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Abstract We present a method to investigate relativis-
tic effects arising from large masses. The method is non-
perturbative and employs a mean-field approximation and
gravitational lensing. Using this method and a basic model
of disk galaxy, we find that relativistic corrections to the rota-
tion curves of disk galaxies are significant at large galactic
radii. The model predicts a strong correlation between the
inferred galactic dark mass and the galactic disk thickness,
which we verified using two separate sets of observational
data.

1 Introduction

The total mass of a nearby disk galaxy is typically obtained
from measuring its rotation curve and deducing from it the
mass using Newton’s dynamics. The rationale for this non-
relativistic treatment is the small velocity of stars: v/c � 1
sufficiently far from the central galactic black hole. However,
there are other relativistic corrections beside (v/c)n terms.
Inspecting the perturbative post-Newtonian [1] Lagrangian
for two masses M1 and M2 separated by r , reveals terms such
as V1pn = G2 M1 M2(M1 + M2)/2r2 (G is the gravitational
constant) that are not suppressed at small v. These terms
can be non-negligible if M1 and M2 are large enough, but
for galaxies, they happen to be generally small. However,
terms such as V1pn are perturbative corrections, i.e. they omit
non-perturbative dynamics, and we will show here that they
indeed fail to provide the full relativistic dynamics associated
with large masses. Regardless of the size of their contribution,
terms like V1pn exemplify the non-linear nature of General
Relativity (GR), which arises from its field self-interaction:
the gravitational field has an energy and hence gravitates too.

Field self-interactions are well-known in particle physics:
quantum chromodynamics (QCD, the gauge theory of the
strong force between quarks) features color-charged fields
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that self-interact. In fact, GR and QCD have similar Lagran-
gians, including self-interacting terms, as the polynomial
form of the Einstein-Hilbert Lagrangian shows [2,3]. Field
self-interaction in QCD, which causes quark confinement,
occurs even for static sources: numerous bound states of
heavy quarks (in which quarks have v ≈ 0) exist [4].
This, and the correspondence of terms in the GR and QCD
Lagrangians, shows that for bodies massive enough a rel-
ativistic treatment is required regardless of their velocity.
Finally, the measured speeds at the rotation curve plateaus are
of several hundreds of km/s, e.g. 300 km/s (or v/c = 0.1%)
for NGC 2841. They are similar to that of stars which orbit
the Galactic central black hole and which clearly display a
relativistic dynamics [5].

These arguments call for an investigation of the impor-
tance of relativistic dynamics in galaxies. The exact reso-
lution of the self-gravitating disk problem within GR being
unknown, an approximate method is required. From expe-
rience with QCD, a non-perturbative approach is required
to fully account for field self-interaction. In fact, perturba-
tive QCD underestimates the large distance effect of field
self-interaction by two orders of magnitude [6]. The iden-
tical Lagrangian structure of GR and QCD suggests sim-
ilar non-linear issues for galactic dynamics. Furthermore,
post-Newtonian calculations show that the perturbative series
– which may already underestimate field self-interaction –
diverges for masses similar to those of the heaviest known
galaxies. These facts make a perturbative expansion based on
terms like V1pn suspicious, and warranty a non-perturbative
investigation. In Refs. [2,3], a non-perturbative numerical
lattice method was used. Here, we propose to approach the
problem with a mean-field technique combined with gravita-
tional lensing. The advantages compared to the lattice method
[2,3] are: (1) it is an entirely independent method, thereby
providing a thorough check of the lattice result; (2) it is not
restricted to the static limit of the lattice method and can
be applied to systems with complex geometries; (3) it is less
CPU-intensive than a lattice calculation, and hence faster; (4)
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it clarifies that the effect calculated in Refs. [2,3] is classical.
The lattice approach – an inherently quantum field theory
(QFT) technique – may suggest that quantum phenomena
are involved. However, the lattice calculations [2,3] were
performed in the high-temperature, i.e. classic, limit [3]; (5)
the lensing formalism is more familiar to astronomers, in
contrast to lattice techniques with its QFT underpinning and
terminology.

2 Mean-field lensing model

2.1 Method

The mean-field technique has been widely employed. In the
context of gravitation, it has been used e.g. to calculate the
propagation of gravitational waves near large masses [8]; to
solve, by using the gravity/gauge correspondence, the non-
perturbative bound-state problem of QCD [9]; or to derive the
background field method introduced to quantize gravity [10–
12]. Hence the mean-field approach is a common and diverse
technique. We propose to use it together with the gravita-
tional lensing formalism to compute the self-interaction of
the gravitational fields that generates GR’s characteristic non-
linearities. Here, the mean field represents the overall effect
of the massive components of the galaxy and is treated as a
spacetime curvature. The gravitational interaction between a
test particle at a distance r and the mass inclosed within r ,
is treated as a traditional force. Once this part of the gravi-
tational field is treated as a force rather than geometrically,
it can be characterized by field lines. The effect of curva-
ture on the traditional force presents in the curved space-
time accounts for the gravitational field self-interaction. To
see this, one can imagine that the traditional force acting
on the test particle is the electric force rather than gravity.
Spacetime curvature does affect the electric force [13] and it
represents the gravitational and electromagnetic fields inter-
acting. Thus, for a gravitational force acting on test particle,
the effect addressed by the present method is indeed grav-
ity’s self-interaction. This picture of the method is shown in
Fig. 1.

We will compute here how gravity’s field lines are dis-
torted by a mass distribution in the same way as light is
lensed by such distribution [14]. Then, the field line flux
is computed to obtain the gravitational force including its
self-interaction effects. The usual lensing formalism can be
employed because electromagnetic and gravitational field
lines are affected identically by curved spacetime, that is,
in particle language, photons and gravitons follow the same
null geodesics [15,16].

2.2 Calculations and model of disk galaxy

The disk galaxy producing the background field is modeled
as an axisymmetric homogeneous disk of surface brightness
I (R, z) decreasing exponentially with projected radius R and
altitude z according to the characteristic radial scale h R and
scale height hz , respectively. While the field lines originate
from the whole mass distribution, considering only those that
stem from the galaxy center happens to yield representative
results, as it can be intuited from the large baryonic matter
density around the galactic center and its fast decrease with
radius. Thus, for simplicity we will first consider only field
lines emerging from the galaxy center and refer the reader to
Appendix A for the full calculation accounting for the fluxes
originating from the whole mass distribution. We note that
although the simplified and full calculations happen to yield
similar results, the full calculation reveals that the central
galactic nucleus plays a critical role.

We will compute numerically the distortion of the field
lines. These originate from the galaxy center at angle φ with
respect to the z = 0 plane. A small angular deviation δφ of
a field line passing near a point mass M is approximately
given by

δφ = 4GM
hc2 , (1)

where h is the impact parameter and c the speed of light.
For our calculation, we model the galaxy disk as made of
concentric rings of radius r , thickness �r and height 2h.
The ring masses M bend the field lines according to Eq. (1).
Figure 2 shows a sketch of the rings and the bending of a
field line. In addition, rings at altitudes −(2 j + 1)h ( j ∈ N)
contribute to deflecting more the field lines toward the z = 0
plane, while rings at +(2 j + 1)h deflect the field lines away
from the z = 0 plane. Nevertheless, the dominant bending
comes from the rings with mid-planes at z = 0, henceforth
referred to as “central rings”.

For disk galaxies, a good general model for the baryonic
matter density is that it exponentially decreases with radius
r and altitude z according the characteristic scales h R and
hz , respectively [17]. Thus, the mass M j

k of a ring of radius
r ≡ k�r (k ∈ N) and of horizontal mid-height plane at
altitude z = jh(r) is [18]

M j
k = M∗

tot

h2
Rhz

∫ (2 j+1)h

(2 j−1)h

∫ (k+1)�r/2

k�r/2
re−r/h R e−|z|/hz dzdr,

(2)

with M∗
tot the total mass of the galaxy (the label ∗ signals that

only baryonic mass is considered). Therefore, the mass of a
central ring ( j = 0) of radius k�r is, after integrating over
−h ≤ z ≤ h:
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Fig. 1 Illustration of the
background field method. The
left sketch shows field lines
between two masses or charges
in flat spacetime. The right
panel shows the field lines
deformation in spacetime
curved by a background field. In
this article, the mass deforming
spacetime is the total galactic
mass and the effect on the field
lines connecting two parts of the
galaxy is determined by using
the standard gravitational
lensing formalism

δφ

rΔ

z

r

φ

2h

Fig. 2 Deflection δφ of a ray (black plain line) by massive rings (blue
dashed lines and red dotted lines) of thickness �r and height 2h, sym-
metric around the z axis and the horizontal z = 0 plane. One ring is
represented, as well as the cross-sections of the others (rectangles). In
addition to the central rings (i.e. of mid-plane at z = 0, represented
with blue dashed lines), other rings above +h and below −h (their rect-
angular cross-sections are shown with red dotted lines) also contribute
to the deflection, although their total effect largely cancels. The step
�r is small compared to the galactic characteristic radial scale h R . The
height h is determined at each step by the bent ray

Mk = 2M∗
tot

h2
R

(1 − e−|z|/hz )

∫ (k+1)�r/2

k�r/2
re−r/h R dr, (3)

and similarly upon integrating over k�r/2 ≤ r ≤ (k +
1)�r/2, we obtain:

Mk = 2M∗
tot(1 − e−|z|/hz )((a− + 1)e−a− − (a+ + 1)e−a+),

(4)

with a± ≡ (2k ± 1)�r/(2h R). For non-central rings j �= 0
(which contribute less to the bending than j = 0 rings), the

dz integration yields (e−(2 j−1)|z|/hz − e−(2 j+1)|z|/hz ) rather
than (1 − e−|z|/hz ). Therefore, their mass is

M j
k = Mk

2(1 − e−|z|/hz )
(e−(2 j−1)|z|/hz − e−(2 j+1)|z|/hz ).

(5)

The angular bending from a ring is then given by:

δφ(r, z) = GM j
k

πc2 E(r, z), (6)

where E(r, z) ≡ 2
∫ π

0

[(
2r sin(

ψ
2 )

)2 + z2
]−1/2dψ is the com-

plete elliptical integral of the first kind. The case described
in this article is that of pure disk galaxies i.e. Hubble types
5 or 6. Using the method for earlier Hubble types, with
prominent bulges, would require modifying the mass density
distribution but does not fundamentally change the method.
An example of a calculation is visualized with raytracing in
Fig. 3. For this example, we used densities larger than those
typical of galaxies to make the bending of the field lines con-
spicuous. The bending for actual galaxies densities is small
but, as explained next, the ensuing effect is magnified at large
distances, making its consequence on galactic rotation siz-
able at large distances.

Fig. 3 elucidates two important facts:

(1) Although the mass density, and thus the force, is larger at
small radii, the difference between the field lines in the
right panel and those in the left panel increases with r .
Hence, even if the force is strongest at small r , the conse-
quence of self-interaction is more evident at larger r . This
explains why the missing mass discrepancy is largest at
larger r where fields are weak and, seemingly paradox-
ically, local self-interaction is not important (δφ ≈ 0).
For example, the field lines for r � 4 are straight, i.e.
δφ ≈ 0, but are also roughly parallel to each other in a
radial plane and for small z. This implies a force with a
r -dependence differing from 1/r2. This difference would
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Fig. 3 Field lines for a disk centered at x = y = z = 0, symmetric
about z, and of density decreasing exponentially with radius r . Left:
without field self-interaction. Right: with self-interaction. For clarity,
only field lines emerging with |φ| < 0.005◦ from the center of the disk
are drawn, and the vertical scale on the bottom right panel is zoomed
in. Since densities typical of galaxies cause a small bending, larger
densities were used here to make the effect clearly visible. The figure

showing an academic case rather than a physical one, the axis units are
therefore unspecified. The top panels show the lines in the radial plane
(x, y = 0, z). The dashed lines on the right top plot are straight lines
with |φ| = 0.005◦, i.e. the envelope of the generated lines when self-
interaction is not accounted for. The yellow band shows the area where
the lines in the (x, y = 0, z) plane are approximately parallel, yielding
a 1/r behavior of the force

generate a large missing/dark mass in a Newtonian analy-
sis. In contrast to this straightforward consequence and to
empirical observations, dark matter halo models tend to
predict large densities of dark matter at small r , which is
known as the core-cusp problem [19]. Furthermore, this
explains why the gravity modifications of MOND [20]
are enabled below a small characteristic acceleration.

(2) The field lines at small r display an approximately
isotropic distribution, leading to the familiar 1/r2-
dependence of gravity. At larger r and small z, indicated
in Fig. 3 by a yellow band, the field lines, while still
axisymmetric around z, tend to become parallel within
radial planes. This leads to a ∼ 1/r behavior of the force
and a logarithmic potential ln(r) within a disk of height
about 0.01 in the example of Fig. 3. For this thin disk, the
rotation curves are flat. The field lines outside the yel-
low region show that gravity still acts outside the galaxy,
albeit with depleted strength. This contrasts with the cal-
culations of Refs. [2,3] in which the field needed to be
set to zero outside the disk.

The gravitational force in the radial direction, Fr (r, z),
is computed as the flux F(r, z) of the gravity field through
a small surface at radius r and altitude z. In practice in the
numerical calculation,F(r, z) is given by the number of gen-
erated field lines passing through the small surface. The total
number of generated field lines is chosen so that the small

fraction of field lines passing through the surface is large
enough to make discretization effects, viz the fact thatF(r, z)
is an integer (number of lines), negligible; see Appendix B.
We verified that in the case without self-interaction (δφ ≡ 0),
the expected 1/r2 dependence of the force is recovered. For
an idealized galaxy with homogeneous mass distribution, the
two-dimensional flux in a horizontal (z=constant) plane, Fh,
must be unaffected by lensing due to the z-axisymmetry: in
a z=constant plane, the bending from masses on one side
of the field line is canceled by the bending from the masses
on the other side. After verifying numerically that indeed
Fh ∝ 1/r , we greatly accelerated and simplified the numer-
ical calculation by generating field lines only in the vertical
plane (x, y = 0, z) and recording the flux Fv through a small
vertical segment. Then, the radial component of the force is
Fr (r, z) ∝ FvFh ∝ Fv/r .

In this article, we are chiefly interested in the r -dependence
of the force and how it affects galactic rotation curves. For
the absolute determination of the force, and thus of the rota-
tion speed, the proportionality constant between Fr (r, z) and
F(r, z) can be determined by equating at small r the rela-
tive Fr (r, z) to the absolute Newtonian expectation, since for
r � h R the difference between Fr (r, z) and the Newtonian
expectation is negligible, see Fig. 4. It is worth repeating
however that while this difference is negligible for r � h R

because the effect of the field line distortions has not prop-
agated yet, this region is at the origin of the significant dif-
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ference at larger r , see discussion (1) at the beginning of this
section.

2.3 Galaxy model and systematic studies

The physical parameters of the galaxy model and their chosen
nominal values are: (1) the galaxy total mass M∗

tot = 3 ×
1011 M�. This is a typical baryonic mass of a large spiral
galaxy; (2) the radial scale h R . The present radial scale for
spiral galaxies is typically h R ≈ (0.5–5) kpc. However, h R

increases with time: in the Milky Way, for instance, h R for
old stars is about twice smaller than that of young stars [21].
The initial (smaller) radial scale must be chosen so we used
h R = 1.5 kpc; (3) the scale height hz . The stellar scale height
of disk galaxies typically follows h∗

z ≈ 0.1h R , while the
gas scale height hgas

z is smaller: hgas
z ≈ (0.02–0.04)h R . We

used a typical value hz ≈ 0.03h R for two reasons: firstly, gas
friction and attraction between the stars at same r but different
z tend to make the the denser layers at small z to drag the less
dense higher-z layers. Secondly, high-density gas produces
the stars. Hence, the initial star distribution has a smaller h∗

z
than the one observed in mature galaxies, as demonstrated by
the smaller h∗

z of young blue stars compared to the h∗
z of older

stars. Although h∗
z increases with time due to dispersion from

two-body interactions, angular momentum conservation and
the smallness of the vertical speed vz acquired from two-
body interaction, vz � vθ , impose that the rotation speed
of the stars remains nearly constant. The rotation speed is
thus largely determined by the force and density well within
a small-z disk before star dispersion occurs. We varied the
parameters within the ranges 1011 M� ≤ M∗

tot ≤ 1012 M�,
0.5 kpc ≤ h R ≤ 5 kpc and 0.01 kpc ≤ hz ≤ 0.5 kpc, and
found that the self-interaction effect mostly depends on M∗

tot
and hz , and less on h R .

In actual galaxies, the smooth decrease of the density
with r and h is an average dependence. Measurements of
HI gas density distribution show that it varies by as much
as several times the average. It can be assumed that the stel-
lar density fluctuates similarly. Since averaging is a linear
operation, average quantities may not be adequate inputs for
non-linear systems. Thus, to investigate the effect of density
fluctuations, we randomly varied eachM j

k following a Gaus-

sian distribution centered on the value that M j
k would have

assuming an exponential decrease, and of various widths,
with tails truncated symmetrically so thatM j

k > 0. We found
that the effect of the fluctuations is negligible, including the
dependence on the width. Beside random density variations,
systematic ones are also possible, e.g. a warp of the galactic
disk. We show in Appendix C that such warping does not
influence significantly the flux.
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Fig. 4 Top: two-dimensional fluxes vs. radial distance r . Green line:
horizontal fluxFh(r). Red line: vertical fluxFv(r). The modeled galaxy
has a total mass M∗

tot = 3×1011 M�, a radial scale length h R = 1.5 kpc
(deprojection corrections are included), and a scale height hz = 0.03h R .
The dashed black line is a 1/r curve to guide the eye. The dotted blue
line shows the fit Fv = 1/r + 0.0042r , for r in kpc. Bottom: total flux
F(r) (red line) with fit F = 1/r2 + 0.0042 for r in kpc (dotted blue
line). The dashed black line is the Newtonian 1/r2 expectation

3 Results

The calculation result for the nominal galactic parameters is
shown in Fig. 4 along with fits to the fluxes using the form
Fv = 1/r +αr , with [α] = kpc−2, and F ≡ FvFh = Fv/r .
Since the force depends on z, we averaged it over hz . (For
our parameter values, averaging is equivalent to a calculation
done with M∗

tot reduced by 19%.)

3.1 Rotation curves

Once field self-interaction is effectively included in the calcu-
lation of F(r), the Newtonian kinematical formalism can be
used to obtain the rotation curves. The radial force is param-
eterized as

Fr (r) = (Gm1m2/r2)[1 + αr2], (7)

with α determined from the fit to the flux, see Fig. 4. This
and the radial equilibrium condition for a body in circular
orbit at distance r yield the rotation speed:

vθ (r) = √
G M(r)[1/r + αr ]. (8)

Here, M(r) is the mass , enclosed within deprojected radius r
and determined by using the Abel equation applied to I (R) ∝
e−R/h R , with R the projected radius. The resulting vθ (r) is
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Fig. 5 Top: rotation curves generated using the results in Fig. 4. The red
line is the rotation curve accounting for General Relativity’s field self-
interaction. The black line is without self-interaction (Newtonian case).
The dotted line is the quadratic difference of the two. This represents
the missing/dark mass that one would need to introduce in an analysis
employing Newton’s law, rather than General Relativity, in order to
recover the red curve. Bottom: apparent mass contained within r . Each
curve corresponds to one of the top panel rotation curves analyzed using
Newton’s law. The red and dotted lines are the effective masses obtained
from expressing the field self-interaction as an equivalent mass. The
black line shows the actual mass

shown in the top panel of Fig. 5 and displays the plateau that
is typically observed at large r .

We remark that to derive vθ (r), the force is approximated
as if M(r) were concentrated at r = 0. While this is exactly
true only for spherically symmetric matter distributions and
F ∝ 1/r2 (Newton’s shell theorem), the sharp density peak-
ing near the galaxy center makes this approximation accept-
able in the present case. To check this, we performed a N -
body simulation using both the Newtonian and the perturba-
tive post-Newtonian formalisms and compared the resulting
rotation curves to that obtained using the shell theorem. They
are comparable. For the non-perturbative case, the field lines
tend to become confined within the disk [2,3] and in that
limit, the resulting 1/r force makes the (now in two dimen-
sions) shell theorem exactly valid again.

3.2 Effective dark mass profile

The effective dark mass profile can be obtained straightfor-
wardly. In a dark matter framework F = G Mm/r2 and
vθ (r) = [G(M∗(r) + Mdark(r))/r ]1/2, where M∗(r) and
Mdark(r) are the baryonic and dark masses enclosed within

r , respectively. The equivalent dark mass profile is then:

Mdark(r) = rv2
θ (r)/G − M∗(r). (9)

This is shown by the dotted line in the bottom panel of Fig. 5.
Its rise with r illustrates the earlier discussion that the con-
sequence of self-interaction is magnified at larger r despite
negligible local self-interactions there.

4 Predictions and verifications

The model shows that the effect of field self-interaction
depends mainly on the total baryonic mass M∗

tot, specifically
on the galactic density at small r , and the scale height hz .
The latest suggests that the inferred dark mass Mdark of a
galaxy correlates with its hz . We check this prediction by
using two different sets of data [22,23] that provide Mdark

and disk characteristic scales. The first set, from Sofue [22],
provides only the radial scale h R , but the proportionality
relation, hz  εh R , allows us to perform the analysis (a
correlation analysis is independent of the value of ε). The
second set, from Martinson et al. [23], provides both hz and
Mdark . Figure 6 shows Mdark/M∗

disk vs. hz for both sets (set
[23] was recombined in 200 pc bins of hz for clarity). We
normalized Mdark by the disk baryonic mass M∗

disk to can-
cel the expected dependence of GR’s non-linearity with the
baryonic mass, as well as other known relation between h R

(viz hz) and luminosity or M∗
disk. The predicted correlation is

clearly visible: fitting with Mdark/M∗
disk = ahb

z yields b �= 0;
b = −1.48 ± 0.11 for set [22] and −1.25 ± 0.14 for [23].
Although the galaxies in the two sets are distinct, the two
values of b agree. We can also quantify the degree of cor-
relation by calculating the Pearson linear correlation coef-
ficient between ln(Mdark/M∗

disk) and ln hz . It is −0.70 and
−0.69 for sets [22,23] respectively. Normalizing Mdark to
the total baryonic mass M∗

disk+bulge yields similar results but
with lower values of b: − 1.10 ± 0.13 and − 1.5 ± 0.30 for
[22,23], respectively. This is because no causal connection is
expected between hz and M∗

bulge. Also shown in Fig. 6 are the

results of our model calculated for M∗
tot = 0.9×1011 M� (the

approximate average of M∗ for set [22]) and h R = 1.5 kpc. In
Refs. [22] and [23], Mdark is estimated at R200 which ranges
from tens to hundreds of kpc. Hence, we calculated our effec-
tive dark mass up to r = 100 kpc. The result (not adjusted to
the data) is shown by the plain line in Fig. 6. It agrees with
the observations, with a χ2 similar to that of the ahb

z fit.

5 Summary

The values of galactic masses and characteristic distances
suggest that field self-interaction, a feature of general relativ-
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dotted lines give the best fit to Refs. [22,23], respectively, assuming
a ahb

z form. The plain line is the lensing calculation described in this
article

ity (GR), needs to be included in studies of galaxy dynamics
[2,24,25]. Field self-interaction increases gravity’s strength
compared to the Newtonian expectation. The effect will
become noticeable in systems of large enough mass. In a
Newtonian analysis of such systems, the effect would be mis-
interpreted as a missing mass (dark matter). Furthermore, the
similarities between, on the one hand the GR’s Lagrangian
and observations linked to dark matter and energy, and on
the other the QCD Lagrangian and hadron structure phe-
nomenology, offer another compelling reason to investigate
GR self-interaction as an explanation for the universe’s dark
content. Finally, the exclusion by direct searches of most of
the natural phase space for WIMP and axion candidates, and
the emergence of dark energy from GR self-interactions [26],
make this explanation of the missing mass problem more
plausible.

In this article, we presented a new approach to compute the
effects of GR’s self-interaction based on a mean-field tech-
nique and the formalism of gravitational lensing. We find that
self-interaction effects are important for galaxy dynamics and
tend to flatten rotation curves. This agrees with Refs. [2,3]
in which a different method (numerical lattice calculation of
path integrals) was used to account for field self-interaction.
The present method is faster and applicable to any mass dis-
tribution. However, it is less directly based on GR’s equations
than the path integral approach. Beside flattening the galactic
rotation curves, the method explains straightforwardly why
the missing mass discrepancy worsens at large galactic radii.
In contrast, dark matter halo models must be tuned to the spe-
cific density profile of a given galaxy to flatten its rotation
curve (disk-halo conspiracy), and they tend to predict larger
dark matter density at small radii (core-cusp problem). The
present approach predicts a correlation between the missing
mass inferred in galaxies and their vertical scale length. We
verified this correlation with two separate data sets.
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Appendix A: Calculation with fluxes originating from the
complete mass distribution

In this appendix, we verify that approximating the flux as
emerging from r = 0, as shown in Fig. 3, is justified for
a typical disk galaxy. To do so, we compare the calculation
obtained in the main part of this article (Fig. 4) to a calculation
accounting for fluxes originating from rorigin �= 0. Figure 7
shows some of these fluxes. We see that field self-interaction
distorts the flux only when it originates from points rorigin �
hr (e.g. red or green curves). The figure also shows that the
distortion becomes manifest only at r larger than several hr .

The next step is to show that the flux in Fig. 4 is represen-
tative of the average flux, i.e. the more distorted fluxes from
rorigin � hr and the less distorted fluxes from rorigin � hr

approximately average to the flux in Fig. 4. The top panel
of Fig. 8 shows the evolution with rorigin of the parameter α

defined in Sect. 3 and characterizing the flux distortion. The
squares show α determined from fitting the curves in Fig. 7.

The steep behavior of α(rorigin) means that the structure
of the galaxy center must be accounted for if the rorigin = 0
approximation is not used. This is because even though α is
large only below a few 0.1hr , the enclosed mass is only a
few % of the total galaxy mass and therefore, the averaged
contribution from fluxes with α �= 0 is largely diluted by
those with α ≈ 0. However, an additional mass at r ≈ 0
due to a galactic nuclear cluster magnifies the largest value
of α, α(rorigin ≈ 0), and although the nuclear cluster mass
remains negligible compared to the total galaxy mass, this is
enough to balance the dilution. The blue line in the bottom
panel of Fig. 8 shows the rotation curve obtained when the
rorigin = 0 approximation is lifted. The red line shows the
result obtained with the rorigin = 0 approximation. In both
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Fig. 7 Two-dimensional flux Fh vs. galactic radius r . Fh is calculated
for various points of origin rorigin along r . The result in red is for Fh
originating from the galaxy center, r = 0, as depicted in Fig. 3. The
green curve is for Fh originating at a point at r = 0.04 kpc. The points
of origin for the other curves, from 0.1 to 2 kpc, are given in the figure.
The results are for the galactic parameters listed in Fig. 4. The radial
characteristic scale hr = 1.5 kpc is shown by the vertical dot-dashed
line. The dashed curved is the Newtonian 1/r two-dimensional flux.
The effect of field self-interaction is noticeable for fluxes originating at
rorigin � hr . To aid the comparison, each flux is normalized to the same
maximum value, and plotted with its r -dependence shifted by rorigin
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Fig. 8 Top panel: The parameter α characterizing the non-Newtonian
flux behavior, vs. rorigin . Bottom panel: Galactic rotation curve account-
ing for the fact that fluxes originate at different rorigin (blue line). The
red line shows the result if the full flux is approximated to originate at
r = 0

cases, the 3 × 1011 M� galaxy model includes a 108 M�
nuclear cluster of 15 pc characteristic scale. The two curves
are close to each others, revealing that averaging the rorigin �=
0 fluxes or approximating all the fluxes as stemming from
rorigin = 0 happens to lead to similar results for a typical
galaxy mass and typical size and mass of the galaxy cluster.
The critical role played by the central mass, once rorigin �= 0
fluxes are considered, and the fact that the galactic core and
central black hole masses correlate [27], may explain the
clear correlation seen between the amount of the missing
mass in a galaxy and the mass of its central black hole [28].

Appendix B: Numerical calculation and optimization

The self-interaction effect is calculated numerically. The cal-
culation parameters, along with the checks done to verify that
the results are independent of these parameters, are: (1) the
grid radial step dstep, with dstep � h R to avoid discretization
artifacts. Varying it between 0.0125h R ≤ dstep ≤ 0.05h R

yields no appreciable effect on the results; (2) the segment
length lFv through which the flux Fv is calculated. Varying
it over 10−15hz ≤ lFv ≤ 10−2hz shows that Fv plateaus
for lFv � 10−10hz ; (3) the average altitude zcenter and initial
transverse size hmax along which the set of parallel field lines
is generated. They are generated at altitude zcenter±hmax with
hmax � lFv to avoid discretization artifacts. Varying hmax

between 100lFv ≤ hmax ≤ 200lFv yields no change of the
results; Nominally, field lines originate from the mid-plane
of the galaxy, zcenter = 0; (4) the number of field lines gener-
ated, nfl. Varying nfl between 103 ≤ nfl ≤ 104 yields identi-
cal results except for expected discretization effects; (5) the
number of vertical discretization steps Jmax, i.e. the number
of rings stacked up at same r , see Fig. 2. Varying Jmax over
1 ≤ Jmax ≤ 60 shows that Fv plateaus for Jmax � 50.

A problem reducing the calculation efficiency is the need
to focus on the flux in the small-z disk while most of the field
lines – generated from the galaxy center and within a chosen
range of φ – exit this volume since they are only moderately
bent. For example, only a few of the lines generated remain
in the yellow band of Fig. 3 (top right panel). Furthermore,
the force must be calculated as Fv through a vanishingly
small segment, to avoid bias by averaging over steeply vary-
ing quantities (namely the z-dependence of the force). These
problems cannot be solved by choosing a small range for φ,
e.g. (small-z disk height)/(rmax) with rmax the galaxy radial
size, because the segment through which Fv is calculated
would not be fully covered at small r , thus yielding an arti-
ficially constant force. To solve these problems, instead of
radial field lines, we generate a set of parallel lines, each
with φ(r = 0) = 0 and drawn uniformly around an altitude
range zcenter ± hmax. We then compute the lensing effect on
that set and weigh the result by 1/r2. This allows us to com-
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pute Fv through an arbitrarily small segment at a given z
and over the full r range, thereby obtaining the force F(r, z).
One may object that this method would bias the calculation
since for radial lines, h in Eq. (1) increases with r (provid-
ing that lensing is moderate so that φ(r) remains positive),
while for initially parallel lines, h is constant (if lensing is
negligible) or decreases. This would lead to underestimate of
both the distance of closest approach and M. If the matter
density is constant, the two effects exactly cancel each other
in Eq. (1) and there is no calculation bias. With hmax � hz

the density is indeed essentially constant (hmax = 10−15hz ,
see Sect. 2.3). Furthermore, even if the density varies within
hmax, a bias would still be insignificant since one also has
hmax � zcenter: with hmax � hz and hmax � zcenter, the
increase of h with r for a radial line is negligible. In fact, we
explicitly checked that the two methods of generating radial
or parallel lines agree when hmax � hz .

Appendix C: Effect of galactic disk warping

Disk warping is often present in disk galaxies. Here, we check
how it affects the flux. We modeled the disk as having a
maximum departure of 2hz from the flat plane. The departure
grows exponentially with a characteristic scale of 3hr , being
largest at the edge of the galaxy. Although this is a substantial
deformation, its effect on the potential is small, see Fig. 9.
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Fig. 9 In-plane (z = 0) flux (viz force in arbitrary unit) in function of
radius r for a flat (red curve) and warped disk (blue curve). The curves
are calculated with the galactic parameters given in Fig. 4. The radial
characteristic scale hr = 1.5 kpc is indicated by the vertical dot-dashed
line

This is expected, since by definition the deformation becomes
important at large r and there, the mass distribution has little
influence on the flux, as we showed earlier and discussed in
details in Appendix A. We note that the flux is computed in
the z = 0 plane. Since the mass distribution is in average at
z �= 0, the force at z = 0 does not determine the rotation
curve. Providing it demands to include the cause of the warp
which may be external to the galaxy dynamics (e.g. caused
by satellite galaxies) and thus lays beyond the scope of this
article.
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