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Abstract A symmetry-preserving treatment of a vec-
tor x vector contact interaction is used to compute spec-
tra of ground-state J© = 0%, 1 (fg) mesons, their partner
diquark correlations, and J© = 1/2%, 3/2% (fg h) baryons,
where f, g, h € {u, d, s, c, b}. Results for the leptonic decay
constants of all mesons are also obtained, including scalar and
pseudovector states involving heavy quarks. The spectrum of
baryons produced by this chiefly algebraic approach repro-
duces the 64 masses known empirically or computed using
lattice-regularised quantum chromodynamics with an accu-
racy of 1.4(1.2)%. It also has the richness of states typical of
constituent-quark models and predicts many baryon states
that have not yet been observed. The study indicates that
dynamical, nonpointlike diquark correlations play an impor-
tant role in all baryons; and, typically, the lightest allowed
diquark is the most important component of a baryon’s Fad-
deev amplitude.

1 Introduction

The empirical hadron spectrum is rich [1], even without
including the array of recently discovered exotic states
[2-6]. Yet, contemporary theory still predicts more states
than have been observed. This is especially true when one
goes beyond systems comprised of light {u, d}-quarks and
includes hadrons seeded by all flavours of valence quarks
and/or antiquarks whose lifetime is long enough to produce
measurable bound states, i.e. also includes systems contain-
ing {s, ¢, b} quarks and/or related antiquarks. The empiri-
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cally “missing” states are being sought in a worldwide effort
[7-11].

Regarding calculations of hadron spectra, numerical sim-
ulations of lattice-regularised quantum chromodynamics
(1QCD) provide a direct connection with the Standard Model
Lagrangian. Many collaborations are tackling the problem.
There are successes and challenges [12—15]; and spectrum
calculations are described, e.g. in Refs. [16-22]. Notably,
few results are available on negative parity states and hadron
radial excitations.

Explaining the mass and structure of parity partners in
hadron spectra is crucial to understanding strong interac-
tions because they would be degenerate if chiral symmetry
were not dynamically broken, as discussed for the a;- and p-
mesons in Ref. [23]. This dynamical chiral symmetry break-
ing (DCSB) is a corollary of emergent hadronic mass (EHM),
the mechanism responsible for the m, ~ 1 GeV scale char-
acteristic of visible matter [24-27]. Current-quark masses
enter into quantum chromodynamics (QCD) via the Higgs
mechanism of explicit chiral symmetry breaking; so studying
the spectra of states built from {u, d, s, ¢, b} quarks and/or
related antiquarks opens the way to exploring constructive
interference between Nature’s two distinct mass generating
mechanisms.

Quark models have also been widely employed in the cal-
culation of hadron spectra; see, e.g. Refs. [28-32]. Owing to
complications introduced by the need to preserve chiral sym-
metry and its pattern of breaking in QCD, i.e. to faithfully
express DCSB, quark models are most reliable for baryons
and mesons containing heavy quarks. In such systems, Higgs-
induced current-quark masses play the dominant role and
differences between current- and constituent-quarks are least
noticeable; see, e.g. Ref. [27, Fig.2.5].

During the past decade, continuum Schwinger func-
tion methods, particularly Dyson—Schwinger equations, have
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increasingly been used in spectrum calculations follow-
ing improvements in both [5,33-37]: (i) understanding the
capacities and limitations of the approach; and (ii) the quality
and range of the description of hadron properties. Recently,
predictions for meson and baryon spectra in some of the
low-lying flavour-SU(N; = 5) multiplets were delivered
[38,39]. They were made using the rainbow-ladder (RL)
truncation of the continuum bound-state equations. This is
the leading-order in a systematic scheme [40—47], which
enables both: (i) a unified, symmetry-preserving descrip-
tion of mesons and baryons, accounting properly for DCSB;
and (ii) a traceable connection to quantum chromodynam-
ics (QCD). A next challenge here is to advance beyond the
leading-order truncation. That effort will likely benefit from
the use of high-performance computing.

Complementing such studies, Refs. [48,49] followed a
different, largely algebraic path to calculating the spectra of
ground-state pseudoscalar and vector ( fg) mesonsand J ¥ =
1/2%,3/2% (fgh) baryons, where f, g, h € {u,d, s, c, b}.
Exploiting the fact that a hadron’s mass is a volume-
integrated (long-wavelength) quantity, so not very sensi-
tive to details of the system’s wave function, Refs. [48,49]
used a symmetry-preserving treatment of a vector X vec-
tor contact interaction (CI) [50] to deliver insights into fea-
tures of these systems that can be obscured in approaches
that rely heavily on computer resources. For instance, the
analysis found diquark correlations to be important in all
baryons studied; and owing to the dynamical character of the
diquarks, the lightest allowed diquark correlation is typically
that which defines the dominant component of a baryon’s
Faddeev amplitude.

Herein, we extend Refs. [48,49] and explore the capacity
of the contact interaction to also explain the spectra of scalar
and pseudovector mesons and J© = 1/27, 3/2~ baryons.
The meson spectrum is canvassed in Sect. 2, along with a dis-
cussion of leptonic decay constants, including those of scalar
and pseudovector states. The masses and decay constants of
7, K, n¢, np mesons are used to determine the current-masses
of the {u = d, s, ¢, b} quarks and basic CI parameters. Pre-
dictions are then made for another sixty-eight quantities.

Connections with diquark masses and correlation ampli-
tudes are drawn in Sect.3. They are important because soft
diquarks seemingly play an important role in hadron struc-
ture [5]; hence, serve usefully in developing a quark + diquark
approximation to the baryon three-body problem [51-54].

Results for the spectra of ground-state J = 1/2%, 3/2%
baryons are discussed in Sect.4. Following Refs. [55-57],
eight parameters are introduced to complete the CI defini-
tion in the baryon sector, with four serving to correct for
omission of resonant (meson cloud) contributions in the
quark + diquark Faddeev equation. Masses for 88 baryons
subsequently emerge as predictions along with their CI spin-
flavour Faddeev amplitudes.
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A summary and perspective is provided in Sect.5.

Appendices are included to sketch the CI, Appendix A;
and detail the structure of flavour-SU(S5) baryon Faddeev
amplitudes, Appendix B.

2 Meson spectrum

Reference [48] calculated the masses and leptonic decay con-
stants of ground-state pseudoscalar and vector ( f g) mesons,
f,g € {u,d,s,c,b}. Herein, we expand the coverage to
include kindred scalar and pseudovector mesons, viz. their
parity partners. All CI bound-states satisfy a Bethe—Salpeter
equation of the form in Eq.(A.10). The pseudoscalar solu-
tion amplitude is given in Eq. (A.9) and the other systems are
described by the following amplitudes:

I} (Q) =y E-(0), (1a)
r’ Q) =1pEe(Q), (1b)
I (Q) = ysytEi+ (). (1¢)

where Q, y/f- = Oand Ip is the 4 x 4 identity matrix in spinor
space. When a momentum-dependent interaction is used, the
amplitudes have a richer structure [58,59]; but the terms in
Egs. (1) are dominant [60-62].

In terms of the amplitudes in Eqgs. (1), canonically nor-
malised via Eq. (A.15) and its analogues, the leptonic decay
constants are calculated using (1 =1 + Q)

_Ne it Se(t )T (0)S, (1) (2a)
Sizm- =3 /(2n)4 {ruSs @0l (DS 0], (2a
d*t . ot
Jo+Pu = N“[ Wtr[’yﬂsf'(twL)F (@)S; (0], (2b)

N, d
fi+rmy+ = 3 / ﬁtr[yquf(u)Flf(Q)Sg(t)],
(2¢)

with N. = 3, and f- givenin Eq.(A.17). In f = g systems
[63]: fo+r =0.

The explicit CI form for the vector-meson Bethe—Salpeter
equation may be obtained simply by generalising Eqs. (18)—
(20) in Ref. [70]; and those for the scalar and pseudovector
channels from Ref. [70, Appendices B.3, B.4]. The latter,
however, deserve additional attention.

It has long been known that RL truncation has some
defects in the OF, 17 channels because these systems pos-
sess significant orbital angular momentum and RL fails to
generate sufficient spin-orbit repulsion [47,61,71,72]. Non-
perturbatively generated corrections to RL truncation, such
as those originating in EHM-induced dressed-quark anoma-
lous chromomagnetic moments [73], can remedy this defect
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and generate the empirical splitting between parity partners
[61] and radial excitations [47]. (Such corrections largely
cancel in 0~ and 17 channels.) An ameliorating expedient
was introduced in Ref. [55], and refined in Refs. [56,57].
Namely, one includes a multiplicative factor in the Bethe—
Salpeter kernel for each of these channels, ggg, gég, with
ggg chosen to produce a mass difference of approximately
0.3 GeV between the quark-core of the O:& and that of the

p-meson (as obtained with beyond-RL kernels [61]) and gég
fixed to obtain the empirical size of the a;-p mass-splitting:

+ +
890 =032, glo =025 3)

(N.B. In a Poincaré-covariant treatment, no bound state is
purely S- or P-wave, etc.; and gso = 1 indicates no addi-
tional interaction beyond that generated by the RL kernel.)

At this point, all current-quark masses are determined,;
the coupling and cutoff in a given flavour channel are fixed
using Egs. (A.18) and (A.21), with the argument being the
empirical pseudoscalar meson mass in this channel; and the
spin-orbit correction factors are defined in Eq.(3). Conse-
quently, apart from the four underlined entries, every Cl result
in Table 1 is a prediction. Recalling Ref. [48], the F{)- (pseu-
dovector) component of each pseudoscalar meson is nonzero.
On average, it is 15(6)% of the E(- (pseudoscalar) piece; so,
the pseudovector component is quantitatively important in
all cases.

To assist with understanding the comparisons in Table 1,
we also represent them in Fig. 1. Considering Fig. la, one
sees that the CI delivers good estimates for the masses
of both positive and negative parity ground-state flavour-
SU(5) mesons. Aspects of its symmetry-preserving formu-
lation skew results toward overestimates in most cases [74],
but the mean relative-difference between theory and experi-
ment/IQCD is only 5(6)%. (This value is obtained by com-
paring columns 1 and 2 in Table 1, omitting the underlined
entries in column 1.)

Furthermore, as found with pseudoscalar and vector
mesons in Ref. [48], the computed masses of scalar and pseu-
dovector mesons neatly follow a pattern prescribed by equal
spacing rules (ESRs) [38,39,75-77], e.g.

mg, ~ (mfl +ma1)/21 (4a)

MBy, — Mpg ~ Mpy, — Mp;
~ mp,, — mMp, ~ mpg —mpy, (4b)
mp., — MBy ~ mB:fO - mB:O’ (40)

(Myy,y —my, ) /2= My, —my,)/2

N mpy — Mpy N mpr — mpx . (4d)

These relations expose the scales that may be identified with
the splittings between the spectrum-generating constituent-
like quark masses, e.g. Eqgs. (4d) reveal a b — ¢ spectrum

mass difference dﬁ; = 3.18(4) GeV. This is a fair match
with My, — M. = 3.23 GeV from Table 7. As evident in this
table, the Higgs mechanism of mass generation is the origin
of such splittings.

Interesting patterns are also found by comparing parity
partners, e.g.

0.44(1)GeV :mgy —mp, ® mg, — mgx
Ny —mg, ()
0.34(2) GeV:my, —myy ~ mp, — mpsx
X mp, — mpe, (5b)

0.48(2)GeV:my,, —my, X mpx —mp

50 S

~ mps —mp, (5¢)
0.25(4) GeV: my,, — my ~ mp,, — mp

Nmp,, —mps X Mmp — mpx, (5d)
0.30(8) GeV: my,y — my, ~ mps, —mp,

A mpx —mp N mpr —mg. (5e)

These results reveal the scale of DCSB in meson spectra.
Overall, parity partners are split by 0.35(10) GeV. How-
ever, comparing the impact of Higgs couplings into QCD,
the expression of DCSB becomes weaker with increasing
current-quark mass: Eq. (5a) cf. (5b) cf. (5d); and Eq. (5¢) cf.
(5e). Moreover, DCSB generates larger scalar-pseudoscalar
splittings than pseudovector-vector: Eq. (5e) cf. (5d); and
Eq. (5¢) cf. (5b).

CI results for meson leptonic decay constants are also
listed in Table 1 and drawn in Fig. 1b. These quantities
describe quark + antiquark annihilation at a single space-
time point, so they are sensitive to ultraviolet physics. In
QCD, this is expressed through the appearance of a logarith-
mic ultraviolet divergence in integrals like those in Egs. (1),
which is compensated by the dressed-quark wave-function
renormalisation constant [78,79]. It is therefore unsurprising
that the cutoff-regularised CI supplies a poorer description of
meson decay constants than it does of their masses. It would
be worse if Eqs. (A.18) and (A.21) were not implemented.
Nevertheless, in comparison with known empirical or IQCD
values, the picture is fair: trends are generally reproduced and
the mean-absolute-relative-difference between the entries in
columns 5 and 6 of Table 1 is 15(11)%. (Given that very
little is known about the decay constants of scalar and pseu-
dovector mesons, they are excluded from this comparison.)
Peculiarities of the CI’s formulation mean that the description
is better for pseudoscalars than it is for vector mesons [74].
Further improvement can be achieved by additional tuning of
Eq. (A.18), including its extension into the light-quark sector
and consideration of the particular properties of heavy + light
mesons.

@ Springer
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Table 1 Mesons: computed masses, Bethe—Salpeter amplitudes, and 1QCD [20,64—-69]. (Dimensioned quantities in GeV. Underlined entries

decay constants. Empirical masses from Ref. [1]; entries marked by from Table 7. “~" indicates no empirical/lQCD results available for
“x”, from Ref. [21]. Empirically unknown decay constants quoted from comparison)
JP Meson mC! me/! E F T ok
0~ 7 (ud) 0.14 0.14 3.59 0.47 0.10 0.092
K (u5) 0.50 0.50 3.82 0.59 0.11 0.11
D(uc) 1.93 1.87 3.09 0.36 0.16 0.15
Dy (s<) 2.01 1.97 3.23 0.48 0.17 0.18
ne(ct) 2.98 2.98 3.25 0.72 0.24 0.24
B(ub) 5.42 5.28 1.67 0.095 0.17 0.14
By (sh) 5.50 5.37 1.79 0.14 0.18 0.16
Bc(ch) 6.28 6.28 3.38 0.61 0.27 0.35
np(bb) 9.40 9.40 3.18 0.81 041 0.41
1- o(ud) 0.93 0.78 1.53 0.13 0.15
K*(us) 1.03 0.89 1.63 0.12 0.16
@ (s5) 1.13 1.02 1.74 0.12 0.17
D*(uc) 2.14 2.01 1.20 0.15 0.17
D} (s¢) 223 2.11 1.22 0.16 0.19
J )W (cd) 3.19 3.10 1.19 0.20 0.29
B*(ub) 5.47 5.33 0.70 0.16 0.12
B (sb) 5.56 5.42 0.71 0.16 0.15
B (cb) 6.39 6.33* 1.37 0.23 0.30
Y (bb) 9.49 9.46 1.48 0.38 0.46
0t o (ud) 1.22 - 0.66 0 -
K (us) 1.34 - 0.65 0.023 -
D (uc) 2.39 2.30 0.37 0.11 -
D¥,(s¢) 251 232 0.35 0.083 0.081 (6)
xc0(ct) 3.46 3.42 0.23 0 -
B (ub) 5.64 - 0.22 0.19 -
B (sb) 5.74 - 0.21 0.17 -
B¥,(ch) 6.63 6.71* 0.18 0.068 -
X0 (bb) 9.78 9.86 0.10 0 -
1t ai (ud) 1.37 1.23 0.32 0.29 -
K1 (us) 1.48 1.25 0.32 0.27 -
f1(s5) 1.59 1.43 0.32 0.25 -
Dy (ué) 248 242 0.19 0.32 -
Dy (s€) 2.59 2.46 0.18 0.31 0.14 (1)
Xe1(c©) 3.51 3.51 0.12 0.28 -
B1 (ub) 5.70 573 0.11 0.39 -
By1 (sb) 5.79 5.83 0.11 0.37 -
B.1(ch) 6.66 6.74* 0.096 0.24 -
Kp1 (bb) 9.79 9.89 0.055 0.22 -

@ Springer
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Fig. 1 Upper panel —a Comparison between CI predictions for meson
masses and available experiment [1] and m Br> Mp , MB, from Ref.
[21]. Lower panel —b CI predictions for meson leptonic decay constants
compared with experiment [ 1], where known, and IQCD otherwise [64—

Notwithstanding these observations, as with pseudoscalar
and vector mesons, analogues of Egs. (4) are applicable, e.g.

Ixy = Ufay + f111/2, (6a)
IBa % Uy + fum1/2 (6b)

I; — I3, = fop — [,
~ fB, — [By = Dy — fDy1> (6¢)
Toa = fo0 ™ fi = fzy: (6d)
I8y — foy = B2, — fDY)- (6e)

Such relations are not surprising when one recalls that such
decay constants are order parameters for chiral symmetry
breaking [80].

Regarding Fig. 1b, one finds that using the CI the decay
constants of vector mesons and those of pseudovector mesons
have the opposite tendency with increasing current-quark
mass, e.g.

fe* < fBr < [B: < fr

o K* ¢ D' DJIyB* B, B, Y

k DjD3BsBiBo a1 Ky i D1Ds1Xc1 B1Bs1BeiXp

69]. In both panels, contact-interaction predictions are depicted as (blue)
circles and comparison values by (green) bars. (Pictorial representation
of results in Table 1)

Cf' fB] > fB;] > chl > bel' (7)

Itis currently unclear whether this is a CI artefact. However, it
does follow the trend set by the meson Bethe—Salpeter ampli-
tudes in Table 1 and match qualitatively with the behaviour
of scalar-meson decay constants. The question could be
answered by using a momentum-dependent quark-+antiquark
scattering kernel [62].

3 Diquark mass spectrum

In approaching the problem of calculating the spectrum of
flavour-SU(5) ground-state baryons with J¥ = 1/2%,3/2%F,
we use a quark+diquark approximation to the Faddeev equa-
tion introduced elsewhere [51-54]. As apparent in Fig.2,
here the diquarks are fully dynamical, appearing in a Fad-
deev kernel that requires their continual breakup and ref-
ormation. In consequence, they are vastly different from the
static, pointlike degrees-of-freedom considered in early mod-
els of baryons [81].

@ Springer
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Pq

Pd

Fig. 2 Covariant Faddeev equation: linear integral equation satisfied
by the matrix-valued Faddeev amplitude, ¥, for a baryon of total
momentum P = py + py, which expresses the relative-momentum
correlation between the quarks and nonpointlike-diquarks within the
baryon. The shaded rectangle is the Faddeev equation kernel: single
line, dressed-quark propagator (Appendix A); I", diquark correlation
amplitude (Sect.3); and double line, diquark propagator (Egs. (B.8))

To proceed, therefore, one must calculate the masses
and amplitudes for all diquark correlations that can exist in
JP = 1/2i, 3/2i baryons. Using the CI, this means the fol-
lowing colour-3 correlations: flavour-10 scalar; flavour-15
pseudovector; flavour-10 pseudoscalar; and flavour-10 vec-
tor.! This is a straightforward exercise because the RL Bethe—
Salpeter equation for a J ¥ diquark is generated from that for
a J~F meson by simply multiplying the meson kernel by a
factor of 1/2 [83]. For instance, working from Eq.(A.10),
the mass and amplitude for a flavour-10 scalar diquark is
obtained from the following equation:

81 ar d4t
C C
F[fg](Q) = _Tm_é /WVMSf(t+)F[fg](Q)Sg(t)Vu,
3)
where the correlation amplitude is [T £,1(Q) and
[54)(Q) = I (Q)CT (%)

. 1
=Y |:lE[fg](Q) + m? : QF[fg](Q)] , (9b)

with C = y»y4 being the charge-conjugation matrix. The
canonical normalisation conditions are likewise amended,
with the multiplicative factor being 2/3 in this case.

In a study of flavour-SU(3) baryon spectra [57], an addi-
tional step was found to be necessary in order to arrive at real-
istic results. Namely, considering that valence-quarks within
a diquark are less tightly correlated than the valence-quark
and -antiquark in a bound-state meson, then spin-orbit repul-
sion in diquarks should be weaker than it is in mesons. This
was effected by writing

1= .0- + 0t

10"
q949° 799 __ qq9° ~qq
= 850

8s0 (10)

X ss0, sso = 1.8,

so that the modification factor in the RL-like diquark Bethe—
Salpeter equations is nearer unity; hence, generates less

1A 3. flavour-15 vector-diquark is generally possible, but is not sup-
ported by a RL-like treatment of the CI [57]. Using momentum-
dependent interactions, flavour-symmetric vector correlations remain
strongly suppressed [82].

@ Springer

repulsion. The value of sso was chosen in concert with g7,

Eq. (13), in order to ensure that the dressed-quark core mass
of the nucleon’s parity partner is not lower than that of its
first radial excitation.

Following this approach, using parameters determined as
described here, in Sect.2 and Appendix A, one obtains the
diquark masses and amplitudes listed in Table 2. Consistent
with RL studies using realistic interactions [84,85], in the
Bethe—Salpeter equation for a given J diquark correlation
we use the values of ar, Ayy associated with its J ~F meson
partner. A £10% change in sgo alters the 07, 17 values by
F2%. Evidently, the antisymmetric Dirac-scalar combina-
tion of any two quark flavours (scalar diquark) is always
lighter than the symmetric J© = 17 combination (pseu-
dovector diquark, denoted {fg};+), followed by the pseu-
doscalar and then the vector diquarks. Just like mesons, the
pattern of masses can be understood in terms of ESRs.

Itis worth reiterating that diquark correlations are coloured
and it is only in connection with partnering coloured objects
(quark, another diquark, etc.) that a colour singlet system is
obtained. Hence, diquarks are confined. That is not true in
RL truncation [84]; but corrections to this leading-order anal-
ysis have been studied using an infrared-dominant interac-
tion [86]. In fully self-consistent symmetry-preserving treat-
ments, such corrections eliminate diquark bound-state poles
from the quark + quark scattering matrix, whilst preserving
the strong correlations [87]. In these cases, one still has a
physical interpretation of the RL masses; to wit, the quan-
tity £ (fey? = 1/m (fey” is a spacetime distance that the
diquark correlation can propagate before fragmentation.

Figure 3 compares calculated diquark masses with those
of their partner mesons. The level ordering of diquark corre-
lations is precisely the same as that for mesons. Scalar and
pseudovector diquarks are heavier than their partner mesons.
Owing to the introduction of sso in Eq.(10), this ordering
is reversed for pseudoscalar and vector diquark correlations.
Notwithstanding this, omitting the [ud]y+ and [us]y+ corre-
lations, the mass of a diquark’s partner meson is a reasonable
guide to the diquark’s mass: the mean difference in absolute
value is 0.08(7) GeV.

Owing to DCSB, the light-quark scalar diquark chan-
nels are atypical because their partner mesons are the
almost-Nambu—Goldstone modes, 7 and K. In two-colour
chiral-limit QCD, scalar diquarks are also Nambu—Goldstone
modes [88]. A hint of this remains in the three-colour theory,
expressed in the relatively low masses of [ud]y+ and [us]y+,
even though they are split widely from the 7 and K.

It is the canonically normalised diquark Bethe—Salpeter
amplitudes that appear in baryon Faddeev equations. Listed
in Table 2, they exhibit a clear ordering: in any given
flavour sector, scalar diquarks have the largest amplitudes
<> strongest couplings. This means that the lighter flavour-
10 scalar diquark correlations are typically favoured in all
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Fig. 3 Computed masses of diquark correlations and their symmetry-related meson counterparts: diquarks — (blue) stars and mesons — (green)
bars. (Pictorial representation of Table 2)

Table 2 Diquark correlations: computed masses (GeV) and Bethe—Salpeter amplitudes of scalar, axial-vector, pseudoscalar and vector diquarks.
N.B. We work in the isospin-symmetry limit; so, e.g. [ds]o+ = [us]p+

Cl

JP Diquark m&) mg Eqq Fuq
ot [ud]o+ 0.78 0.14 2.74 0.31
[us]o+ 0.93 0.50 2.88 0.39
[uclo+ 2.15 1.93 1.97 0.22
[sclo+ 2.26 2.01 1.99 0.29
[ublo+ 5.51 5.42 1.05 0.059
[sb]o+ 5.60 5.50 1.05 0.083
[cblo+ 6.48 6.28 1.42 0.25
1" {uu}+ 1.06 0.93 1.31
{us}y+ 1.16 1.03 1.36
{ss}i+ 1.26 1.13 1.43
{uch+ 2.24 2.14 0.89
{sch+ 2.34 2.23 0.87
{cchi+ 3.30 3.19 0.69
{ub}+ 5.53 5.47 0.51
{sb};+ 5.62 5.56 0.50
{cb)i+ 6.50 6.39 0.62
{bb}+ 9.68 9.49 0.48
0~ [udo- 115 1.22 1.07
[us]o- 1.28 1.34 1.05
[uclo- 2.35 2.39 0.62
[sclo- 2.48 2.51 0.56
[ublo- 5.61 5.64 0.36
[sblo- 5.72 5.74 0.33
[chlo- 6.62 6.63 0.28
1~ (ud];- 1.33 1.37 0.51
[us];- 1.44 1.48 0.51
[ucl;- 245 2.48 0.30
[scli- 2.56 2.59 0.28
[ub];- 5.67 5.70 0.18
[sb];- 5.77 5.79 0.17
[cb];- 6.65 6.66 0.15
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J = 1/2 baryon amplitudes because the Faddeev equa-
tions involve the diquark-amplitude-squared. As will become
apparent, under certain circumstances, €.g. in baryons whose
valence-quarks have widely different masses, this preference
can be overcome.

Notably, the flavour-exchange symmetries of J© = 3/2%
baryons mean that such CI states may only contain flavour-
15 pseudovector diquark correlations, viz. positive-parity
diquarks. Using momentum-dependent interactions, flavour-
15 vector diquarks are possible. However, these correlations
are weak; hence, even then, are unlikely to play a significant
role. Nevertheless, this expectation should be checked.

4 Baryon spectrum

Following Ref. [48], we use the Faddeev equation drawn
in Fig.2 to calculate the spectrum of ground-state flavour-
SU(5) JP = 1/2%, 3/2% baryons. In the isospin-symmetry
limit, 88 distinct states are supported. Details are presented
in Appendix B.

4.1 Completing the Faddeev kernels

As highlighted above, the kernel in Fig. 2 introduces binding
through diquark breakup and reformation via exchange of
a dressed-quark. Again following Ref. [48], we exploit an
oft used simplification, viz. in the Faddeev equation for a
baryon of type B, the quark exchanged between the diquarks,
Eq.(B.1), is represented as
ST (k) — 85 (11)
4 Mg ’
where ¢ = 1, s, ¢, b is the quark’s flavour and gp is a cou-
pling constant. This is a variation on the “static approxima-
tion” introduced in Ref. [89]. It makes the Faddeev ampli-
tudes momentum-independent, just like the diquark Bethe—
Salpeter amplitudes. Calculations reveal that it has little
impact on the calculated masses [90]. The couplings g,
g are treated as parameters, with values chosen to obtain
desired masses for the nucleon and A-baryon, my, m 4.
The Faddeev equation, Fig.2, generates what may be
called a baryon’s dressed-quark core [91]: it omits what
are typically described as meson-cloud contributions to the
baryon masses, which work to reduce mpy, m . The sizes
of such corrections has been estimated: for the nucleon, the
reduction is roughly 0.2 GeV and for the A it is 0.16 GeV.
The choices [55]
gy = 1.18, ga = 1.56, (12)
produce my = 1.14 GeV and mx = 1.39 GeV, i.e. inflated
masses that leave room for correction by meson cloud effects.

@ Springer

(N.B. The values in Eq. (12) are deliberately different from
those used in Ref. [48].)

Using the framework outlined above, Ref. [57] stud-
ied flavour-SU(3) baryons, finding that the ground-state
positive-parity octet baryons are primarily constituted from
like-parity diquarks, with negligible contributions from
negative-parity correlations. Somewhat surprisingly, it found
that their parity partners are also dominated by positive-parity
diquark correlations; hence, too light. As with mesons and
diquarks, the missing element was identified as too little spin-
orbit repulsion generated by RL-like kernels. This was reme-
died by inserting an additional parameter into the Faddeev
equation for J© = (1/2) baryons, i.e. ggqgrd, a linear mul-
tiplicative factor, expressing EHM-induced enhancement of
spin-orbit repulsion, attached to each diquark amplitude in
the baryon’s Faddeev equation kernel, Eq. (B.1):

(13)

mong | 1O my = my4
§pp = 0.1 mg = —my,

i.e. nothing is done when the parity of the diquark correlation,
74, matches that of the host baryon, wy, but suppression is
introduced when the parity is different. The magnitude of
the effect was chosen so that, in concert with Egs. (10), the
dressed-quark core mass of the nucleon’s parity partner is
not lower than that of its first radial excitation [57].

Every element in the Faddeev kernel is now specified. It
remains only to select the channel, derive the explicit form
for the associated algebraic equation, then solve the result-
ing matrix equation to obtain the baryon mass and amplitude.
Specific examples of the Faddeev equations for the various
light-quark systems, along with their derivations, are pre-
sented in Ref. [70]; and equations for £, E/*, Z* are
given in Ref. [48]. The equations solved herein are not any
more complex, although they do involve larger kernel matri-
ces because we also allow all baryons to contain pseudoscalar
and vector diquarks. As in Ref. [48], the ultraviolet cutoff
in each baryon channel is identified with that of the light-
est diquark in the system. This is always the smallest value;
hence, the dominant regularising influence.

4.1.1 JP =1/2%

Our results for the masses and amplitudes of flavour-SU(5)
JP = 1/2% baryons are listed in Table 3. As remarked in
association with Eq. (12), the Faddeev kernel employed omits
resonant contributions that serve to reduce baryon masses.
From each of the values in column 1 we have therefore sub-
tracted

zy+ = 0.16 GeV (14)

in order to express an empirically informed estimate of such
corrections. This value is the average difference between the
unmodified CI result and experiment in the first four rows.
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Fig. 4 Upper panel —a CI computed masses (in GeV) of ground-state
flavour-SU(5) J¥ = 1/2% baryons in Table 3 compared with either
experiment (first 15) [1] or IQCD (last9) [18,21]. Lower panel —b Sim-

It matches the expectations described in connection with
Eq.(12). As indicated after Eq.(12), Ref. [48] achieved a
similar effect by inflating the values of gn A, but we find that
can produce unexpected (perhaps unphysical) modifications
of the Faddeev amplitudes.

The computed masses in Table 3 are also compared with
empirical or 1QCD values in Fig.4a: the mean absolute-
relative-difference is 1.3(1.3)%.

Compared with the results in column 4, drawn from Ref.
[39], the analogous difference is 5.2(2.8)%. In that study, the
Faddeev equations were solved in a fully-consistent RL trun-
cation, eschewing a quark + diquark approximation. More-
over, the results are ab initio predictions, whereas we intro-
duced gy, zy+ — Egs.(12) and (14) — to adjust the overall
scale of the J¥ = 1/2% spectrum. Notwithstanding these
things, the level of agreement confirms the validity of the
ESRs used to complete the spectrum calculations in Ref.
[39]; and the fact that our results exceed the accuracy of Ref.
[39] indicates that we have implemented a phenomenologi-
cally efficacious CI formulation.

The 1/27 Faddeev amplitudes are represented in Table 3
by the strength of the coefficient that multiplies the flavour

@ Springer

T " " " " P
S S b Qe Qb Do Qe U Loop Qoo

ilar comparison for ground-state flavour-SU(5) J© = 3/2F baryons in
Table 4: experiment (first 9) [1]; or IQCD (last 11) [18,21]. Both panels:
CI results — (blue) circles; reference values — (green) bars

and Dirac structure specified by Egs.(B.5), (B.9), (B.11),
(B.13), (B.15). For instance, the A entry in column 9 is
“—0.45”, indicating that this baryon contains a pseudovec-
tor diquark component [d{us};+ — u{ds};+1/~/2 with i ys Vi
coefficient a” = —0.45 in Eq. (B.5b).

The amplitudes in Table 3 confirm the conclusions in
Ref. [48]. Namely, concerning ground-state flavour-SU (5)
JP = 1/27 baryons: (a) the lightest participating diquark
correlation usually defines the most important component of
a baryon’s Faddeev amplitude and this is true even if a pseu-
dovector diquark is the lightest channel available; and (6)
light-diquark dominance may be overcome in flavour chan-
nels for which the bound-state’s spin-flavour structure and the
quark-exchange character of the kernel in Fig. 2 lead dynam-
ically to a preference for mixed-flavour correlations.

In corroborating these conclusions, we reaffirm the argu-
ments against treatments of the baryon problem which
assume they can be described as effectively two-body in
nature, e.g. as being built from a constituent-quark and static
constituent-diquark. The dynamical character of diquark cor-
relations is paramount because their breakup and reformation
are crucial in defining baryon structure. This is confirmed for
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Table 4 Computed mass and Faddeev amplitude for each ground-state
flavour-SU(5) J¥ = 3/2F baryon. The last column highlights the
baryon’s dominant spin-flavour correlation. The possibilities are given
in Egs. (B.10), (B.12), (B.14), (B.16). Empirical mass values, M¢, are

taken from Ref. [1]; and 1QCD results, M!, from Refs. [16,18,21]. The
results in column M3 are the three-body Faddeev equation predictions
in Ref. [39]. (Masses in GeV)

M Mc¢ M! M3 a"l a Dom. corr.
A 1.27 1.23 1.23 1.21 1 ufuu}+
X 1.39 1.38 1.40 1.36 0.61 0.79 ufus}+
gZ* 1.51 1.53 1.56 1.52 0.85 0.52 s{us}+
2 1.63 1.67 1.67 1.67 1 s{ss}i+
zx 2.54 2.52 2.55 2.39 0.63 0.78 u{uc}+
g 2.67 2.65 2.65 2.55 0.61 0.79 s{ucl+ + ufsc}+
£F 2.80 2.77 2.76 2.70 0.59 0.81 s{sch+
z 5.79 5.83 5.88 5.60 0.66 0.75 ufub}+
gy 5.92 5.95 5.96 5.75 0.61 0.79 s{ub}+ + u{sb};+
QF 6.04 6.09 5.90 0.55 0.84 s{sb}+
g 3.73 3.69 3.58 0.98 0.20 cluch+
z% 7.00 6.99 6.78 0.97 0.24 b{uc}+ + c{ub};+
o 10.26 10.18 9.98 0.99 0.08 b{ub}+
% 3.88 3.82 3.73 0.96 0.28 c{schi+
Q2 7.12 7.06 6.93 0.94 0.35 b{scli+ + c{sb}+
25 10.37 10.31 10.14 0.99 0.12 b{sb}+
Rcee 4.90 4.80 4.76 1 clech+
2 8.08 8.04 7.96 0.62 0.79 c{cb}i+
2%, 11.26 11.23 11.17 0.96 0.28 b{cb}+
b 14.45 14.37 14.37 1 b{bb}+

light-quark baryons by the fact that IQCD calculations pro-
duce a spectrum whose richness cannot be explained by a
two-body model [17]. The implications extend to baryons
involving one or more heavy quarks, challenging both (i)
the treatment of singly-heavy baryons as two-body light-
diquark + heavy-quark bound-states and (ii) analyses of
doubly-heavy baryons which assume such systems can be
considered as two-body light-quark + heavy-diquark bound-
states. These observations may also be relevant to few-body
studies of tetra- and penta-quark problems; in particular,
those involving {u, d, s} quarks.

4.12 JP =32+

Our results for the masses and amplitudes of flavour-SU(5)
JP = 3/2% baryons are listed in Table 4. Akin to Eq.(14),
from each of the values in column 1 we have subtracted

zp+ = 0.12GeV (15)

S0 as to express an empirically informed estimate of meson-
cloud corrections: this value is the average difference
between the unmodified CI result and experiment in the first
four rows. Again, it matches expectations described in con-
nection with Eq. (12).

The computed J© = 3/2% masses are compared
with empirical/lIQCD values in Fig.4b: the mean-absolute-
relative-difference is 1.0(0.8)%. Furthermore, the results
compare well with the three-body calculation described in
Ref. [39], for which the analogous difference is 2.6(1.6)%.
Notwithstanding the fact that we used ga, z4+ — Eqs. (12),
(15) — to adjust the overall scale of the J¥ = 3/2% spec-
trum, this improvement over the results in Ref. [39] again
highlights the utility of our CI formulation.

The CI Faddeev amplitudes of J = 3/27 baryons are also
listed in Table 4. Once more, the fully dynamical nature of
the diquarks and the character of the Faddeev kernel work
together to ensure a continual reshuffling of the dressed-
quarks within the diquark correlations. Consequently, in all
cases involving more than one quark flavour, the diquark
combination with maximal flavour shuffling is favoured
because it is fed by twice as many exchange processes as
the less-mixed correlation. This differs from the result for
the Z‘; -baryon in Ref. [48]. Therein, however, g4 was 26%
larger than here, thereby providing additional enhancement
for the single u-quark exchange process over the doubly
active, but b—u mass-splitting-suppressed, b-quark exchange
contribution which enables the shuffling.

@ Springer
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Fig. 5 Upper panel —a CI computed masses (in GeV) of ground-state
flavour-SU(5) J© = 1/2~ baryons in Table 5 compared with experi-
ment [1] (green bars), IQCD [22] (gold triangles), or three-body Faddeev
equation results [39] (orange asterisks). Lower panel —b Similar com-

413 JF =1/2"

CI results for the masses and amplitudes of flavour-SU(5)
JP = 1/27 baryons are listed in Table 5. From each of the
values in column 1, we subtracted

zy- = 0.27GeV (16)

in order to express an empirically informed estimate of
meson cloud corrections: this value is the average difference
between the unmodified CI result and experiment in the first
three rows.

The computed masses in Table 5 are also depicted in
Fig.5a. Compared with empirical values, or 1QCD results
when empirical values are unavailable, the mean absolute-
relative-difference is 1.4(1.1)%; and compared with the
results in column 4, drawn from Ref. [39], the analogous
difference is 3.7(3.5)%.

The CI Faddeev amplitudes of J” = 1/2~ baryons are
also listed in Table 5. Their characters are readily understood
because they typically follow the pattern of the J© = 1/2%

Qp

=
—cc

——

bb

——

—cb

Q%

cC

*— *— — *— — -
ch be Qccc Qccb chb beb

parison for ground-state flavour-SU(5) J¥ = 3/2 baryons, compiled
using Table 6. Both panels: the states are labelled as parity partners of
the lightest same-J state, e.g. p~ denotes the N (1535) (1/2)~ baryon
and A~ indicates A(1700) (3/2)~

amplitude: the lightest like-parity diquark correlation usu-
ally dominates. The exceptions to this simple rule are chiefly
driven by the absence of flavour-symmetric vector diquark
correlations, e.g. whereas X, is predominantly c{uu};+,
Z‘f =7 is dominated by u[uc];- because this is the light-
est J = 1 correlation available and J = 1 is favoured in
..

4.14 JF =3/2~

These states are somewhat unusual. Given that they must
be completely symmetric under permutations of flavour
labels but the only negative-parity diquarks supported by
the CI are flavour-10 (antisymmetric) states, then the J =
3/27 baryons can only contain positive parity pseudovector
diquarks, Eq.(B.16). Owing to this peculiarity, we judged
that opposite-parity diquark correlations should not receive
additional suppression in these systems; so we solved the
associated Faddeev equations with

@ Springer



327 Page 14 of 22

Eur. Phys. J. C (2021) 81:327

Table 6 Computed mass (in GeV) and Faddeev amplitude for each
ground-state flavour-SU (5) J¥ = 3/2~ baryon: the last column iden-
tifies the baryon’s dominant spin-flavour correlation. The possibilities
are given in Egs. (B.10), (B.12), (B.14), (B.16). Empirical mass values,

M¢, are taken from Ref. [1]; and 1QCD results, M!, from Ref. [22].
The results under heading M?> are the three-body Faddeev equation
predictions in Ref. [39]

M M¢ M M3 a’ a” Dom. corr.
A 1.59 1.67 1.73 1 u{uul+
% 1.72 1.66 1.79 0.72 0.69 s{uu}+
E* 1.84 1.82 1.84 0.91 0.42 s{us}i+
2 1.95 1.90 1 s{ss)is
= 2.80 2.80 2.83 0.85 0.53 cluu}+
g 2.91 2.82 2.80 2.89 0.74 0.67 clus}i+
£F 3.01 3.07 2.94 0.62 0.79 s{schi+
z 6.03 6.07 0.84 0.54 b{uu}y+
g 6.13 6.13 0.69 0.72 slub}ys + ufsh}
QF 6.23 6.19 0.52 0.86 s{sb}+
g 3.93 4.01 3.93 0.98 0.18 clucl+
g% 713 7.18 0.96 0.28 bluc) s + club)+
o 10.35 10.42 0.99 0.08 b{ub}+
% 4.04 4.12 3.99 0.96 0.26 c{scli+
27, 723 7.23 0.92 0.39 bisc)is + clsb}+
25 10.44 10.48 0.99 0.11 b{sb}i+
Qcee 5.01 5.08 5.03 1 clcch+
2 8.17 8.28 0.63 0.77 c{cb}i+
2%, 11.32 11.52 0.96 0.28 b{cb}+
Lvpp 14.49 14.77 1 b{bb}+
gg3l/;2_n'+ = g?éﬁnﬁ =1. (17)  latter is dominant in the positive-parity systems. This order-

Working with the results thus obtained, the average differ-
ence between the CI result and experiment in the first three
rows of Table 6 is

za- = 0.13GeV. (18)

Consequently, in column 1 of Table 6 we list the result
obtained by subtracting z 4~ from the directly calculated CI
result. Comparing column 1 with experiment, where known,
and available 1QCD results otherwise, the mean absolute-
relative-difference is 2.2(1.4)%, and with the results in col-
umn 4, drawn from Ref. [39], the analogous difference is
1.4(1.9)%.

The computed masses in Table 6 are also depicted in
Fig.5b alongside, as available, in this order: experiment,
1QCD, or three-body Faddeev equation results.

The CI Faddeev amplitudes of J = 3/2™ baryons are also
listed in Table 6. They are similar to those of the J = 3/27
states in Table 4, with the dominant diquark correlation
being the same in all cases except X*, X%, X7 Considering
Eq.(B.12a), one sees that in these cases there is a competi-
tion between the lightest diquark correlation and the heavy-
light diquark, which is doubly-fed by the exchange kernel.
The former wins in the negative-parity systems, whereas the
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. . _ T3 T+ .
ing reverses in the 3/27 states as g D31/32 " is reduced from

unity. The X*, X*, X Faddeev amplitudes should therefore
be considered as somewhat uncertain.

5 Summary and outlook

A confining, symmetry-preserving treatment of a vectorx
vector contact interaction (CI) was used to compute spec-
tra of ground-state J© = 0%, 1% (fg) mesons and J¥ =
1/2%,3/2% (fgh) baryons, where f, g, h € {u,d, s, c, b}.
The calculated meson masses agree well with experiment
(Sect. 2): the mean-relative-difference for 33 states is 5(6)%.
Expressing effects tied to the emergence of hadronic mass
(EHM) was crucial to achieving this level of agreement.
Regarding meson leptonic decay constants, empirical (or lat-
tice QCD — 1QCD) values are reproduced with an accuracy
of 15(11)%; and predictions were made for the currently
unknown decay constants of 19 0", 17 states (Table 1).

A quark+diquark approximation to the baryon Faddeev
equation was used herein. Its formulation required the calcu-
lation of masses and correlation strengths for all 38 distinct
participating diquarks (Sect. 3). As in all studies to date, the
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level ordering of the J© diquarks matches that of their J—F
meson partners. Scalar and pseudovector diquarks are heav-
ier than their partner mesons; but in our CI formulation, this
ordering is reversed for pseudoscalar and vector diquark cor-
relations. Nevertheless, omitting the diquarks partnered with
would-be Nambu—Goldstone mode mesons, the mass of a
diquark’s partner meson is a reasonable guide to the diquark’s
mass: the mean difference in absolute value is 0.08(7) GeV.

A static approximation to the quark exchange kernel was
used to solve the Faddeev equation. It produces momentum-
independent Faddeev amplitudes, thereby ensuring a level
of consistency with CI two-body bound-state amplitudes,
and introduces four parameters. Correcting also for the omis-
sion of meson cloud contributions to the quark-core Faddeev
kernels, four additional parameters were necessary to com-
plete the CI definition in the baryon sector. In total, the CI
predicts 88 distinct baryons, i.e. every possible three-quark
1/2%,3/2%F ground-state baryon is realised. Of this number,
34 states are already known empirically and 1QCD-computed
masses are available for another 30. For this collection of
64 states, the mean absolute-relative-difference between CI
prediction and experiment/IQCD mass is ard = 1.4(1.2)%
(Figs. 4, 5). Implementation of EHM-induced effects associ-
ated with spin-orbit repulsion in 1/27 baryons was important
to achieving this outcome. The same 88 ground-states are
also predicted by a three-body Faddeev equation [39]; and
in comparison with those results, the analogous difference is
3.4(3.0)%.

A primary merit of the framework employed herein is
its simplicity, enabling all analyses and calculations to be
completed algebraically. In total, there are twelve parameters:
four used to define the interaction and its scale dependence
viaw, K, 1., np properties; and eight introduced to complete
the baryon Faddeev equations. From this foundation, the CI
delivers predictions for 164 distinct quantities. Thus far, 114
of these observables have either been measured or computed
using 1QCD; and a comparison on this subset yields ard =
4.5(7.1)%.

This level of quantitative success suggests that some cred-
ibility be given to the qualitative conclusions that follow from
our CI analysis. (I) Nonpointlike, dynamical diquark corre-
lations play an important role in all baryons; and, typically,
the lightest allowed diquark is the most important compo-
nent of a baryon’s Faddeev amplitude. (II) Positive-parity
diquarks dominate in positive-parity baryons, with J = 17
diquarks being prominent in all of them. (II) Negative-
parity diquarks can be neglected when studying positive-
parity baryons; but owing to EHM, they are significant,
even dominant, in J/ = 1/27 baryons. (IV) On the other
hand, J = 3/27 baryons are built (almost) exclusively from
J = 17 diquark correlations. Naturally, these conclusions
should be checked using more sophisticated Faddeev equa-

tions with momentum-dependent exchange interactions, e.g.
extending Refs. [77,82].

An extension of this analysis to radial excitations of the
states considered herein is possible. However, that requires
additional intervention because one must, by-hand, force
zeros into what would otherwise be momentum-independent
Faddeev amplitudes [55]. A potentially more worthwhile
direction would be to adapt the framework to the challenge
of understanding tetra- and penta-quark states [5,6].

A key longer-term goal is extension of the rainbow-ladder
truncation three-body Faddeev equation study in Ref. [39] so
that it can: (a) directly handle non-degenerate valence-quark
systems (reducing/eliminating the need to use equal spacing
rules); and (b) include beyond-rainbow-ladder contributions
and thus both search for signals indicating the appearance of
diquark correlations and deliver improved ab initio predic-
tions. In such an effort, the use of high-performance comput-
ing resources will be necessary.
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Appendix A: Contact interaction

We employ the symmetry preserving treatment of the vec-
tor x vector contact interaction (CI) described in Ref. [50].
The key element is the quark+antiquark scattering kernel,
which in rainbow-ladder (RL) truncation can be written
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(k = p1 — p| = py— p2):

(A.1a)
(A.1b)

?Qxlai,azaé = gMV (k) [l y,u](xlai [iyv]azaé ’
Gy (k) = G Ty (k).

where sz;w(k) = kzélw — kyky. (Our Euclidean met-
ric and Dirac-matrix conventions are given in Ref. [70,
Appendix A].)

The defining quantity is G. Following two decades of
study, much has been learnt about its pointwise behaviour.
The qualitative conclusion is that owing to the emergence of
a gluon mass-scale in QCD [92,93], ~g saturates at infrared
momenta. Hence, one may write

~ o, k20 4TagR
Gk "= 7
m

G

(A.2)

In QCD, mg ~ 0.5 GeV, air ~ m [94]. Following
Ref. [48], we retain this value of m¢, but reduce o;p to
a parameter. This is needed because the integrals appearing
in CI bound-state equations require ultraviolet regularisation
and this undermines the link between infrared and ultravi-
olet scales that is distinctive of QCD. Furthermore, since a
CI cannot support relative momentum between bound-state
constituents, it is sensible to simplify the tensor structure in
Egs. (A.1) such that, in operation:

I Aoy .
Kglai,azaé - m—2[l V"]O‘l“i [ly“]"‘ﬂé'

G

(A.3)

As remarked already, any use of Eq. (A.3) in an equation
related to the continuum bound-state problem will require
ultraviolet regularisation of any integrals involved. Addition-
ally, the theory is not renormalisable, so the associated mass-
scales, Ayy, are additional physical parameters. They may
usefully be interpreted as upper bounds on the momentum
domains within which the properties of the associated sys-
tems are effectively momentum-independent. For instance,
the ;r-meson is larger in size than the 7;; hence, one should
expect to use 1/A%, > 1/Ap.

For the purpose of expressing confinement, we also intro-
duce an infrared regularisation scale, Aj., when defining
bound-state equations [95]. This has the effect of excising
momenta less than Aj;, thereby eliminating quark-+antiquark
production thresholds [96]. A typical choice for this scale is
Air = 0.24 GeV [50].

In implementing Eq. (A.3), Ref. [48] fixed the parameters
via the masses and leptonic decay constants of the w7, K,
Nes N ie. 07T ff mesons, f € {I = u = d,s,c, b},
where isospin symmetry is assumed. The starting point is the
dressed-quark gap equation, which in RL truncation, using
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Eq. (A.3), takes the following form:

S p)y =iy -p+my

16T ar d4q S+ () (A4)
3 ms ] aoite o '

where m y is the quark’s current-mass. Regularising the inte-
gral in a Poincaré-invariant manner, the solution is

Sp(p)~ =iy p+ My, (A.5)
with M obtained as the solution of:
4a ;
M;=ms+ Mf3—IR2 chm?), (A.6)
wmg
where
. 00 T
C (o) = / ds s/ dre 76+
0 T2,
=o[I(-1,0t%) - I'(-1,0t})]. (A7)

I’ (o, y) is the incomplete gamma-function.
The following functions arise in solving the bound-state
equations considered herein (72, = 1/A2,, 12 = 1/A2):

o) =T —1,0t%) — ['(n— 1,072,

s (A.8)
: —iu
Clo)=0C,(0),n=0,1,2,....
The contact interaction Bethe—Salpeter amplitude for a
0~ fg meson has the following form [50,97]:

Io-(Q) =5 [iEo + 2Mfg)/ : QFO] . (A.9)

Q is the bound-state’s total momentum, Q% = —m%_, mo-
is the meson’s mass; and M po = My Mg /[My + M,].
The amplitude is obtained by solving (r4 =t + Q):

167 IR
Ih-(0) = —T—z
me

d4
. /(znt)4y“Sf(t+)F0-(Q)Sg(t)m. (A.10)

Using the symmetry-preserving regularisation scheme intro-
duced in Refs. [50,97], which requires

l . .
0= /0 do [C) (@ e (e, 0P) + ClM (@ (e, 0P)], (A.11)
where (@ = 1 — «)

wpe(, Q) = M76 + aM; + ad Q7 (A.12)
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one arrives at the following Bethe—Salpeter equation:

[EO(Q)]: dorr | KO K9, [EO(Q):| (A13)
Fo-(Q) 3em% | K%y K%p [LF0-(@Q ] 7

with

1 .
KY . = /0 da{cg)“(wfg(a, 0%))

+[MfMg — a0’ — wyy(a, Qz)}

Xai]u(wfg(ol’ QZ))}, (A.14a)
K, = -2 fl do [&Mf +aMgi|
2Mfg 0
xC) (@pg (e, 07)), (A.14b)
o 2ME
Kie = Qfg Kr, (A.14¢)
_ 1 1! .
Kip = _5/0 do [MfMg +aM> +aMg2]
Xai]u(wfg(“v 0%)). (A.14d)

Equation (A.13) is an eigenvalue problem. It has a solu-
tion for Q% = —m%_, at which point the eigenvector is
the meson’s Bethe—Salpeter amplitude. In the calculation of
observables, one must use the canonically normalised ampli-
tude, viz. the amplitude rescaled such that

1= dd?Hof(Z, 0) o’ (A.15)
where
d*t
Iy-(Z, Q) = 6trp Wfof (=2)Sy(14) Io-(Z) Sg(1).
(A.16)

The pseudoscalar meson’s leptonic decay constant is given
by:

N, 1 _ _
fo-=—"5%— [EOJC%E + FO”C(I)?F]

A.17
472 Mg, ( )

22
Q=—mg_

Following Ref. [48], we use the light-quark results from
Refs. [55,97], listed in Table 7. The fitted value of my/m; =
24 is compatible with estimates in QCD [1], even though
the individual current-masses are too large by a factor of < 2
because of the CI’s deficiencies in connection with ultraviolet
quantities. The result My/M; = 1.4 is commensurate with
the value obtained in efficacious RL studies with momentum-
dependent interactions [24]: M/ M; = 1.25(9).

In heavy-quark systems, Ag; is allowed to vary with the
meson’s mass and the associated coupling is fixed by requir-

ing

0-vp 40 121 Ay 2, Al
aR (A )AL 17 1n = a[R(AﬁV)[AZV] In .
Ajr Ajr

(A.18)

This procedure serves to limit the number of parameters, so
that in fitting the 5., quantities in Table 7 there are only two
parameters for each case: m, p, Agi,’b. Considering the np,
a 1QCD calculation reports f,,, = 0.472(4) [67], but this is
larger than the result for fr» = 0.459(22) [69]; hence, it is
contrary to the experimental pattern: f < fo, fy. < f1/y.
Therefore, Ref. [48] chose to constrain mp, A% via known
experimental results [1]:

Iop = I/ fip] = 0.41(2).

The fitted values of m., mp — m. are aligned with QCD
estimates and the results for M, ;, are commensurate with
typical values of the heavy-quark pole masses [1].

Equation (A.18) implements another physical constraint,
viz. any increase in the momentum-space extent of a hadron
wave function is accompanied by a decrease in the effective
coupling between the constituents. This avoids critical over-
binding. One finds

(A.19)

my—

Zmg 2
= 0.83In[2.79 + 5/(4.66 A;)“];
(A.20)

Auy(s = m(z)—)

hence, via Eq. (A.18), evolution of the quark+antiquark cou-
pling that is well approximated by

mgy—>mg

0.047 2
() " ar (M%)

In[1.04 + 5/(21.77A)?]°

(A21)

The physical origin of these outcomes is clear: the fjy-
integral diverges logarithmically with increasing A,y; and
the flow of ar compensates for analogous behaviour in
the Bethe—Salpeter kernel, thereby maintaining the given
meson’s mass.

Appendix B: Faddeev equations
B.1 Dirac structure of the amplitudes

Adapting the notation in Ref. [51], the Faddeev equation
depicted in Fig. 2 can be written practically in the following
form:

Wiron(P) = {gp  Tign (kign)
x Sg@9)8ps ‘T (ro)(—P(re))}

X Sy (kp)Aghykign)Pigh r(P), (B.1)

where: the first two lines on the right-hand-side, parenthe-
sised, express the exchange kernel; a sum over all contribut-
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Table 7 Couplings, ultraviolet cutoffs and current-quark masses that
deliver a good description of pseudoscalar meson properties, along with
the dressed-quark masses and chosen pseudoscalar meson properties
they produce; all obtained withmg = 0.5 GeV, A;; = 0.24 GeV. Empir-

ically, at a sensible level of precision [1]: m; = 0.14, f; = 0.092;
mg = 0.50, fx = 0.11; m,, =298, f;,. = 0.24; m;, = 9.40. The
value of f;, is discussed in connection with Eq. (A.19). (Dimensioned
quantities in GeV)

Quark oR /T Ay m M mo- fo-
l=u/d 0.36 0.91 0.007 0.37 0.14 0.10
s 0.36 0.91 0.17 0.53 0.50 0.11
c 0.053 1.89 1.23 1.60 2.98 0.24
0.012 3.54 4.66 4.83 9.40 0.41
ing diquark correlations is implicit; kn) = —k + (2/3) P, Ag+ (k) = . 1 — (B.8a)
4g = Pifo) — ks Pro = =P (2/P kp =k + P/3; k= 4 mi,
“T” indicates matrix transpose; I'(Q) = C'I'(Q)TC; and PR kuky
gy is described in connection with Eq. (13). The complete A () = B m, (B.8b)
amplitude for the bound-state is m k2 +mi '
1
Y =Yen s +VYaupg + Yiron- B2)  Ap-(k) = pEp— (B.8c)
me_
Regarding J = 1/2 solutions of Eq.(B.1), one has 5 k(l X
+ 4
— H mZ,
W (P) =y (Pu(P), (B3) A, (k)= pra (B.8d)
- . . oy
where the positive energy spinor satisfies
u(P)@iy -P+M)=0=(y - P+ M) u(P) B.4)

and is normalised such that u (P)u(P) = 2M. (See Ref. [70,
Appendix A] for more details.) Using this form, then the
complete CI solution for 1/ (P), the Faddeev amplitude of a
1/2* baryon, is a sum of the following Dirac structures:

S* =G (s" Ip), (B.5a)
AL =G (af ivsyu+ @ vsPy), (B.5b)
PE =G (p"iys). (B.5¢)
VE=G*(q iy + 5 IpPy), (B.5d)

where G*(7) = Ip(ys). Faddeev equation dynamics deter-
mines the values of the coefficients: {si, a2, pi, 71,2}, each
of which is a vector in flavour space whose structure is deter-
mined by the baryon under consideration, as will soon be
explicated.

For J = 3/2% baryon, Eq. (B.3) becomes

WE(P) =y, (P)uy(P), (B.6)
where u, (P) is a Rarita—Schwinger spinor; and
vk = G (F Induw). (B.7)

where, again, the coefficients fi carry flavour labels appro-
priate to the baryon.

The diquark propagators in Eq. (B.1) take the following
forms, depending on the quantum numbers of the propagating
correlation:
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where the masses are given in Table 2.

B.2 Flavour structure of the amplitudes

Working in the isospin-symmetry limit, the Faddeev equation
in Fig.2 supports 88 distinct baryon states, which we list
below. The flavour structure of the amplitudes reflects the
quark+diquark approximation.

B.2.1 Three light quarks

There are 16 = 2% x 8 light-quark baryons (“2%” indicates
positive/negative parity), with 8 = 2% x 4 J = 1/2:

ry ulud]p+
1y d{uu}y+
3 u{ud}i+ |,
14 ulud]y-
15 ufud];-

11 V2s[ud]y+
1y dlus]o+ — ulds]o+
r3 d{us}+ —u{ds}+
r4 v/2s[ud]o- :
rs duslo- — ulds]lo-
16 /2s[ud];-
r7 dlus]i- — ulds]-

(B.9a)

') (B.9b)

Sl -
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11 ulus]o+
1y s{uu}+
r3 uf{ushi+ |,
14 uluslo-

L rs ulus]y-

(B.9¢)

[y s[us]o+
1o s{us}+
13 ufsshi+ |,
r4 s[us]o-
Lrs slusli-

(B.9d)

in which the row number is listed explicitly for future use;
and 2% x 4 J =3/2:

Yy = [u{uu}1+ ] , (B.10a)
| sfuu}+

Uy = |:u{us}1+]’ (B.10b)

Yo = [S{’”}l*} (B.10¢)
u{ss}+

Vo = [s{ssh+]. (B.10d)

B.2.2 Flavour amplitudes: two light quarks and one heavy

With Q = c, b, there are 32 = 2% % 20 x 8 distinct states
in this case, 20 = 2% x 29 x 5 J = 1/2:

r uluQlo+

ry Qfuu}i+
Vs, = | 13 u{uQh+ |,

r4 u[uQlo-

rs uluQ]i-

r; V2Qlud]+
ry duQlo+ — uld Qlo+
r3 d{uQl+ — u{d Q}+
r4 v/20[ud]y- ,
r5 d[uQlo- — uld Qlo-
t6 v/20[ud];-
| 17 d[uQli- —uldQ]- |

r1 V20[uslo+
1y s[uQlo+ —uls Qlo+
|| 3stuQhie —uls O+
r4 V/20[usly- ,
5 s[uQJo- —uls Qlo-
re v/20[us];-
| 17 s[wQli- —ulsQli- |

[r1 s[uQlo+ + uls Qlo+ ]
R V20Q{ush+

— | r3 s{uQh1+ +ul{sQ}+
V2 r4 s[uQlo- + ulsQlo-
| 15 s[uQli- +uls Q-

(B.11a)

(B.11b)

(B.11¢)

(B.11d)

1 s[s Qlo+
rp Q{ss}+
o = | Bs{sOh+ |,
r4 s[sQlo-
5 s[s Q-

(B.11e)

where Ep/& /Q are antisymmetric/symmetric under u <> s;
and 12 =2% x 29 x 3 J =3/2:

[ Ofuu)+
'1125 = [u{uQ}1+:| ) (B.12a)
_ L [V20lus)+ }
=5 [s{uQ}1+ FulsQhe | (B-126)
+ | Olssh+
Yoy = [S{SQ}]J. (B.12¢)

B.2.3 Flavour amplitudes: one light quark and two heavy

Writing ¢ = u, s and remembering that isospin-symmetry is
assumed, there are 28 = 2F x 2,4 x 7 distinct states in this
case, 16 = 2% x 2, x 4 J = 1/2:

1 clgclo+
e ry c{gch+
lI/_(;g,”::S = | r3 g{cch+ |, (B.13a)
' 14 clgclo-
15 clgcli-
11 blgclo+ — clgblo+
I \/zq[cb](yr
i 1| 13 blachi —clgbhi+
W Ly = — | 14 blgclo- —clgblo- |, (B.13b)
Lo V2 faglebly-
16 blgcli- — clgbly-
| 17 V2q[ch];- i
11 blgclo+ + clgblo+
= 1 | 2 blachi+ +clgbhi+
Wi = WAk V2q{ch}+ , (B.13¢c)
<@ r4 blgclo- + clgblo-
L 15 blgcli- + clgbli-
11 blgbo+
—q=u ry b{gb}i+
WOt = | 13 q{bbhi+ |, (B.13d)
v r4 blgblo-
r5 blgb];i-

where Z.,/E/, and §2.;/£2], are antisymmetric/symmetric
under ¢ <> b; and 12 = 2% x 2y x3J=3/2

vz < [doan]

Q= glcch+ (B.142)
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2 _ 1 | blgchir 4+ clgbhi+
lI/ T = — , B.14b
V) |:\/§f]{0b}1+ ( )
Zhq=u _ b{qb}1+
2ppa=s |:q{bb}1+ ' (B.14¢)
B.2.4 Flavour amplitudes: three heavy quarks

Finally, there are 12 = 2+

2:|:

Yy =

and

Yo

Yo, = b{bb}1+]

ccb =

cce T

X 6 triply-heavy baryons, 4 =
x2J=1/2

11 cleblp+ ]
ry bicc}+
r3 c{cb}i+ |,
4 clch]y-

| 15 cleb]i-

[ 11 blcb]o+
ry b{cb} i+
r3 c{bb}1+ |;
T4 b[Cb]Of

| 15 blcb];-

(B.15a)

(B.15b)

8§=2Fx4J=3/2:
{cc)i+ ], (B.16a)

b{cc}i+
c{cb} i+

[
o
[bkbh+]
[

(B.16b)

(B.16¢)

c{bb}+
(B.16d)
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