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Abstract Many eigenvalue matrix models possess a pecu-
liar basis of observables that have explicitly calculable aver-
ages. This explicit calculability is a stronger feature than
ordinary integrability, just like the cases of quadratic and
Coulomb potentials are distinguished among other central
potentials, and we call it superintegrability. As a peculiar-
ity of matrix models, the relevant basis is formed by the
Schur polynomials (characters) and their generalizations,
and superintegrability looks like a property 〈character〉 ∼
character . This is already known to happen in the most
important cases of Hermitian, unitary, and complex matrix
models. Here we add two more examples of principal impor-
tance, where the model depends on external fields: a special
version of complex model and the cubic Kontsevich model.
In the former case, straightforward is a generalization to the
complex tensor model. In the latter case, the relevant char-
acters are the celebrated Q Schur functions appearing in the
description of spin Hurwitz numbers and other related con-
texts.

1 Introduction

In the original definition, matrix models are defined as aver-
ages over matrix ensembles, often described by integrals over
matrices or eigenvalues. Generating functions of all correla-
tors are then described by integrals with arbitrary potentials
in the action (matrix models of the first kind) or, alternatively,
with background fields (matrix models of the second kind).
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In the both cases, one can prove that the partition functions
are actually τ functions of KP/Toda integrable theories, see
[1–6] for details, we do not need them in the present text.

However, besides being just a τ -function, the partition
function of matrix model can be often presented as an explicit
combinatorial power sum [7,8]. This property is much similar
to superintegrability of mechanical systems [9,10], hence the
term.

The superintegrability has been explicitly formulated so
far for the matrix models of the first kind, and, in this paper,
our goal is to extend formulation to the second kind. So far
the known examples include:

• Rectangular complex model
Correlators in the rectangular complex model are
expressed [7,8,11,12] through the Schur polynomials
(see earlier results in [13,14]), which are characters of
linear groups:

〈
χR{Tr (X X̄)k}

〉
:=
∫

χR{Tr (X X̄)k} · exp
(−Tr X X̄

)
d2X=χR{N1} χR{N2}

χR{δk,1} (1)

The matrix X here is N1×N2 rectangular matrix, χR{pk}
is the Schur polynomial (which is defined to be a symmet-
ric function χR(zi ) of the variables zi , or a polynomial
χR{pk} of the power sums pk :=∑i z

k
i ), and the formula

explains what is special about the Schur polynomials. At
the l.h.s. (1) the role of zi is played by the eigenvalues of
the matrix X X̄ , while at the r.h.s. pk = N1, N2 or δk,1.
Averages of tr (X X̄)k per se are more involved than those
of characters and actually contain an additional summa-
tion over Young diagrams at the level |R|, for examples of
the corresponding Harer-Zagier formulas, see [15–17]. In
(1) and below, all the integration measures are normalized
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to unity, 〈1〉 := 1; in other words, we omit normalization
integrals in denominators to simplify formulas.
For the quantity χR{δk,1}, there is a hook formula [19]

χR{δk,1} = 1∏
(α,β)∈R hα,β

=
∏lR

i< j (Ri − i − R j + j)
∏lR

i (lR + Ri − i)!
(2)

where lR is the number of lines Ri in the Young diagram
R: R1 ≥ R2 ≥ · · · ≥ RlR , and |R| is the size of the
Young diagram R: |R| :=∑lR

i=1 Ri , and hα,β is the hook
length for a box (α, β) ∈ R. For other similar loci we
have, up to a coefficient, equal to ±1 and 0,

χR{δk,s} ∼
∏
(α,β)

1

[[hα,β ]]s,0 (3)

where we use the notation

[[n]]s,a = n if n = a mod(s) and 1 otherwise (4)

which will be also useful beyond Gaussian models. Also
simple in terms of the box coordinates is the expression
on the topological locus:

χR{N } = χR{δk,1}
∏

(α,β)∈R

(N + α − β) (5)

Using Eq. (1) and the Cauchy formula

exp

(∑
k

pk
k

Tr (X X̄)k

)
=
∑
R

χR{pk} · χR{Tr (X X̄)k}

(6)

one can immediately obtain a combinatorial expression
for the generating function of all correlators:

∫
exp

(
−Tr X X̄ +

∑
k

pk
k

Tr (X X̄)k

)
d2X

=
∑
R

χR{pk} χR{N1} χR{N2}
χR{δk,1} (7)

• Gaussian Hermitian model
Correlators in the Gaussian Hermitian model are [7,8,12]
(cf. also with a Fourier expansion of [20, Eq. (2.18)] in
terms of characters)

〈
χR{Tr Xk}

〉
:=
∫

χR{Tr Xk} · exp

(
−1

2
Tr X2

)
dX = χR{N } χR{δk,2}

χR{δk,1} (8)

where X is an N ×N matrix, and the generating function
of all correlators is

∫
exp

(
−1

2
Tr X2 +

∑
k

pk
k

Tr Xk

)
dX

=
∑
R

χ{pk}χR{N } χR{δk,2}
χR{δk,1} (9)

• Trigonometric (unitary type) matrix model
This model is given by the eigenvalue integral, and the
correlators are [21]

〈
χR(emi )

〉 :=
∫

χR(emi )

N∏
i< j

sinh2
(
mi − m j

2

) N∏
i=1

exp

(
− m2

i

2g2

)
dmi = A|R| · q2�R · χR{p∗} (10)

When averaging, the argument of character in the inte-
grand is the diagonal matrix with the entries emi , and,
at the r.h.s., the parameters are q = eg

2/2, A = qN =
eNg2/2, the exponent �R = ∑

(x,y)∈R(y − x), and the

time variables p∗
k = Ak−A−k

qk−q−k in the argument of the char-
acter at the r.h.s. lie in the “topological locus” obtained
by the q-deformation of pk = N in (8).

• Knot matrix model
Further deformation of the measure to the knot eigen-
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value model gives basically the same expression for the
correlators [22,23]:

〈
χR(e

mi
a )
〉
:=
∫

χR(e
mi
a )
∏
i< j

sinh
mi − m j

2a
sinh

mi − m j

2b

N∏
i=1

e
− m2

i
2g2 dmi =

(
A|R| · q2�R

)b/a· χR{p∗} (11)

with q = e
g2

2ab .
The correlators of 〈χR(emi )〉 are more involved this time,
but are related to the HOMFLY-PT polynomials of the

torus knots HTorusa,b
R (A, q) q1 [22,23]:

〈
χR(emi )

〉 = HTorusa,b
R (A, q) = χR{N } · HTorusa,b

R (A, q)

(12)

where

HTorusa,b
R (A, q) =

〈 ∑
Q�a|R|

cR,QχQ(e
mi
a )

〉

= A
b|R|
a

∑
Q�a|R|

cR,Q · q
2b�Q
a · χQ{p∗}

(13)

where cR,Q are peculiar Adams coefficients [24,25].
Generalization to non-torus knots, for example, like that
in [26,27], remains to be analyzed.

• q, t deformed Gaussian Hermitian model

The eigenvalueq, t-deformed Gaussian Hermitian model
is associated with a deformation of Schur polynomials:
all of them in the formula (8) are replaced by the corre-
sponding Macdonald polynomials MR [28]:

〈MR(zi )〉 :=
∫ 1

−1
MR(zi )

∏
j 	=i

(
zi
z j

; q
)

∞(
t ziz j ; q

)
∞

∏
i

z
(N−1) logq t
i (q2z2

i ; q2)∞dq zi =
MR

{
1−t Nk

1−tk

}
MR

{
1+(−1)k

1−tk

}

MR

{
1

1−tk

} (14)

where

(z; q)∞ :=
∞∏
k=0

(1 − qkz) (15)

and the integral is defined to be the Jackson integral,

∫ 1

−1
dq z f (z) := (1 − q)

∞∑
k=0

qk
(
f (ξqk) + f (−ξqk)

)
(16)

The measure dμq,t (z) = (q2z2; q2)∞dq z gives rise to

the Gaussian measure dμG(z) = exp
(

− 1
2 z

2
)
dz in the

limit of q → 1.
One can expect also a further extension of similar char-
acter identities to the elliptic q, t model [29,30].

• Monomial non-Gaussian models
Superintegrability is in no way restricted to the Gaus-
sian integration measures or their deformations, though
beyond them the knowledge is still restricted. The
most important example is provided by monomial non-
Gaussian actions:

〈
χR{Tr Xk}〉a := ∫C⊗N

s,a
χR{Tr Xk}e−Tr Xs/sd X

= χR{δk,s} ·∏(α,β)∈R[[N + α − β]]s,0 · [[N + α − β]]s,a

N = 0 or a mod s

(17)

where we used the notation from (4). The new trick here is
the use of a special star-like (closed) integration contour
Cs,a :∫

Cs,a

F(x) e−xs/s dx =
s∑

b=1

e−2π i(a−1)b/s

·
∫ ∞

0
F
(
e2π ib/s x

)
e−xs/s dx (18)

which picks up only the powers of x , which are equal to
a − 1 mod s, in particular,

∫

Cs,a

xke−xs/sdx = δ
(s)
k+1−a · 


(
k + 1

s

)
(19)
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δ
(s)
k is defined to be 1 if k = 0 mod s and to vanish

otherwise. This makes the answer depending on an addi-
tional parameter a = 0, . . . s − 1. The r.h.s. of (17) con-
tains some factors N + j from χR{N }, (5), that is, those
with N + i = 0, a mod(s), and, hence, its vanishing
depends also on the value of N . Note that if the condition
N = 0 or a mod s is not satisfied, one can not define the
correlator by the condition 〈1〉 = 1 because of zeroes in
the denominator. Note also that the Vandermonde deter-
minant in the integrand is independent of s and a. For
more details, see the original paper [31].

In this paper, we extend these results to the simplest back-
ground field models: the matrix integral over N1 × N2 com-
plex matrices X with the measure

μC (X) ∼ e−tr AXB X̄ d2X (20)

where N1 × N1 matrix A and N2 × N2 matrix B are fixed
external matrices, and the Hermitian generalized Kontsevich
model [32,33] in background matrix field �, i.e. the matrix
integral over N × N Hermitian matrix X with the measure

μK (X) ∼ etr (W (X)+�X)dX (21)

and � is an external N ×N matrix. In this paper, we consider
these two examples, the potential in the second one being
W (X) = − X3

3 , which is just the original Kontsevich model
[34]. Remarkably, the difference between these two models is
severely increased in this case: in particular, in the Hermitian
case, only one background field can be easily handled.

The question we address is what are the functions of X -
variables that have simple and explicitly calculable averages.
As we demonstrate in this paper, in the complex case, these
are still the Schur polynomials χR{tr (X X̄)k}, however, the
r.h.s. of (1) now contains traces of A and B instead of N1 and
N2:
〈
χR{Tr (X X̄)k}

〉
= χR{tr A−k}χR{tr B−k}

χR{δk,1} (22)

see Sect. 2 below for details, and for generalization to the
complex tensor model. In the Hermitian (Kontsevich) case,
the story makes a new twist: the relevant functions are more
restricted Q Schur polynomials, see Sect. 3.3 for the corre-
lators in this case,

〈
QR{Tr Xk}

〉
= δR,even · QR/2{Tr �−k}QR/2{δk,1}

QR{δk,1} (23)

and Sect. 4.2 for the combinatorial expression for the Kont-
sevich model

ZK =
∑

R∈SP

1

4|R|
QR{Tr �−k}QR{δk,1}Q2R{δk,3}

Q2R{δk,1} (24)

Contributing here are only diagrams R with all lines of even
length. Equation (24) can be considered as the main new
result of this paper. Important feature of formulas (22)–(24)
is that they depend on the matrix size only implicitly, through
the traces of powers of background fields. This is the crucial
feature, which allows one to forget about the matrix-integral
origin/realization of these models, in particular to treat them
in terms of τ -functions of integrable hierarchies [32,33].

2 Rectangular complex model

2.1 Correlators in terms of permutations

We start with calculating the correlators in the complex
matrix model with the external matrix (see [35] for a square
matrix example), and use the symmetry group technique
worked out in [8]. In this section, we closely follow that
paper.

We consider the rectangular complex model

ZC :=
∫

d2X exp
(−Tr AXB X̄

)
(25)

with correlators defined as

〈O(X)〉 :=
∫

O(X) exp
(−Tr AXB X̄

)
d2X (26)

where X is N1 × N2 rectangular matrix, A and B are square
matrices of sizes N1 × N1 and N2 × N2 respectively, and
(notice that, with this definition, the matrix multiplication is
defined by convolution of the first indices with each other,
and of the second indices with each other)

Tr AXB X̄ :=
∑
i jk

Ai
k Xi j B

j
l X̄

kl (27)

The pair correlator is equal to
〈
Xi j X̄

kl
〉
=
(
A−1

)
ik

(
B−1

)
jl

(28)

The 2m-point correlator can be labelled by a permutation of
indices σ that belongs to the symmetric group Sm :

〈Oσ 〉 =
〈

l∏
p=1

Tr (X X̄)mp

〉
=
〈

m∏
i=1

Xaiαi X̄
aiασ(i)

〉
(29)

In order to calculate this correlator, we apply the Wick theo-
rem and use formula (28):
〈

m∏
i=1

Xaiαi X̄
biβi

〉
=
∑
γ∈Sm

m∏
i=1

(
A−1

)bγ (i)

ai

(
B−1

)βγ (i)

αi
(30)

and obtain

〈Oσ 〉 =
∑
γ∈Sm

pA
γ pBγ ◦σ (31)
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where

pA
k := Tr A−k, pBk := Tr B−k,

pA,B
γ :=

lγ∏
i=1

pA,B
i(γ ) (32)

and lγ is the number of cycles in the permutation γ , with
i(γ ) denoting the i-th cycle in the permutation γ .

Now we use the standard identity [19]

pγ =
∑
R�|γ |

ψR(γ )χR{p} (33)

Here the sum goes over all Young diagrams R with |γ | boxes,
χR{p} is the Schur polynomial (the character of the linear

group GL(N )), pγ = ∏lγ
i=1 pγi and ψR(γ ) is the character

of the symmetric group S|R|. Now using the orthogonality
relation
∑
γ

ψR(γ )ψQ(γ ◦ σ) =
∑
γ

ψR(γ −1)ψQ(γ ◦ σ)

= ψR(σ )

dR
δQR (34)

where dR := χR{δk,1}, we finally come to

〈Oσ 〉 =
∑
R�m

χR{pA}χR{pA}
χR{δk,1} ψR(σ ) (35)

where the sizes of R and σ coincide.

2.2 Complex model in background fields

Let us now use the Frobenius formula [19]

χR{pk} = 1

|R|!
∑
γ

ψR(γ )pγ (36)

where |γ | is the size of the Young diagram R, and the orthog-
onality relation (34) with the particular value ψR(id) =
ψR([1|R|]) = |R|!dR . Then, one immediately obtains from
(35)

〈
χR{Tr (X X̄)k}

〉
= χR{tr A−k}χR{tr B−k}

χR{δk,1} (37)

This generalizes the answer (1) to the case of A 	= I , B 	= I .
Similarly to (7), we also can obtain the combinatorial

expression for the generating function

∫
exp

(
−Tr AXB X̄ +

∑
k

pk
k

Tr (X X̄)k

)
d2X =

∑
R

χR{pk}χR{tr A−k}χR{tr B−k}
χR{δk,1} (38)

2.3 Tensor model in background fields

The results of this section for the complex matrix model can
be straightforwardly extended to the Gaussian tensor model
in background fields. To this end, we follow [36,37] and again
apply the technique of [8].

The Gaussian tensor model is a model of complex r -
tensors Xa1,...ar where each subscript runs through its inter-
val ai = 1, . . . , Ni , in the background of r external square
matrices A(i) of the sizes Ni with the Gaussian action

S :=
N1∑

a1,b1=1

· · ·
Nr∑

ar ,br=1

Xa1,...ar X̄
b1,...br

r∏
i=1

(
A(i)

)ai
bi

(39)

Gauge invariant operators at the level m in any (not obliga-
tory Gaussian) tensor model are the tensorial counterparts of
“multi-trace” operators

Oσ1,...,σr =
N1∑

�a1=1

· · ·
Nr∑

�ar=1

⎛
⎝

m∏
p=1

Xa1
p,...a

r
p
X̄
a1
σ1(p),...,a

r
σr (p)

⎞
⎠

(40)

labeled by the set of m elements σi of the permutation
group Sm . In fact, the labeling is reduced to a double coset
Sm\S⊗r

m /Sm [38–42], but we do not need these details here.
There is also a distinguished set of operators called gen-

eralized characters in [36,37] that are defined as

χR1,...,Rr (X, X̄) = 1

n!
∑

σ1,...,σr∈Sn
ψR1(σ1) . . . ψRr (σr ) · Oσ1,...,σr

(41)

These generalized characters do not form a full basis in the
space of all gauge invariant operators, instead they form an
over-complete basis in the space of all gauge invariant oper-
ators with non-vanishing Gaussian averages [36,37].

The pair correlator is now
〈
Xa1

p,...a
r
p
X̄b1

p,...b
r
p

〉
=
(
A−1

(1)

)b1

a1

· · ·
(
A−1

(r)

)br
ar

and, in complete analogy with what we were

doing in the complex matrix model case, we obtain the aver-
ages of these generalized characters

〈< χR1,...,Rr 〉=
CR1,...,Rr

dR1 · · · · · dRr
· χR1

{
Tr A−k

(1)

}
· · · · · χRr

{
Tr A−k

(r)

}
(42)

where
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CR1,...,Rr :=
∑
��n

∏r
i=1 ψRi (�)

z�
(43)

and z� :=∏k k
mkmk ! is the standard symmetric factor of the

Young diagram (order of the automorphism). In the case of
r = 3, CR1,R2,R3 are the Clebsch-Gordan coefficients of the
three irreducible representations R1, R2, R3 of the symmetric
group.

3 Correlators in Hermitian model

3.1 Examples of correlators

Let us calculate the correlators in the Gaussian Hermitian
matrix model with external fields

Since the matrices are square, we return to the standard
convention of convolution of indices in the matrix multipli-
cation. One could expect that, similarly to coming from the
rectangular complex model to the Gaussian Hermitian one,
the results will not be too much different from those in Sect.
2. It turns out, however, not to be the case, and both the calcu-
lations in the Hermitian case with the external field are much
more tedious even in the case of one external matrix, and the
results remarkably differ from those of Sect. 2. We consider
here only the case of one external matrix, i.e. the correlators
of the form

〈F(X)〉 :=
∫

F(X) exp
(
−Tr X2�

)
dX (44)

Since, the partition function is an invariant function of the
external matrix �, i.e. depends only on its traces, it suffices
to choose � diagonal. Similarly to (32), we define pk :=
Tr �−k .

In this model, the pair correlator in terms of eigenvalues
λi of the (diagonal) matrix � is equal to

〈
Xi j Xkl

〉 = 2δilδ jk

λk + λl
(45)

Here is the difference with the case of two external matrices:
in that case one can not work in terms of eigenvalues, and
the pair correlator is much more involved.

Now we consider examples of simple correlators in order
to demonstrate the structure of answers.

First consider 〈Tr X3·Tr X3〉 = 〈Xi j X jk Xki XαβXβγ Xγα〉.
This average is equal to the sum of products of pairings:
〈Xi j X jk〉〈Xki Xαβ〉〈Xβγ Xγα〉 plus all possible other pair-
ings. Totally, there are 15 different possibilities: 3 terms of
the form

C1 = 〈Xi j Xαβ〉〈X jk Xβγ 〉〈Xki Xγα〉
=
∑
α

1

λ3
α

= p3 (46)

three terms of the form

C2 = 〈Xi j Xαβ〉〈X jk Xγα〉〈Xki Xβγ 〉
=
∑
α,β,γ

8

(λα + λβ)(λβ + λγ )(λγ + λα)
(47)

and nine terms of the form

C3 = 〈Xi j X jk Xki XαβXβγ Xγα〉
=
∑
α,β,γ

4

λα(λα + λβ)(λα + λγ )
(48)

Note that C2 +3C3 = p3
1/2. Thus, we finally obtain 〈Tr X3 ·

Tr X3〉 = 3p3 + 12p3
1.

Consider examples of all correlators up to the level 6 (for
the sake of brevity, we use the notation ξk :=∑i, j

1
(λi+λ j )

k ):

〈Tr X2〉 = 2ξ1

〈Tr X · Tr X〉 = p1

〈Tr X4〉 = 8
∑
i, j,k

1

(λi + λ j )(λi + λk)
+ p2

〈Tr X3 · Tr X〉 = 3p2
1

〈Tr X2 · Tr X2〉 = 4ξ2
1 + 8ξ2

〈Tr X2 · Tr X · Tr X〉 = 2p1ξ1 + 2p2

〈Tr X · Tr X · Tr X · Tr X〉 = 3p2
1

〈Tr X6〉 = 16
∑
i, j,k,l

1

(λi + λ j )(λi + λk)(λi + λl )

+24
∑
i, j,k,l

1

(λi + λ j )(λi + λk)(λk + λl )
+ p3 + 6p1 p2

〈Tr X5 · Tr X〉 = 5p3 + 10p3
1

〈Tr X4 · Tr X2〉 = 8p1
∑
i, j,k

1

(λi + λ j )(λi + λk)

+64
∑
i, j,k

1

(λi + λ j )
2(λi + λk)

+ p1 p2 + p3

〈Tr X4 · Tr X · Tr X〉 = 8p1
∑
i, j,k

1

(λi + λ j )(λi + λk)

+8
∑
i, j

1

λ2
i (λi + λ j )

+ 9p1 p2

〈Tr X3 · Tr X3〉 = 3p3 + 12p3
1

〈Tr X3 · Tr X2 · Tr X〉 = 6p2
1ξ1 + 12p1 p2

〈Tr X3 · Tr X · Tr X · Tr X〉 = 3(2p3 + 3p3
1)

〈Tr X2 · Tr X2 · Tr X2〉 = 8ξ3
1 + 48ξ1ξ2 + 64ξ3
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〈Tr X2 · Tr X2 · Tr X · Tr X〉 = 4p1ξ2
1 + 8p1ξ2 + 8p2ξ1 + 8p3

〈Tr X2 · Tr X · Tr X · Tr X · Tr X〉 = 6p2
1ξ1 + 12p1 p2

〈Tr X · Tr X · Tr X · Tr X · Tr X · Tr X〉 = 15p3
1 (49)

and all odd level correlators evidently vanish.
These examples demonstrate that the correlators that

involve traces of only odd degrees of the matrix X (they
are boxed in (49)) are expressed only through the times (32),
moreover, through the odd times. We will return to other cor-
relators elsewhere, and here we consider only this type of
correlators. We will need a set of polynomials of odd times
that gives a complete basis and forms a closed ring.

3.2 Q Schur polynomials

Emergence of only the odd times immediately gives one a
hint to use the Q Schur polynomials instead of the standard
Schur polynomials, as we did in the previous sections. These
polynomials1 depend only on odd time-variables p2k+1 and
only on strict Young diagrams R = {r1 > r2 > · · · > rlR >

0} ∈ SP. They were introduced by I. Schur [44] in the study
of projective representations of symmetric groups, and were
later identified by I. Macdonald [45] with the Hall-Littlewood

polynomials HLR{p} := MacR{p}
∣∣∣
q=0

at t = −1:

QR :=
⎧
⎨
⎩

2lR /2 · HLR(t = −1) for R ∈ SP

0 otherwise
(50)

Macdonald’s observations were that HLR{p} for R ∈ SP
depend only on odd time-variables p2k+1, and that HLR{p}
for R ∈ SP form a sub-ring, i.e. the Littlewood-Richardson
coefficients N R

R1,R2
in the ring

HLR1{p} · HLR2{p} =
∑

R∈R1⊗R2
R∈SP

N R
R1,R2

HLR{p} (51)

vanish for R /∈ SP, provided t = −1 and R1, R2 ∈ SP. Note
that HLR{p} do not vanish for R /∈ SP, and then they can
also depend on even p2k , thus the set of QR{p} is not the
same as the set of HLR , it is a sub-set, and a sub-ring.

There is also a manifest way to construct the Q Schur
polynomial as a Pfaffian (see, e.g., [43, Eq. (74)]).

The Q Schur polynomials form a system, which has very
close properties to the standard Schur functions, only they
form a basis in a subspace of time-variables. In particular,
there is a counterpart of the Frobenius formula (36), for the
Q Schur polynomials it states

1 More detailed review of these polynomials can be found, e.g., in [43].

QR{pk} =
∑

�∈OP

�R(�)

z�
p� (52)

where OP (odd partitions) is a set of Young diagrams with
all lengths of lines odd, and �R(�) are the characters of the
Sergeev group [46,48]. As any characters, they satisfy the
orthogonality conditions:

∑
�∈OP

�R(�)�R′(�)

2l� z�
= δRR′,

∑
R∈SP

�R(�)�R(�′)
2l� z�

= δ��′ (53)

Actually relevant for the Q Schur polynomials is the restric-
tion to odd times, i.e. the Young diagram � in (52), which
defines the monomial p� = ∏l�

i p�i should have all the
lines of odd length: � ∈ OP. Therefore of crucial importance
is the celebrated one-to-one correspondence between the
sets of SP and OP.

At last, the Q Schur polynomials satisfy the Cauchy for-
mula, which we write in a form similar to (6), because this
is how it will be used in Sect. 4.2 below:

∑
R∈SP

QR{p}QR{Tr Xk} = exp

(∑
k

p2k+1Tr X2k+1

k + 1/2

)

(54)

3.3 Combinatorial expression for correlators

We are now ready to formulate a nice result for the correlators
(44) in terms of the Q Schur polynomials. Let us denote
through 2R the Young diagram produced from the diagram
R by doubling all line lengths, and denote through R|2 the
Young diagram with all even line lengths (in this case, R/2
denotes the Young diagram with all line lengths being half
of those of R)2. Then (compare with [49]),

〈
QR{Tr Xk}

〉
=

⎧
⎪⎪⎨
⎪⎪⎩

QR/2{Tr �−k}QR/2{δk,1}
QR{δk,1} if R|2

0 otherwise

(55)

For the quantity QR{δk,1}, there is a counterpart of the stan-
dard hook formula (2):

QR{δk,1} = 2|R|− lR
2

⎛
⎝ 1
∏lR

j R j !

⎞
⎠ ∏

k<m

Rk − Rm

Rk + Rm
(56)

2 For instance, an example of R|2 is R = [6, 4, 2]. In this case, R/2 =
[3, 2, 1] and 2R = [12, 8, 4].
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It is non-zero only for R ∈ SP, and

〈
Q2R{Tr Xk}

〉
=

lR∏
i

(2Ri )!
2|R| · Ri ! · QR{Tr �−k} (57)

Note that, unlike most formulas in the Introduction, the r.h.s.
in (55) is sensitive to relative normalization of two differ-
ent Q-Schur functions QR and QR/2, which is actually well
defined, because these quantities are characters of a group
and they form an algebra with integer Littlewood-Richardson
coefficients. Another property that distinguishes this normal-
ization is that, with the scalar product
〈
p2k+1

∣∣∣p2l+1

〉
= (k + 1/2) · δk,l (58)

the Q-polynomials are orthonormal:
〈
QR

∣∣∣QR′
〉
= δR,R′ (59)

and the Cauchy formula (54) acquires an especially simple
form with unit coefficients in the sum.

4 Kontsevich model

Now we are ready to consider the Kontsevich model given
by the integral [34]

Z =
∫

exp

(
−Tr X3

3
+ Tr �2X

)
dX (60)

and it can be further generalized to non-cubic potentials
[32,33], including the quadratic one, when the model is
equivalent to the Hermitian matrix model [3]. In this paper,
we concentrate on the original cubic case, and we denote the
background field by �2 to simplify the formulas in Sect. 4.2.

4.1 Kontsevich model in the character phase

The normalization of measure of the Kontsevich integral
depends on the phase of the model [50]. In the character
phase, the integral is understood as a formal series in pos-
itive powers of Tr �k , and the generating function of the
correlators is defined to be

Zch =
∫
dX exp

(
−Tr X3

3 + Tr �2X
)

∫
dX exp

(
−Tr X3

3

) (61)

Since the cubic part does not depend on the angular part
of the matrix X , one can first perform the angular integration
using the expansion [51] of the Itzykson-Zuber integral [52,
53]
∫

exp
(

Tr �2UXU †
)

[dU ]

=
∑
R

χR{δk,1}
χR{N } · χR{Tr �2k}χR{Tr Xk} (62)

so that one remains with

Zch =
∑
R

χR{δk,1}
χR{N } · χR{Tr �2k}

〈
χR{Tr Xk}

〉
(63)

and then calculate the correlators
〈
χR{Tr Xk}〉 for the star-

like integration contours directly applying formulas like (17).
Thus, in this phase, the expression in terms of characters is
straightforward and nearly obvious.

4.2 Kontsevich model in the Kontsevich phase

Much more interesting is the case of Kontsevich phase, where
the character calculus is much less trivial. In this phase, the
model is given by the integral

ZK = exp

(
−2

3
Tr �3

) ∫ dX exp
(
−Tr X3

3 + Tr �2X
)

∫
dX exp

(−Tr X2�
)

(64)

and is understood as a formal series in Tr �−k . The simplest
way to deal with this integral is to shift the integration variable
to the saddle point X → X + � so that the integral takes the
form

ZK =
∫
dX exp

(
−Tr X3

3 − Tr X2�
)

∫
dX exp

(−Tr X2�
) (65)

and one calculates this integral perturbatively using the
Cauchy formula (54),

exp

(
−Tr X3

3

)
=
∑

R∈SP
QR{−Tr Xk} · QR

{
1

2
δk,3

}
(66)

Since, for even sizes of Young diagrams |R|, QR{−pk} =
QR{pk} and averages are non-vanishing only for even sizes,
one finally obtains the Kontsevich partition function:

ZK =
∑

R∈SP

1

2|R|
〈
QR{Tr Xk}

〉
· QR

{
δk,3
} =

∑

R∈SP

1

4|R|
QR{Tr �−k}QR{δk,1}Q2R{δk,3}

Q2R{δk,1} (67)

where we used (55) for the average. Note that, because of the
factor Q2R{δk,3}, this sum effectively runs over R of sizes
divisible by 3.
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As expected in Kontsevich phase, this partition function
depends on the matrix size N only through the variables
Tr �−k . This is exactly the same phenomenon which we
observed in (22).

Derivation of the formula (67) could be one of the goals
in [49], but at that time the Q Schur polynomials were even
less known then now, and an explicit answer like this was
unavailable.

4.3 Integrability and character expansion

Note that expansion of the partition function in characters
typically allows one to check if it is a τ -function of the KP
hierarchy immediately by checking that the expansion coef-
ficients satisfy the Plücker relations. For instance, this is the
case for the partition functions (7) and (9). Indeed, any par-
tition function of the form

Zw =
∑
R

SR{p}SR{ p̄}wR (68)

with the function wR being the product

wR =
∏
i, j∈R

f (i − j) (69)

and p̄k just arbitrary parameters, is a KP τ -function [11,
54–56], since arbitrary Schur polynomial SR{ p̄} satisfies the
Plücker relations, and multiplying any solution to the Plücker
relations by wR of the form (69) preserves the solution. Now
using (5) and fixing p̄k = N2, one obtains that (7) is of the
form (68). Similarly, fixing pk = δk,1, one obtains that (9) is
of the form (68).

As we explained in [43, Sect. 8] (see also [57–60]), sim-
ilarly looking at expansion in the Q Schur polynomials,
one can expect that the partition function is a τ -function of
the BKP hierarchy. Moreover, we proposed an example of
expansion literally repeating formula (7) but with the Schur
polynomials substituted by the Q Schur polynomials, though
have not managed to construct a matrix model that possesses
such an expansion. Hence, it is surprising to realize that the
Kontsevich model, which is a τ -function of the KP hierar-
chy [32,33], not BKP have a similar character expansion in
the Q Schur polynomials. This realization in terms of matrix
model is especially important as the Q Schur polynomials are
related to the spin Hurwitz numbers and to the corresponding
cut-and-join operators [43].

Let us emphasize that, as soon as the Kontsevich parti-
tion function is a KdV τ -function [32,33], and the KdV τ -
function depends on odd times only, this is quite natural to
expand the Kontsevich partition function in the Q Schur poly-
nomials, which, in variance with the ordinary Schur polyno-
mials, depends only on odd times. One may ask why peo-
ple usually consider expansions of KdV τ -functions into the
ordinary Schur polynomials and not into the Q Schur poly-

nomials (see, however, [61]), which could look more natural.
The reason is that the standard technique of the KdV hier-
archy as an embedding into the KP hierarchy uses the for-
malism of free fermions [62], hence the ordinary Schur poly-
nomials, and it is only using the neutral fermions that gives
rise to the Q Schur polynomials, but this type of fermions is
associated with the BKP hierarchy [57–60,63,64]. We will
consider this issue in detail elsewhere.

5 Conclusion

In this paper, we extended the superintegrability relation
〈character〉 ∼ character to the second kind of matrix mod-
els, depending on background fields. This provides a very
nice generalization for the complex matrix model, where
dimensions of matrices are lifted to more general traces
of background matrices. The best known example of the
background-field model is, however, different: this is the
Kontsevich model, which is rather analogous to the Hermi-
tian, not complex model. In the Hermitian case, the simple
formulas are known to get a little more involved: they include
characters at a peculiar locus δk,s , where s is the power of the
potential. Thus, it was an intriguing question what happens
in background fields. Our result in this paper is for the ordi-
nary Kontsevich model with cubic potential, and it is that the
very set of characters is changed from the Schur polynomi-
als to the very interesting set of Q Schur polynomials, and
then their averages are given by a rather transparent formula
(55). The formula is, however, somewhat non-trivial, because
it requires a correlation between normalization of different
Q Schur polynomials, in most other examples this does not
matter because just a single character appears in the answer
which is made from its values at three different loci. In the
Kontsevich case, this is different, and this adds new colors to
the yet-no-so-well-known subject of Q Schur polynomials.

It is important that the superintegrability-related expan-
sion (67) of the Kontsevich partition function in Q Schur
polynomials is much simpler than the expansion through the
ordinary Schur polynomials, which could seem natural from
the point of view of KP integrability [4–6,65]. Indeed, the
coefficients of the latter expansion were found in [66,67] and
turned out to be quite complicated and do not expose any clear
structure. Even the character nature of the coefficients is not
evident in this KP induced expansion. Equation (67) is obvi-
ously free from all such drawbacks, in full accordance with
the expectations. It, however, remains a problem to lift (67)
to generalized Kontsevich model [32,33], while the ordinary
Schur expansion of them should be a direct lifting of [66,67].
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