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Abstract In this work, using two scalar fields (φ, ψ) cou-
pled to 4 + 1 dimensional gravity, we construct novel topo-
logical brane solutions through an explicit U (1) symmetry
breaking term. The potential of this model is constructed so
that two distinct degenerate vacua in the φ field exist, in anal-
ogy to the φ4 potential. Therefore, brane solutions appear due
to the vacuum structure of the φ field. However, the topol-
ogy and vacuum structure in the ψ direction depends on the
symmetry breaking parameter β2, which leads to different
types of branes. As a result, one can interpret the present
model as a combination of a φ4 brane with an auxiliary field,
which leads to deviations from the φ4 system with the brane
achieving a richer internal structure. Furthermore, we anal-
yse in detail the behaviour of the superpotentials, the warp
factors, the Ricci and Kretschmann scalars and the Einstein
tensor components. In addition to this, we explore the stabil-
ity of the brane in terms of the free parameters of the model.
The analysis presented here complements previous work and
is sufficiently novel to be interesting.

1 Introduction

The braneworld scenario describes our 4-dimensional observ-
able universe as a localized brane embedded in a 4 + d-
dimensional spacetime, denoted the “bulk”, with Standard
Model particles and fields trapped on the brane while grav-
ity is free to propagate in the bulk [1–5]. In this context,
scalar fields can generate topological structures even in the
absence of gravity, and thus induce localized brane scenarios
[6]. In fact, different types of localized structures exist, such
as domain walls, strings, monopoles and vortexes [7–10].
The exact shape of the structures depend essentially on the
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physics, spacetime dimensions, symmetry breaking and the
topology of the vacua. Based on the literature, at least three
classes of models exist that support these kink-like defects
[11–20]. The first class deals with a single real scalar field,
which leads to structureless topological solutions, such as the
sine-Gordon and φ4 models. In soliton theory, the latter pos-
sess simple soliton-like solutions, and have been the object
of building thick branes [21–24]. The second class contains
a single real scalar field, but now the system admits at least
two distinct types of branes (walls), as for instance in the
double sine-Gordon model. The third class is defined by two
real scalar fields, which essentially induce an internal brane
structure [10,13].

In many brane world scenarios, only one scalar field
is responsible for generating the brane [14,18], however,
inspired by condensed matter physics and ferromagnetic sys-
tems, an Ising or Bloch-type domain wall has been consid-
ered as a brane candidate [10,13,25]. More specifically, an
Ising wall is a simple interface without an internal struc-
ture, while the Bloch version is an interface which has a
nontrivial internal structure and so possesses features that
are not present in the case of a single field. Thus, it is use-
ful to explore Bloch walls as thick brane solutions with an
internal structure [10,13]. Indeed, the Bloch brane models
are constructed based on the interaction of two real scalar
fields coupled with gravity in 4 + 1 dimensional warped
spacetime involving one extra dimension. The field interac-
tion depends on a real parameter which determines the way
the scalar field interacts with itself, which is a generalized
form of the standard φ4 model. In fact, Bloch branes have
more localized solutions and as a result, a much richer struc-
ture, which is specified by degeneracy controlling parameters
[25].

The literature has extensively explored thick branes with
internal structure induced by the parameter that controls the
interaction between two scalar fields coupled to gravity in
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4 + 1 dimensions. For instance, in [12] a general method,
valid for both topological and non-topological defects, was
introduced to obtain deformed defects starting from a given
scalar field theory. The procedure allowed the construction
of infinitely many new theories that support defect solu-
tions, which were analytically expressed in terms of the
defects of the original theory. In this manner, without chang-
ing the corresponding topological behavior, one can vary
the amplitude and width of the domain wall [12]. In [25]
it was also shown that one may control the thickness of
the domain walls by an external parameter without chang-
ing the parameters of the potential. The discovery of sta-
ble multikink solutions in thick brane models, that move
with large velocities, has also motivated the development
of brane scenarios with double and multi-brane configura-
tions with symmetric and asymmetric warp factors in order
to solve the hierarchy problem in thick brane scenarios [25–
39].

In this work, we are interested in exploring the effect of
an explicit symmetry breaking by considering two coupled
fields (φ, ψ), with a potential that is similar to that of the
hybrid inflation potential [40], which has well-known solu-
tions in 5D spacetime. The potential of this model has been
constructed so that two distinct degenerate vacua in the φ

field exist, in analogy to the φ4 system potential. Therefore,
brane solutions appear due to the vacuum structure of the
φ field. However, the topology and vacuum structure in the
ψ direction depends on the symmetry breaking parameter
β2, which will lead to two different types of branes. As
a result, one can interpret the present model as a combi-
nation of a φ4 brane with an auxiliary field, which leads
to deviations from the φ4 system with the brane achiev-
ing a richer internal structure. In other words, the second
field is significant because one can control and modify the
configuration of the φ4 field and the brane by this extra
field.

The paper is outlined in the following manner: in Sect. 2,
we outline the general formalism of the brane world sce-
nario, by writing the action and gravitational field equa-
tions, and analyse the particle motion near the brane through
the geodesic equations. In Sect. 3, we present novel thick
brane solutions with U (1) symmetry breaking, by specify-
ing the double field potential, and present the soliton solu-
tions. Furthermore, we analyse in detail the behaviour of the
superpotentials, the warp factors, the Ricci and Kretschmann
scalars and the mixed Einstein tensor components, in addi-
tion to exploring the stability regions of the potential of
the linearized Schrödinger equation as a function of the
free parameters of the model. Finally, in Sect. 4, we con-
clude.

2 5-D thick brane: general formalism

2.1 Action and field equations

We consider a thick brane, embedded in a five-dimensional
(5D) bulk spacetime, modelled by the following action [10,
13,25]:

S =
∫

d5x
√

|g(5)|
[
−1

4
R[g(5)] + 1

2
∂Bφ∂Bφ

+1

2
∂Bψ∂Bψ − V (φ,ψ)

]
, (1)

where g(5) is the metric and R[g(5)] the scalar curvature in the
bulk; φ and ψ are dilaton fields living in the bulk andV (φ,ψ)

is a general potential energy; we have used κ2
5 = 8πG5 =

2. It is interesting to note that historically the action (1),
with the potential (11), and the superpotential method given
below, was considered in the context of higher dimensional
supergravity theories, in the 1980s [41,42].

The simplest line element of the brane, embedded in the
5D bulk spacetime with metric signature (+,−,−,−,−)

can be written as [10,13,25]:

ds2
5 = gCDdx

CdxD

= e2Aημνdx
μdxν − dw2, (2)

where C, D = 1 . . . 5, μ, ν = 1 . . . 4 and A is the warp
function which depends only on the fifth coordinate w. The
5D energy–momentum tensor of the system is given by:

TCD = ∂Cφ∂Dφ + ∂Cψ∂Dψ

−gCD

[
1

2
∂Bφ∂Bφ + 1

2
∂Bψ∂Bψ − V (φ,ψ)

]
, (3)

where the metric functions gCD , and the scalar fields, φ and
ψ , depend solely on w. Note that we have ignored the stan-
dard model matter on the brane at this stage, and the sole
source of the energy–momentum is the two scalar fields.

The 5D gravitational field and the equations of motion for
the scalar fields take the following forms [6,10,13,25]:

A′′ = −2

3

[
φ′2 + ψ ′2] , (4)

A′2 = 1

6

[
φ′2 + ψ ′2] − 1

3
V (φ,ψ), (5)

φ′′ + 4A′φ′ = ∂V (φ,ψ)

∂φ
, (6)

ψ ′′ + 4A′ψ ′ = ∂V (φ,ψ)

∂ψ
, (7)

respectively, where the prime denotes a derivative with
respect to w.

In order to replace the second order differential equations
(6) and (7) with first order equations, it is useful to introduce
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a superpotential W (φ,ψ) [6,10,13,16,25], which demands:

A′ = −1

3
W (φ,ψ), (8)

φ′ = 1

2

∂W (φ,ψ)

∂φ
, (9)

ψ ′ = 1

2

∂W (φ,ψ)

∂ψ
, (10)

while V (φ,ψ) takes the following form [6,10,13,16,25]:

V (φ,ψ) = 1

8

[(
∂W (φ,ψ)

∂φ

)2

+
(

∂W (φ,ψ)

∂ψ

)2
]

−1

3
W (φ,ψ)2. (11)

We note that the corresponding first order equations for solu-
tion of the type analysed in this paper were first given in the
context of dilaton domain walls of D-dimensional gravity
with the general dilaton potential admitting a stable anti-de
Sitter vacuum [43].

Now, to solve Eqs. (4)–(7) for thick brane solutions, there
exist two different approaches. In the first approach, one starts
with presumed exact static solutions of fields and determines
the rest of variables such that all equations are satisfied con-
sistently. More specifically, one starts from solitonic solu-
tions in flat spacetime and then by solving the nonlinear equa-
tions one must modify the scalar field potential in such a way
that the soliton solutions remain a solution of the full grav-
itating system. Then the superpotential W (φ,ψ) and warp
function would be calculated. In this method the soliton solu-
tion remains the same in flat and curved spacetime, although
the form of the potential, changes accordingly [6,14].

In the second approach one starts from a specific super-
potential, instead of specifying the fields (φ and ψ). This
approach is based on minimizing the energy (Bogomolny
bound) and imposing parity restrictions (for instance, see
[13]). Thus, one should solve the following equation in order
to check whether solitons exist or not and which kind of
solitons will appear in the system [10,13,25]:

dφ

dψ
= Wφ

Wψ

= φ′

ψ ′ , (12)

which is the general nonlinear differential equation relat-
ing the scalar fields of the model [6,10,13,25,44]. If solu-
tions exist in the form of φ(ψ) [25], this function repre-
sents the equation for a generic orbit, which reflects the
presence of topological soliton solutions [44,45]. We are
interested in potentials which lead to orbits in the (φ, ψ)
plane corresponding to topological solitons, namely, poten-
tials with a unique minimum in ψ and two degenerate
minima in the φ direction which lead to topological soli-
tons. One can show that such orbits will have zero constant
of integration ( 1

2φ′2 + 1
2ψ ′2 + Ṽ (φ,ψ) = 0) and finite

total energy (
∫ +∞
−∞ dw

(
1
2φ′2 + 1

2ψ ′2 − Ṽ (φ,ψ)
)

= const).

These results from soliton theory are very helpful in con-
structing thick brane models presented in this paper.

The energy density distribution on the bulk, T00, which
will be analyzed in detail below, is given by:

T00 = e2A

[
1

2

(
∂φ

∂w

)2

+ 1

2

(
∂ψ

∂w

)2

+ V (φ,ψ)

]
. (13)

It can also be shown that for models with an infinitely thin
brane and Dirac delta distributions, the energy density is
equal to the cosmological constant of the bulk (
±

5 ) plus
the energy density on the brane, i.e., ε = 
±

5 + kδ(w) [18],
where k is parameter independent of w and is related to the
energy density on the brane.

2.2 Geodesic equation

Moreover, it is also interesting to investigate the particle
motion near the brane [46] through the geodesic equation
along the fifth dimension in a thick brane. This investigation
helps in clarifying the interaction of material particles to the
gravitational field of the brane, in particular, whether matter
is gravitationally confined to the brane. To this effect, the
geodesic equation provides one with the differential equa-
tions:

d

dτ

(
−2e2Aṫ

)
= 0, ẅ + A′e2Aṫ2 = 0, (14)

which yield

ẅ − c2
1 [ f (w)] = 0, (15)

where the overdot denotes a derivative with respect to the
proper time τ on the brane, c1 is a constant of integration and
the factor f (w) is defined as

f (w) = A′(w)e−2A(w). (16)

Equation (15) is a second order differential equation for w

and its solution depends critically on whether f (w) is posi-
tive or negative near to the position of the brane, i.e., w ≈ 0.
For positive (negative) values of f (w) one obtains exponen-
tial (periodic) solutions, respectively. Note that the periodic
motion indicates particle confinement near the brane, while
the exponential solutions implies that the reference point is
unstable. However, this may show that the reference point is
chosen incorrectly and the brane is located at w �= 0 rather
than w = 0.

In a periodic situation, by introducing a new quantity
F(w) = −c2

1 A
′(w)e−2A(w), one can write the geodesic
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equation in the following form

ẅ + F(w) = 0. (17)

One can show that in the exact stable point, i.e., w0, we have
F(w0) = 0. On the other hand, by expanding F(w) around
w0, we have F(w) = F(w0) + F ′(w0)(w − w0) + . . ., and
the geodesic equation leads to ẅ + F ′(w0)(w − w0) = 0.

Taking into account a change of variable w̃ = w − w0, the
geodesic equation reduces to

¨̃w + �2 w̃ = 0 , (18)

where � = √
F ′(w0). Note that the stability of the orbits

and the gravitational confinement of particles to the brane
requires F ′(w0) ≥ 0.

One may interpret these results in that the thick branes,
via the scalar fields φ and ψ , provides a gravitational field
which confines test particles to the vicinity of the brane, forc-
ing them to oscillate along w between either sides. For thin
branes, matter particles are strictly confined to the brane
via a delta function δ(w) which appears in the energy–
momentum tensor. In thick branes, on the other hand, par-
ticles are strongly attracted toward the brane location via a
confinement mechanism. For this reason, we consider parti-
cle motion and confinement in the vicinity of the brane.

3 Thick Branes with U(1) symmetry breaking

We consider, as is predicted in thick brane scenarios, the
observable universe to be a brane-like structure in a 5-
dimensional bulk spacetime. The brane is located somewhere
along the extra dimension w, say w = w0. In thick brane
models, there is no need to apply the junction conditions at
w = w0, since the metric and the matter distribution vary
smoothly along w. Thick branes can be divided into two dis-
tinct classes: topological and nontoplogical. In topological
thick branes, the scalar field(s) which support the brane rest
on two distinct values, corresponding to distinct degenerate
vacua of the field, while in nontopological branes this is not
the case. The topological thick branes could also contain a
simple field (φ), or multiple fields (φa = 1, 2, ..N ), depend-
ing on the number of independent scalar fields which appear
in the Lagrangian.

When there are n extra dimensions and n scalar fields with
Sn topology for the degenerate vacua, for instance, as in the
V (φ) = λ

4

(
φaφa − η2

)2
model, different types of solutions

are found [10]. Such highly symmetrical branes, although
interesting theoretically, are idealized models. In fact, what
we learn from particle and condensed matter physics is that
most symmetries are broken spontaneously, explicitly, or bro-
ken at the quantum level [47]. Our main motivation in the
present work is to explore the effect of a symmetry breaking

term in an otherwiseU (1) symmetric Lagrangian. This extra
term turns out to determine the internal structure and normal
modes of the brane solutions.

3.1 Specific double field potential

The double field potential we are interested in is given by
[48]:

Ṽ (φ,ψ) = λ

4

(
φ2 + ψ2 − α2

φ

)2 + 1

2
β2ψ2, (19)

where αφ is a constant parameter which controls the central
height of the potential, β2 is a constant parameter which
controls the thickness of the brane as well as controlling
the U (1) explicit symmetry breaking and φ and ψ are real
scalar fields. The term within the parenthesis of this potential
demonstrates a full circular symmetry resembling the Higgs
potential [48]. This potential is similar to, but not the same as,
that of the hybrid inflationary model [40,48,49]. In the latter,
there are two scalar fields, one playing the role of a rapidly
decaying (water-fall) field, triggered by another (inflationary)
scalar field [40,48,49]. In such models, depending on the
choice of the Lagrangian density, the model may lead to the
formation of domain walls in 3 + 1 dimensions. As depicted
in Fig. 1, the cases β2 = 0 and β �= 0 correspond to two
different topologies for the vacuum and as a result distinct
topological solitons. One can demonstrate for β2 = 0, that
the Lagrangian density will be Lorentz invariant as well as
invariant under a global U (1) transformation. However, for
β2 �= 0 the U (1) symmetry is broken and the potential along
the φ axis has always two degenerate vacua at φ = ±αφ ,
while the potential along the ψ axis depend on β2.

One can show that for λα2
φ > β2 the potential has two

saddle points which are located at ψ = ±
√

α2
φ − β2/λ on

the ψ axis which are transformed to each other by a sign
transformation [48,49]. It is worthwhile to emphasize that
the saddle points move toward the origin as the inequality
λα2

φ > β2 becomes weaker and finally meet at the origin

when λα2
φ = β2 [48]. However for λα2

φ � β2, the origin
remains a saddle point [48,49]. This is an important criterion
for having the structure of double field branes, since if we
have only one minima at ψ = 0, the brane reduces to the
simple φ4 brane.

Note that for λ = 1, αφ = 1 and β2 = 1, since the vacua
of the system reside at (φ,ψ) = (±1, 0), only the φ-field is
responsible for the topological charge1(see Fig. 1) [49]. In
this situation, the symmetry of the system under φ ↔ −φ

and ψ ↔ −ψ leads to the appearance of two similar branes
with the same energy per unit surface. So, there are two types

1 In 1 + 1 dimensions, the topological current is defined by Jμ =
1

2π
∂μϕ, from which Q = ∫ +∞

−∞ J 0dx = 1
2π

[φ(+∞) − φ(−∞)] [47].
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Fig. 1 The logarithm of the potential V (φ, ψ) is depicted as equipo-
tential contours on the (φ, ψ) plane. We have considered the logarithmic
scale in order to show the behaviour of the surface curves as they vary
from maximum to minimum points, which are indicated by the color

spectrum, from red to blue, respectively. The potential increases from
blue to red. a λ = 1, αφ = 1 and β2 = 0 and b λ = 1, αφ = 1 and
β2 = 1. It can be seen that the vacuum is S1 for β2 = 0 and a discrete
set of two points for β2 = 1 (right panel)

of kinks and antikinks which are related to each other by the
field transformations φ ↔ −φ and ψ ↔ −ψ [49].

3.2 Soliton solutions

In particular cases, finding analytical solutions (kinks or
branes) for a specific system, such as the sine-Gordon or the
φ4 systems, is possible. However, for other potentials includ-
ing the system under consideration, analytical solutions can-
not be found and one must resort to an initial assumption and
use a numerical code which is able to minimize the energy
of the system or make some algebraic simplification to find
accurate (very good approximation) solutions (for instance,
see [49,50]). Taking into account that for β2 �= λα2

φ there
are two distinct degenerate vacua on the (φ, ψ) plane, one
expects combined soliton solutions for the (φ, ψ) system. In
the present context, the former (non-topological) case occurs
when the U (1) symmetry is not broken (left panel of Fig. 1).
From soliton theory, we know that in two field models in
1 + 1 dimensions, we have topological solitons only if the
degenerate vacua in the φ − ψ plane are disconnected (for
more details, see [47]).

Approximate soliton solutions are given by [48]:

φ(w) = ±αφ tanh(βw),

ψ(w) = ±αψ sech(βw), (20)

where

αφ = α, αψ =
√

α2
φ − 2

β2

λ
, (21)

which correspond to the well-known exact topological (for
the φ field) and nontopological (for the ψ field) solutions
in soliton theory. These solutions satisfy the static nonlinear
field equations in the presence of the U (1) symmetry system
β2 = 0 [49] and are plotted in Fig. 2. The positive (nega-
tive) sign of each field corresponds to a kink (antikink). On
the other hand, α and β are free parameters which control
the height and the thickness of the brane, respectively. More
specifically, one can show that the height of the brane field is
proportional to the α parameter while its thickness is given
by 	 = β−1 [18].

While double field models have been studied elsewhere
(see e.g. [51]), the potentials in these references are different
from the one considered here. For instance, in [51] the solu-
tions are obtained via minimizing the energy (Bogomolny
bounds) and imposing the parity restrictions. One can easily
show that for the solutions (20), we have

φ2

α2
φ

+ ψ2

α2
ψ

= 1. (22)

which represents an ellipse in the (φ,ψ) plane (see Fig. 1). In
fact, this elliptic route is responsible for connecting the two
minima (±1, 0) of the corresponding potential (19) [51]. It is
worthwhile to note that while the one-field solutions demon-
strate standard domain walls, the two-field solutions may rep-
resent domain walls with internal structure,2 which is clear

2 The internal structure shows itself in the apperance of asymetric shoul-
ders of the brane, in Figs. 6 and 7.
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Fig. 2 Static solutions of Eq.
(20). The dashed curves
represent φ and the solid curves
are for ψ , for λ = 1, αφ = 2,
αψ = 1.4142 and β = 1. As one
can see, under the
transformation
(φ, ψ) → (−φ,−ψ), the
soliton k1 (a) changes to k̃2 (d)
and k̃1 (c) changes to k2 (b)

by comparing the vector (φ,ψ) configuration of one and
two-fields solutions [51]. Note that this vector corresponds
to a straight line sector and an elliptic arc for the one and
two-field solutions, respectively [51].

Each pair of these solutions are shown in Fig. 2. It is
seen that there are two types of kinks and antikinks with
the same energy which are related to each other by the field
transformations φ → −φ and ψ → −ψ . As one can see,
under this operation, the soliton k1 (shown in Fig. 2a) changes
to k̃2 (shown in Fig. 2d) and k̃1 (Fig. 2c) changes to k2 (Fig.
2b). In the rest of the paper, we will only consider k1, the
type I solitons depicted in Fig. 2a, and k2, the type II solitons
represented in Fig. 2b. Figure 3a and 3b demonstrate soliton I
and soliton II pairs for various values of parameters β, which
correspond to branes with different thicknesses.

3.3 Superpotentials

The formalism of our investigation is to keep the flat space
soliton solution and modify the scalar field potential in such a
way that the soliton remains a solution of the full gravitating
system [18]. Thus, the soliton solution remains the same,
while the form of the potential, however, changes in such a
way that the new set of equations with the brane geometry
are satisfied. By plugging Eqs. (20) into Eqs. (9) and (10),
the superpotential of φ and ψ (or −ψ) fields are given by:

W1(φ) = 2αφβ

(
φ − φ3

3α2
φ

)
, (23)

W2(±ψ) = ∓2αψβ

⎡
⎣αψ

3

(
1 − ψ2

α2
ψ

)3/2
⎤
⎦ , (24)

respectively.
Thus, one can define [39]:

WI(φ,ψ) = W1(φ) + W2(ψ),

WII(φ,−ψ) = W1(φ) + W2(−ψ), (25)

which are given as functions of w through the following rela-
tions

WI(w) = 2 α2β tanh (β w) − 4

3
α2β (tanh (β w))3

+4β3

3λ
tanh (β w)3, (26)

WII(w) = 2 α2β tanh (β w) − 4β3

3λ
tanh (β w)3. (27)

Furthermore, taking into account condition (12), one can
show that the solution curve in (φ, ψ) plane is given by:

φ(ψ) = αφ

√
1 −

(
ψ

αψ

)2

, (28)
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Fig. 3 Soliton solutions as a function of the fifth dimension for the
models with λ = 1. The plots a–c depict the soliton I (φ, ψ) and d–f
the soliton II (φ, −ψ). The dashed (φ(αφ = 2, β = 1) and ψ(αφ =

2, β = 1)), dotted-dashed (φ(αφ = 4, β = 2) and ψ(αφ = 4, β = 2))
and continuous curves (φ(αφ = 6, β = 3) and ψ(αφ = 6, β = 3))
correspond to solitons with decreasing brane thickness

which is a guarantee for the topological soliton. Note that
Eqs. (22)–(24) and (28) impose a constraint (|ψ | ≤ |αψ |) on
the ψ field for the present solution.

Before examining the system precisely, one can predict
similar results for the φ4 model due to the presence of the
topological soliton. However, because of the contribution
from the second field, small deviations from the φ4 system
are to be expected.

The corresponding modified potentials (11) for this model
are given by:

VI,I I (φ,±ψ)

= β2

2

[
αφ

2
(

1 − ϕ2

αφ
2

)2

+
(

1 − ψ2

αψ
2

)
ψ2

]

−2

3
β

[
αφ

(
ϕ − 1

3

ϕ3

αφ
2

)
∓ 1

3
αψ

2
(

1 − ψ2

αψ
2

)3/2
]2

.

(29)

Note that while Ṽ is of the order O(φ4) and O(ψ4), VI,I I are
O(φ6) and O(ψ6). Furthermore, it is necessary to emphasize
that in the limit of ψ → αψ these potentials reduce to the φ4

potential [18].
The potential (29) is plotted in Fig. 4. As the figure demon-

strates, nondegenerate vacua in the φ direction exist for any
value of ψ except for ψ = αψ (which corresponds to degen-
erate solutions type I and II) and this leads to a topological
solitonic brane with Z2 symmetry breaking in the φ direc-
tion. Although this potential has been plotted for the soliton
I, it can be shown that for the soliton II the general form of
potential is unchanged.

3.4 Warp factors

The warp factor of the system which can be deduced from
the field equations, are given by:
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Fig. 4 The plots depict the modified soliton potential as a function of: a (φ, ψ) and b φ for specific values of ψ . The potential has nondegenerate
vacua in the φ direction for any values of ψ except for λ = 1, αφ = 2 and β = 1. This behavior is that of a topological solitonic brane which does
not have Z2 symmetry

exp (2AI) =
[
sech2 (β w)

] 2
9 α2+ 4

9
β2

λ

× exp

[
4

9

β2 tanh2 (β w)

λ
− 4

9
α2 tanh2 (β w)

]
,

(30)

exp (2AII) =
[
sech2 (β w)

] 2
3 α2− 4

9
β2

λ

× exp

[
−4

9

β2 tanh2 (β w)

λ

]
, (31)

respectively, which in the limit w → ±∞ are given by

exp (2AI) ≈ 2 exp

[
−2β

(
2

9
α2 + 4

9

β2

λ

)
w

]

× exp

[
4

9

(
β2

λ
− α2

)]
, (32)

exp (2AII) ≈ 2 exp

[
−2β

(
2

9
α2 − 4

9

β2

λ

)
w

]

× exp

[
−4

9

(
β2

λ

)]
. (33)

The warp factor is shown in Fig. 5. Figure 5a depicts the
warp factor of the brane which is constructed by soliton I for
different values of the free parameters, while Fig. 5b com-
pares the warp factor of branes generated by type I, type II
soliton pairs and the φ4 model, each for the same free param-
eters.

One can now analyse the energy density (13), which may
be written as:

T00 = e2A
[

1

2
φ′2 + 1

2
ψ ′2 + V (φ,ψ)

]
. (34)

As is evident from Fig. 6 the energy density is localized, as
expected. However, it contains two dips/shoulders on both

sides of the brane, which are different for (φ, ψ) and (φ,
−ψ) pairs, respectively.

3.5 Ricci and Kretschmann scalars

It is useful to inspect the behaviour of the Ricci and
Kretschmann scalars of the considered models. However,
these are rather lengthy and are thus presented in Appendix
A, where it can be readily seen that there are no singularities.
We do however show the behaviour of the Ricci scalar as a
function of the fifth dimension w in Fig. 7, for the differ-
ent soliton pairs (φ, ψ) and (φ, −ψ), respectively, and for
different values of the free parameters.

In the limits of w −→ ±∞, the Ricci and Kretschmann
scalars simplify to the following constant values:

lim
w→±∞ RI = 1

81

80 β2α4λ2 + 320 β6 + 320 β4α2λ

λ2 , (35)

lim
w→±∞ RII = 1

81

320 β6 − 960 β4α2λ + 720 β2α4λ2

λ2 . (36)

and

lim
w→±∞ KI = 1

6561 λ4

(
10240 β12 + 20480 β10α2λ

+15360 β8α4λ2 + 5120 β6α6λ3 + 640 β4α8λ4
)

,

lim
w→±∞ KII = 1

6561 λ4

(
−61440 β10α2λ + 10240 β12

−138240 β6α6λ3+138240 β8α4λ2+51840 β4α8λ4
)

,

(37)

respectively.
In the limit of w → 0, the Ricci scalars reduce to:

lim
w→0

RI = −16

3
α2β2,
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Fig. 5 The plots depict the warp factor as a function of the fifth dimen-
sion for the system. a For the soliton pair I (φ, ψ) for λ = 1, αφ = 2
and different values of β. b The dashed, dotted-dashed and solid curves

correspond to the warp factor of the soliton pair I (φ, ψ), soliton II (φ,
−ψ) with λ = 1, αφ = 2 and β = 1 and the φ4 model with α = 2 and
β = 1, respectively
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Fig. 6 The energy density (34) as a function of the fifth dimension for the system. For λ = 1, αφ = 2 and different values of β, we have: a the
soliton pair I (φ, ψ) and b for the soliton pair II (φ, −ψ)

lim
w→0

RII = −16

3
α2β2. (38)

and the Kretschmann scalars to:

lim
w→0

KI = 64

9
α4β4,

lim
w→0

KII = 64

9
α4β4, (39)

respectively.

3.6 Mixed Einstein tensor components

The mixed Einstein tensor components of type I and type
II branes are given by the equations in Appendix B, respec-
tively, where we have μ = (1, 2, 3, 4) as before. As for the

Ricci scalar, we show the behaviour of the mixed Einstein
tensor component G0

0 as a function of the fifth dimension w

in Fig. 8, for the different soliton pairs (φ, ψ) and (φ, −ψ),
respectively, and for different values of the free parameters.
As can be seen, for the type I, these diagrams are very similar
to the φ4 model, while there is a small deviation from the φ4

model for the type II soliton pair. It is worthwhile to notice
that for both cases the bulk would be asymptotically anti-de
Sitter on both side of these branes.

The components of the Einstein tensor for these two pairs
in the limits w → ±∞ become:

lim
w→±∞GA

B = − 8

27

β2

λ2

(
α4λ2 + 4β4 + 4β2α2λ

)
,

lim
w→±∞GA

B = −32

27

β6

λ2 + 32

9

β4α2

λ
− 8

3
β2α4. (40)
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Fig. 7 Plots depict the Ricci scalar as a function of the fifth dimension for the system. For λ = 1, αφ = 2 and different values of β. a for the
soliton pair I (φ, ψ) and b for the soliton pair II (φ, −ψ)
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Fig. 8 Plots depict the Einstein tensor component G0
0 as a function of the fifth dimension for the system. For λ = 1, αφ = 2 and different values

of β. a for the soliton pair I (φ, ψ) and b for the soliton pair II (φ, −ψ)

and in the limit of w → 0 the Einstein tensor components
take the form:

lim
w→0

Gμ
ν = −2α2β2δμ

ν ,

lim
w→0

Gμ
ν = 2α2β2δμ

ν , (41)

respectively (we have assumed 8πG5 = 2). Note the cosmo-
logical constant on the brane would be 2α2β2 and −2α2β2

for type I and type II respectively. In this limit G5
5 = 0 for

both models, as it is expected. The cosmological constant on
the brane for the type II brane is exactly the same as in the
φ4 model, while the cosmological constant of type I is the
opposite [18].

The linearized geodesic equation of a test particle moving
in the direction of the fifth dimension for both cases are given
by:

ẅ + c2
1

2

3
α2β2w = 0 , (42)

which corresponds to a frequency ω = � = √
F ′(w0) =√

2/3 c1αβ, and is exactly the same as the frequency of the
φ4 system.

3.7 Stability

In order to study the stability of the branes, we choose an
“axial gauge” in which the metric is perturbed in the follow-
ing way [6,13,15–17]:

ds2 = e2A(w)
(
gμν + εhμν

)
dxμdxν − dw2, (43)

where gμν is the four-dimensional metric, hμν represents
the metric perturbations, and ε is a small parameter [15].
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Fig. 9 Stability regions of the potential, where the plots depict the
coefficient of the z2 term in the potential of the linearised Schrödinger
equation as a function of the free parameters α and β with λ = 1 for
the a pair of φ and ψ (soliton I) and b pair of φ and −ψ (soliton II).

Note that the sign of the z2 term indicates the character of the stability,
where the positive sign being stable, while the negative sign indicates
instability

By considering φ → φ + εφ̃ and ψ → ψ + εψ̃ [13] and
variation of the action with respect to the scalar fields up to
second order in ε, one obtains the equations for the scalar
fluctuations φ̃ and ψ̃ as [6,13]:

e−2A�φ̃ − 4A′φ̃′ − φ̃′′

+φ̃
∂2V (φ,ψ)

∂φ2

+ψ̃
∂2V (φ,ψ)

∂φ∂ψ

= 1

2
φ′gμνh′

μν, (44)

and

e−2A�ψ̃ − 4A′ψ̃ ′ − ψ̃ ′′

+ψ̃
∂2V (φ,ψ)

∂ψ2

+φ̃
∂2V (φ,ψ)

∂ψ∂φ

= 1

2
ψ ′gμνh′

μν, (45)

respectively [6,13].
The variation of action with respect to the metric up to

second order in ε leads to [6,13]:

−1

2
�hμν + e2A

(
1

2
∂2
w + 2A′∂w

)
hμν

−1

2
gλρ

(
∂μ∂νhλρ

−∂μ∂λhρν − ∂ν∂λhρμ

) + 1

2
gμνe

2A A′∂w

(
gλρhλρ

)

+4

3
e2Agμν

(
φ̃

∂V (φ,ψ)

∂φ
+ ψ̃

∂V (φ,ψ)

∂ψ

)
= 0. (46)

Using the transformation hμν → h̄μν = Pμνλρhλρ where
[13]:

Pμνλρ = 1

2

(
πμλπρν + πμρπνλ

)

−1

3
πμνπλρ, (47)

with the following definitions [6,13]:

πμν = gμν − ∂μ∂ν

� , (48)

h̄′′
μν + 4A′h̄′

μν = e−2A�h̄′
μν, (49)

h̄μν = eik.x e
−3
2 A(z)χμν(z), (50)

where � = gi j∂i∂ j in the denominator is the four-
dimensional Laplacian resulting from nonlocal effects [6].

Moreover, in order to render the unperturbed metric con-
formally flat, one can choose dz = e−A(w)dw. In this
case, Eq. (49) leads to the following Schrödinger equation
[6,13,15–17]:

−d2χ(z)

dz2 +U (z)χ(z) = k2χ(z) , (51)

where the potential is given by:

U (z) = −9

4

 + 9

4
A′2 + 3

2
A′′. (52)

Note that 
 is the cosmological constant on the brane, which
could be positive, negative or zero corresponding to the 4D
spacetime being de Sitter (dS4), anti-de Sitter (AdS4) or
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Minkowski (M4), respectively [15,16]. Since the dependence
of U (z) on z is fairly complicated, we limit ourselves to
small z, which corresponds to the vicinity of the brane. If
we expand U (z) near to its minimum, the lowest order terms
are a constant and a term quadratic in z. The sign of the z2

term indicates the character of the stability. The positive sign
being stable, while the negative sign indicates instability.

Figure 9 shows the z2 coefficient of the Taylor expansion
of the linearised Schrödinger equation potential as a function
of the free parameters α and β. Comparing the two plots in
the figure, which are related to distinct pairs, one observes
that the type II leads to stability, while the type I involves
neutral equilibrium for small values of α and β and is unstable
otherwise.

It is interesting to perform the localization of the graviton
zero mode. To this effect, consider k = 0 in Eq. (51), which
yields

−d2χ(z)

dz2 +U (z)χ(z) = 0. (53)

To findU (z), we first have to deduce A(z), for which we need
ω(z) which is governed by z = ∫

exp [−A(ω)]dω. For nei-
ther of the solutions (30)–(33), can we proceed analytically,
even for the zero mode. However, if we model the potential
with a quadratic one (U (z) = U0z2), the solutions will be
the Bessel J and Y functions.

f (z) = C1
√
z J

(
1

4
,

√
C

2
z2

)
+ C2

√
z Y

(
1

4
,

√
C

2
z2

)
,

(54)

which yield wave-packet-like functions concentrated near
z = 0.

4 Conclusion

Brane world scenarios are among popular cosmological mod-
els, in which the existence of extra dimensions leads to a
possible solution to the hierarchy problem and explains the
weakness of gravity compared to other forces in nature. In the
orginal brane models, such as the Randall–Sundrum models
[1,2], the brane is infinitely thin with respect to the extra
dimension and standard model particles move only on the 3
+ 1 dimensional brane. The appearance of a Dirac delta func-
tion with respect to the extra dimension is physically unde-
sirable and in thick brane models, one tries to smooth out
this singularity and replace the matching conditions at the
brane boundary with the full gravitational equations. Most
thick brane models are based on a real scalar field which is
highly concentrated at the brane and rapidly tends to rest at

its vacuum value in the bulk as we move from the brane loca-
tion into the bulk. These models have a simple structure and
ideas from soliton theory can be used to build such models. In
double field models, such as the one worked out in this paper,
one employs two scalar fields, instead of just one, to build
thick branes with a richer internal structure. From soliton the-
ory in 1 + 1 dimensions, we know that topological solitons
exist only when there are more than one minimum in the field
potential and these minima are distinct and disconnected in
the field space.

Based on this important, yet simple concept, we have
worked out a brane model, using two scalar fields which have
initially a U (1) symmetry, and then break this symmetry via
an explicit term. In the symmetric mode, where the vacuum
manifold is a circle (S1), stable topological solitons do not
exist, and therefore no stable thick brane model can be built.
However, the insertion of the symmetry breaking term within
the appropriate range of the symmetry breaking parameter,
reduces the vacuum manifold to two distinct points along one
of the scalar fields. This enables topological solitons to form,
which have either positive or negative topological charges,
depending on the vacuum field values chosen on either sides
of the brane. The main achievement of this paper consists in
using the concept of an explicit symmetry breaking in build-
ing a stable two field thick brane model. We have rigorously
examined various properties of the solutions, including parti-
cle motion across the brane, dynamical stability of the brane,
and the behaviour of important geometrical quantities such as
the Ricci and Kretschmann scalars. Our results show that the
existence of a second field leads to a more structured brane
with an asymptotically AdS bulk and a brane with positive
cosmological constant.
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Appendix A: Ricci and Kretschmann scalars

The Ricci and Kretschmann scalars of the considered models
are given by:

RI = 16

81

β2

λ2

(
20 α4λ2 − 40 α2β2λ

+20 β4
)

tanh6 (β w)

+16

81

β2

λ2

(
−60 α4λ2 + 60 α2β2λ

−54 α2λ2 + 54 β2λ
)

tanh4 (β w)

+16

81

β2

λ2

(
81 α2λ2 − 54 β2λ

+45 α4λ2
)

tanh2 (β w) − 16

3
β2α2, (A1)

RII = 320

81

β6 tanh6 (β w)

λ2

+16

81

β2
(−54 β2λ − 60 α2β2λ

)
tanh4 (β w)

λ2

+16

81

β2
(
27 α2λ2 + 54 β2λ + 45 α4λ2

)
tanh2 (β w)

λ2

−16

3
α2β2. (A2)

and

KI = 64

6561

β4

λ4

[(
160 α8λ4 + 160 β8 − 640 α6β2λ3 + 960 α4β4λ2

−640 α2β6λ
)

tanh12 (β w)

+ (−864 α6λ4 + 864 β6λ − 960 α8λ4 + 960 α2β6λ

+2880 α6β2λ3 − 2880 α4β4λ2

+2592 α4β2λ3 − 2592 α2β4λ2) tanh10 (β w)

+ (−4320 α6β2λ3 + 2160 α8λ4 + 3888 α6λ4 − 864 β6λ

+2916 α4λ4 + 2916 β4λ2 − 5832 α2β2λ3

+2160 α4β4λ2 − 8640 α4β2λ3

+5616 α2β4λ2) tanh8 (β w)

+ (−5832 β4λ2 − 3024 α2β4λ2 + 14580 α2β2λ3

−2160 α8λ4 + 9288 α4β2λ3 + 2160 α6β2λ3 − 8748 α4λ4

−6264 α6λ4) tanh6 (β w)

+ (
9477 α4λ4 − 3240 α4β2λ3 − 11664 α2β2λ3

+810 α8λ4 + 2916 β4λ2 + 4212 α6λ4) tanh4 (β w)

+ (−4374 α4λ4 − 972 α6λ4

+2916 α2β2λ3) tanh2 (β w)
] + 64

9
β4α4, (A3)

KII = 10240

6561

β12

λ4 tanh12 (β w)

+ 64

6561

β4

λ4

[(−960 α2β6λ − 864 β6λ
)

tanh10 (β w)

+ (
3024 α2β4λ2 + 864 β6λ

+2916 β4λ2 + 2160 α4β4λ2) tanh8 (β w)

+ (−5832 β4λ2 − 2160 α6β2λ3 − 3024 α2β4λ2

−2916 α2β2λ3 − 3240 α4β2λ3) tanh6 (β w)

+ (
2916 β4λ2 + 3240 α4β2λ3 + 729 α4λ4

+5832 α2β2λ3 + 972 α6λ4 + 810 α8λ4) tanh4 (β w)

+ (−1458 α4λ4 − 972 α6λ4 − 2916 α2β2λ3) tanh2 (β w)
]

+64

9
β4α4. (A4)

respectively. It can be seen that these quantities are singularity-
free.

Appendix B: Einstein tensor components

The mixed Einstein tensor components of solion I and soliton
II are given by following equations respectively (we have
considered that μ = (1, 2, 3, 4):

Gμ
μ = − 2

27

β2

λ2

(
16 α4λ2

−32 α2β2λ + 16 β4
)

tanh6 (β w)

− 2

27

β2

λ2

(
−48 α4λ2 + 48 α2β2λ

−54 α2λ2 + 54 β2λ
)

tanh4 (β w)

− 2

27

β2

λ2

(
81 α2λ2 − 54 β2λ

+36 α4λ2
)

tanh2 (β w) + 2 β2α2, (B1)

G5
5 = − 8

27

β2

λ2

(
4 β4 + 4 α4λ2

−8 α2β2λ
)

tanh6 (β w)

− 8

27

β2

λ2

(
12 α2β2λ

−12 α4λ2
)

tanh4 (β w) − 8

3
β2α4 tanh2 (β w) . (B2)

and

Gμ
μ = −32

27

β6

λ2 tanh6 (β w)

− 2

27

β2

λ2

(
−54 β2λ − 48 α2β2λ

)
tanh4 (β w)

− 2

27

β2

λ2

(
27 α2λ2 + 54 β2λ + 36 α4λ2

)
tanh2 (β w)

+2 α2β2, (B3)

G5
5 = −32

27

β6

λ2 tanh6 (β w)

+32

9

β4α2

λ
tanh4 (β w) − 8

3
β2α4 tanh2 (β w) , (B4)

respectively.
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