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Abstract Inspired by the stringy quintessence F-term prob-
lem we highlight a generic contribution to the effective mod-
uli masses that arises due to kinetic mixings between the
moduli and the quintessence sector. We then proceed to dis-
cuss few supergravity toy models that accommodate such
effect, and point out possible shortcomings. Interestingly,
in the standard 2-derivative supergravity action there is no
term to mediate the supersymmetry breaking from the kinetic
quintessence sector to the gaugini and generate Majorana
masses. Therefore we also propose a 2-derivative supersym-
metric invariant that plays exactly this role.

1 Introduction

The existence of de Sitter vacua has been often chal-
lenged in string theory [1–3] and one needs to contemplate
on viable alternatives. In particular one scenario that has
regained attention is the so-called quintessence phase [4–6].
Quintessence is essentially nothing but a low-scale inflation-
ary phase, and as such, quintessence is still plagued with
some of the problems of inflation in string theory.

However, apart from the challenges that one faces when
embedding the quintessence sector in string theory and
achieving moduli stabilization, there is an extra issue that
arises which relates to the mediation of the supersymmetry
breaking to the observable sector. This issue was highlighted
recently in [7], where it was dubbed “F-term problem”, and
can be summarized as follows: Even though the net super-
symmetry breaking scale can be (at best) of order TeV (in
order to control loop corrections), the supersymmetry medi-
ation scale is large and gives very light superpartner masses
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for the standard model sector.1 In other words, even though
the net supersymmetry breaking can be TeV, one finds the
gaugini masses to be of order 10−15 TeV. One could intro-
duce an extra hidden sector (say X ) that also breaks super-
symmetry, but this will not solve the problem. Indeed, let us
assume the quintessence dynamics requires a scalar potential
Vquint and that the breaking from X is mediated as usual by
a new term in the Kähler potential of the form

δK ∼ αi

�2 |X |2|�i |2 → αi |FX |2
�2 |Ai |2, (1.1)

where αi are some parameters that are expected to be of
O(1) and � is some cut-off (or equivalently a mediation
scale). As a result, to have a considerable contribution to the
non-supersymmetric masses one will need a large value for
〈FX 〉 ∼ (TeV)2. The latter will then feed into the supergrav-
ity scalar potential giving an extra contribution proportional
to

δVSUGRA ∼ SUSY breaking ∼ |FX |2 � Vquint , (1.2)

which in turn leads to an unrealistic late-time cosmological
scenario, or at least spoils the original quintessence phase
that was controlled by Vquint . One could cancel this new
contribution to the scalar potential by finding another new
contribution to the gravitino mass (recall that VSUGRA =
−3m2

3/2 + · · · ), but such resolution posses a challenge as
discussed in [7] because no new contributions to the gravitino
mass seem possible from string theory. Or if they exist, they
are going to be sub-dominant.

It is important to appreciate that the only consistent way to
lower the vacuum energy in N = 1 supergravity is either by
lowering the net supersymmetry breaking or by increasing
the gravitino mass. Other effects will either fall under these
two categories or will include ghosts. This is what makes the
F-term problem a very serious issue for quintessence models.

1 A similar issue (but not really of the same nature as the F-term prob-
lem) also arises in simple supergravity quintessence models (see e.g.
[8]).

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09085-w&domain=pdf
mailto:fotis.farakos@gmail.com


275 Page 2 of 13 Eur. Phys. J. C (2021) 81 :275

Note also that there is no straightforward way to escape from
the F-term problem even if one uses the huge freedom granted
by non-linearly realized supersymmetry [9,10]. Indeed, the
supersymmetry breaking sector, even if it is a pure goldstino,
is typically tied to a non-vanishing contribution to the vac-
uum energy of the form (1.2), which according to [7] has to
be extremely small. Then, technically, it is possible to elimi-
nate the superpartners with various X -related nilpotency con-
ditions [11]. However, because the supersymmetry break-
ing scale from FX is too low, the goldstino self-interactions
remain non-unitary even at rather very low energies (ener-
gies comparable to

√
FX ) [12]. This means such a theory will

have a very low cut-off (below the TeV scale). Alternatively,
one could consider that it is the net supersymmetry breaking
(which is of order TeV) that enters the nilpotency conditions
and not only

√
FX . It is not clear how realistic it is to obtain

such a scenario from string theory.
In this work we want to take a closer look into the

quintessence phase, and its supergravity embedding, and see
if there is some additional contribution to the scalar masses.
We first recall that the mass splitting between the component
fields of a supermultiplet is typically controlled by the over-
all supersymmetry breaking, therefore one should consider
the contributions from all relevant sectors. Because during
quintessence we are on a background where there exists a
scalar with non-vanishing kinetic energy, say φ̇ �= 0, then we
will have an extra contribution to the supersymmetry break-
ing. The easiest way to convince oneself that this is the case
is by noticing that 4D N = 1 supergravity is equipped with
the appropriate goldstino-gravitino mixing term [13,14]

∂mφχφσmσ nψm → φ̇χφσmσ 0ψm . (1.3)

Such coupling with the gravitino is the signature of a super-
symmetry breaking sector, and means that φ̇ is generically
bound to contribute to mass-splittings within a supermulti-
plet or give mass to scalar moduli. This also means that the
goldstino is not only provided by the multiplet with the non-
vanishing auxiliary field VEV (e.g. FX ) but also gets a contri-
bution from the fermion superpartner χφ of the quintessence
scalar. Schematically we conclude that [15]

SUSY breaking ∼ “|FX |2” + “φ̇2”. (1.4)

Even though we have established that φ̇ contributes to the
supersymmetry breaking, we are again faced with a new type
of F-term problem because if φ̇ is too large, then it will endan-
ger the quintessence phase simply by breaking the slow-roll
conditions. This can be also understood by inserting (1.4)
into (1.2). In fact during a slow-roll phase

φ̇2 ∼ εH2, (1.5)

and therefore the true challenge in these models is to see how
realistic a strong mediation term will be. In other words, we

want to see if we can have parametrically large masses (com-
pared to εH2), that are generated now by φ̇ �= 0 instead of
FX �= 0. As we will see the applicability of such mecha-
nism in quintessence is always model dependent, and it may
happen that in models derived from string theory such effect
cannot truly help ameliorate the F-term problem.

The rest of the article is organized as follows. In the next
section we work with a non-supersymmetric gravitational
theory and in the third section we turn to supergravity. In
both cases we show that the contribution to the mass of the
scalars is model dependent, and we also discuss few exam-
ples where it works and examples where it fails. We also
see why such mechanism (which is intrinsic in supergravity
embeddings) may instead pose a catastrophic threat to other-
wise healthy quintessence models, depending on the kinetic
mixings. This effect is already studied within the context
of inflationary cosmology, because it can ruin inflation, and
therefore is dubbed “geometrical destabilization” [16–19]. In
the fourth section we turn to the gaugini masses which are of
course also influenced by the F-term problem. We find that the
term that mediates the breaking from the quintessence sector
to the gaugini is not present in standard supergravity. Then we
proceed to construct a new term that does exactly that and we
study its properties. It seems that such term finds its natural
place within the new-minimal formulation of supergravity,
and in models where the quintessence phase is driven by a
real linear multiplet instead of a chiral. In the fifth section
we give a few concluding remarks and an outlook for future
work.

2 Effective masses from kinetic mixings

Before turning to supergravity it is very instructive to work
with a non-supersymmetric model. To this end let us consider
quintessence driven for simplicity by a real scalar τ slow-
rolling down a run-away potential, that is we simply have

e−1Lquint = −1

2
R − 1

2
k(τ )∂τ∂τ − V . (2.1)

Here for later convenience we have also included a kinetic
function k(τ ). On an FLRW background we have

ds2 = −dt2 + a(t)2d 	x2, (2.2)

where a is the scale factor and the Hubble scale is H = ȧ/a.
The scalar equation of motion and the Friedmann equation
then read

k(τ )τ̈ + 3Hk(τ )τ̇ + 1

2
k′(τ )τ̇ 2 + V ′(τ ) = 0,

1

2
k(τ )τ̇ 2 + V = 3H2, (2.3)
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where the dot refers to time derivative. One then needs to
achieve slow-roll, just as in standard inflation, which requires

ε = 1

2

V ′2

kV 2 � 1, η = V ′′

kV
− 1

2

k′V ′

k2V 2 � 1. (2.4)

Then once the slow-roll conditions are met we have

τ̇ � − V ′

3Hk
. (2.5)

Let us assume there is now another scalar in the theory (say
ρ) with canonical kinetic term but with a kinetic coupling to
the quintessence sector of the form

k(τ ) in (2.1) → k̃(τ ) = k(τ ) − γρ2. (2.6)

Note that the scalar ρ can also enter the scalar potential V and
could also have a mass term due to other effects. However
such scalar gets an extra contribution to its effective mass
due to the kinetic coupling

+ 1

2
eγ ∂τ∂τρ2 → −1

2
eγ τ̇ 2ρ2. (2.7)

Therefore this new contribution to the mass has the form

δm2
ρ = γ τ̇ 2 � γ

V ′2

3Vk2 � 2γ

3k
εV . (2.8)

As long as slow-roll holds clearly εV is a small number,
however the 2γ /3k term can help give a significant positive
contribution to the mass, or reduce it depending on the sign
of γ . In addition, we can assume that during the quintessence
phase ρ|quint = 0 = ρ̇|quint such that k̃|quint = k|quint and
so the quintessence phase is left intact. Note that quintessence
has a crucial difference compared with inflation: During
quintessence it is sufficient to have

ε � 1, (2.9)

and so if we take roughly

V ∼ 10−120,
k

γ
∼ 10−90, (2.10)

we get a mass contribution of order (we restore momentarily
MP )

δmρ ∼ 10−15MP . (2.11)

At first sight such small values for k/γ seem to require sig-
nificant tuning and may seem unrealistic. Therefore as we
said earlier the challenge is to see if such values could be
achieved in a realistic model.

A model independent discussion could only get us this far,
so let us now work with a simple example. We set

k(τ ) = 1

τ 2 , V (τ ) = V0τ
−1/2, (2.12)

and we remind the reader that we are always working with
Planck units, i.e. MP = 1, unless otherwise noted. Then we

can recast the scalar τ into a form with canonical kinetic
terms, which means we set

φ = lnτ, (2.13)

which brings the scalar potential for the canonical field φ to
the form

V = V0 e
−φ/2. (2.14)

This scalar potential2 is typical for quintessence and one can
find that the time dependence is

φ � 4 ln

(√
V0

8
√

3
t

)
, φ̇ � H

2
� 4

t
. (2.15)

Now we can directly evaluate the contribution to the effective
mass

δm2
ρ = γ τ̇ 2 � γ e2φφ̇2 � γ V 4

0

(18)2 H
−6. (2.16)

Taking into account that V 2
0 H−3 can take a variety of values

we see that the mass contribution due to the kinetic mixing
can be arbitrarily large and can strongly stabilize the scalar as
long as γ is positive. In addition the quintessence phase is not
broken because the net kinetic energy is still sub-dominant,
i.e. we have

1

2
k(τ )τ̇ 2 � εH2 ∼ H2

8
� 3H2, (2.17)

which means our slow-roll approximations are of course
valid.

It is interesting to get some feedback from the swamp-
land conjectures to see if such hierarchy has at least a remote
chance of being generated in string theory. The distance con-
jecture for an inflating theory takes roughly the form [20,21]

�φ � 1

λ
log

1

�UV
, (2.18)

where �UV is some high energy cut-off scale associated to
quantum gravity and λ is generically assumed to be of order
one. This restricts the range of φ but still gives a window
that allows the V 2

0 H−3 fraction in (2.16) to take a variety of
different values. Let us assume

�UV ∼ TeV ∼ 10−15, λ ∼ 1

10
, (2.19)

which give

�φ � 150. (2.20)

Note here that we took the TeV scale (the scale of the super-
partners) as the UV cut-off and we set for λ to be one order

2 Note that such exponential potential is also in agreement with the de
Sitter conjecture [2], as it has roughly an O(1) factor in the exponent.
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of magnitude smaller than the generic expectation. Then we
can have

φ ∼ 90, V0 ∼ 10−100, (2.21)

which give

H ∼ 10−60, δmρ ∼ √
γ × 10−15. (2.22)

We see that if γ is of order one then such a scenario is
marginally within the limits set by the swampland. Clearly,
by changing the behavior of γ we can relax the restrictions
from the distance conjecture even more.

In the example we discussed it seems possible that the
mass due to kinetic mixing will have a significant positive
contribution. This may be true for the specific model we
studied but it is strongly a model-dependent result. Indeed,
if for example γ is not a constant, and if it is instead given
by γ ∼ k(τ ) then the contribution to the mass of ρ would be
proportional to H2 and so it would be insignificant. Clearly
different choices of γ lead to masses of different magni-
tude. Another situation is to have γ < 0 in which case the
mass from the kinetic mixing would tend to make the scalar
a tachyon. We also note that this effect is typically ignored
during inflation because in the deep inflating regime we have
ε � 1 and so it is very hard to generate significant contribu-
tions to the masses of the other scalars (due to this mecha-
nism). For situations where this effect can endanger inflation
due to the existence of light moduli see e.g. [16–19].

3 Examples in N = 1 supergravity

The bosonic sector of the Lagrangian for chiral scalar super-
fields coupled to N = 1 supergravity has the form

e−1L = −1

2
R − Ki j∂A

i∂A
j − VSUGRA, (3.1)

where VSUGRA is the standard scalar potential of supergrav-
ity, see e.g. [13,14], and K is the Kähler potential. The Ai

are the complex scalars that belong to the chiral superfields
�i . Models and discussions for quintessence in supergravity
and in string theory can be found for example in [8,22–32], a
general review focused on string theory models can be found
in [33] (and in [7]), and some alternative proposals in string
theory can be found in [32,34,35]. Therefore we will not
commit ourselves here to finding an appropriate superpoten-
tial P(�i ) that gives to VSUGRA the required quintessence
form. Rather, we will investigate what types of Kähler poten-
tials can give rise to a significant mass to the scalars due to
the kinetic mixing, assuming we are in a quintessence phase.
Since the impact of the kinetic mixing on the mass is highly
model dependent, we will illustrate the various possibilities
with few examples.

Kähler moduli inspired example

Let us first give an example where the effect of the
quintessence phase has a different behavior than the one we
saw in the previous section. We focus on only two complex
scalars A and T , the latter being the quintessence field. We
set

K = −2 ln(T + T − AA/2), (3.2)

where T can be some Kähler modulus and A a modulus
related for example to the position of a D3-brane (see e.g.
[7,36]). Within a complete string theory setup the K =
−2 . . . would rather be K = −3 . . . (for example if we
considered Kähler moduli quintessence [25]), but since it
does not play a significant role we keep the −2 so that we
match the quintessence dynamics with the previous discus-
sions. The kinetic terms of T are controlled by

KTT = 2

(T + T )2

(
1 + AA

T + T
+ · · ·

)
. (3.3)

To study the dynamics let us split the complex scalar field T
as

T = τ + iζ, (3.4)

with the background profiles of the fields during the quintessence
phase given by

ζ |quint = 0, τ |quint = slow-rolling scalar, (3.5)

and

A|quint = 0 = Ȧ|quint . (3.6)

Here (3.5) and (3.6) are introduced “by hand” in order
to exemplify the dynamics we wish to study, implicitly
assuming the existence of an appropriate scalar poten-
tial/superpotential that would give rise to such solutions. Note
that the model we have here gives exactly the same form
for the kinetic function as we had in the previous section
k(τ ) = (1/2)τ−2. It is then convenient to assume that the
dynamics of τ are similar to the ones we found for the work-
ing example in the previous section (i.e. a scalar potential
similar to (2.12)) such that

τ ∼ V 2
0 H−4, τ̇ ∼ V 2

0 H−3. (3.7)

We can now evaluate the contribution to the effective mass
of A due to the kinetic term of T on the quintessence back-
ground. We will assume that the scalar A has small fluctu-
ations about the extrema (3.6), that we will call δA. From
(3.3) we have

Lkin T ∼ |Ṫ |2|δA|2
(T + T )3

∼ τ̇ 2

τ 3 |δA|2 ∼ V−2
0 H6|δA|2. (3.8)
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To correctly identify the contribution to the mass of A (or
δA) we have to take into account also the normalization of
its kinetic terms

Lkin A ∼ − 1

τ
|∂(δA)|2 ∼ −V−2

0 H4|∂(δA)|2. (3.9)

Therefore after canonical normalization we find a very small
negative contribution to the effective mass

δm2
A ∼ − τ̇ 2

τ 2 ∼ −ε H2. (3.10)

If the scalar A is very light this will lead to a destabilization
[16–19], but if there is already another positive supersym-
metric mass (or not supersymmetric) then there is no issue.
Note also that the mass is exactly of the same order as the
supersymmetry breaking sourced by the quintessence sector,
that is εH2.

A different potential can change the impact of such effect
and may lead to a significant contribution to the moduli
masses. Indeed, let us assume that we have instead of the
scalar potential in (2.12), a scalar potential of the form

V̂ (τ ) = V0τ
1/2, (3.11)

but we keep of course the same Kähler potential (3.2). Here
the crucial difference is that τ goes to smaller and smaller
values as the quintessence phase proceeds. Then we can again
recast the scalar τ into a form with canonical kinetic terms
by setting

φ = −lnτ. (3.12)

This brings the scalar potential for the canonical field φ to
the form

V̂ = V0e
−φ/2. (3.13)

Then we have τ ∼ V−2
0 H4 and thus

Lkin T ∼ τ̇ 2

τ 3 |A|2 ∼ V 2
0 H−2|A|2, (3.14)

which may give a considerable negative contribution to the
moduli masses and completely ruin quintessence, as happens
with the geometrical destabilization [16–19]. Note however
that once canonical normalization is taken into account we
will have a mass of the form (3.10) which seems less danger-
ous. Still, the H−2 that comes from the kinetic mixing (3.14)
is a huge negative contribution which has to be matched by
another contribution to the second derivative of the super-
gravity scalar potential in order to stabilize the scalars.

Note that a crude analysis of the fibre quintessence sce-
nario [25] shows that if we included the D3-brane moduli
as in (3.2) and have T as the quintessence scalar then we
would get a mass contribution of the form δm2 ∼ −εH2.
This is of course not an immediate threat as long as there is
a sector that contributes to the moduli masses at least as H2.

Such contribution is within reach even if the F-term problem
persists.

Until now we have seen that the contribution to the moduli
masses due to the quintessence sector is of order εH2, and so
rather insignificant. Needless to say that one can add modifi-
cations to the Kähler potential (3.2) such that the contribution
from quintessence changes and gives instead a huge impact
to the masses. For example a succinct list of the contributions
that can enter (3.2) can be found in [7]. However, we checked
few simple deformations and found that the parameters enter-
ing such modifications would require a significant amount of
tuning to increase considerably the contribution to the effec-
tive mass. Therefore one can wonder if the required mod-
ifications, and in particular the amount of tuning required,
would really exist in string theory. We will come back later
to this point and give a working example.

General expectations

As we have seen the quintessence sector seems to give very
small contributions to the effective masses of the moduli. In
search of possible modifications, let us now see what are the
general expectations we can have in a supergravity theory. Let
us first assume we have a Kähler potential K (T + δT, T +
δT , A+δA, A+δA) with a form such that it can be expanded
as follows

K = α|δT |2 + β|δA|2 − γ |δA|2|δT |2 + · · · (3.15)

where the dots are simply higher order terms. The coefficients
α, β and γ are of course nothing but the derivatives of the
Kähler potential with respect to the chiral superfields, e.g.
α = KTT , β = KAA, and

γ = −KTT AA, (3.16)

and they are in principle field-dependent. Then the consis-
tency of the kinetic terms will require

α(T, T ) > 0, β(T, T ) − γ (T, T )|δT |2 > 0, (3.17)

and we also choose to have γ (T, T ) > 0. As before, for
quintessence we have

δT |quint = τ, (3.18)

which is a real scalar. Now the kinetic mixing will induce a
mass term to the scalar A and once we also take into account
canonical normalization we have

δm2
A = γ τ̇ 2

β − γ τ 2 . (3.19)

For this effect to dominate the mass of the complex scalar A
one would essentially ask that γ takes parametrically large
values. However, then, the denominator due to the canonical
normalization would become negative signaling that the A
scalar would be a ghost. In other words, to guarantee that the
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denominator is positive one has to ask that β > γ τ 2 which
can be safely satisfied only when γ is not parametrically
large.

One can be tempted to take β � γ τ 2 in (3.19) such that the
denominator remains positive but approaches zero, in which
case the mass becomes arbitrarily large. However such large
mass should not be attributed to the quintessence supersym-
metry breaking per se, rather it is due to the singular kinetic
term of A. Indeed, one important point we would like to dis-
cuss is related to the fermionic and the scalar moduli kinetic
terms. In principle due to the kinetic mixings we will have
terms of the form

− Ki j (τ ) ∂Ai∂A
j − i Ki j (τ ) χ jσmDm(ω)χ i , (3.20)

which after the field redefinitions may in any case alter the
masses. However such terms do not require a specialized
discussion here for the following reasons. Firstly, such terms
lead to a rescaling of the fermions and the scalars of the same
supermultiplet in exactly the same way. So as far as the F-term
problem is concerned such terms are not so important because
they do not generate a mass splitting per se. Secondly, these
terms will influence also the moduli masses that are generated
from the standard scalar potential. Therefore, if these terms
do have a significant impact on the masses, then they will also
affect the mass splitting coming from the F-term breaking.
So, again, it is not an effect that should be attributed to the
quintessence supersymmetry breaking per se. Finally, if we
want to address the scalar moduli stabilization, then such
terms should be in any case taken into account when we
evaluate the moduli masses, and so our discussion does not
have something extra to add to that. However, we always do
have to check in the end the true effective mass of a scalar,
as we have been doing.

Our general discussion until now seems to imply that we
could never make the kinetic mixing give a huge positive con-
tribution to the masses in a supergravity setup, and therefore
much less in string theory. However, there is a small detail
in the Kähler potential that changes completely the behavior
of such term. In particular we simply have to ask that

KAA = β(A, A) + 1

2
(T − T )2 γ (T, T , A, A). (3.21)

Then the canonical mass of the scalar A during a quintessence
phase (that is Re δT = τ and Im δT = 0), will receive instead
a contribution of the form

δm2
A = γ (τ) τ̇ 2

β(τ)
. (3.22)

As a result we see that by making γ arbitrarily large, which
we are now at least technically allowed to do, we can generate
a parametrically large effective mass for the scalar A.

The form of the Kähler metric (3.21) implies that in that
sector the real part of T has at least some sort of shift symme-

try. In fact the requirements for shift symmetry may become
even stronger when one tries to build realistic scalar poten-
tials, i.e. once we introduce a superpotential and check slow-
roll, stability, etc. Note also that the form of (3.21) guaran-
tees that the quintessence scalar will interact with A only
when the derivatives are acting on it. These properties of
the quintessence scalar already remind the properties of the
axions. In fact it is exactly the derivative couplings of the
quintessence sector with the other fields that are needed for
this mechanism to work. We leave a detailed study of the
impact of this mechanism on realistic stringy quintessence
models that are based on axions for a future work. Instead
now we turn to a working example following the strategy we
just outlined.

An ad hoc working example

Let us now support our previous discussion with a specific
example, which is inevitably at this point rather ad hoc. We
set

K = −2 ln(T + T ) + AA + 1

M2 (T − T )2AA. (3.23)

Then we have the kinetic terms

e−1Lkin = − 2

(T + T )2
∂T ∂T + 2

M2 ∂T ∂T |A|2

−∂A∂A − (T − T )2

M2 ∂A∂A + . . . , (3.24)

where the dots stand for terms that are not relevant to us now.
As before on an FLRW background we have

+ 2

M2 ∂T ∂T |A|2 → −2
|Ṫ |2
M2 |A|2, (3.25)

which gives rise to a contribution to the effective mass

δm2
A = 2

|Ṫ |2
M2 . (3.26)

The model we have here gives for the kinetic function the
form k(τ ) = (1/2)τ−2 and so if we worked with a scalar
potential similar to (2.12) we would get

δm2
A ∼ τ̇ 2

M2 ∼ 1

M2 V
4
0 H−6. (3.27)

We see that in this case we do get a significant contribution
to the effective mass of the scalar A, as we anticipated. We
stress that the mass (3.27) is truly a product of the super-
symmetry breaking that is sourced from the kinetic energy
of the quintessence scalar T . One can explicitly check this
on the full supergravity action by verifying that the fermion
superpartners of A do not get a similar mass term as (3.27).
Note that the kinetic terms of A get an extra contribution due
to the term (T − T )2∂A∂A ∼ ζ 2∂A∂A. However, because
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in our example here ζ = 0 during the quintessence phase,
such term vanishes.

4 Gaugino masses?

Let us now turn to the gaugino F-term problem. Until now
we have discussed the impact of the F-term problem on the
masses of scalar moduli assuming that a similar discussion
(at least qualitatively) will hold for sfermions (scalars that
are superpartners of the standard model fermions). However,
one can wonder what happens to the gaugini, which are also
influenced by the F-term problem. Indeed, one needs a term
of the form

1

�

∫
d2θXW 2, (4.1)

for some cut-off � (or equivalently, a mediation scale), in
order to generate standard Majorana masses of the form

FX

�
λ2. (4.2)

As we already discussed, in the stringy models either �

is too large or FX is forced to be small and as a result
FX/� remains very low [7]. Moreover, we have seen that
the quintessence supersymmetry breaking may instead give
a significant contribution to the scalar masses and we would
like to see if it is possible to have a similar effect for the gaug-
ini. However the standard 2-derivative supergravity [13,14]
is not equipped with a term that gives Majorana masses due to
the quintessence phase. In this section we address exactly this
issue. First we see that in rigid supersymmetry one can con-
struct 2-derivative terms that give rise to gaugini Majorana
masses. However, these terms cannot be embedded directly
in the old-minimal formulation. Therefore we turn to an
effective field theory approach for their supergravity embed-
ding, but we still ask that they give the 2-derivative terms in
the rigid limit. In the new-minimal formulation instead such
terms do exist and describe 2-derivative interactions.

Note that the supergravity theory does instead con-
tain terms that generate fermionic bilinears of the form
e−1LSUGRA ∼ 1

M2
P
i(KT − KT ) τ̇ λσ 0λ. However such

terms do not have the standard Majorana form as they mix
the chiralities, they decouple in the rigid limit, and also
equivalent terms further contribute both to the masses of the
fermions that belong to the chiral multiplets but also to the
gravitino. Therefore we avoid invoking such terms, and we
also notice that they do vanish in our working examples. We
believe that they deserve a careful study that we leave for
future work. Here instead we will construct standard Majo-
rana masses.

Tensor multiplets and rigid supersymmetry

Let us start by introducing a supersymmetric interaction that
contains up to two derivatives, up to Gaussian auxiliary fields,
and gives rise to a gaugino mass on a time dependent back-
ground. This term is exactly the missing piece that helps
complete the mediation of the quintessence supersymmetry
breaking to matter. It is more convenient to describe such
superspace coupling in terms of a real linear multiplet, and
then dualize it to derive its form in terms of chiral superfields.

Let us present the superfields we need.3 A real linear mul-
tiplet is defined in superspace as

L = L∗, D
2
L = 0 = D2L . (4.3)

Its component fields are

L| = a, DαL| = √
2χ L

α , −1

2
[Dα, Dα̇]L| = σm

αα̇Hm,

(4.4)

where Hm satisfies the constraint ∂mHm = 0, which means
it is the field strength of a real two-form Hm = εmnkl∂

n Bkl .
Since we want to couple to the gaugini, let us also introduce
the standard N = 1 gauge multiplet. Its component fields
reside in the gauge invariant chiral superfield

Wα = −1

4
D

2
DαV, (4.5)

and have the form

Wα| = −iλα, (DαWβ + DβWα)|
= 2i(σ nmε)αβFmn, DαWα| = −2D, (4.6)

where Fmn = ∂mvn − ∂nvm . Here we will work with an
abelian gauge vector but our coupling can be used also for
non-abelian. Finally the chiral superfield (Dα̇� = 0) will be
useful later and has the expansion

� = A + √
2θχ� + θ2F�. (4.7)

The term that we study here and that mediates the super-
symmetry breaking is

Lmed = 1

M3

∫
d4θL2(W 2 + W

2
)

= − 1

2M3

∫
d2θ W 2(DL)2 + c.c., (4.8)

where in the second equality the Dα̇L is allowed because it is
a chiral superfield in global supersymmetry. Our first job is to
verify that this is a two-derivative term and that there are no
higher order auxiliary field terms. To this end we perform the
superspace integral and act with the superspace derivatives

3 We use conventions from the book of Wess and Bagger [13].
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to bring the mediation term to the form

Lmed = 1

8M3 D
2W 2|(DL)2| + 1

4M3 D
αW 2|Dα(DL)2|

+ 1

8M3 W
2|D2(DL)2| + c.c. (4.9)

From this expansion and from the component field defini-
tions we see that there is not a single term that will give rise
to more than two derivatives or to more than two auxiliary
fields. Moreover, we also see that there are always at least
two fermions with no derivatives acting on them, and there
are never more than one derivatives acting on any field. This
is crucial because it tells us that once we add this term to 4D
N = 1 gauged chiral models the standard 2-derivative kinetic
terms and the scalar potential are left intact. We leave the full
component field expansion, the investigation of the proper-
ties of all the terms in (4.9), and possible generalizations for
a future work. Here instead we focus on the last term in (4.9)
which gives in components

Lmed = − 1

4M3 λ2 (∂aa + i Ha)
2 + · · · (4.10)

where the dots contain the complex conjugate and other
fermionic terms. From (4.10) we see that once the real scalar
a or the gauge two-form have a time-dependent profile the
gaugini will get an effective Majorana mass term.

One can wonder how arbitrary is the coupling we have
introduced for the mediation term of the gaugini. As we will
show now it is rather unique. As we have discussed until now
we are considering backgrounds where either the real scalar
a or the gauge two-form get a time dependent profile. As a
result

〈(∂aa + i Ha)
2〉 �= 0, (4.11)

where with the VEV symbol we refer to the dynamical back-
ground. We then recall that

〈D2 (
DLDL

)〉 = 2〈(∂aa + i Ha)
2〉 �= 0. (4.12)

As a result DLDL is a chiral superfield with a non-vanishing
VEV for its θ2 component. These properties suggest that we
make the identification

X = Dα̇L D
α̇
L . (4.13)

This composite superfield satisfies

Dα̇X = 0, X2 = 0, 〈FX 〉 �= 0. (4.14)

Therefore we have successfully identified a nilpotent gold-
stino chiral superfield. With this identification the term (4.8)
takes the standard form (4.1) that corresponds to the media-
tion of the supersymmetry breaking to the gaugini. There is
of course further arbitrariness in the exact definition of X in
terms of DL , but now it is clear that it will be related to the
arbitrariness in describing the goldstino itself in superspace.

In the end, it is known that all the formulations are related to
each other [37]. Note that the identification (4.13) was also
used in [38] for a slightly different setup, whereas in [39]
a similar identification is related to the partial breaking of
supersymmetry. In [40] a similar identification is also possi-
ble as the supersymmetry breaking is sourced by a modified
real linear multiplet.

Dualizing to chirals

As we have seen the new coupling has a very simple form in
terms of tensor multiplets, but to utilize it in a 4D N = 1 super-
gravity we prefer to recast it in terms of a chiral superfield.
We follow this path for two reasons: First, if we couple the
term (4.8) to old-minimal N = 1 supergravity a first inspection
shows that we are bound to find non-Gaussian auxiliary fields
and higher derivatives (these two typically go together). This
problem persists also when we turn to the chiral multiplet
description of course, as we will see later, so we will in any
case treat the new term only as a perturbation in supergravity,
i.e. we will evaluate it on the existing background. Second,
since we have been working until now with chiral multiplets
it is more convenient to continue in the same framework.
However, we do present the embedding of the term (4.8)
in the new-minimal formulation in a later subsection where
we argue that it does not contain higher derivatives and the
auxiliary fields remain at most Gaussian.

Now we recast the mediation superspace coupling in terms
of chiral superfields. To do this we perform the standard
chiral-linear duality. Notably, the fact that we can perform
this duality is another indication that there is nothing pecu-
liar with the term (4.8). We consider the Lagrangian

LD = −1

2

∫
d4θL2 +

∫
d4θL(� + �)

+ 1

M3

∫
d4θL2(W 2 + W

2
), (4.15)

where in order to perform the duality we have to pick a kinetic
term for L . Note that due to the term

∫
d4θL(� + �) now

L is unconstrained. If we integrate out � then L becomes
a standard real linear. Now we vary the real superfield L
instead, to get

L = (� + �) + 2

M3 L(W 2 + W
2
), (4.16)

which we solve iteratively as

L = (� + �)

[
1 + 2

M3 (W 2 + W
2
) + 8

M3 W
2W

2
]

.

(4.17)

Then we re-insert the solution for L into the dualizer
Lagrangian and we find the equivalent Lagrangian for �.
The result is
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LD = 1

2

∫
d4θ(� + �)2

×
[

1 + 2

M3 (W 2 + W
2
) + 8

M6 W
2W

2
]

. (4.18)

We see that the dual term has a form that looks like a higher
derivative term, however, in a hidden way it is not. This is
guaranteed because we derived it from a 2-derivative the-
ory. Clearly the two-derivative structure can only be seen
after a series of field redefinitions. The term that mediates
the quintessence supersymmetry breaking to the gaugini is
manifest and it has the form

1

M3

∫
d4θ(� + �)2W 2 + c.c., (4.19)

which is the form that we will use in the supergravity theory.
Interestingly we see that there is again a hidden shift symme-
try in this coupling, reminding the mediation of the breaking
to the scalar moduli. Notice also that if

〈A + A〉 = 0, (4.20)

then all the higher order terms in (4.18) will in any case
not contribute to the kinetic terms that would arise from the
superspace derivatives acting on W 2 or its complex conju-
gate. Therefore (4.18) can be also treated as an effective per-
turbative expansion around the tree-level interactions, and
this is in fact how we will treat it in supergravity.

Coupling to supergravity

We can now introduce the supergravity term that can mediate
the quintessence supersymmetry breaking to the gaugini. To
be compatible with our working example in the previous sec-
tion we will use the chiral superfield T for the quintessence
sector, and we also preserve the same form for the mild shift
symmetry. To this end we will work with the term

Lmed = 1

M3

∫
d4θE (T − T )2W 2 + c.c., (4.21)

and assume we couple it to a standard gauged 4D N = 1
supergravity model. We can conceptually think of having
included also the higher order contribution 1/M6 of (4.18)
so that we get the correct mediation term in the rigid limit, but
this will not alter our discussion here in supergravity. First
let us recast (4.21) in a more familiar form, that is

Lmed = − 1

4M3

[∫
d2� 2E W 2D2

(T − T )2
]

+ c.c.

+ 2

M3

[∫
d2� 2E R(T − T )2W 2

]
+ c.c.

(4.22)

We will now treat this term in an effective field theory
approach and therefore we will assume it only influences
the theory in a perturbative way. To this end we will keep

only the leading contributions that survive once we set the
fields to their background values. In particular, as before, we
will assume that the complex scalar field T will be given by

T = τ + iζ, (4.23)

with the fields during the quintessence phase to be

ζ |quint = 0, τ |quint = slow-rolling scalar. (4.24)

Then on such background there are no bosonic terms arising
from (4.22), and the only terms with two fermions are given
by

e−1Lmed = 2

M3 ∂τ∂τλ2

+ 1

M3

(
FmnF

mn − 2D2 − i

2
FmnFklε

klmn
)

(χT )2 + c.c.,

(4.25)

whereχT are the fermion superpartners of T . The fact that the
terms (χT )2 are multiplied with D2 means they get an extra
mass contribution if the breaking is sourced also from the
gauge multiplet. Then we perform the standard Weyl rescal-
ing

gmn → eK/3gmn, e → e2K/3 e, λ → e−K/4λ, (4.26)

we give to the scalars τ their time-dependent profile, and thus
we find the effective masses of the gaugini (assuming a trivial
gauge kinetic function)

δmgaugini = − 4

M3 e
−K/6 τ̇ 2. (4.27)

As we have seen in the previous examples such term can give
a significant contribution to the effective mass. Note of course
that we can also include an arbitrary holomorphic function
M(T ) in (4.21) to give different properties to the gaugino
mass during the evolution of the quintessence phase, and give
to the mass (4.27) an extra factor M(τ ). Such modification
will become crucial when one focuses on model building,
but goes beyond the scope of our work here.

Restrictions on the quintessence superpartner

Let us also take the opportunity here to explore if the super-
space couplings we are discussing can have some direct sig-
nal to the observable sector, and if such effects lead to restric-
tions. As we will see the mediation term (4.21) will impose
a very strict phenomenological requirement: the fermion
superpartner of the quintessence sector has to decouple from
the late-time cosmology.

Let us assume that we have a quintessence phase that, as
in our working example from the second section, leads to

〈τ̇ 2〉 ∼ V 4
0 H−6 ∼ 10−40M4

P . (4.28)
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Here we used the values from (2.21) and (2.22). Then if we
want the gaugino mass (4.27) to be of order TeV∼ 10−15MP ,
we have to set

M ∼ 10−8MP ∼ 1011 GeV. (4.29)

We have assumed e−K/6 ∼ 1 here (and in the rest of this
subsection) without loss of generality because we could in
any case invoke the extra holomorphic function M(T ) that
can enter (4.21) to cancel the e−K/6 factor in (4.27). Now,
among the various couplings of (4.25), after Weyl rescaling,
we find the derivative interaction

Lmed = 1

M3 e
−K/6 FmnFmn (χT )α̇(χT )α̇ + · · · (4.30)

between the superpartner of the quintessence scalar and the
standard model gauge bosons. This interaction however is
not describing the canonical fermion superpartner of the
quintessence scalar. Indeed, it is now important to appre-
ciate that for fields that belong to the same multiplet we are
bound to have

e−1Lkin = −1

2
k(τ )(∂τ )2 − 1

2
k(τ )(∂ζ )2

−ik(τ )χT σ nDnχ
T , (4.31)

which means to find the canonical χT interactions we have
to rescale (4.30) with k(τ ). Then from the consistency of the
slow-roll phase one expects to have

k(τ ) ∼ 10−80, (4.32)

which means we have to redefine the fermion χT as

χT ∼ 1040 χT |norm . (4.33)

Therefore the true suppression of the higher dimensional
operator (4.30) in terms of canonically normalized fields is
very low, and instead of M , it is

M̃ ∼ 10−15 GeV. (4.34)

Such strong interactions of χT with the standard model gauge
bosons are in sharp contradiction with the standard model
phenomenology. However, the coupling (4.25) itself gives us
the answer to this apparent phenomenological shortcoming,
because it can give to χT a large mass. From (4.25), once we
integrate out the auxiliary field D, we also find a term of the
form

Lmed = − 2

M3 e
−K/6

D
2 (χT )α̇(χT )α̇ + · · · (4.35)

where now D is the Killing potential related to the gauging,
and it is a moduli-dependent function. Now, it is realistic
to assume that due to some shift in the VEVs of the scalar
moduli the function D also gets a VEV, that should be of
course very small such that the quintessence phase is not
threatened. For example we could have

〈D〉 ∼ 10−62M2
P . (4.36)

Then the contribution to the effective mass of the canonically
normalized χT will be

δmχT ∼ 10−10MP ∼ 109 GeV. (4.37)

Therefore the fermion superpartner of the quintessence scalar
will be very heavy and essentially decouple from the late-time
cosmological phase. In other words the coupling (4.30) is in
fact not part of the low energy effective field theory. This also
means that the supersymmetry breaking in the low-energy
effective field theory becomes explicit and not spontaneous.

We can also check what type of interactions are generated
once the heavy fermion is integrated out. For example, if we
do not go to the unitary gauge, we have a mixing with the
gravitino of the form k(τ )τ̇ χT σmσ 0ψm . Then once we inte-
grate out χT we find χT ∼ k(τ )τ̇ σmσ 0ψmM

3/D2. Once
we insert this back into (4.30) we find an effective interaction
of the form F2

mnψ
2
l /M3 which does not pose a threat to the

low energy theory as it is suppressed by the high energy cut-
off M . A complete study of the low energy effective theory
after integrating out χT is left for future work.

New-minimal supergravity?

Until now we have focused on the old-minimal formulation
of supergravity. We would like now to contemplate on what
could be different if one uses the new-minimal formulation
instead (for new-minimal supergravity see e.g. [41,42]). The
duality between the two formulations has been established in
[43] but we will see here that some interesting simplifications
take place if we discuss the gaugino mediation term directly
in the new-minimal setup. Notably, the duality between new-
minimal and old-minimal has been proven in [43] only in the
presence of chiral and vector multiplets and without higher
derivative terms. Instead from (4.18) we see that the chiral
superfield version of the gaugino mediation term resembles
a higher derivative term, which may be the obstruction to
performing the full duality. Such obstruction would mean
that the new-minimal supergravity version of the gaugino
mediation term could not be described within old-minimal
supergravity.

In the new-minimal formulation of supergravity there is a
gauged R-symmetry and so one requires the chiral superfields
that enter the chiral integral

∫
d2θ E to have overall chiral

weight equal to n=1. The chiral weights of the ingredients
we will need for our discussion are

n(L) = 0, n(W 2) = 1, n(M(�i )) = −1, (4.38)

where L is the real linear superfield, Wα is the standard chiral
superfield associated to the gauge theory, and M(�i ) is a
holomorphic function of the chiral superfields �i . The latter
are allowed to have arbitrary chiral weight. Now, once we act
with a new-minimal superspace derivative on the real linear
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superfield we get a weight

n(Dα̇L) = 1

2
. (4.39)

The advantage of new-minimal supergravity is that Dα̇L is
also a bona fide chiral multiplet, just as in rigid supersym-
metry, therefore we have

D2
L = 0, Dβ̇

(
Dα̇L Dα̇

L
)

= 0. (4.40)

As a result we are allowed to introduce a term of the form

Lnew =
∫

d2θ E W 2 M(�i )Dα̇LDα̇
L + c.c. (4.41)

The first thing we notice is that, in contrast to old-minimal
supergravity, the term (4.41) is in fact Kähler invariant. This
happens because in new-minimal supergravity Kähler invari-
ance has the same form as in the rigid theory, that is (for H
chiral) we have∫

d4θE K̃ →
∫

d4θE(K̃ + H + H) =
∫

d4θE K̃ ,

(4.42)

up to boundary terms of course. Here K̃ is a real function
that relates to the Kähler potential of standard supergravity,
that is K , but is not restricted to have det K̃i j > 0 [41]. As
is shown in [41] the Kähler transformation of K does indeed
correspond to the transformation K̃ → K̃ +H +H of K̃ . As
a result Kähler invariance is not related to super-Weyl trans-
formations here. The second observation is that one could
identify M(�i ) with P(�i )−1, where P(�i ) is the super-
potential, as long as the gravitino mass is non-vanishing on
the background. Finally we see that on dimensional grounds
we need

[M(�i )] = −3. (4.43)

Now let us turn to the component field analysis. The chiral
density in new-minimal supergravity is

E = e
{

1 + iθσ aψa − θθ
(
ψaσ

abψb

)}
. (4.44)

Then one can see that expanding (4.41) in components gives
a result equivalent to (4.9), and so will not give rise to terms
with more than two auxiliary fields or with higher derivatives.
The properties of the ingredients involved in such expansion
can be found for example in [14,41,42]. In particular, due to
the form of (4.44) the two-fermi terms have again the form
(4.9) and give rise to a Majorana mass for the gaugino on a
quintessence background

Lnew = e
M(Ai )

2
λ2 (∂aa + i Ha)

2 + · · · (4.45)

Because again of the structure of the new-minimal super-
gravity we also notice that we can do the identification

X = Dα̇L Dα̇
L . (4.46)

This is a nilpotent chiral superfield with the properties

Dα̇X = 0, X2 = 0, 〈FX 〉 �= 0. (4.47)

As a result, the term (4.41) is in fact the standard term describ-
ing the mediation of the supersymmetry breaking to the gaug-
ini also in supergravity, namely∫

d2θ E M(�i ) X W 2 + c.c. (4.48)

From here we can get another indication why in the new-
minimal formulation the quintessence-gaugini mediation
term is not expected to give rise to higher derivatives. We
can keep (4.48) with X un-restricted, and impose that X =
Dα̇LDα̇

L via a term of the form∫
d2θE Z X + 2

∫
d4θE ZL2 + c.c., (4.49)

where Z is a chiral Lagrange multiplier of vanishing chiral
weight. From (4.49) once we integrate out Z we get (4.46).
The important observation now is that (4.48) and (4.49) are
terms that in principle belong to the standard 2-derivative
supergravity, which means they are not expected to include
higher derivatives or higher order auxiliary fields. We leave
a careful study of the full component expansion of (4.41)
for a future work, where one should also couple to a simple
new-minimal supergravity model, integrate out the auxiliary
fields and study the dynamics.

5 Discussion and outlook

There has been a renewed interest in the study of quintessence
models within string theory and supergravity. This interest
has been sparked from the difficulty to identify controlled de
Sitter vacua in string theory, and from the various swamp-
land conjectures that restrict de Sitter directly [2,3,44–57] or
indirectly [58–61].

In this work we investigated the impact of the quintessence
phase on the moduli stabilization and the induced mass
splitting within supermultiplets. We established that there
is indeed an additional contribution to the net supersymme-
try breaking that arises due to kinetic mixings and that it my
help in addressing the F-term problem [7]. The effect of such
mixing can go either way: in some cases it gives a signifi-
cant positive mass and helps strongly stabilize the moduli,
in other cases it may be innocuous, and in some instances it
may lead to huge tachyonic masses for the moduli and spoil
quintessence all together. Therefore one would have to inves-
tigate the impact of these terms independently in each string
theory quintessence model. Here instead we have only illus-
trated the various possibilities with some simple examples in
4D N=1 supergravity. In addition, even if the F-term problem
is resolved by some other mechanism, the couplings that we
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discussed here may in any case play a role in the superpartner
masses.

We have also presented a specific superspace term that
can induce Majorana gaugini masses on a quintessence back-
ground and studied few of its properties. We have seen that in
the new-minimal formulation such term takes a very simple
form and we have argued that it does not lead to higher deriva-
tives (or higher order auxiliary field equations). It would be
even more surprising if such a completely new term also
exists in old-minimal supergravity in a way that does not
give rise to higher derivatives. Instead, our strategy here was
to identify this term in the rigid limit and then we used it as a
perturbation in old-minimal supergravity. However, since the
new-minimal formulation of supergravity can consistently
accommodate such term, one important future direction is to
either perform the duality from new-minimal to old-minimal,
or otherwise study quintessence directly within new-minimal
supergravity. Massive vector multiplets may offer an inter-
esting framework to construct such models and mediate the
quintessence supersymmetry breaking [62–65].

Finally, we studied the couplings of the quintessence
superpartner with matter in a setup where the quintessence
supersymmetry breaking generates TeV gaugini masses. We
found that generically it will have significant interactions
with the standard model gauge sector, but, it will also gener-
ically receive a large mass that can be pushed up to the cut-
off, and so it will decouple from the low energy theory. A
careful analysis of the resulting low energy theory and its
phenomenological implications is left for future work.
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