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Abstract In the standard model of cosmology, the Universe
began its expansion with an anomalously low entropy, which
then grew dramatically to much larger values consistent with
the physical conditions at decoupling, roughly 380,000 years
after the Big Bang. There does not appear to be a viable
explanation for this ‘unnatural’ history, other than via the
generalized second law of thermodynamics (GSL), in which
the entropy of the bulk, Sbulk, is combined with the entropy
of the apparent (or gravitational) horizon, Sh. This is not
completely satisfactory either, however, since this approach
seems to require an inexplicable equilibrium between the
bulk and horizon temperatures. In this paper, we explore the
thermodynamics of an alternative cosmology known as the
Rh = ct universe, which has thus far been highly success-
ful in resolving many other problems or inconsistencies in
ΛCDM. We find that Sbulk is constant in this model, elimi-
nating the so-called initial entropy problem simply and ele-
gantly. The GSL may still be relevant, however, principally in
selecting the arrow of time, given that Sh ∝ t2 in this model.

1 Introduction

A conjecture known as the ‘past hypothesis’ posits that the
entropy of the observable Universe is increasing monoton-
ically, and must therefore have been lower – significantly
lower – at earlier times [1–4]. But this position appears to
be at odds with the observed cosmic microwave background
(CMB) which, in the context of standard ΛCDM, suggests
that the Universe was close to thermal and chemical equilib-
rium, i.e., in a state of very high entropy, a mere ∼ 380,000
years after the Big Bang. These two conflicting views give
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rise to what is commonly referred to as the ‘cosmic initial
entropy problem’ (IEP) [5,6].

The Universe seems to be homogeneous on scales exceed-
ing several hundred Mpc, so one may reasonably assume that
no entropy is flowing between neighboring volumes across
distances larger than this. And since physical processes, such
as stellar evolution and black-hole accretion, appear (on bal-
ance) to be increasing the cosmic entropy locally, it is diffi-
cult to understand why we would be living in a portion of the
Universe with anomalously low entropy today [7–11], if its
entropy shortly after the Big Bang was as high as it appears
to have been at decoupling (i.e., zdec ∼ 1080).

The problem arises because blackbody radiation in equi-
librium contains the largest amount of entropy, with a volume
density

sBB = 4

3
aradT

3
BB, (1)

in terms of the blackbody temperature TBB and radiation con-
stant arad. As the Universe expands, TBB scales as (1 + z) ∝
a(t)−1, where a(t) is the expansion factor in the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric (Eq. 36). At the
same time, any given proper volume V scales as a(t)3, so the
blackbody entropy SBB = sBBV must have remained con-
stant [8]. Then how could the CMB have been created at zdec

with the same entropy it has today, when all the other indica-
tions are that the total entropy should have been much smaller
back then? In the context of ΛCDM, solutions to the IEP must
therefore simultaneously explain why the Universe was ini-
tially in a very low entropy state (as is seemingly required
by the second law), and why the observed CMB acquired
such high entropy. To be clear, a very low initial entropy on
its own may not be a problem if, e.g., the Universe was cre-
ated from ‘nothing’ and has evolved away from that a priori
unique initial state to which it would never return [12–14].

This basic picture has undergone several refinements over
the past two decades, and we shall summarize the key steps
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taken to better understand the origin of cosmic entropy in
the next section. The principal goal of this paper, however, is
to examine the IEP and related entropy issues in the context
of an alternative FLRW cosmology known as the Rh = ct
universe, which is receiving support from many observational
tests (see, e.g., Table 2 of Ref. [15]), and several compelling
theoretical arguments, notably the Local Flatness Theorem in
general relativity [16]. A complete description of this model
and its observational and theoretical foundation may be found
in Ref. [17]. In Sect. 2, we shall provide a more extended
background of the IEP, and then summarize the inventory of
cosmic entropy – as we know it today – in Sect. 3. We shall
discuss the simplification of cosmic entropy when viewed
from the perspective of Rh = ct in Sect. 4, and then conclude
in Sect. 5.

2 Background

2.1 The basic picture

Today, serious attempts at resolving the IEP tend to rely on
the inclusion of a hypothesized gravitational entropy [10,18]
which, at first, may seem counterintuitive. A concentration
of particles in a kinetically-dominated system tend to diffuse
until they reach a homogeneous distribution, corresponding
to thermal equilibrium and maximum entropy. A smooth
distribution in a gravitationally-dominated system, on the
other hand, corresponds to low gravitational entropy, which
increases as initially small clumps collapse gravitationally
to eventually form black holes [19]. (The caveat here, how-
ever, is that this simple-minded consideration may be missing
other contributions to gravitational entropy, as we shall dis-
cuss in § 3.A below.) Indeed, we shall see in Sect. 3 that
supermassive black holes are among the largest contributors
to the bulk entropy of the Universe [11]. A simple solution
to the IEP may therefore be that the Universe began with a
very low entropy at the Big Bang, which increased rapidly
by zdec to produce the observed CMB, and then continued
to increase to values even larger than SBB today, generated
principally by the formation of supermassive black holes at
the centers of most galaxies. It has been postulated that this
gravitational entropy may increase even further if black holes
eventually evaporate due to Hawking radiation [20–22].

But the thermodynamics of gravitational fields remains
contentious [10,23,24] (see also Sect. 3.1), and black-hole
entropy does not explain why the Universe would have been
in a very low entropy state to begin with. Instead, the infla-
tionary paradigm [25–27] is often invoked to explain why
the initial entropy of the Universe might have been so low
[5,28,29], based on the notion that its value was established
during the slow-roll evolution of the inflaton potential. Unfor-
tunately, this idea has its own detractors, given that it con-

tains a hidden fine-tuning of initial conditions implicit in the
assumption of a pre-inflationary patch with exceedingly low
entropy, producing an ‘unnatural’ and unlikely state for the
inflaton field φ [30,31]. It has been noted, e.g., that it requires
much less fine-tuning for the Universe to have been put in
some state that evolved into the present conditions than to
have undergone an early period of inflation [5].

Worse, as the precision of cosmological measurements
continues to improve, the argument against such an ‘unnat-
ural’ beginning continues to gain support. A recent study
using the latest Planck data release [32] suggests that the
primordial power spectrum P(k) has a hard cutoff, kmin =
(3.14 ± 0.36) × 10−4 Mpc−1 [33]. A zero value of kmin is
therefore excluded at a confidence level exceeding ∼ 8σ . But
this is not what the slow-roll inflationary paradigm was count-
ing on. In order to simultaneously solve the horizon problem
and generate a near scale-free fluctuation spectrum consis-
tent with the CMB observations, P(k) should have extended
well below the measured kmin [34]. As a result, most (if not
all) slow-roll inflationary models proposed thus far, fail to
accommodate this minimum cutoff. Even extensions to the
basic picture, incorporating kinetic-dominated or radiation-
dominated pre-inflationary phases, have no impact on this
conclusion. It therefore appears very unlikely that the very
low entropy in the early ΛCDM Universe could have been
due to inflation as we know it today.

An alternative explanation for the very low initial entropy
has been around much longer, and began with Boltzmann
himself [35,36], who proposed that the low-entropy Universe
we live in started as a random fluctuation in an otherwise
maximal entropy state. This is a highly unlikely event, of
course, and the probability of it happening drops sharply as
the size of the fluctuation increases but, given an infinite
timeline, it is bound to happen sooner or later. This idea
of an equilibrium state permitting a low entropy fluctuation
is an accepted notion of why the ΛCDM Universe might
have begun its expansion with an incredibly low entropy, but
detractors question the size of the Universe in such a state.

Coupled with an anthropic hypothesis, the fluctuation the-
orem [37] allows one to quantify the relative probabilities
of us living in a Universe of various sizes, showing that
small low-entropy universes are exponentially more likely
than large ones. But this is where the Boltzmann hypothesis
breaks down. The Universe does not need to be this big for
sentient beings to exist within it. We see trillions of stellar
systems, many more than are necessary for life to emerge (we
believe), so the anthropic principle cannot be a factor in this
argument [38,39]. It appears that the Boltzmann equilibrium
hypothesis is no more ‘natural’ than the initial conditions
required for inflation to work.

It is fair to say that the IEP remains contentious for various
reasons and is largely unsolved – at least without the inclusion
of an exploratory new feature having to do with the entropy of
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an apparent horizon (see Sect. 3.2 below). Meanwhile, grav-
itational entropy might explain why the CMB had such large
entropy at zdec, even though SBB has remained constant, if
the gravitational assembly of large structures and supermas-
sive black holes continued to increase the Universe’s entropy
since then, which would thus be much greater than that of
the blackbody radiation on its own. But neither the equilib-
rium models nor the inflationary paradigm can successfully
account for the very low initial entropy without some crit-
icism, much of it driven by our aversion towards a lack of
‘naturalness.’ If initial conditions arose randomly, with a uni-
form probability of microstates, we would expect our Uni-
verse to have been born in a state of maximum entropy (if
the number of degrees of freedom is finite – more on this
below), representing thermal equilibrium, not the exceed-
ingly unlikely low-entropy fluctuation we appear to be in
according to ΛCDM.

2.2 A more recent refinement

We have made no reference thus far to the issue of what is
actually observable but, in retrospect, it makes little sense
to discuss the evolution of entropy without invoking the
observer who makes the measurements. The Universe may
be infinite (which is suggested by the apparent spatial flatness
inferred from cosmological observations), but each observer
can ‘see’ only a finite volume within it. It is reasonable to
assume, therefore, that the application of the first and second
laws to cosmology ought to be physically meaningful only
when talking about measurements made consistently by the
same observer within their observable patch of the Universe.

Two developments in black-hole physics bolster this argu-
ment quite compellingly: black-hole complementarity [40]
and the holographic principle [41–43]. The former postulates
that consistent (and, if necessary, complementary) descrip-
tions of physical situations can only include events within
the ‘horizon’ of a single observer. In the case of black holes,
the identification of a horizon within their static or stationary
spacetimes is unambiguous – it is uniquely the event horizon.
But the situation has not been so clear in the cosmic setting,
as we shall see shortly. Nevertheless, the black-hole example
does suggest that an analogous horizon must be utilized in
cosmology as well. (We refer the reader to the Appendix for a
detailed description and comparison of the apparent, particle
and event horizons.)

One of the more important consequences of the holo-
graphic principle is the covariant entropy bound [44], which
limits the entropy contained within any given, finite region.
Ultimately, this limit is related to the area of a null bound-
ing surface measured in Planck units. And since the area
of an appropriately defined horizon is finite, the causally-
connected volume within it can only contain a finite number
of degrees of freedom. As noted earlier, this makes it very

unlikely for the early Universe to have fluctuated into an
anomalously low-entropy state, but it opens up the possibility
of ‘generalizing’ the second law by including a contribution
– perhaps even a dominant contribution – from the horizon
itself [45–48].

As we shall see in Sect. 3.2 below, however, identifying
the appropriate cosmological horizon to use in such a gen-
eralization has not been straightforward. Experience with
black-hole horizons reasonably suggested at first that one
should use the cosmic ‘event’ horizon. This idea certainly
seemed to work in de Sitter space, but it hasn’t worked in
other cosmologies. Some cosmological models don’t even
have an event horizon. Trial and error eventually revealed
that the most likely bounding surface to employ in a gener-
alized second law is actually the gravitational, or ‘apparent’
horizon (see Ref. [49] for a pedagogical description). As we
now understand it, the event horizon works for de Sitter (and
presumably also for black holes) only because its spacetime
is static, and the event horizon therefore coincides with the
apparent horizon in that model (see the Appendix). We shall
return to this feature of the entropy problem shortly, but first
we consider how much entropy the Universe actually pos-
sesses, and what its dominant contributions appear to be.

3 Inventory of cosmic entropy

3.1 Cosmic entropy in the bulk

Irreversible processes are apparently increasing at least some
contributions to the cosmic entropy on all scales, from gravi-
tational clustering in the largest volumes, to dissipative accre-
tion through disks, fusion in the interior of stars and their
explosive deaths, all the way down to planetary activity in the
form of weather, chemical and biological processes [8,50].

The present cosmic entropy budget has been estimated
by various workers [8,10,11,51–54] over the past several
decades, and we shall here largely adopt their key results. As
we go through these contributions, however, it is important
to keep in mind that most of these estimates were based on a
poorly defined measure of the ‘observable’ universe, which
has undergone significant theoretical evolution with the con-
tinued refinement of how one should define what is actually
‘observable’ (see Sect. 2.2 above and Sect. 3.2 below). In
the Appendix, we discuss what has typically been assumed
in the past, and why the so-called ‘particle’ horizon is not
a correct measure of the proper size of the observable Uni-
verse. Neither is the event horizon; indeed, some cosmo-
logical models don’t even possess one. The correct proper
distance [49,86] representing what an observer actually sees
is Rγ, max ∼ ηRh, where Rh ≡ c/H is the radius of the
gravitational (or apparent) horizon, written in terms of the
redshift-dependent Hubble parameter H(z). The constant η
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Table 1 Entropy of the observable Universe

Contribution Entropy density s (kB m−3) Entropy S (kB)

SMBHs (3.7–16.6) ×1023 (2.6–11.5) ×10101

Stellar BHs

(� 15 M�) (1–64) ×1016 (0.7–44.2) ×1094

CMB (SCMB) (1.478 ± 0.003) × 109 (1.02 ± 0.02) × 1087

Other � 109 � 6.9 × 1086

Total (Sbulk) (3.7–16.6) ×1023 (2.6–11.5) ×10101

Speculative

Massive Halo

BHs (� 105 M�) ∼ 1025 ∼ (6.9 ± 0.1) × 10102

All entropy densities are taken from Ref. [11]. The total entropies are
based on the updated estimate of the proper volume of the observable
Universe in Eq. (3). The uncertain massive halo BHs [65] are not counted
in the budget

is cosmology-dependent, but tends to be ≈ 1/2 in the major-
ity of cases. The notable exception is de Sitter space, for
which η = 1.

It is important for us to stress here that this is a new, key
result. Ironically, many other studies of horizon entropy (as
we shall see shortly) have concluded that the ‘correct’ horizon
to use is the apparent (or gravitational) horizon, not the parti-
cle or event horizons, though with limited fundamental moti-
vation. The consensus has reached this point largely because
the use of the other candidates simply does not produce sen-
sible (or even correct) first and second laws of horizon ther-
modynamics [55–60]. That the thermodynamics associated
with the event horizon is ill-defined was further argued in
Refs. [61–63]. But here, for the first time, we are present-
ing a theoretical argument supporting the use of Rh for such
purposes. It simply has to do with the fact that the proper
size of the observable Universe is Rγ, max, which is indeed
proportional to Rh. More strictly, one should use ηRh when
evaluating the horizon entropy and temperature rather than
Rh, as we shall discuss in Sect. 3.2, but the proportionality
constant η has no impact on the first and second laws.

The use of the particle horizon, Rp (Eq. 40), to repre-
sent the proper size of the observable Universe, instead of
Rγ, max, introduces a non-negligible error in the estimated
entropy budget (Table 1). According to Ref. [11], the par-
ticle horizon today is Rp(t0) = 46.9 ± 0.4 Glyr, assuming
a Hubble constant H0 = 70.5 ± 1.3 km s−1 Mpc−1. By
comparison, Rh(t0)/2 ≈ 6.9 Glyr for the same cosmologi-
cal parameters. The observable spherical volume estimated
in previous works was therefore too big by a factor ∼ 300.
Here, we adopt the latest Planck optimized parameters [32],
and estimate

Rγ, max ≈ (5.8 ± 0.04)
( η

0.4

)
Glyr, (2)

for a Hubble constant H0 = 67.4 ± 0.5 km s−1 Mpc −1.
The value η = 0.4 represents the maximum proper distance
traveled by photons reaching us in a ΛCDM background cos-
mology [64]. The corresponding proper spherical volume of
the observable Universe, in the context of ΛCDM, is there-
fore

Vobs = 817 ± 17 Glyr3

= (6.9 ± 0.1) × 1077 m3. (3)

The cosmic entropy budget has contributions from many
sources, most prominently from black holes, the CMB and
the relic neutrino background. Though the various workers
[8,10,11,51–54] who have attempted to estimate these quan-
tities have not always agreed on their absolute magnitude,
their importance on a relative scale has never been in doubt.
Adopting the estimates from one of the most recent, and
presumably most accurate, compilations, we show the dom-
inant contributions in Table 1, together with their tentative
sum. In this collection, the entropy densities (analogous to
Eq. 1 for the CMB) are taken directly from Ref. [11], but the
total entropies have been updated using our more physically
motivated proper volume (Eq. 3) of the observable Universe.

According to Table 1, the largest contributions to the
entropy of the observable Universe today are made by super-
massive black holes (see Sect. 3.2 below). The entropy of the
CMB, a blackbody distribution with a present temperature
Tγ ∼ 2.7 K, is at least ∼ 1014 times smaller. The entropy of
any non-thermal radiation, including light produced by stars
and the interstellar medium, is even smaller – by a factor
∼ 103 [8,52,54].

But note that according to the discussion following Eq. (1),
SCMB has remained constant since decoupling (at zdec ∼
1080), corresponding to cosmic time ∼ 380,000 years. As
we understand it, there were no black holes present prior to
the onset of re-ionization at z ∼ 15, so according to this
simple-minded scenario, the total entropy (Sbulk) in the bulk
must have experienced several phases of rapid, and dramatic,
growth: first in reaching SCMB at ∼ 380,000 years, then
increasing to Sbulk today, starting near the onset of Pop III
star formation at t ∼ 200–400 Myr.

How much confidence should we place in this conclusion,
however? Gravitational entropy probably includes a contri-
bution from the gravitational field itself, but its nature and
size have remained a mystery. Penrose [66] proposed that it
may be given by the Weyl curvature tensor, Wαβγ δ , which
provides a measure of the curvature of spacetime (and hence
the ‘strength’ of the gravitational field). In general relativity,
Wαβγ δ is the only part of the curvature that exists in free
space, corresponding to solutions of the vacuum Einstein
equations. Unlike the Ricci curvature Rμν , which vanishes
in the absence of matter, the Weyl curvature may still be non-
zero in vacuum if, e.g., gravitational waves are propagating
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through the medium. It therefore seems to be a more appro-
priate choice for the representation of gravitational entropy,
which may be non-zero even in ‘empty’ space, but Table 1
does not include such a contribution to the entropy budget
because it is difficult to quantify.

Once matter fluctuations began to grow, and the spacetime
became clumpy, Wαβγ δ grew as well, as did the gravitational
entropy. This process culminated with the large nonlinear
overdensities we see today. In extreme cases, the clump-
ing led to the formation of black holes, whose entropy is
well known (Table 1). The story with gravitational entropy is
therefore incomplete. It appears that we know the end point
fairly well, but we have trouble quantifying the overall con-
tribution of gravity to the total entropy budget prior to the
formation of supermassive black holes. Was gravitational
entropy in the early Universe much smaller than it is today,
or was it merely present in a different form, i.e., gravitational
fields as opposed to fully formed black holes? It is hard to say,
but our analysis in Sect. 4 below may provide some helpful
clues.

3.2 Entropy of the apparent horizon

The general discussion concerning cosmic entropy includes
a growing realization (some would say ‘acceptance’) that
a complete understanding of FLRW thermodynamics ought
to include both the entropy in the bulk, as summarized in
Sect. 3.1 above, and the entropy associated with the appar-
ent (or gravitational) horizon, Rh. This horizon has both
a temperature, Th, and an entropy, Sh, extending the basic
properties of black-hole horizons discovered in the 1970’s
[19,67,68]. The temperature is inferred using the Hamilton–
Jacobi variant of the Parikh–Wilczek ‘tunneling’ approach
[69], though different definitions of ‘surface’ gravity pro-
duce some variation on the actual value of Th. The Kodama–
Hayward version is noteworthy because it is based on a
conserved current even when a timelike Killing vector is
absent [70]. In addition, the Noether charge associated with
the Kodama vector is the Misner–Sharp–Hernandez mass
[71,72], which is commonly used to represent the total inter-
nal energy contained within a sphere of radius Rh [73].

Coupling the entropy in the bulk to the entropy of a horizon
actually has a historical precedent dating back to Einstein
himself [74]. It is well known that the Einstein-Hilbert action
can be decomposed into a bulk term and surface term (see
also Ref. [75]). Yet the field equations (and their solutions)
may be derived exclusively from the variations of the bulk,
without any recourse to the surface term. The reason for this,
it turns out, is that the bulk and surface terms are actually not
independent of each other [76]. The term ‘holographic’ (see
Sect. 2.2 above) was thus coined because the information
about the bulk action functional is encoded in the boundary
action functional.

The earliest exploration of FLRW horizon thermodynam-
ics was made in de Sitter space, first by Gibbons and Hawking
[77], and later by Refs. [78–81], though in terms of the cos-
mic event horizon which, in de Sitter space, is static (see
Eq. 41). Its temperature and entropy (commonly referred to
as Gibbons–Hawking entropy) are, respectively,

Te ≡ 1

kB

h̄H

2π
, (4)

and

Se ≡ kBc3

h̄G

Ae

4
= kBc5

h̄G

π

H2 , (5)

analogous to those of a Schwarzschild event horizon, origi-
nally inferred using Euclidean field theory techniques [77].
In these expressions, kB is the Boltzmann constant, H is the
Hubble parameter (which is constant in de Sitter space), G
is the gravitational constant, and

Ae ≡ 4πR2
e (6)

is the area of the event horizon written in terms of its radius
Re. Note, however, that in de Sitter space the event and appar-
ent horizons are degenerate since H (and therefore Rh) is
constant. So for de Sitter, Re = Rh ≡ c/H . As we shall
see, the horizon area relevant to all FLRW cosmologies can
therefore be written more commonly as

Ah ≡ 4πR2
h . (7)

A more physically motivated way of writing the entropy,
highlighting the notion that it represents the number of units
of “quantum area” that fit within Ah, is

Sh = kB
Ah

4�2
Pl

, (8)

where

�Pl ≡
√
Gh̄

c3 (9)

is the Planck length. If the cosmic spacetime today were de
Sitter, the (event) horizon would produce thermal radiation
with a characteristic temperature Te ∼ 3 × 10−30 K, and its
entropy would be constant, given that the de Sitter spacetime
curvature is independent of time.

A broader discussion relevant to the thermodynamical
properties of the apparent horizon, the Kodama vector and
other issues associated with FLRW in general, may be found
in Ref. [82]. The Kodama–Hayward temperature of the
apparent horizon is given by

Th = 1

kB

h̄c

8πRh
(1 − 3w), (10)

where w ≡ p/ρ is the equation-of-state of the cosmic fluid,
in terms of its total energy density ρ and total pressure p.
One can easily confirm that Eq. (10) reduces to Eq. (4) in
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the limit w → −1. Correspondingly, it is not difficult to
understand from Eq. (8) that the apparent horizon entropy in
an expanding Universe increases if ρ + p > 0 (which pro-
duces a monotonically decreasing Hubble parameter H [t]),
remains constant when p = −ρ (i.e., de Sitter space, as
we have seen), and decreases if p < −ρ, which produces
a monotonically decreasing Hubble radius Rh and apparent
horizon surface area Ah (see Eq. 7).

4 First and second laws of thermodynamics

Let us now see how the first and second laws of thermo-
dynamics must be framed in FLRW in terms of the various
physical concepts introduced in Sect. 3 above, and why cos-
mic entropy is simplified in the Rh = ct universe compared
to ΛCDM.

The total entropy within the visible Universe, whose
proper size is Rγ, max = ηRh, may be written

S = Sbulk + Sh, (11)

where Sbulk includes all of the elements in Table 1, and Sh is
given in Eq. (8). As noted earlier, η = 1 for de Sitter space,
but η � 0.5 for all other FLRW cosmologies expanding from
an initial singularity at the Big Bang. In all cases, however, it
is the physics associated with the gravitational (or apparent)
horizon that determines the properties of Sbulk and Sh , not
the particle or event horizons. As we shall see shortly, the
distinction between Rγ, max and Rh in calculating Sbulk does
not affect our analysis. The primary purpose of introducing
the former radius (via the Appendix) as the proper size of
the visible Universe is to provide greater justification for the
relevance of Rh to the question of cosmic entropy.

In spherically-symmetric metrics such as FLRW, the prop-
erties of the apparent horizon may be determined using
the previously introduced Misner–Sharp–Hernandez mass
[49,71–73], which coincides with the Hawking-Hayward
quasi-local energy in such systems [83,84]. Under such cir-
cumstances, it is given simply as

Mh ≡ 4π

3c2 Rh
3ρ. (12)

It is not difficult to show [73,85] that a second useful relation
is therefore

Rh = 2GMh

c2 , (13)

and this in turn gives Rh = c/H in a spatially flat Universe.
As we shall confirm shortly, one thus finds that the first and
second laws of thermodynamics applied to de Sitter space
are satisfied automatically, since the internal energy Mhc2,
the volume Vh ≡ 4πRh/3, and the horizon entropy Sh, are
all constant, so dSh, dMhc2 and dVh vanish uniformly.

For the broader class of FLRW cosmologies, we follow
Refs. [56–58] and define the so-called work density

W ≡ −1

2
gabT

ab, (14)

and the energy flux across the apparent horizon

Ψa ≡ Ta
b∂b[a(t)r ] + W∂a[ar ], (15)

where gab are the FLRW metric coefficients in Eq. (36), T ab

is the energy-momentum tensor for a perfect fluid, a(t) is
the expansion factor and r is the comoving radius, and the
indices ‘a’ and ‘b’ run over the values (0, 1). The work den-
sity represents the work done by a change in the horizon’s
radius, while the energy-supply vector, AhΨa , represents the
total energy flow through that horizon. For a perfect fluid, it
is not too difficult to show that

W = ρ − p

2
(16)

where, as usual, ρ and p are the total energy density and
pressure.

The Einstein equations then lead to the expression

∇a Mhc
2 = AhΨa + W ∇aVh, (17)

known as the ‘unified first law’ [56,57]. The interpretation
of this equation is that the energy supply, −AhΨa , across the
apparent horizon is the change in heat,

∇a Qh = −AhΨa = Th ∇a Sh, (18)

and that this heat goes into changing the internal energy

Eh ≡ Mhc
2, (19)

and performing work due to the change in size of this horizon.
In writing Eq. (18), we have used the idea that the Universe
and its horizon entropy encode the positive heat out thermo-
dynamic sign convention (see, e.g., Ref. [88]). The fact that
the coefficient multiplying ∇aVh in the work term of Eq. (17)
is not simply p is apparently due to the fact that Rγ, max is
not a comoving radius [89].

As a basic test of the validity of these various ideas, let us
follow the rather straightforward demonstration that Eq. (18)
yields an evolution in the horizon entropy fully consistent
with its definition in Eq. (8). From Eqs. (13) and (19), we
see that a change in the horizon radius by an amount dRh

produces a change to the internal energy of

dEh = c4

2G
dRh. (20)

Correspondingly, the work done during this change is

W dVh = (1 − w)
3c4

4G
dRh (21)
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where, as always, w ≡ p/ρ and we have assumed a spatially
flat FLRW spacetime. Equations (17) and (18) therefore sug-
gest that

Th dSh = c4

2G

(
1 − 3w

2

)
dRh, (22)

and one can trivially confirm that this expression is com-
pletely consistent with Eqs. (8) and (10), regardless of the
value ofw. The extension of Bekenstein and Hawking’s work
on black-hole horizon entropy [19,67,68] to the cosmologi-
cal context therefore appears to be fully intact and completely
consistent with Einstein’s equations.

The corresponding thermodynamic quantities pertaining
to the bulk satisfy the traditional Gibbs equation [90,91]

Tbulk dSbulk = dE(Rγ, max) + p dV (Rγ, max). (23)

But whereas Eq. (22) is satisfied by all cosmologies, we
shall see shortly that the evolution of the physical entropy
Sbulk in ΛCDM, based solely on Eq. (23), departs dramat-
ically from the desired nondecreasing behavior, completely
at odds with our discussion in Sects. 1–3 above. The grow-
ing consensus today is that one must therefore resort to a
generalized second law (GSL), in which the geometrically
defined Sh must be added to Sbulk in order to create a nonde-
creasing total entropy S, as given in Eq. (11). This approach
is not universally accepted, however, due to its reliance on
the ‘local equilibrium assumption’ (see below) which posits
that the interior region and the apparent horizon have the
same temperature, Tbulk = Th [92–95]. The principal goal of
this paper is to demonstrate that this difficulty (perhaps one
should say, ‘unmotivated requirement’) is completely absent
in the Rh = ct universe.

4.1 First and second laws in ΛCDM

From the Gibbs Eq. (23) and the definition of Tbulk and Sbulk,
one can see that

Tbulk dSbulk = c4

2Gη3 dRh (1 + 3w) , (24)

which becomes our first law for the bulk. The hurdle faced
by ΛCDM (see Sects. 2 and 3) in accounting for the cos-
mic entropy evolution with time is therefore clearly appar-
ent, since any acceleration of the universal expansion requires
ρ + 3p < 0, i.e., w < −1/3. Clearly,

dSbulk

dRh
< 0 (∀ w < −1/3) (25)

for such a model, regardless of how one interprets Tbulk. The
second law is therefore not satisfied for the bulk in the context
of ΛCDM.

The GSL was introduced specifically to overcome this
deficiency (Sect. 3.2), with the hope that dS/dRh ≥ 0 (see
Eq. 11), in spite of the fact that the bulk cosmic entropy in the
standard model is apparently decreasing with time when the
expansion is accelerated. The inspiration for this idea came
by way of the GSL in black-hole thermodynamics [19], where
the event horizon entropy added to the entropy outside the
black hole never decreases.

Let use see what is required for the GSL to work in this
fashion. It is straightforward to show from Eqs. (22) and (23)
that the combined cosmic entropy in ΛCDM never decreases
as long as

dSh + dSbulk = c4

2G
dRh

(
1 − 3w

2Th
+ 1 + 3w

η3Tbulk

)

≥ 0. (26)

That is, the GSL is satisfied as long as

w ≤ 1

3

1 + α

1 − α
, (27)

where

α ≡ 2

η3

(
Th

Tbulk

)
. (28)

Evidently, the GSL is satisfied for any FLRW cosmology
with an equation-of-state w ≤ 1/3 in the cosmic fluid, as
long as α < 1. Otherwise, the Universe must be accelerating
and α � 2 to comply with the requirement that dS ≥ 0 at
all times. It is this tight coupling between Tbulk and Th that
has promoted the so-called ‘local equilibrium assumption’
introduced in the discussion following Eq. (23) above. More
precisely, the constraint in Eq. (27) seems to require a pro-
portionality between Th and Tbulk, though the proportionality
constant is often assumed to be unity [92–95]. It needs to be
acknowledged, however, that there is no known fundamental
mechanism responsible for maintaining the bulk in thermal
equilibrium with the horizon. Indeed, this condition cannot
be satisfied at all if Tbulk is associated primarily with the
CMB blackbody temperature TBB, as we shall see below.

4.2 First and second laws in Rh = ct

The Rh = ct cosmology has been under development for
over 15 years now, largely motivated by observational con-
straints, but more recently finding significant fundamental
support from renewed interest in the FLRW metric itself
[16]. A complete accounting of this model may be found
in a recently released monograph [17]. A quick summary of
its observational tests may also be found in Table 2 of Ref.
[15]. Like ΛCDM, Rh = ct is a FLRW cosmology with a
cosmic fluid comprised of matter (baryonic and dark), radia-
tion and dark energy, though the latter is not a cosmological
constant. The key new physical input that distinguishes it
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from the standard model is the so-called zero active mass
condition in general relativity,

ρ + 3p = 0, (29)

sustained throughout the expansion. In other words, Rh = ct
is essentially ΛCDM, though constrained by the equation-
of-state w = −1/3 over the entire cosmic evolution.

To understand why it is now timely to examine the issue
of cosmic entropy in this cosmology, let us list some of the
notable features that have allowed it to overcome many major
hurdles and inconsistencies in the standard model. This is
only a small sample; its successes extend well beyond this
brief summary. First and foremost, Rh = ct has no horizon
problems. Whereas models with an early phase of deceler-
ation, such as ΛCDM, must find ways of explaining how
regions of the sky beyond their causal horizon achieved sim-
ilar physical conditions, this issue is completely absent in
Rh = ct [96], which has always expanded at a constant rate.
Inflation was introduced in part to address the CMB temper-
ature horizon problem in the standard model [25,26,97], but
has yet to find a completely self-consistent theoretical frame-
work. The electroweak horizon problem appears to be worse.
As of today, no viable explanation has been found for how
opposite sides of the Universe seemingly acquired the same
Higgs vacuum expectation value. But again, this problem is
completely absent in Rh = ct [98].

The Rh = ct cosmology apparently also avoids the
so-called trans-Planckian problem in ΛCDM [99–103].
Whereas quantum fluctuations in the standard model would
have been seeded in the Bunch–Davies vacuum, well below
the Planck scale, they emerged into the semi-classical Uni-
verse right at the Planck scale, at about the Planck time, in
Rh = ct . Our current physical theories are not valid in the
Planck regime, so it is currently a mystery exactly how these
fluctuations evolved into the semi-classical Universe in the
context of standard inflationary cosmology.

The third and final example we mention here has to do
with the timeline in ΛCDM, which appears to be overly com-
pressed at large z, based on the observation of high-redshift
quasars and the so-called ‘too-early’ appearance of galax-
ies [104] and the accelerated rate of structure formation in
the early Universe. In contrast, the time-redshift relation in
Rh = ct matches the rate of supermassive black-hole growth
very well [105,106], and readily accounts for the appearance
of galaxies [107] and large halos [108] at z � 10.

One of the few remaining issues to consider is the nature
and evolution of cosmic entropy in the Rh = ct cosmology,
which we now address. We see right away from Eqs. (24) and
(29) why cosmic entropy is greatly simplified in this model
compared to ΛCDM. Evidently,

Sbulk = constant (w = −1/3) (30)

throughout the cosmic expansion, independently of how we
choose to evaluate Tbulk. There is no need to ‘fix’ an entropy
problem by introducing a GSL, except to determine the arrow
of time [5] which, in this model, is simply identified from
the expansion or contraction of the apparent horizon. Insofar
as Sbulk is concerned, however, there is no need to explain
an anomalously low entropy at the beginning – because it
wasn’t low – nor is there any concern that it may actually be
decreasing with time – since it is always constant – which
would otherwise violate the second law. In this picture, the
various contributions to the total entropy in the bulk shift
relative to each other as the Universe expands, but always in
such a way as to maintain a constant global value established
at the beginning.

The GSL is not required in this model, but if we were
to introduce it analogously to the procedure we followed in
arriving at Eq. (26) for ΛCDM, then the total cosmic entropy
(Eq. 11) would grow as

S = kB
πc2

�2
Pl

t2, (31)

affirming the idea floated earlier that the arrow of time in
this cosmology might be determined by the expansion of its
apparent horizon.

In contrast to the standard model, one can see from this
result that it is not necessary to speculatively constrain the
evolution of Tbulk in Rh = ct . Ironically, however, it would
actually be easier to demonstrate that Tbulk ∝ Th in Rh = ct
than in ΛCDM, if one interprets Tbulk as being primarily TBB.
This is evident from Eq. (10) and the CMB temperature TBB

which scale, respectively, as

Th(z) = 1

kB

h̄c

4π Rh
= 1

kB

h̄c

4π Rh(0)
(1 + z), (32)

and

TBB(z) = T0(1 + z), (33)

where Rh(0) is the radius of the apparent horizon today and
T0 is the current CMB temperature. That is,

Tbulk = b Th, (34)

where

b ≡ kB
4πRh(0)T0

h̄c
≈ 2.1 × 1030. (35)

We stress, however, that though these temperatures scale
in proportion with the expansion of the Universe, Eq. (34)
does not at all require that the bulk be in equilibrium with
the apparent horizon, as is often assumed in the context of
ΛCDM.
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5 Impact on theories of the early Universe

Like ΛCDM, the Rh = ct universe contains baryonic and
dark matter (ρm), radiation (ρr) and dark energy (ρde). Unlike
the standard model, however, these densities must exist in
proportions consistent with the zero-active mass condition,
ρ + 3p = 0, where ρ = ρm + ρr + ρde and p = pr + pm +
pde. With pm = 0, these imply that pr + pde = −(ρm +
ρr + ρde)/3. It is not difficult to convince oneself that this
equation-of-state can be satisfied if wde ≡ pde/ρde = −1/2,
with a fractional representation of ρde/ρ = 1/3 and ρm/ρ =
2/3 in the local universe (z ∼ 0) and ρde/ρ = 0.8 and
ρr/ρ = 0.2 as z → ∞ (see, e.g., Refs. [17,109]. Quite
clearly, dark energy could not be a cosmological constant in
such a model, and one might go further and speculate that a
fraction of dark energy present at the beginning eventually
‘decayed’ to create matter with a fractional representation
of 1/3 towards the present day. Evidently, both dark matter
and dark energy would thus be considered extensions to the
standard model of particle physics.

We don’t know yet, though, whether radiation and dark
energy were present from the very beginning, or whether
they were preceded by something else, perhaps a scalar field.
But in order for this field to also satisfy the zero-active mass
condition, it would have to have had an exponential potential
[102] reminiscent of the category of minimally coupled fields
explored in the 1980’s, designed to produce so-called power-
law inflation [110–113]. Unlike the other members of this
class, however, this zero-active mass field actually would not
have inflated, since a(t) = (t/t0).

But given these attributes, a more ‘natural’ candidate for
the incipient dominant content of the Universe could very
well have been cosmic strings [114] arising from phase tran-
sitions in such a field. The tension along a string is equal to its
energy per unit length [115,116], so the equation-of-state of a
chaotic ensemble of strings is simply p = −ρ/3, as required
in Rh = ct . Though such strings are unlikely to be dynam-
ically relevant today, they may have been dominant at early
times [117]. The earliest manifestation of the Rh = ct cos-
mology could thus have been a string-dominated universe,
that eventually evolved into the more ‘standard’ scenario we
see today.

The possible consequences of such a beginning are numer-
ous and intriguing. Certainly, if Rh = ct correctly describes
the background spacetime of the Universe, the total entropy
in the bulk has remained constant since the beginning, imply-
ing that a reasonable ‘measurement’ of Sbulk today would
directly reveal an important attribute of the physical system
during the string-dominated era – without us having to worry
about the details concerning the transition from those earli-
est times to the subsequent more ‘standard’ evolution with
ρ = ρm + ρr + ρde. For example, such a constraint would
directly reveal whether entropy variations in the equation-

of-state of the cosmic strings in the cosmological fluid, due
to variations in the local density and gravitational radiation,
could have led to perturbations of the background matter den-
sity, and the subsequent cosmic-string induced formation of
structure [118]. Such ideas and possibilities will be explored
elsewhere.

6 Conclusion

Prior to the introduction of the GSL, there was considerable
confusion about how to handle cosmic entropy in the context
of ΛCDM. The notion that Sbulk should have an anomalously
low initial value was considered to be so ‘unnatural’ that
some rather exotic (and equally ‘unnatural’) solutions were
proposed. The idea that the Universe ought to have such a
condition both at the beginning and at the ‘end’ was consid-
ered a viable possibility [2,119]. But all such models appear
to be very ad hoc, actually exacerbating the ‘unnaturalness’
of the boundary conditions. The GSL at least obviates the
need to patch the standard model in such a poorly motivated
fashion, but it may suffer from an inconsistency of its own
when applied to ΛCDM.

Busso [120] conjectured that the horizon enclosing the
bulk should be a lightlike hypersurface, building on the argu-
ment of Fischler & Susskind [121], who used lightlike hyper-
surfaces to relate entropy and area (Eq. 8). Since then, how-
ever, several workers have established that neither the parti-
cle horizon (Eq. 40), nor the event horizon (Eq. 41), satisfy
the laws of thermodynamics. Attention has thus been redi-
rected onto the apparent (or gravitational) horizon to fulfill
this role, and we describe in the Appendix a possible fun-
damental reason why it has to be this way. But the apparent
horizon is generally not null – except in one unique cosmol-
ogy: the Rh = ct universe. This model is characterized by
the zero active mass equation-of-state (Eq. 29), for which the
radius Rh increases at lightspeed, i.e., dRh/dt = c – hence
the eponymous naming of the model. Thus, the Rh = ct cos-
mology uniquely satisfies the second law of thermodynamics
in the bulk, and horizon thermodynamics on the null bound-
ary hypersurface (at Rh) consistent with the proper size of
the observable Universe.

The fact that Sbulk is constant in the Rh = ct universe
actually solves two problems in standard cosmology: (1) it
eliminates the need for the Universe to have begun its expan-
sion with an anomalously low entropy, and (2) it explains
how the cosmic entropy could have been so large by the time
of decoupling to produce the CMB. A fixed value for Sbulk

is also more in line with the cosmological principle, which
posits that the Universe is isotropic and homogeneous on
large scales (certainly larger than ∼ 300 Mpc). One should
not expect to see a net inflow (outflow) of entropy into (out
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of) a finite volume if the physical conditions are the same
everywhere on each given time slice.

We thus see that the Rh = ct cosmology may have
resolved yet another difficulty or inconsistency in ΛCDM.
Like several of the other problems preceding it, the IEP
has been with us for several decades, stubbornly resisting
attempts at reconciling the hypothesized expansion history
in the standard model with expectations based on established
physical theories. If the solution presented in this paper turns
out to be correct, the answer is actually elegant and straight-
forward, requiring no ‘unnatural’ initial conditions, nor any
forced thermodynamic equilibrium between the bulk and its
apparent horizon. One might say the answer seems quite nat-
ural after all.
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Appendix: Proper size of the observable Universe

Standard cosmology is based on the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric for a spatially homoge-
neous and isotropic three-dimensional space, expanding or
contracting as a function of time:

ds2 = c2 dt2 − a2(t)

[
dr2

(1 − kr2)
+ r2dΩ2

]
, (36)

where dΩ2 ≡ dθ2 + sin2 θ dφ2. In these coordinates, t is
the cosmic time, measured by a comoving observer (and is
independent of position), a(t) is the universal expansion fac-
tor, and r is the comoving radius. The geometric factor k is
+ 1 for a closed universe, 0 for a flat universe, and − 1 for
an open universe. Most of the data suggest that the Universe
is spatially flat, so we assume k = 0 throughout this paper.

It is not difficult to show [49,86] from Eq. (36) and the
definition of proper distance, i.e., R ≡ a(t)r , that the null
geodesic equation for a ray of light propagating radially may

be written

dRγ

dt
= c

(
Rγ

Rh
± 1

)
, (37)

where Rh ≡ c/H is the radius of the gravitational (or appar-
ent) horizon, and the sign ± refers to either inward (− sign)
or outward (+ sign) propagation. The former corresponds
to null geodesics actually reaching the observer at the ori-
gin of coordinates, and are therefore relevant in determining
the proper size of the observable Universe [86]. As we shall
see below, the outwardly propagating rays (with the + sign
in Eq. 37) define a ‘particle’ horizon which, however, can-
not be used as a measure of the size of the observable Uni-
verse because these null geodesics are directed away from
the observer and never return to their location.

From Eq. (37) for an inwardly directed ray (i.e., with a
negative sign on the righthand side), it is clear that dRγ /dt =
0 when Rγ = Rh. In other words, the spatial velocity of light
measured in terms of the proper distance per unit cosmic time
vanishes at the gravitational (or ‘apparent’) horizon. When
Rγ > Rh, the photon’s proper distance from us actually
increases, even though the photon’s velocity vector points
towards the origin. The photon approaches the observer only
when it is located within their apparent horizon at Rh. This
separation at Rh of null geodesics approaching the observer
from those receding is well known in general relativity, but
it is even simpler to understand in the cosmic context due to
the fact that FLRW is spherically symmetric.

But note that since Rh is a function of time, Ṙγ flips sign
depending on whether Rγ overtakes Rh, or vice versa. For
example, a photon emitted beyond Rh(te) at some time te < t
(where t is the present), begins its trajectory receding from the
observer, yet stops at Rγ = Rh, and reverses direction when
Rh overtakes Rγ . Consequently, the path of the null geodesic
Rγ (t) depends on the cosmology, because the expansion his-
tory is solely responsible for the evolution in Rh. This depen-
dence of Rγ (t) on the evolution of Rγ /Rh affirms the nature
of gravitational (or apparent) horizons discussed in the liter-
ature [73,87,89,122,123].

The proper size of our visible Universe hinges on the solu-
tion to Eq. (37) for the radius Rh(t) associated with the chosen
cosmology, starting at the Big Bang (t = 0) and ending at
the observer’s time. It is determined by the greatest proper
distance achieved by those null geodesics that actually reach
the observer at the origin of the coordinates. No matter what,
however, Theorem 1 in Ref. [49] ensures that the proper size
of the visible Universe at time t is always subject to the con-
straint

Rγ, max ≤ Rh(t), (38)

in any cosmology expanding monotonically with Ḣ ≤ 0.
Thus, no matter how Rh evolves in time, none of the light

detected by the observer at time t originated from beyond
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their gravitational (or apparent) horizon at that time. Indeed,
detailed solutions to Eq. (37) for typical cosmological mod-
els show that expanding universes have a visibility limit
restricted to about half of the current gravitational radius
Rh(t), or even somewhat less [86]. The only exception is
de Sitter, for which Rγ, max = Rh(t) (see below). One may
therefore summarize these results with the following state-
ment: the proper size of the observable Universe is

Rγ, max = ηRh(t), (39)

where η (∼ 1/2) is a cosmology-dependent constant.
It is not difficult to understand the physical reason behind

this outcome [86]. In all models other than de Sitter, there
were no pre-existing detectable sources away from the origin
of the observer’s coordinates prior to the Big Bang. Thus,
light reaching us at time t from the most distant sources
was emitted only after the latter had reached their farthest
detectable proper distance, i.e., ∼ Rh(t)/2.

Equation (39) needs to be contrasted with typical past
treatments of the cosmic entropy budget (see, e.g., Refs.
[8,10,11,51,53,54]), in which the proper radius of the
observable Universe was instead assumed to be the particle
horizon,

Rp(t) ≡ a(t)
∫ t

0

c dt ′

a(t ′)
. (40)

But we can clearly understand the distinction between the
apparent (Rh), particle (Rp) and event,

Re ≡ a(t)
∫ ∞

t

c dt ′

a(t ′)
, (41)

horizons via the use of Eq. (37), and why the proper size
of the observable Universe must be related to Rh through
Eq. (39) rather than Rp and Re.

Differentiating Eq. (40) with respect to t , one gets the null
geodesic Eq. (37) with a ‘+’ sign, which describes the prop-
agation of a photon away from the observer. The solution in
Eq. (40) therefore represents the maximum proper distance a
particle traveled away from us during the time elapsed since
the Big Bang. But this is different from the maximum proper
distance a photon traveled in reaching us which, as we have
seen, is given by Eq. (39). While Rγ, max is bounded by the
apparent horizon Rh, there is no limit to Rp(t), since Ṙp is
always greater than c, so Rp easily grows past Rh, especially
at late times inΛCDM, when the cosmological constant dom-
inates the energy budget and the Universe enters a late de
Sitter expansion. We never again see the photons receding
from us, reaching proper distances ∼ Rp, so regions of the
Universe that far away are not observable. As noted earlier,
null geodesics must actually reach us in order for us to see
the photons traveling along them, providing information on
their source.

In contrast, the ‘event’ horizon (Eq. 41) is defined to be
the largest comoving distance from which light emitted now,
at time t , can ever reach us in the asymptotic future. If we
differentiate this equation with respect to t , we get Eq. (37)
with a ‘−’ sign, representing a photon propagating towards
the observer. The physical meaning of Re is thus similar to
that of Rγ , except that the distance in Eq. (41) represents
a horizon for null geodesics that will connect to us in our
future, not today. This is the reason why the gravitational
(or apparent) horizon is generally not an event horizon yet,
though it may turn into one for some equations-of-state in
the cosmic fluid, which influence the evolution of Rh.

We note, in this regard, that the apparent and event hori-
zons coincide in the metrics of de Sitter, Schwarzschild and
Kerr specifically because their spacetime curvatures are inde-
pendent of time. As we discuss in Sect. 3.2, this appears to
be the reason why the holographic principle involves Re in
those cases, whereas the correct horizon to use for cosmolo-
gies other than de Sitter is Rh (or, to be more precise, it should
be ηRh(t); see Sect. 3.1 above). In other words, it would be
correct to say that the holographic principle should always
be associated with the gravitational (or apparent) horizon Rh,
rather than Rp or Re, and it only appears to involve Re when
the apparent and event horizons coincide.
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