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Abstract We consider the metric-affine formulation of
bumblebee gravity, derive the field equations, and show that
the connection can be written as Levi-Civita of a disformally
related metric in which the bumblebee field determines the
disformal part. As a consequence, the bumblebee field gets
coupled to all the other matter fields present in the theory,
potentially leading to nontrivial phenomenological effects.
To explore this issue we compute the post-Minkowskian,
weak-field limit and study the resulting effective theory. In
this scenario, we couple scalar and spinorial matter to the
effective metric, and then we explore the physical properties
of the VEV of the bumblebee field, focusing mainly on the
dispersion relations and the stability of the resulting effective
theory.

1 Introduction

The consistent inclusion of Lorentz symmetry breaking in
a curved space is certainly one of the most important open
problems within studies of this phenomenological idea. Tra-
ditionally, the Lorentz symmetry breaking has been intro-
duced in two manners, (1) the explicit one, where a con-
stant vector (tensor) is introduced in the theory from the very
beginning, and (2) the spontaneous one, where this constant
vector (tensor) arises as the vacuum expectation value of
some dynamical field (see [1] for a detailed discussion of
approaches to Lorentz symmetry breaking in gravity).

It should be emphasized that while the explicit approach
is very convenient in the case of linearized gravity, there
are essential difficulties with its application in a full-fledged
scenario. Indeed, unlike in flat space, in curved space it is
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highly problematic to define constant vectors (or tensors)
because the condition of vanishing covariant derivatives of a
given tensor imposes constraints on the background metric
which are difficult or even impossible to satisfy. Otherwise,
quantum corrections in curved-space extensions of known
Lorentz-breaking field theory models will involve an infinite
tower of new terms proportional to covariant derivatives of
“constant” Lorentz-breaking tensors, which makes the calcu-
lations much more complicated (see e.g. [2]). Another diffi-
culty related with this approach is that in a curved space-time,
the group of general covariant transformations plays a dou-
ble role, being not only the extension of the Lorentz group
but also the gauge group. As a result, introducing terms that
explicitly break Lorentz symmetry will imply violation of
the gauge symmetry as well, which makes the spontaneous
symmetry breaking approach much more appropriate (that
see discussion in [3]).

In a curved space-time, the most convenient form of intro-
ducing spontaneous Lorentz symmetry breaking is the bum-
blebee model, first proposed in [ 1], where the breaking mech-
anism is implemented via a new dynamical vector field with
a nontrivial potential characterized by a continuous set of
minima. The first studies of modifications of known grav-
itational solutions within the bumblebee gravity have been
carried out in [4]. Various aspects of the bumblebee grav-
ity have been studied in numerous papers, e.g. [5-8], all of
which assume that the underlying geometry is of (pseudo)-
Riemannian type. However, in the absence of any empirical
evidence supporting that the space-time structure is neces-
sarily Riemannian, or otherwise,! in the high energy regime
[9-16], it is legitimate to explore other alternatives. In partic-
ular, it is well-known that the metric-affine (or Palatini) for-
mulation of gravity theories beyond GR yields field equations
which are inequivalent to those obtained in the purely metric
approach, and it has been argued that quantum effects could

! Here Riemannian means that the connection is completely specified
by the metric, as opposed to being an a priori independent geometrical
entity.
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be encoded at low energies by a non-Riemannian counterpart
of the space-time geometry [17-20]. This fact motivates us
to initiate the exploration of Lorentz breaking phenomenol-
ogy of bumblebee gravity in its metric-affine formulation, in
which the connection is treated as a geometrical object a pri-
ori independent of the metric. In this sense, it is worth men-
tioning that Lorentz-breaking extensions of both the Stan-
dard Model and General Relativity have already been tested
experimentally, leading to stringent constraints on Lorentz-
breaking parameters, see e.g. [21-27].

It has been recently shown that some metric-affine theories
of gravity beyond GR have a peculiar behavior that makes
them depart from their metric counterpart and become poten-
tially testable via elementary particle interactions. In the par-
ticular case of minimally coupled Ricci-Based Gravity theo-
ries (RBG’s), those in which the gravity Lagrangian is a (pro-
jective invariant) function of the metric and the Ricci tensor,
one finds that the space-time metric picks up two types of con-
tributions, one coming from the integration over the matter
sources and which is mainly responsible for the space-time
curvature, and another coming from the energy-momentum
density of the local sources. The latter contribution is respon-
sible for the existence of a nonzero non-metricity tensor,
Quap = Vugap, in regions where the stress-energy of the
matter fields is not covariantly constant. The origin of these
contributions in the metric can be traced back to the fact that
these theories admit an Einstein frame (via a non-conformal
transformation) in which the matter sector features new non-
linear interactions and the gravity sector is described by GR.
Thus, from the original frame of the theory (RBG frame),
these non-linear interactions appear encoded in the space-
time metric and are responsible for the non-vanishing non-
metricity tensor. The existence of the Einstein frame repre-
sentation for RBG theories was devised in [28,29], and it
has been explicitly proven and used for applications for dif-
ferent matter sectors: perfect and anisotropic fluids, scalar
fields and non-linear electrodynamics [30-34]. The devia-
tion from the Riemannian condition V, g4 = 0 in the RBG
frame is intimately related to a departure of the space-time
metric from its Minkowskian form whenever matter fields
are present even if the effects of curvature (i.e. Newtonian
and post-Newtonian corrections) are negligible. As a result,
particle physics experiments can be used to place strong con-
straints on the parameters of those gravity models [35,36].

In this work we will consider a so far unexplored route, in
which the bumblebee model plays a key role. In this model
the gravity Lagrangian is represented by the Einstein—Palatini
GR Lagrangian and an additional (projectively invariant)
non-minimal coupling term between the bumblebee field and
the affine Ricci tensor. This sort of non-minimal coupling
has not yet been considered in detail within metric-affine
theories. In addition, keeping the gravitational part exactly
as in GR avoids the generation of non-metricity induced by
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the stress-energy tensor of the matter fields, which allows to
disentangle the different contributions that the non-metricity
may have. As we will see, the resulting theory admits an exact
formal solution for the independent connection which leads
to the emergence of a non-metricity tensor generated by the
non-minimal bumblebee coupling. The bumblebee field will
then become coupled to the rest of the matter fields present in
the theory due to its non-minimal coupling with the gravita-
tional sector. Thus, even though the theory is initially formu-
lated following the postulates of metric theories of gravity
so as to satisfy the Einstein equivalence principle [9], in the
end the resulting coupling of the bumblebee field to the mat-
ter sector implies a direct violation of this principle, as one
would expect in a Lorentz violating theory. Besides deriv-
ing the field equations and discussing their resolution, in this
paper we will also discuss the weak field, post-Minkowskian
limit with a focus on the modified dispersion relations and
stability of scalar and Dirac fields.

The structure of our paper is as follows. In Sect. 2, we
present a general family of Ricci-Based Gravity theories
(RBGs) with non-minimal couplings between matter and the
connection, introducing the metric-affine bumblebee model
as a specific implementation. After discussing the field equa-
tions of the bumblebee model, in Sect. 3, we study the weak-
field, post-Minkowskian limit and the effective dynamics
when curvature effects are negligible as compared to the con-
tribution of non-metricity. Section 4 is devoted to the deriva-
tion and discussion of the modified dispersion relations and
stability corresponding to scalar and spinor fields. We con-
clude with a summary and discussion of the results.

2 Metric-affine bumblebee model as a non-minimally
coupled RBG

2.1 General case in the RBG framework

The analysis of metric-affine RBG theories has focused so
far on modifications of the gravitational sector but keeping
a minimally coupled matter sector, i.e. with the matter fields
interacting only with the metric, not with the connection.
Such theories can be described by an action of the form

1
y:ﬁ/d4x\,—gF(g“”, R(uu)(r’))"'ym(guwlpi)a
ey

where k2 = 87 G, ¥; denotes a collection of minimally cou-
pled matter fields, and R, (1)) represents the symmetrized
Ricci tensor of the independent connection /77, We use units
h = c = 1. A straightforward way of generalizing the above
action is to allow for a non-minimal coupling between some
matter fields @; and the connection via R, (1)), such that
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(1) turns into

1
S = F d4x IV —gF(glw, R(;,w)(r)a D))

+5ﬂm(g;uh ¥, (2)

where the @; have minimal kinetic terms in the sense of [37].
The detail that only the symmetrized part of the Ricci ten-
sor enters the action guarantees the existence of a projective
symmetry, which turns out to be relevant for the stability of
the theory by ensuring the absence of ghost-like degrees of
freedom in RBG theories [38,39] as well as in metric-affine
scalar—tensor theories [40].

In the metric-affine framework, metric and connection are
treated as independent fundamental fields. Accordingly, their
field equations are obtained by extremizing the action with-
out imposing any a priori relation between g, and 817,
By varying upon the above action, one finds that the met-
ric and connection field equations of the RBG action with
non-minimally coupled matter fields are formally identical
to those of the minimally coupled version, namely

aF 1
aghv 2

1
vi (V—hh“”) = «/—h[T“mhv“ + T h"" + ET%ﬂS"x],

Fg;w = KZTM; (3)

“)
where T%,,, = 21"%[,,) is the torsion tensor, Tl% is the usual
stress-energy tensor of the minimally-coupled matter sec-

M 2 §/=gZm)
tor T = s , and we have defined a new

(inverse) metric A*Y via /—hh*Y = ZKZJ_BR( = Fol-
lowing [29], it is possible to show that the torsion terms on
the right-hand side of (4) can be eliminated by exploiting the
projective symmetry of the theory. After doing this, one finds
that, up to a non-physical projective mode, the solution for
the connection is given by the Levi-Civita connection of the
metric A, namely

TMop = %h’“\ (duhpr + dphra — d3hap) - 5)
We then see that the inclusion of matter fields that are non-
minimally coupled through the Ricci tensor is still compatible
with the fact that in RBG theories the connection is the Levi-
Civita connection of some metric, which greatly simplifies
the process of solving the field equations.

2.2 Building the Einstein frame of generalized RBGs with
matter couplings to R,

The fact that the connection can be solved as the Levi-Civita
connection of a metric h, raises the question of whether
these generalised RBGs also admit an Einstein frame repre-
sentation. As we show next, the answer is positive and the

Einstein frame can be constructed with the standard proce-
dure (see e.g. [29]) of linearising the action by introducing
an auxiliary (symmetric) tensor field X',,,. Let us sketch how
the Einstein-frame is reached for a generalised RBG of the
form (2). Consider the action

1
x\/_[SEV(R(;w) ;w)+f:|

S = F
+ym(gp,v» Wi)a (6)

where f = F(g"", X,,, ®;) indicates that we have replaced
all instances of R(,.) by X,,. The field equations of X,
are algebraic and imply that ¥,, = R(,.) provided that

5 22 # 0. Hence, integrating out X, we see that the new
action (6) is physically equivalent to the original one (2).
Let us now define the inverse metric 2*" by

VR = =g @

8

Generally, we can see the above equation as an implicit defini-
tion of X,,,, which should be seen as a function of (g v, /v,
®;). Thus, by solving algebraically in X, we would be
able to write X, (g"", h*V, ®;). We can then perform a
field redefinition in (6) by substituting X, (g"", A"V, ®@;)
to arrive at

~ 1
P = oy [ [V R w0 )
“rym(g;w, ¥, ®)
where

UG D, B
_\/_(f - f ;w)

8

E;A.U:Ep,u(gm),h#vaq)i)

Now, we see that the field equations for g"" are also alge-
braic and, therefore, we can formally solve them to obtain
gMv (WY, @;, ;). Thus, integrating g"” out by means of this
solution we arrive to the Einstein-Hilbert representation of
(2), given by

SEH = d4x NV hle;w + jﬁ (h/wv Si, %), )

2Kk N2
where
Iy, P W) = [ (W, i W), U]

+/d4x U (", &;, W), W, @;].
We can clearly see here that the above action (9), which by
construction is equivalent to (2), formally describes a set of
Einstein-like equations for the metric /1, coupled to a matter

sector described by ., which will feature new interactions
between the @; and ¥; sectors.

@ Springer
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2.3 The metric-affine bumblebee model as a particular case

As a particular case of the class of theories discussed above,
we find the metric-affine version of the curved space-time
bumblebee model (see [8]), which is defined by an action of
the form

= /d4x \/—_g[ilz<R(1") +§B°‘B’3Ra,3(F))

1
—ZB’“‘BHU —V(B"B, £ bz)] + S (v, ¥i).
(10)

A key feature of this model is that the bumblebee field B,
has a non-zero vacuum expectation value (VEV) that sponta-
neously breaks Lorentz symmetry by introducing a privileged
space-time direction. This field is coupled non-minimally
to the space-time geometry via the B*BYR,, term. The
parameter & characterizes the strength of this non-minimal
coupling between the bumblebee field and the affine con-
nection through R, (I"), and we use the minimal coupling
prescription for its kinetic term, so that the field strength of
the bumblebee field is defined as the exterior derivative of
B, (i.e. By = (dB) ).
We see that by identifying ®; = B;, we find

= (" +&EB"B")X,,, (11)

N —hh*' = gl 4 EB*BY, (12)
1

Uy = _ZBWB,W — V(B"B, £ b%), (13)

which would allow us to write the Einstein-frame action cor-
responding to (10) once the metric g, is solved in terms of
the matter fields (B, ¥;).

By taking variations of Eq. (10) with respect to the met-
ric, the connection, and the bumblebee field, we obtain the
following field equations:

1
R (1) = S8, (R + EB“BP Ryp(I))

+2E(B(uRuyp (M) BP =iy, (14)
vi"[vae +esin] <o 15)
VB = —%BﬁRﬂu(F) +2V'B,, (16)

where the prime in V' denotes derivative of V with respect to
its argument. Here 7, is given by 7}, = va + T;%’ where
we have defined

1
TP = Bu, B — Zg,wB‘j, B% — Vguy +2V'B,B,. (17)
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2.4 Solving the connection equation

Upon the identification
V—=hht"" = /—g(g"" +&B"B"), (18)

one can follow [29] to show that Eq. (15) is equivalent to
Eq. (4) up to anirrelevant projective mode. Thus, as explained
above, the connection can be written as the Levi-Civita con-
nection of /1, . In order to find the explicit relation between
the space-time metric g,, and the metric /,, let us rewrite
(18) in matrix form as

V=hh™' = /=g ' +&BB), (19)

where the hat denotes a matrix, such that A" and h are the
matrix representations of 2" and h,,,, respectively. Taking
the determinant of (19) we find that 7 = gdet (I +£BB)
(18), and plugging this back into (18) we arrive at

1
[y j7Y n v
v = —det(l : )(g + &B¥BY). (20)

By inverting the above relation, we also have that

hyy = det (I +§BB)<g,w 5 g )

det(I +&BB) "7
1)

Using thatdet (/ +£BB) = 14+ £X, with X = B¥B,,, we
can finally write

=

1
ﬁ(é’w +&B"B"), (22)

hyy = m(&w - %BMBV) (23)

From this last result, one finds that

N S A
S = T EX M T 11 ex

which provides an algebraic relation between g,,, with A,
and B, though the scalar X = g"" B, B, still contains an
explicit dependence on g"". This dependence can be elimi-
nated by noting that Y = h*"B, B, = X4/1 +&X, which
completely solves the problem. Hence, we can integrate g,
out of the action by performing a field-redefinition in terms
of hy, and B. This is useful in order to physically inter-
pret the different elements that contribute to the space-time
metric g,,,. In fact, using (24), we can write g”*" in terms of
h*¥ and B, in %p and .7}, thus finding the Einstein-frame
representation of the action (10), given by

B,B,, (24)

~ 1 _
Tpr = / AT ROD + F (b By, ), 25)
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with

?m (h/w’ B,u.: l’pi) = ym(glw(hpwv X, Bu)v BM: ;)

1- _ _
- ZB’”BW — V(B"B, +b*) + V(B X, hyy)

where any barred tensor indicates that its indices are raised
with A"V,

In this new (Einstein frame) representation it becomes
apparent that the bumblebee model can be interpreted as GR
coupled to a modified matter sector in which all the matter
fields couple to the bumblebee, which also presents new self-
interactions encoded in the V term. According to this, the
metric /1, satisfies the Einstein equations coupled to a highly
non-linear matter sector. This means that 1, will depart from
the Minkowski metric only in regions where the Newtonian
and post-Newtonian effects are expected to be relevant, i.e.
regions with a strong gravitational field. As a result, as it
follows from (24), the metric g, will not only describe the
two propagating degrees of freedom of the gravitational field
through £,,,, but it will also encode information on the local
value of the bumblebee field via a conformal factor and a
disformal term proportional to B, B,.

From the decomposition (24) and the fact that the indepen-
dent connection satisfies V. 71,,,, = 0, it follows that the non-
metricity tensor Qg = V. g, is non-trivial and entirely
due to the derivatives of the bumblebee field. Since this field
is expected to have a non-trivial VEV that spontaneously
breaks Lorentz invariance, this is an example of a gravitation-
ally generated non-metricity tensor that can develop a VEV.
In contrast, in RBGs with minimally coupled matter, the non-
metricity is associated to derivatives of the stress-energy ten-
sor of the matter fields, which vanish in vacuum. A constant
background of non-metricity was assumed in [41], and exper-
imental constraints to all its possible effective couplings to
fermions and photons were derived from Lorentz violation
searches in Earth laboratories. Since minimally coupled mat-
ter fields do not couple explicitly to non-metricity,? these
constraints do not apply to our model. However, we note that
constraints on Lorentz-violating couplings such as those in
the Standard Model Extension [42] could translate into con-
straints on the bumblebee non-minimal coupling &. Further
work in this direction is currently in progress.

2.5 Metric and bumblebee equations

Let us now continue with the exploration of the field equa-
tions (14) and (16). By taking the trace of (14), a relation

2 Indeed as we will see later, although the new couplings that arise in
the matter sector have a relation with non-metricity, rather than coupling
explicitly to the non-metricity tensor of the theory, the matter fields in
this model couple to the source of non-metricity instead.

between the scalar curvature and the trace of the stress-energy
tensor 7' = g#*"T,,, can be found in the form

R(I) = —k°T, (26)

which exactly matches the relation in GR. By contracting
with one and two B* fields, we can also find the relations

1
B”’le([') = <K2B“T/LU7 (KZT +§RaﬂBaBﬂ) Bv),

1
1+€X 2
(27)

2

K
B"B'R,, () = ————
(1) 2+3$X(

—TX+2B"B"T,,) (28)

respectively, where X = g"" B, B,,. Substituting the second
of the above equations into the first one, we finally obtain

BaRau(F) =

2
<BaTau — ;
1+&X 2+ 36X
x[<1+sX>T+5TaﬁB“Bﬁ]Bu>. (29)

The above results can be plugged back into the metric
field equations (14) to obtain an expression for R, (h) which
only involves T}, B, and the metric gog Which, recall, can
be explicitly written in terms of /,, and B,,. Therefore, the
field equations for /1, can be written in Einstein like form,
though their explicit form is cuambersome and does not bring
any useful new insight. This confirms that we can interpret
the auxiliary metric as we did when (25) was introduced, as
the metric that accounts for the cumulative effects of mass
and energy.

Regarding the bumblebee field equation, using (29) we
are able to get rid of the B” R, term in (16), thus arriving at

2panp
V,(f)B“”z(zv’+ LA S )B“
243X (1+EX)(2+3£X)
__¢ v
e B (30)

This equation is richer than its equivalent in the metric case,
for which the & corrections are absent. The new terms induce
modifications on the effective potential that depend on the
presence of other matter fields, thus implying new phe-
nomenology. In particular, the effective mass of the field
may change in regions with high energy densities, poten-
tially leading to large effective masses and chameleon-like
screening mechanisms inside and around massive objects.

3 Weak gravitational field, post-Minkowskian limit

Having found the solution of the connection equation and
the explicit formal form of the space-time metric, we are
now ready to explore the limit of negligible curvature, focus-
ing our attention on how the sources of non-metricity mod-
ify the effective theory (post-Minkowskian limit). For this

@ Springer
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purpose, let us focus on non-gravitational experiments on
Earth’s surface, so that one can safely neglect all the correc-
tions to the Minkowski metric coming from Newtonian and
post-Newtonian corrections. Thus we require’ & w R Ny -
Let us also consider £ to be a small coupling and study its
perturbative effects. From the above relations between the
auxiliary and the space-time metrics (22,23), we can write

1
guv = Nuv +& (B;/.Bv - EBAB)JI;W) + ﬁ(fz)

= Nuv + Epv, 3

where BB, = n**B, B; and e, = (B, B, — $B"By1,)
+ O0(£?). Here we see that even when Newtonian and post-
Newtonian corrections can be neglected, the space-time met-
ric is locally departing from its Minkowskian value due
to local contributions sourced by the bumblebee field B,,.
Since all fields couple to the metric, as a result, in this post-
Minkowskian approximation of our theory all the matter
fields will couple to the bumblebee due to the unconventional
way in which the connection mediates between the geometry
and the matter.

3.1 Effective dynamics of scalar and fermionic fields

We will next proceed to study the effective dynamics of scalar
and spinor matter fields in this post-Minkowskian scenario.
Regarding spinors, it is important to note that they provide a
nonzero contribution to the connection equation via torsional
terms. Those terms have been omitted in our presentation of
the field equations for simplicity. A more careful analysis,
along the lines of [28], justifies our choice because in the case
of bosonic fields, torsion can be trivialized by a simple choice
of projective gauge. For fermions, however, the torsion picks
up contributions that cannot be gauged away. However, such
terms do not modify the equation satisfied by the symmetric
part of the connection, which is still of the form (15) and
admits the Christoffel symbols of /1, as solution. Therefore,
the resulting effective metric will be the same as (31). The
new torsional terms will appear as new fermionic contact
interactions on the right-hand side of (14) and will be Planck-
scale suppressed (see e.g. [43] or [39] for the RBG case), so
that we can neglect them for our purposes.

From (31) it is clear that the inverse effective metric is
given by

gt =" — el (32)

3 Recall that (25) implies that A wv formally satisfies a set of Einstein-
like equations, which yields the Minkowski metric as solution whenever
one considers elementary particle interactions rather than astrophysical
problems.

@ Springer

where the indices are raised and lowered by the usual
Minkowski metric. Similarly, one has ./—g ~ 1 — %B“ B,.
As aresult, the scalar Lagrangian within this approximation
is given by

1
L = 5,/_—g(g“”8#d58u<1§ —m?d?)

! (1—§BPBP> [ e 00,0 — m202}

2 2
(33)

Using the definition of ¢*” and integrating by parts the former
equation, we arrive at

1 2
Zye =590 +m)P — %(B”‘BMP)2 + mT%'chB"BM

+ 0,

1
= 300 +m)o + %@[B“B”BME),,

2
+ (B”(&,,B”)+B”(8UB“))8,L+%Bz]q§+ﬁ($2),
34)

where [1 = n*V9,0,. The interaction terms between the
bumblebee and the scalar field naturally stem from special
features of this metric-affine model, as explained previously.
As the bumblebee field develops a non-trivial VEV, we see
that the last two terms in (34) carry coefficients for Lorentz
violation, which will be discussed in more detail later.

Regarding spinor fields, we start with the Hermitian
Lagrangian

Lsp = «/—g[%ea“ (@V”Vﬁm‘f’ - (V;(LF)‘I_/)V“‘P) - m‘f/‘I/],
(35)

where e, is the tetrad field satisfying e,"ep"guv = Nab.
Given that the connection I" is just the Levi-Civita connec-
tion of hy,, in the weak field regime h,, ~ n,, we can
approximate V}; ¥ ~ 9,¥ up to Planck scale suppressed
and ﬁ(éz) torsion corrections (see e.g. [36]). Taking this
into account and using that

1 1
ea“ = 5aM - ESM = Saﬂ + % (szaaM - BaBM> ) (36)

we find that the spinor Lagrangian can be written as

Lip = W(iy"d, —mW¥

£ -Ti . i
- ¥ 532;/“3# +iB"B"y,9, + E(BQ(SMB“)
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+B%&B@+«%B%B@y“—m31w+wﬂ¥y

(37

Before moving forward, it is worth calling attention to the
fact that the combination of all the complex terms present in
Eq. (37) result in a Hermitian Lagrangian as a consequence
of Eq. (35). Similarly to the scalar sector, the &'(§) terms
in the above Lagrangian will contribute to Lorentz violation
coefficients when the bumblebee acquires a VEV. We will
next proceed to analyze their physical implications.

4 Lorentz-violating coefficients

Let us now outline the physical effects related to a sponta-
neous breaking of Lorentz symmetry by the bumblebee VEV
(Bu) = by, in a weak gravitational field. Generally, observ-
ables which couple to b, will be sensitive to the spontaneous
breaking of Lorentz symmetry by the bumblebee field. Since
the present model displays non-minimal couplings between
the bumblebee field and the matter sources through the non-
Riemannian part of the connection, there will arise several
Lorentz-violating (LV) coefficients in the effective matter
sector once the affine connection has been integrated out.

A straightforward and simple method to examine the
effects of the Lorentz violation is to consider the VEV being
a fixed-norm vector or, similarly as in Minkowski space, to
take all their components to be constant. Such a choice is
reasonable because we are dealing with laboratory experi-
ments. Nonetheless, for the sake of completeness, the non-
constant b, case is presented in Appendix A. Therefore, from
now on we restrict our analysis to the standard b, constant
case [3]. We note that the allowed values for b, have been
restricted from various experiments, see e.g. [42] and ref-
erences therein. At the same time, let us note that the LV
coefficients generated by the non-metric part of the connec-
tion in metric-affine bumblebee gravity are analog to some of
the parameters of the LV vector sector of the Standard Model
Extension. Therefore, data from table D15 in [21] allows us
to constrain the norm of b,, to be less than 10~* GeV.

4.1 Scalar field

Let us first study the Lagrangian for a scalar field propagating
on top of the bumblebee background, which takes the form

1 1
Lo = =300+ m?)® + %cb |:(s“v8u3v) + Emzbz} @

+0(£%), (38)

where s*V = £b*bY. The (&) terms will typically induce
LV coefficients through the VEV of the bumblebee field. The

sV term constitutes a modification of the standard kinetic
term which can be encoded in an effective metric for the
scalar field of the form gng = pH¥ —&s*¥ Hence, a “wrong”
signature of the LV coefficient s*" could trigger ghost-like
instabilities around strong enough bumblebee backgrounds.
Note however that in that case, the perturbative expansion
would break down since £b% would be ¢(1), and a full non-
perturbative analysis would be required. The correction to the
mass term in (34) can also be encoded in an effective mass of
the form m2; = m*(1 — (§/2)b*) which could also trigger
tachyonic-like instabilities for a space-like bumblebee VEV
(again non-perturbative effects could play a non-negligible
role).

In order to explore potential instabilities in more detail, let
us analyze the particular cases of a time- and space-like con-
stant b, by working out their respective dispersion relations.
Starting with a time-like VEV b, = [b, 0, 0, 0] we find the
dispersion relation

E? = p* + m? 4 £b? (p2 + %m2> + OE?). (39)

This dispersion relation is healthy for positive values of £ but
could potentially develop ghost- and tachyonic-like instabil-
ities for negative values of £, although in this case the higher-
order terms might be relevant to the discussion. Considering
a space-like choice for b, = [0, b] we end up with

E>=p>+m>+¢ szb? +(b- p)2> +0EY. (40

Again, this dispersion relation is healthy for positive values
of &. For negative values of & a tachyonic-like instability
as well as a ghost-like instability (in directions which are
non-orthogonal to b) could potentially arise, and again the
higher-order terms might be relevant to the discussion if they
appear.

4.2 Dirac field

Let us now turn our attention to the spin 1/2 fields. To explore
the physics of our interest in a more convenient way, we will
work with the decomposition of LV coefficients that is more
commonly used in the literature [44,45]. To that end, let us
rewrite the weak-field spinor action (37) as follows

L =W (iI'9, — M)V, (41)

where I'* and M are elements of the 16-dimensional Clifford
algebra defined by the Dirac gamma matrices. We can thus
expand them in the usual basis of this algebra as

@ Springer
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' =T + ("o + o)y +d aysy® +iffys
Ao

1
+ Egu)uozo'

1
M = megsl —i—auyu +kﬂy“y5 + El;wo'lwv 42)
where ¢y, d" o, e*, ¥, " as ay, k, and 1, are LV coeffi-

cients. Comparing (37)—(41) and (42), we find the non-zero
LV coefficients

&1,
oty = —E(Eb 8 + Dby ), (43)
= (1- 527 w0

We see that within the metric-affine bumblebee model, the
LV coefficients that appear provide a modification of the
fermionic mass through me.g and a modification of the stan-
dard kinetic term through cl . In general, these will introduce
modifications in the dispersion relation of spin 1/2 fields. To
that end, we first notice that the modified Dirac equation is

(irto, —M)w =0, (45)
and multiplying on the left by (i r‘o,+m ) we arrive at
(= I*IY9,8, +i[M, '8, — M*)¥ = 0. (46)
By using now the relations

(I, TV) = 29" — E(B* 0™ +26Mb°) + O(E?),  (47)
(M, "] = 0, (48)
M? =m?(1 — £b%) + O(ED), (49)

we find the following dispersion relation

[E>(1 — £(b* + b)) + 2EboE(b - p)
— (P> +m*)(1 —£b*) —E(p - b)*1¥ = 0. (50)

Aswe did for the scalar field, let us particularize for a constant
bumblebee background of both time- and space-like types.
Starting with a time-like VEV b, = [b, 0, 0, 0] we get the
dispersion relation

E? = (1 +£b%)(p* +m?) + O(EP). (51)

While for positive values of & this dispersion relation is per-
fectly well-behaved, for negative values of & there could be
instabilities if b2 > 1, but higher order terms would be
non-negligible in this case and (51) would not be trustable
anymore. For a (constant) space-like vector b, = [0, b] we
obtain

E>=p* +m® —&(p-b)> + 0. (52)

@ Springer

For negative values of £ this is well behaved, though if it is
positive then ghost-like instabilities could arise beyond the
perturbative level (see [46] for a discussion on the typical
energy scales at which these instabilities become relevant).

5 Summary and conclusions

In this work we have formulated the bumblebee model within
the metric-affine formalism. By solving the equations of
motion of the connection, we have been able to express the
metric as a function of this field and of an auxiliary metric
which accounts for the standard effects of the gravitational
interaction. To our knowledge, this is the first time that a
solution for the connection in a curvature-based metric-affine
gravity theory with spontaneously broken Lorentz symmetry
has been found. The methods used to solve the connection are
analog to those commonly employed in Ricci-based gravity
theories (see e.g. [28,29,47]), but its qualitative properties
are rather different from those theories. In particular, while
in RBGs the metric picks up local corrections that depend on
the stress-energy tensor of the matter fields, here those cor-
rections are entirely determined by the bumblebee field itself.
This occurs due to the absence of higher-curvature terms in
the action and to the non-minimal coupling of the bumblebee
to gravity via the Ricci tensor.

From our analysis it follows that, unlike in RBGs, where
the non-metricity is given by gradients of the energy-
momentum density, in our model it is the gradient of the bum-
blebee field that generates a non-vanishing non-metricity.
The fact that the bumblebee has a VEV which breaks Lorentz
symmetry allows for a background non-metricity that could
fit with the proposal in [41]. This is the first gravitationally-
induced non-metricity model with a VEV that we are aware
of.

Animmediate effect of the metric dependence on the bum-
blebee field is that all the matter fields couple to it. Since this
coupling is not a gauge one it can generate, for instance, the
coupling of a vector to a neutral scalar. In the weak-field
limit, we have seen that the resulting theory looks like a
bumblebee coupled to matter with non-linear interactions in
Minkowski space. Therefore, this theory is naturally treated
as an effective theory where the role of the energy scale
is played by £71/2 (see e.g. [48]). Typically, for the VEV
solution we have checked that the theory can present ghost
and tachyonic-like instabilities depending on the range of
the non-minimal parameter £ and the explicit form of the
VEV. A natural continuation of this study consists in calcu-
lating quantum corrections in this effective theory. The search
for astrophysically relevant solutions beyond the weak-field
limit presented here is also another research avenue currently
under consideration.
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Appendix A: Implications on taking b, non-constant

Let us start this appendix by considering the scalar Lagran-
gian, which takes the form

1
Lo = =500 +m?)o + %cb

1
X [(s/“aﬂau) + 149, + 5nﬂbz] @+ 0(E%), (A1)

with t#* = b*(d,b") + b’ (9,b"). Note the presence of the
additional coefficient 7, in relation to the standard case (it
vanishes for constant bumblebee VEVs). This coefficient
introduces an imaginary term in the scalar dispersion rela-
tion. The modified scalar dispersion relations now looks

E2 —ittoF — [1 +£(b2 — 2bo(b - p))]p2
— [1 +&(b3 — 2bo(b - p) — b2/2)]m2

—E(b-p)’ +ist-p=0OE). (A2)
Note the existence of imaginary terms in the above disper-
sion relation, which only vanish if one considers a frame
where t# p,, = 0. This undesired property leads to complex
eigenvalues of the Hamiltonian operator, which turns out to
be non-Hermitian. As a consequence, we conclude that a

non-constant b, produces an effective Minkowskian theory
with serious problems in its dispersion relation, as displayed
in the former equation. As pointed out in [1], this justifies
our choice of taking the Lorentz coefficient b;, as a constant
in order to avoid undesired effects such as a non-Hermitian
Hamiltonian and violation of energy conservation due to the
fact that a non-constant b, would play the role of an external
field whose presence would break space-time homogeneity.

For spinor fields, the dispersion relation is modified in
relation to the constant b, as

(= Ir*rre,d, — r*@,r"o, —ir*o,M +ilM, r*1a,

- M*)¥ =0. (A.3)
By using now the relations
(TH, TV} = 20" — (b +261D") + O(€2), (A4
(M, 1) = Sago™ + 0@, (A5)
M?* = m?(1 — £b%) + 2ma, y* + O(&?), (A.6)

where o/V = % [y“, y”] we find the following dispersion
relation

0= E*(1 — &> +b})) + E(Zébo(B p)+ %aaa"‘o
—iVMVﬂaMCOﬂ> — (P> +mH)(1 = £b*) — £(p - b)?
i
—Esglnyﬂaﬂl:2 + iy y*duag + iy yP piducip

—i—%aaa‘” pi — 2ma,y*. (A7)

Notice that the derivative terms dependent on a,, are accom-
panied by gamma matrices and vanish if the bumblebee back-
ground varies slowly enough. In whole analogy with the
scalar field situation, spinor fields suffer from the same insta-
bilities.
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