area A whose radius is R. Their
scaling properties are found as

E ∝ [L], S ∝ [L]2, Q ∝ [L], A ∝ [L]2. (41)

So Euler’s theorem yields the following relation:

E = 2

(
∂E

∂S

)
S +

(
∂E

∂Q

)
Q + 2

(
∂E

∂A

)
A

= 2TRS + �RQ + 2PA, (42)

where a new term PA arises. When r goes to infinity the
surface pressure P vanishes and the quasilocal Smarr rela-
tion is restored to (40). The electric potential (29) should
be measured by an observer placed at r = R to be con-
sistent with the Tolman temperature (5). When considering
Einstein–Maxwell-dilaton theory we should investigate the
participation of a dilaton field, φ(r), to the quasilocal Smarr
relation. The conjugate variable of the dilaton field is defined
by [29]


(r) =
∫

d2x
√

σnμ∂νφg
μν, 
R = 
(R)−
(∞) (43)

where the dilaton potential 
R is calibrated to be zero at
infinity. However, since the length dimension of the dilaton
field is φ ∝ [L]0 it does not contribute to the quasilocal
Smarr relation.

If we expand this argument to n-dimensional spacetime,
each variable has a length dimension as

E ∝ [L]n−3, S ∝ [L]n−2, A ∝ [L]n−2, Q ∝ [L]n−3, φ ∝ [L]0,

(44)

and Euler’s theorem yields the relation as follows:

(n − 3)E = (n − 2)

(
∂E

∂S

)
S + (n − 3)

(
∂E

∂Q

)
Q

+ (n − 2)

(
∂E

∂A

)
A (45)

= (n − 2)TRS + (n − 3)�RQ+(n − 2)PA,

(46)

which is the n-dimensional quasilocal Smarr relation for
Einstein–Maxwell (-dilaton) theory. The thermodynamic

first law associated with this Smarr relation in a quasilocal
frame is written as

dE = TRdS + �RdQ + PdA + 
RdφR (47)

where φR = φ(R). Even though the dilaton field does not
participate in the quasilocal Smarr relation it has an effect on
the quasilocal first law [29].

These results are compared with the thermodynamic prop-
erties for Einstein–Maxwell (-dilaton) theory at infinity,
which are described by

(n − 3)M = (n − 2)THS + (n − 3)�Q, (48)

dM = THdS + �dQ (49)

where� is measured from the horizon to infinity. We examine
this quasilocal Smarr relation (45) and the first law (47) with
black hole solutions for Einstein and Einstein–Maxwell the-
ory in n-dimensional spacetime in Sect. 3 and for Einstein–
Maxwell-dilaton theory in four-dimensional spacetime in
Sect. 4.

3 Einstein–Maxwell Theory

In this section, we consider several black hole solutions for
Einstein(–Maxwell) theory in an asymptotically flat space-
time and check if our quasilocal formulation is satisfied.
Firstly we start with a four-dimensional Schwarzschild black
hole solution, and find its quasilocal first law along with
the quasilocal Smarr relation. We also explore the Reissner–
Nordström black hole and its higher-dimensional generaliza-
tion.

3.1 Schwarzschild black holes

Let us write the Schwarzschild black hole spacetime (M, g)
in the form of

ds2 = −N (r)2dt2 + f (r)2dr2 + r2d�2 (50)

where

N (r) = 1

f (r)
=

√
1 − 2M

r
. (51)

Assuming an observer on a hypersurface (∂M, h) at r = R,
the temperature measured by this observer is given by (5)

TR = 1

N (R)

1

4πrh
. (52)
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The quasilocal energy density and surface pressure are
obtained as follows:

ε = uiu jτ
i j = 4

κ2

(
1

r
− 1

r f (r)

)∣∣∣∣
r=R

= 4

κ2

(
1

R
− 1

R f (R)

)
, (53)

P = −1

2
σabs

ab = − 2

κ2

(
N ′(r)

f (r)N (r)
+ 1

r f (r)
− 1

r

)∣∣∣∣
r=R

= − 2

κ2R

(
1

N (R)

(
1 − rh

2R

)
− 1

)
, (54)

where

N (R) = 1

f (R)
=

√
1 − rh

R
(55)

and N (rh) = 0 is used. The total quasilocal energy is
obtained by integrating the quasilocal energy density (53)
over the hypersurface at constant time (B, σ ) and is found to
be

E(rh, R) =
∫
B

d2x
√

σε = 16πR

κ2

(
1 − N (R)

)
, (56)

which approaches the conserved charge M when taking R →
∞ and G = 1.

To obtain the entropy in a quasilocal frame, we calculate
the quasilocal free energy (36) from the Euclidean gravity
action

FR = TR IE = 8π

κ2N (R)

[
− rh

2
− 2R

(
1 − rh

R
−

√
1 − rh

R

)]
, (57)

and then the entropy is

S = − FR − E

TR
= 16π2r2

h

κ2 , (58)

which agrees with the Bekenstein–Hawking entropy. Then
we find that these quasilocal variables agree with the quasilo-
cal Smarr relation in (42) with Q = 0,

E = 2TRS + 2PA.

Now let us make a variation of E with respect to S and A;
then it simply reproduces the first law of black hole thermo-
dynamics

dE = TRdS + PdA (59)

where A = 4πR2.

3.2 Reissner–Nordström black holes

In the presence of an abelian gauge field, the Einstein equa-
tion with the metric ansatz (50) yields the metric function as

N (r) = 1

f (r)
=

√
1 − 2M

r
+ q2

i

r2 (60)

where the index i indicates an electrically charged case with
the electric charge parameter q1 = q, a magnetically charged
case with the magnetic charge parameter q2 = p or the pres-
ence of the two charges. The gauge field solutions become

A = ± 2

κ

(
q

r
− q

rh

)
dt, A = ± 2

κ
p(1 − cos θ)dφ. (61)

Here the regularity condition is imposed so as to have At = 0
at the black hole horizon and another gauge patch is glued for
Aφ to be regular on the θ -axis. The total electric or magnetic
charge is computed from (27) and (30), respectively,

QE = ±8π

κ
q, QM = ±8π

κ
p. (62)

The Tolman temperature is calculated as

TR = 1

N (R)

1

4πrh

(
1 − q2

i

r2
h

)
. (63)

To compute the boundary stress energy–momentum tensor
(22), we employ the MM-counterterm up to the sub-leading
order of r . Then from the renormalized action we calculate
the quasilocal energy (25), the surface pressure (24), and the
electric (29) or magnetic potential (32) as follows:

E(rh, R, q j ) =
∫
B

d2x
√

σε = 16πR

κ2

(
1 − N (R)

)
, (64)

P = −1

2
σabs

ab = − 2

κ2R

(
1

N (R)

(
1 − rh

2R

− q2
j

2Rrh

)
− 1

)
, (65)

�R,i = ± 1

N (r)

2

κ

(
qi
r

− qi
rh

)∣∣∣∣
r=rh

r=R

= ± 1

N (R)

2

κ

(
qi
rh

− qi
R

)
, (66)

where

N (R) = 1

f (R)
=

√
1 − rh

R
− q2

i

rh R
+ q2

i

R2 , (67)
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and N (rh) = 0 is used. The quasilocal thermodynamic
potential (36) obtained from the Euclidean gravity action
becomes

FR = TR IE = 8π

κ2

[
1

N (R)

(q2
j

R
− q2

j

rh

)
− 1

N (R)

(
M − q2

j

R

)

− 2R

(
N (R) − 1

)]
(68)

≡ E − TRS − �R,i Qi (69)

and the entropy is computed as

S = − FR − (E − �R,i Qi )

TR
= 16π2r2

h

κ2 , (70)

which agrees with the Bekenstein–Hawking entropy. From
these quasilocal variables we find that our Smarr relation
(42) is satisfied and we also confirm that the variation of the
quasilocal energy (64) with respect to S, Q, and A retains
the first law

E = 2TRS + �R,i Qi + 2PA, (71)

dE = TRdS + PdA + �R,idQi . (72)

3.3 Higher-dimensional electrically charged black holes

Let us consider a higher-dimensional charged black hole with
the following metric ansatz:

ds2 = −N (r)2dt2 + f (r)2dr2 + r2d�n−2. (73)

By solving the Einstein equation, we obtain the metric and
the electric potential

N (r) = 1

f (r)
=

√
1 − μ

rn−3 + q2

r2(n−3)
, (74)

A(r) = ± 1

κ

√
2(n − 2)

n − 3

(
q

rn−3 − q

rn−3
h

)
dt (75)

where the regularity condition is also imposed at the black
hole horizon for At , and the total electric charge is computed
as

Q = ± 1

κ

√
2(n − 2)(n − 3)qωn−2. (76)

From the metric, the Tolman temperature at r = R is easily
read off

TR = 1

N (R)

(n − 3)

4πrh

r2(n−3)
h − q2

r2(n−3)
h

. (77)

To construct the renormalized gravity action, we take the
MM-counterterm solutions (20) with the metric (73) which
becomes

K̂i j = rμ(0)
i j (78)

where the first sub-leading term vanishes since α = −γ (1)

in this case. Then the quasilocal energy and surface pressure
are computed as

E =
∫
B

dn−2x
√

σε = 2(n − 2)

κ2 ωn−2R
n−3

[
1 − N (R)

]
,

(79)

P = − 1

(n − 2)
τi jσ

i j
∣∣∣∣
r=R

= − 2

κ2

(n − 3)

R

[
1

N (R)

(
1 − μ

2Rn−3

)
− 1

]
, (80)

and when taking R to infinity we obtain E ≈ (n−2)ωn−2
κ2 μ,

which agrees with one in [30]. The quasilocal electric poten-
tial at r = R is written as

�R = ± 1

N (R)

1

κ

√
2(n − 2)

n − 3

(
q

rn−3
h

− q

Rn−3

)
, (81)

where

N (R) =
√

1 − μ

Rn−3 + q2

R2(n−3)
. (82)

The quasilocal thermodynamic potential (36) is calculated as

FR = TR IE (83)

= 2ωn−2

κ2

[
1

N (R)

(
(n − 2)q2

Rn−3 − (n − 3)rn−3
h

2

− (n − 1)q2

2rn−3
h

)
+ (n − 2)Rn−3

(
1 − N (R)

)]
(84)

≡ E − TRS − �RQ (85)

and so the entropy is derived as

S = − FR − (E − �RQ)

TR
= 4π

κ2 ωn−2r
n−2
h . (86)

We find that these quasilocal thermodynamic variables agree
with the n-dimensional quasilocal Smarr relation (45),

(n − 2)E = (n − 2)TRS + (n − 3)�RQ + (n − 2)PA,

where

A = ωn−2R
n−2. (87)
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The variation of the energy E with respect to S, A, and Q
exactly takes the form of the first law of thermodynamics as
follows:

dE = TRdS + PdA + �RQ. (88)

We note that the quasilocal Smarr relation also can be repro-
duced by equating the Euclidean action value with the def-
inition of a thermodynamic potential. Namely, since the
Euclidean on-shell action value is calculated as

FR = 1

(n − 2)
E − 1

(n − 2)
�RQ + PA (89)

and the thermodynamic potential is defined by (83), equating
them yields then-dimensional quasilocal Smarr relation (45).

4 Einstein–Maxwell-dilaton theory

Let us now consider Einstein–Maxwell theory with a dilaton
coupling

L = √−g

(
1

κ2 R − 1

2
(∂φ)2 − 1

4
eκaφF2

)
. (90)

The equations of motion are

Rμν − 1

2
gμνR = κ2

2
Tμν, (91)

Tμν =
(

∂μφ∂νφ − 1

2
gμν(∂φ)2

)

+ eκaφ

(
FμγF γ

ν − 1

4
gμνF2

)
, (92)

�φ = 1

4
κaeκaφF2, ∇μe

κaφFμν = 0. (93)

The solutions of the equations of motion (91) are studied in
[31,32]. Here we firstly investigate the purely electrically or
magnetically charged black hole solution with dilaton and
then the dyonic black hole with dilaton.

4.1 Purely electrically or magnetically charged solutions
with dilaton

For either purely electrically or magnetically charged cases
with dynamic dilaton, black hole solutions are studied in
[31–33]. The metric solution for both cases is written as

ds2 = −H
− 2

a2+1 f dt2 + H
2

a2+1

(
dr2

f
+ r2d�2

2

)
,

H = 1 + μs2

r
, f = 1 − μ

r
, (94)

and the solutions for matter fields are, respectively, given by

F = 2

κ

q

r2 H
−2dt ∧ dr, φ = 1

κ

2a

a2 + 1
log H,

q = μ√
a2 + 1

cs, (95)

F = 2

κ
p�2, φ = − 1

κ

2a

a2 + 1
log H,

p = μ√
a2 + 1

cs (96)

where c = cosh δ and s = sinh δ. When a = 0 case, this
solution becomes the RN black hole solution by using a sim-
ple coordinate transformation which is studied in Sect. 3 and
so we exclude the a = 0 case here. The electric or magnetic
charge is defined as

Qe =
∫

eκaφ ∗ F , Qm =
∫

F . (97)

Employing the MM-counterterm in this coordinate, it takes
the form of

K̂ab =
(
r + μs2

1 + a2

)
σab. (98)

From the renormalized gravity action, the quasilocal energy
(E) and the quasilocal surface pressure (P) are computed as

E = 16π

κ2

[
−

√
1 − μ

R

(
R + a2s2μ

a2 + 1

)(
1 + s2μ

R

)− a2

a2+1

+
(
R + s2μ

a2 + 1

) ]
, (99)

P = 1

κ2R2

[
− 2R − μ√

1 − μ
R

(
1 + s2μ

R

)− 1
a2+1

+ 2

(
R + s2μ

a2 + 1

) (
1 + s2μ

R

)− 2
a2+1

]
, (100)

and the quasilocal surface (A) is easily read off to be

A = 4πR2
(

1 + s2μ

R

) 2
a2+1

. (101)

When taking R → ∞, the energy and the pressure become

E = 1

2
μ

(
1 + 2

1 + a2 s
2
)

, P = 0, (102)
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which agree with [33]. The gauge field potential and charge
in a quasilocal frame are calculated as

�R,e = ± 1

N (R)

2

κ

(
q

c2μ
− q

R + s2μ

)
, Qe = ±8π

κ
q,

(103)

�R,m = ± 1

N (R)

2

κ

(
p

c2μ
− p

R + s2μ

)
, Qm = ±8π

κ
p.

(104)

Here the magnetic potential is obtained by the dual electric
field via the electromagnetic duality by using (31) and (32).
The Tolman temperature is

TR = 1

N (R)

1

4πμ
c
− 4

a2+1 . (105)

The Euclidean action is expressed as

IE = −
∫
M

√
g

(
1

κ2 R − 1

2
(∂φ)2 − 1

4
eκaφF2

)

− 2

κ2

∫
∂M

√
h(K − K̂ ). (106)

For the electrically charged case, this yields a thermodynamic
potential as follows:

FR ≡ IETR = 1

2
E − 1

2
�R,eQe + PA (107)

≡ E − TRS − �R,eQe. (108)

Then we can compute the entropy

S = − FR − (E − �R,eQe)

TR
= 16π2μ2

κ2 c
4

a2+1 , (109)

which agrees with the Bekenstein–Hawking entropy.
For a magnetically charged case, the Euclidean on-shell

action yields the quasilocal free energy

FR ≡ IETR = E − TRS (110)

and the entropy is obtained as

S = − FR − E

TR
= 16π2μ2

κ2 c
4

a2+1 , (111)

which is the same as (109).
Since there is an electromagnetic duality in four-dimensional

spacetime, a magnetic charge has the same length dimension
as an electric charge and contributes to the Smarr relation
in the same way as the electrically charged case. Thus the

above quasilocal thermodynamic variables satisfy the fol-
lowing Smarr relation, obtained in (42):

E = 2TRS + 2PA + �R,eQe (or �R,mQm), (112)

which are for the electrically (or magnetically) charged case.
On varying the quasilocal energy with respect to S, Qe (or

Qm), and A, the form

dE = TRdS + PdA + �R,edQe (or �R,mdQm) (113)

is only satisfied up to 1/R order in the large R expansion
for the variation of S and Q’s and up to 1/R2 order for the
variation of R. Thus the first law (113) is not satisfied for any
R and this is because of the non-trivial contribution of the
dilaton field that is distributed in the bulk. The dilaton field
contribution can be taken into account as follows:

φR = 1

κ

2a

a2 + 1
log H(R), (114)


R =
4πa(−

√
4

(
a2 + 1

)
q2 + μ2 + μ)

(1 + a2)κ

[(
1

+
√

4
(
a2 + 1

)
q2 + μ2 − μ

2R

)− a2

1+a2
√

1 − μ

R
− 1

]

(115)

where 
R is taken to be zero at infinity. Adding these to the
previous one, the following first law is satisfied at any R,

dE = TRdS + PdA + �R,edQe(+�R,mdQm) + 
RdφR.

(116)

On taking R → ∞, the Smarr relation and the first law are
simply approximated to

M = 2THS + �eQe (or �mQm), (117)

dM = THdS + �edQe (or �mdQm). (118)

4.2 Dyonic solutions with dilaton

The equations of motion (91) admit the dyonic black hole
either for constant dilaton φ0 and running dilaton φ with
specific values of coupling constant, which is a = 0, 1, and√

3. The case of a = 0 is nothing but the dyonic RN black
hole which is studied in Sect. 3 and so we do not repeat
this study here. For the rest of the cases, we examine their
thermodynamic properties in a quasilocal frame.
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4.2.1 Constant dilaton φ0

For a constant dilaton φ0, a dyonic black hole is given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

2,

f (r) = 1 − 2M

r
+ qp

2r2 , (119)

F = 1

κ

(
e−aφ0

q

r2 dt ∧ dr + p�2

)
, (120)

φ = φ0, q = √
2q0e

a
2 φ0 , p = √

2q0e
− a

2 φ0 . (121)

The MM-counterterm is taken for the renormalized gravity
action and then the quasilocal variables are computed as

E = 16πR

κ2

(
1 − N (R)

)
, (122)

P = 2

κ2R

[
1 − 1

N (R)

(
1 − M

R

)]
, A = 4πR2,

(123)

TR = 1

N (R)

1

4π

(
2M

r2
h

− pq

r3
h

)
, S = 16π2r2

h

κ2 , (124)

�R,e = 1

N (R)

1

κ
e−aφ0

(
q

rh
− q

R

)
, Qe = 4π

κ
q, (125)

�R,m = 1

N (R)

1

κ
eaφ0

(
p

rh
− p

R

)
, Qm = 4π

κ
p, (126)

where the magnetic potential �R,m is obtained via the elec-
tromagnetic duality (31) and (32). On taking R → ∞, the
quasilocal energy and the pressure approach

E = 16πM

κ2 , P = 0. (127)

The Euclidean on-shell action value yields the quasilocal
thermodynamic potential as follows:

FR ≡ IETR = 1

2
E − 1

2
�R,eQe + 1

2
�R,mQm + PA (128)

≡ E − TRS − �R,eQe, (129)

and the entropy (S) in a quasilocal frame is obtained:

S = FR − (E − �R,eQe)

TR
, (130)

which agrees with the Bekenstein–Hawking entropy. These
quasilocal quantities satisfy the Smarr relation and the first
law as follows:

E = 2TRS + 2PA + �R,eQe + �R,mQm, (131)

dE = TRdS + PdA + �R,edQe + �R,mdQm. (132)

4.2.2 Dilaton coupling a = 1

The dyonic black hole solution with the dilaton coupling
a = 1 case takes the form

ds2 = −(H1H2)
−1 f dt2 + (H1H2)

(
dr2

f
+ r2d�2

2

)
.

(133)

F = 1

κ

(
q

r2 H
−2
1 dt ∧ p�2

)
, φ = 1

κ
log

H1

H2
, (134)

f = 1 − μ

r
, Hi = 1 + μs2

i

r
, (135)

q = √
2μs1c1, p = √

2μs2c2, (136)

where ci = cosh δi and si = sinh δi . The renormalized grav-
ity action can be constructed by using the MM-counterterm
(98). The quasilocal variables are computed as

E = 8πR

κ2

(
2 + μs2

1

R
+ μs2

2

R

)(
1 − N (R)

)
, (137)

P = R

κ2(R + μs2
1 )(R + μs2

2 )

[
2 + μs2

1

R
+ μs2

2

R

− 1

N (R)

(
2 − μ

R

)]
, (138)

A = 4π(R + μs2
1 )(R + μs2

2 ), (139)

TR = 1

N (R)

1

4πc2
1c

2
2μ

, S = 16π2c2
1c

2
2μ

2

κ2 , (140)

�R,e = 1

N (R)

1

κ

(
q

μc2
1

− q

R + μs2
1

)
, Qe = 4π

κ
q, (141)

�R,m = 1

N (R)

1

κ

(
p

μc2
2

− p

R + μs2
2

)
, Qm = 4π

κ
p.

(142)

Here s1, c1, s2 and c2 can be replaced in terms of μ, q and p
by using (136),

c2
1 − 1 = s2

1 = −1

2
+

√
2q2 + μ2

2μ
,

c2
2 − 1 = s2

2 = −1

2
+

√
2p2 + μ2

2μ
. (143)

The Euclidean on-shell action value yields the quasilocal
thermodynamic potential as follows:

FR ≡ IETR = 1

2
E − 1

2
�R,eQe + 1

2
�R,mQm + PA (144)

≡ E − TRS − �R,eQe, (145)
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and then the entropy (S) in a quasilocal frame can be found

S = FR − (E − �R,eQe)

R
; (146)

this is nothing but the Bekenstein–Hawking entropy. These
variables satisfy the following Smarr relation:

E = 2TRS + 2PA + �R,eQe + �R,mQm. (147)

On varying the quasilocal energy with respect to S, Qe, Qm

and R, the form

dE = TRdS + PdA + �R,edQe + �R,mdQm (148)

is satisfied up to 1/R order for the large R expansion for the
variation with respect to S and Q’s and up to 1/R2 order for
the variation with respect to A due to the dilaton contribution
in the bulk. The dilaton field and its conjugate potential take
the forms of

φR = 1

κ
log

H1(R)

H2(R)
, (149)


R = 2π(x2−y2)

κ

[
−

2R
√

1 − μ
R√

(x2+2R−μ)
√

(y2+2R−μ)
+1

]

(150)

where x2 = √
2q2 + μ2 and y2 = √

2p2 + μ2 and 
R is
taken to be zero at infinity. If adding this dilaton contribution,
the following first law is satisfied for all orders of R:

dE = TRdS + PdA + �R,edQe + �R,mdQm + 
RdφR.

(151)

As R approaches infinity, the quasilocal energy, pressure,
and Tolman temperature become

E = 8π

κ2 μ(1 + s2
1 + s2

2 ) = M, P = 0 TR = TH,

(152)

which agree with the ones in [33]; the Smarr and the first law
are satisfied:

M = 2THS + �eQe + �mQm, (153)

dM = THdS + �edQe + �mdQm. (154)

4.2.3 Dilaton coupling a = √
3

The dyonic black hole solution with the dilaton coupling
a = √

3 case takes the form

ds2 = −(H1H2)
− 1

2 f dt2 + (H1H2)
1
2

(
dr2

f
+ r2d�2

2

)
.

(155)

F = 1

κ

(
q

r2 H
−2
1 H2dt ∧ p�2

)
, φ =

√
3

2κ
log

H1

H2
,

(156)

f = 1 − μ

r
, Hi = 1 + μs2

i

r
+ μ2c2

i s
2
1s

2
2

2(c2
1 + c2

2)r
2
, (157)

q = μs1c1

√
1 + c2

1

c2
1 + c2

2

, p = μs2c2

√
1 + c2

2

c2
1 + c2

2

, (158)

where ci = cosh δi and si = sinh δi . In the same way as
before, the MM-counterterm (98) can be used to build the
renormalized gravity action. Then we can compute all ther-
modynamic variables as follows:

E = 4π

κ2

[
4R + (s2

1 + s2
2 )μ

−
√

1 − μ

R

H1(R)(2R + s2
2μ) + H2(R)(2R + s2

1μ)

(H1(R)H2(R))
3
4

]
,

(159)

P = 1

2κ2

1

(H1(R)H2(R))
1
2 R2

[
4R + (s2

1 + s2
2 )μ

− 1

N (R)

(
R − μ

2

)]
, (160)

A = 4πR2(H1(R)H2(R))
1
2 , (161)

TR = 1

N (R)

1

4πμ

1

c1c2
H−1

0 , S = 8π2μ2

κ2 c1c2H0,

(162)

�R,e = q

4κ

(
2 + s2

2

H0c2
1μ

− 2R + s2
2μ

R2H1(R)

)
, Qe = 4π

κ
q,

(163)

�R,e = p

4κ

(
2 + s2

1

H0c2
2μ

− 2R + s2
1μ

R2H2(R)

)
, Qm = 4π

κ
p, (164)

where H0 = 1 + s2
1 s

2
2

2(c2
1+c2

2)
. The Euclidean on-shell action

value yields the quasilocal thermodynamic potential as fol-
lows:

FR ≡ IETR = 1

2
E − 1

2
�R,eQe + 1

2
�R,mQm + PA (165)

≡ E − TRS − �R,eQe (166)
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and then entropy (S) in a quasilocal frame is calculated to be

S = FR − (E − �R,eQe)

TR
, (167)

which turns out to agree with the Bekenstein–Hawking
entropy. As expected, these quasilocal variables satisfy the
following Smarr relation:

E = 2TRS + 2PA + �R,eQe + �R,mQm. (168)

To make a variation of δ1 = δ1(μ, q, p) and δ2 = δ2(μ, q, p)
with respect to μ, q, p and R, it is useful to use

∂μc
2
1 = − c2

1

(
c4

1 − 1
) (

3c4
2 − 1

)
((

3c4
2 − 1

)
c4

1 + c2
2c

2
1 − c4

2

)
μ

,

∂μc
2
2 = −

(
3c4

1 − 1
) (
c4

2 − 1
)

c22((
3c4

2 − 1
)
c4

1 + c2
2c

2
1 − c4

2

)
μ

, (169)

∂qc
2
1 = c2

1

(
c4

1 − 1
) ((

3c4
2 − 1

)
c12 + 2c6

2

)
((

3c4
2 − 1

)
c6

1 + 3c6
2c

4
1 − c6

2

)
q

,

∂qc
2
2 = c2

1

(
c4

1 − 1
) (
c4

2 − 1
)

c22((
3c4

2 − 1
)
c6

1 + 3c6
2c

4
1 − c6

2

)
q

, (170)

∂pc
2
1 = c2

1

(
c4

1 − 1
)
c2

2

(
c4

2 − 1
)

((
3c4

2 − 1
)
c6

1 + 3c6
2c

4
1 − c6

2

)
p
,

∂pc
2
2 = c2

2

(
c4

2 − 1
) (

2c6
1 + 3c2

2c
4
1 − c2

2

)
((

3c4
2 − 1

)
c6

1 + 3c6
2c

4
1 − c6

2

)
p

, (171)

where ∂s2
1 = ∂c2

1 and ∂s2
2 = ∂c2

2. As we learned about the
first law from the previous examples having dynamic dilaton
field, here we have the same consequence. The form of the
first law of

dE = TRdS + PdA + �R,edQe + �R,mdQm (172)

is only valid up to the order of 1/R for the variation on μ, q,

and p and up to the order of 1/R2 for the variation on R
when expanding on large R. Then as we did in the previous
examples we use the dilaton field and its conjugate potential,
which is obtained from (43),

φR =
√

3

2κ
log

H1(R)

H2(R)
, (173)


R = 2
√

3π

κ

[
(s2

1 − s2
2 )μ + (H1(R)H2(R))1/4

√
1 − μ

R

(
2R + μs2

1

H1(R)
− 2R + μs2

2

H2(R)

)]
, (174)

and plug these into the first law as follows:

dE = TRdS+PdA+�R,edQe+�R,mdQm+
RdφR. (175)

However, this dilaton potential only improves the variation
of R up to the order of 1/R3 in this case. They do not capture
all the contributions of dilaton field in the bulk but have a
remaining part as follows:

dμE − (TRdμS + PdμA + �R,edμQe

+ �R,mdμQm + 
RdμφR)

∼ πμ2s2
1s

2
2

(
c2

1 + 1
) (
c2

2 + 1
) (
c2

1 − c2
2

)2

κ2
(
c2

1 + c2
2

) (−3c4
2c

4
1 + c4

1 − c2
2c

2
1 + c4

2

)
R2

+ · · · ,

(176)

dq E − (TRdq S + Pdq A + �R,edq Qe

+ �R,mdq Qm + 
RdqφR)

∼ πμ2c1s1s2
2

(
c2

2 + 1
) (
c2

1 − c2
2

) (
c2

1 − c2
2 − 2c2

1c
4
2

)
κ2

(
c2

1 + c2
2

) (
c4

1

(
3c4

2 − 1
) + c2

1c
2
2 − c4

2

)
R2

√
1 + c2

1

c2
1 + c2

2

+ · · · , (177)

dpE − (TRdpS + Pdp A + �R,edpQe

+ �R,mdpQm + 
RdpφR)

∼ πμ2c2s2
1s2

(
c2

1 + 1
) (
c2

1 − c2
2

) (
c2

1 − c2
2 + 2c4

1c
2
2

)
κ2

(
c2

1 + c2
2

) (
c4

1

(
3c4

2 − 1
) + c2

1c
2
2 − c4

2

)
R2

√
1 + c2

2

c2
1 + c2

2

+ · · · , (178)

dRE − (TRdRS + PdR A + �R,edRQe

+ �R,mdRQm + 
RdRφR)

∼ −πμ4s2
1s

2
2

(
c2

1 + 1
) (
c2

2 + 1
) (
c2

1 − c2
2

)2

κ2
(
c2

1 + c2
2

)2
R4

+ · · · ,

(179)

where the dots indicate the higher order of 1/R. Then we
might give up the definition of the dilaton potential (43) and
see if another definition of 
R can make the first law sat-
isfied. So we impose the first law (175) and then find 
R

from each variation of the parameters. However, the values
of 
R obtained from the first law are not consistent. Another
possibility is to consider an unknown contribution such as
XdY , but it also seems not to be the case. This is because
XdY term should be effective from the order of 1/R2 seen
in (176)–(178) but then this will contribute to the order of
1/R3 in (179), which should not be present. This indicates
that we cannot find an XdY term to obey the first law. The
only way to satisfy the first law for all orders of R is to set
δ1 = δ2, but this is nothing but the condition that turns off
the dilaton field.
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Taking R → ∞, the quasilocal energy and pressure take
the values

E = 4π

κ2 μ(c2
1 + c2

2) = M, P = 0, (180)

which agree with ones in [33] and the following Smarr rela-
tion and the first law are satisfied:

M = 2THS + �eQe + �mQm, (181)

dM = THdS + �edQe + �mdQm. (182)

5 Summary and future work

We studied thermodynamics in a quasilocal frame for
Einstein–Maxwell (-dilaton) theory in an asymptotically flat
spacetime. In order to do so, we extended thermodynamic
relations such as the thermodynamic potential, the Smarr
relation and the first law to a quasilocal frame and checked
them with various black hole solutions.

We firstly employed the Brown–York quasilocal method
with a Mann–Marolf counterterm to obtain the quasilocal
energy and the surface pressure from the renormalized action.
We also showed the form of the electric and magnetic poten-
tial in a quasilocal frame. In four-dimensional spacetime,
they make the same contribution to the Smarr relation due to
the electromagnetic duality. Secondly we defined a quasilocal
thermodynamic potential from the Euclidean on-shell action
by applying the Tolman temperature and derived the entropy
in a quasilocal frame. Here the quasilocal thermodynamic
potential does not contain the surface pressure term and the
entropy derived from the quasilocal thermodynamic poten-
tial agrees with the Bekenstein–Hawking entropy. Then we
formulated a quasilocal Smarr relation from Euler’s theorem
and found that the surface pressure term and its conjugate
variables participate in the relation. When r goes infinity,
the quasilocal energy approaches the conserved charge of
the spacetime and the surface pressure vanishes and has no
effect on the thermodynamic relations. Other quasilocal ther-
modynamic variables also restore the usual thermodynamic
form at infinity.

Under this construction, we investigated the quasilocal
thermodynamics for various black hole solutions of Einstein–
Maxwell (-dilaton) theory and checked if these describe the
quasilocal thermodynamics well. Apart from the importance
of the surface pressure term, one should also notice the impor-
tance of the dilaton field in a quasilocal frame. For dyonic
black hole solutions having a dynamic dilaton, while the
quasilocal Smarr relation does not contain the dilaton term,
there is an additional contribution of the dynamic dilaton
field to the first law at finite R but the contribution dies out
at infinity. Namely, when we expand the quasilocal first law

on large R in the absence of the dilaton field and its con-
jugate potential term, the quasilocal first law is satisfied up
to 1/R order for the variation with respect to the entropy
and Maxwell charges and up to 1/R2 order for the varia-
tion with respect to the quasilocal area due to the spread of
the dilaton field in the bulk. This dilaton contribution can be
taken into account by adding the dilaton terms to the first
law and then the quasilocal first law is satisfied. However,
we found the exceptional case which is the dilaton coupling
constant a = √

3. In this case adding the dilaton terms does
not capture all the contributions in the bulk and it seems not
improved by modifying the dilaton potential or considering
a new term such as XdY to the quasilocal first law. The only
condition making the first law to be obeyed is to set the elec-
tric and magnetic charge equivalent, which induces turning
off the dilaton field.

This work could be extended to find quasilocal Smarr rela-
tions for various spacetimes using different methods. The
Smarr relation was firstly found in [10] by applying Euler’s
theorem, but later the same form was derived from the Komar
formula in [11]. In this paper, the quasilocal Smarr relation
is obtained in the same way as in [10], but it is interesting to
see whether the Komar formula can be modified to yield the
same quasilocal Smarr relation as given here. Also, explor-
ing the quasilocal Smarr relation for black hole spacetimes
having a negative cosmological constant is very intriguing.
The Smarr relation for the AdS black hole and Lifshitz black
holes are studied by introducing a pressure term with a ther-
modynamic volume term in [34–37], respectively. Quasilocal
thermodynamics for an AdS black hole is studied in [28,38].
However, its extension to the quasilocal Smarr relation is
non-trivial and should be pursued.
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