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Abstract Einstein–Maxwell-scalar models allow for dif-
ferent classes of black hole solutions, depending on the
non-minimal coupling function f (φ) employed, between the
scalar field and the Maxwell invariant. Here, we address the
linear mode stability of the black hole solutions obtained
recently for a quartic coupling function, f (φ) = 1 + αφ4

(Blázquez-Salcedo et al. in Phys. Lett. B 806:135493, 2020).
Besides the bald Reissner–Nordström solutions, this cou-
pling allows for two branches of scalarized black holes,
termed cold and hot, respectively. For these three branches
of black holes we calculate the spectrum of quasinormal
modes. It consists of polar scalar-led modes, polar and axial
electromagnetic-led modes, and polar and axial gravitational-
led modes. We demonstrate that the only unstable mode
present is the radial scalar-led mode of the cold branch.
Consequently, the bald Reissner–Nordström branch and the
hot scalarized branch are both mode-stable. The non-trivial
scalar field in the scalarized background solutions leads to the
breaking of the degeneracy between axial and polar modes
present for Reissner–Nordström solutions. This isospectral-
ity is only slightly broken on the cold branch, but it is strongly
broken on the hot branch.
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1 Introduction

The phenomenon of spontaneous scalarization of black holes
has received much interest in recent years. In certain scalar-
tensor theories, the well-known black holes of General Rel-
ativity (GR) remain solutions of the field equations, while in
certain regions of the parameter space, additional branches
of black hole solutions arise, that are endowed with scalar
hair. Spontaneous scalarization can be charge-induced [1,2],
for instance when a scalar field is suitably coupled to the
Maxwell invariant F2 [3]. Whereas the onset of the insta-
bility is universal, the properties of the resulting scalarized
black holes and the branch structure of the solutions then
depend significantly on the coupling function f (φ) [3–17].

Einstein–Maxwell-scalar (EMs) models include two dis-
tinctive classes, depending on the choice of f (φ): models
that have black holes with scalar hair only (and do not allow
the GR solutions) or models that allow both the GR solutions
and new hairy black holes. The latter splits into two further
sub-classes: models wherein the GR black holes are unsta-
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ble, in some region of parameter space, against the tachyonic
instability that promotes scalarization, and models wherein
the GR black holes are never afflicted by this instability. The
last two sub-classes have been labelled as classes IIA and
IIB, respectively, in [12].

Many previous studies on EMs BHs in the last few
years have been motivated by charge-induced spontaneous
scalarization, and thus have focused on black holes of class
IIA [3,5–17]. In the static case, the branch of Reissner–
Nordström (RN) black holes then develops a zero mode at
a critical charge to mass ratio qcr(α), that depends on the
coupling strength α. At this bifurcation point, a new branch
of scalarized black holes emerges. The zero mode of the RN
black hole branch then turns into an unstable mode, while
the new scalarized branch may or may not be stable, depend-
ing on the coupling function [5,7,11,16]. Of course, unstable
excited scalarized branches exist as well. Let us note at this
point that this observed pattern of branches and instabilities
is very similar to the one seen in curvature-induced sponta-
neously scalarized black holes [18–35].

Recently, we have considered an EMs model employing
the quartic coupling function f (φ) = 1 + αφ4, which qual-
ifies as class IIB, since the RN branch does not become
unstable against scalar perturbations [4]. Instead, we have
observed the following interesting pattern: Close to the
extremal RN solution, corresponding to the mass to charge
ratio q = 1, a first branch of scalarized black holes emerges.
This first branch then exists in the range qmin(α) ≤ q ≤ 1.
At qmin(α), it bifurcates with a second branch of scalar-
ized black holes, which extends throughout the interval
qmin(α) ≤ q ≤ qmax(α) and ends in an extremal singular
solution at qmax(α) > 1. Considering the properties of these
three branches, we have termed the RN branch as the bald
branch, since it does not carry scalar hair, while we have
termed the first and the second branches as the cold and the
hot branches, respectively, according to the black hole hori-
zon temperatures.

In this first study [4], we have also addressed the radial
modes of the black holes for these three branches, since the
radial modes signal instabilities with respect to scalar pertur-
bations and thus the onset of scalar hair. While our analysis
has shown that there are no unstable radial modes on the RN
branch and on the hot scalarized branch, we have found that
the cold scalarized branch develops an unstable mode close
to the point q = 1. This instability is present throughout the
interval qmin(α) < q < 1 and ends with a zero mode at
the bifurcation point qmin(α) with the hot scalarized branch.
Thus, the cold scalarized branch is clearly unstable. How-
ever, it remained an open issue whether there are really two
stable coexisting branches, the bald RN branch and the hot
scalarized branch. This question has motivated our present
investigation.

Here, we study linear mode stability of the black holes
on all three branches. To that end, we calculate the low-
est quasinormal modes for each type of mode. In particular,
since the theory has scalar and vector fields coupled to grav-
ity, we have to consider the perturbations of all these fields.
In the presence of non-trivial background fields, i.e., when
the black hole solutions carry scalar hair and electromag-
netic charge, the different types of perturbations generically
couple to each other, leading to scalar-led, electromagnetic-
led and gravitational-led modes instead of pure scalar, elec-
tromagnetic or gravitational modes, which one would find
for a Schwarzschild black hole, for instance. Since parity
even (polar) and parity odd (axial) perturbations decouple,
we arrive at the following set of modes when expanding in
spherical harmonics: polar scalar-led l ≥ 0 modes, axial and
polar electromagnetic-led l ≥ 1 modes, and axial and polar
gravitational-led l ≥ 2 modes.

In Sect. 2, we present the EMs theory studied and the gen-
eral set of equations. We specify the Ansatz for the spheri-
cally symmetric background solutions and give the resulting
set of ordinary differential equations (ODEs). We discuss
the asymptotic expansions for asymptotically flat black hole
solutions with a regular horizon in Sect. 3. Here, we also
recall basic properties of the three branches of black hole
solutions. In Sect. 4, we formulate the sets of perturbation
equations for spherical, axial and polar perturbations, defer-
ring more details to the Appendix. We present our numeri-
cal results for the quasinormal modes in Sect. 5. Here, we
show that no further unstable modes arise on any of the three
branches. Moreover, we discuss the breaking of isospectral-
ity, i.e., the splitting of the axial and polar electromagnetic-
led and gravitational-led modes, caused by the presence of
the scalar hair. We conclude in Sect. 5.

2 EMs theory

We consider EMs theory described by the action

S =
∫

d4x
√−g

[
R − 2∂μφ∂μφ − f (φ)FμνFμν

]
, (1)

where R is the Ricci scalar, φ is a real scalar field, and Fμν

is the Maxwell field strength tensor. The coupling between
the scalar and Maxwell fields is determined by the coupling
function f (φ), for which we assume a quartic dependence,

f (φ) = 1 + αφ4. (2)

For a positive coupling constant α, the global minimum of
the coupling function is at φ = 0.
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The set of coupled field equations is obtained via the vari-
ational principle and reads

Rμν − 1

2
gμνR = T φ

μν + T EM
μν , (3)

∇μ

(√−g f (φ)Fμν
) = 0, (4)

1√−g
∂μ

(√−ggμν∂νφ
) = ḟ (φ)FμνFμν, (5)

where ḟ (φ) = d f (φ)/dφ, and T φ
μν and T EM

μν are the scalar
stress-energy tensor and the electromagnetic stress-energy
tensor, respectively.

T φ
μν ≡ 1

2
∂μφ∂νφ − 1

2
gμν

(
1

2
(∂αφ)2 + V (φ)

)
, (6)

T EM
μν ≡ 2 f (φ)

(
FμαF α

ν − 1

4
gμνF2

)
. (7)

To construct static spherically symmetric EMs black
holes, we employ the line element

ds2 = −F(r)dt2 + dr2

1 − 2m(r)/r
+ r2(dθ2+sin2 θdϕ2),

(8)

where the metric functions F and m depend on the radial
coordinate r . The black holes are supposed to carry electric
charge and, in the scalarized case, also scalar charge. We
therefore parametrize the gauge potential and the scalar field
by

A = a0(r)dt,

φ = φ0(r), (9)

where a0 and φ0 are the electric and the scalar field function,
respectively, which depend on the radial coordinate r . Insert-
ing this Ansatz into the general set of EMs equations (3)–(5),
we obtain the following set of ODEs for the functions g, m,
a0 and φ0:

∂rδ = −r

4
(∂rφ0)

2 ,

∂rm = 1

2
f (φ0)e

2δr2 (∂r a0)
2 + r

8
(r − 2m) (∂rφ0)

2 ,

∂2
r φ0 = e2δr

r − 2m

(
r(∂rφ0) f (φ0) − 2 ḟ (φ0)

)
(∂r a0)

2

+2
m − r

(r − 2m) r
(∂rφ0),

∂2
r a0 =

(
1

4
(∂rφ0)

2 r − ḟ (φ0)

f (φ0)
(∂rφ0) − 2

r

)
(∂r a0), (10)

where we have introduced the function δ(r) via F =(
1 − 2m

r

)
e−2δ . Inserting the first equation into the last yields

a first integral for the electromagnetic field:

∂r a0 = Q

f (φ0)eδr2 , (11)

where Q is the electric charge of the black holes. With this
first integral, the above set of equations can be simplified.

3 EMs black holes

We here briefly recall the properties of static spherically sym-
metric electrically charged EMs black hole solutions with the
quartic coupling function (2). First of all, the RN black hole,
which is also a solution of the EMs equations, is given by

F = 1 − 2M

r
+ Q2

r2 , m = M − Q2

2r
, a0 =−Q

r
, φ0 = 0.

(12)

The scalarized EMs solutions are obtained numerically
[4]. Their asymptotic behavior yields their global charges

F = 1 − 2M

r
+ O(r−2),

m = M − (Q2 + Q2
s )

1

2r
+ O(r−2),

φ0 = Qs

r
+
(
MQs − Q2 ḟ (0)

f (0)

)
1

r2 + O(r−3),

a0 = −Q

r
+ QQs

2r2

ḟ (0)

f (0)
+ O(r−3), (13)

with black hole mass M , electric charge Q, and scalar charge
Qs . Note that there is no conservation law for the scalar
field, and that the existence of a horizon imposes a non-trivial
relation Qs = Qs(M, Q) [36].

Close to the horizon r = rH , the functions have the expan-
sion

F = F1(r − rH ) + O((r − rH )2),

m = rH
2

+ Q2

2r2
H f (φH )

(r − rH ) + O((r − rH )2),

φ0 = φH − 2Q2 ḟ (φH )

rH f (φH )(r2
H f (φH ) − Q2)

(r − rH )

+O((r − rH )2),

a0 = −	H + Q

√
F1

rH f (φH )(r2
H f (φH ) − Q2)

(r − rH )

+O((r − rH )2), (14)

where φ0(rH ) = φH and a0(∞) − a0(rH ) = 	H are the
value of the scalar field and the electrostatic potential at the
horizon. Further physically relevant horizon properties are,
for instance, the temperature TH and the horizon area AH ,
respectively given by

TH = 1

4π

√
F1

r3
H f (φH )

(
r2
H − Q2 f (φH )

)
,
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AH = 4πr2
H . (15)

The EMs black hole solutions can be characterized by
three dimensionless quantities: by their charge to mass ratio
q, their reduced horizon area aH and their reduced horizon
temperature tH :

q ≡ Q

M
, aH ≡ AH

16πM2 , tH ≡ 8πMTH . (16)

In the following we will focus on the case with α = 200, since
for other values of the coupling constant the general proper-
ties of the black holes are qualitatively similar. We illustrate
the EMs black hole branches in Fig. 1, where we exhibit their
reduced areaaH (left) and reduced temperature tH (right) ver-
sus their charge to mass ratio q [4]. The RN black holes are
shown in black. The first scalarized branch emerges close to
the extremal RN black hole solution. The limiting solution,
at which the branch seems to bifurcate from the extremal RN
solution, has been studied further in [37]. Along this scalar-
ized branch, the mass to charge ratio q decreases, while the
reduced area aH and temperature tH increase. At a minimal
value of q, the first branch bifurcates with the second branch.
Along the second branch, aH decreases while tH increases
monotonically with increasing q. Thus, the first branch rep-
resents the cold (blue) branch, and the second branch the hot
(red) branch.

4 Linear perturbation theory

Previously, we have addressed the radial stability of these
EMs black holes, by looking for radially unstable modes [4].
Our analysis has revealed radial stability for the RN branch
and for the hot scalarized branch. In contrast, for the cold
scalarized branch, we have found an unstable radial mode.
Here, our goal is more ambitious, since we want to fully clar-
ify the linear mode stability of the RN and the hot scalarized
branch. As we shall see these are both stable.

To show linear mode stability, we will evaluate the quasi-
normal mode spectrum of the black holes on these branches.
For completeness, we will consider the spectrum on all three
branches, including the unstable cold scalarized branch. The
symmetry of the background solutions suggests to consider
perturbations for the following three cases: purely spherical
perturbations (l = 0), axial or odd-parity ((−1)l+1) pertur-
bations, and polar or even-parity ((−1)l ) perturbations.

4.1 Spherical perturbations

To study the spherical perturbations, we have to perturb all
the fields: the scalar field, the electromagnetic field and the

metric. For the scalar and the electromagnetic field, we intro-
duce the perturbation functions φ1 and Fa0 , and employ the
Ansatz

φ = φ0(r) + εe−iωtφ1(r), (17)

A = a0(r)(1 + εe−iωt Fa0(r))dt. (18)

For the metric, we introduce the perturbation functions Ft
and Fr and employ the Ansatz

ds2 = −F(r)(1 + εe−iωt Ft (r))dt
2 + 1 + εe−iωt Fr (r)

1 − 2m(r)/r
dr2

+r2(dθ2 + sin2 θdϕ2). (19)

We use ε as the control parameter in the linear expansion.
The complex quantity ω = ωR + iωI corresponds to the
sought-after eigenvalue of the respective quasinormal mode.
Its real part is the oscillation frequency; its imaginary part is
the damping rate.

Inserting the Ansatz (17)–(19) into the general set of field
equations (3)–(5) and utilizing the set of equations for the
background functions (10) leads to the Master equation for
the spherical perturbations. This is a single Schrödinger-like
ODE for the function Z = rφ1:

d2Z

d(R∗)2 = (U0(r) − ω2)Z , (20)

which involves the tortoise coordinate R∗, where

∂r R
∗ = 1√

g(1 − 2m/r)
, (21)

and the potential U0, reading

U0(r) = r − 2m

2r5 f (φ0) e2δ

[
(Q2 − r2 f (φ0))(r∂rφ0)

2

−4
ḟ (φ0)

f (φ0)
Q2r∂rφ0

+ 2Q2

(
2

(
ḟ (φ0)

f (φ0)

)2

− 1

)
+ 4rm f (φ0)

]
. (22)

To determine the quasinormal modes, we need to impose
an adequate set of boundary conditions. As the perturba-
tion propages toward infinity, we have to impose an outgoing
wave behavior, i.e.,

Z = A+
φ e

iωR∗
(

1 + iM

2ω

1

r2 + O(r−3)

)
, (23)

for r → ∞. As the perturbation propagates toward the hori-
zon, we have to impose an ingoing wave behavior, i.e.,
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Fig. 1 Scalarized black holes (red, blue) for α = 200 and RN black holes (black): (left) reduced area vs. reduced charge; (right) reduced temperature
vs. reduced charge. Scalarized black holes are cold (blue) on the first branch and hot (red) on the second branch

Z = A−
φ e

−iωR∗

×

⎛
⎜⎜⎝1 + 2rH f (φH )

(
i
(

ḟ (φH )
f (φH )

)2 + eδH ωrH

)
Q2 − f (φH )eδH ωr3

H(
f (φH ) r2

H − Q2
) (−i Q2 + f (φH ) r2

H

(
i + 2rHeδH ω

)) (r − rH ) + O
(
(r − rH )2

)
⎞
⎟⎟⎠ , (24)

for r → rH . In these expansions, the quantities A±
φ denote

arbitrary amplitudes for the perturbation, while all other
terms are fixed by the background solution.

4.2 Axial perturbations

When considering axial perturbations, the scalar field does
not get affected due to symmetry. Here, only the electromag-
netic field and the metric enter. An appropriate Ansatz for
the electromagnetic field involves the perturbation function
W2:

A = a0(r)dt − εW2(r)e
−iωt ∂ϕYlm(θ, ϕ)

sin θ
dθ

+εW2(r)e
−iωt sin θ∂θYlm(θ, ϕ)dϕ, (25)

where Ylm are the standard spherical harmonics. The corre-
sponding Ansatz for the metric

ds2 = −F(r)dt2+ 1

1 − 2m(r)/r
dr2 + r2(dθ2+sin2 θdϕ2)

+2εh0(r)e
−iωt ∂ϕYlm(θ, ϕ)

sin θ
dtdθ

+2εh0(r)e
−iωt sin θ∂θYlm(θ, ϕ)dtdϕ

+2εh1(r)e
−iωt ∂ϕYlm(θ, ϕ)

sin θ
drdθ

+2εh1(r)e
−iωt sin θ∂θYlm(θ, ϕ)drdϕ, (26)

introduces the perturbation functions h0 and h1.

Inserting this Ansatz into the field equations (3)–(5) leads
to a set of coupled differential equations, which is shown in
the Appendix. It involves first order equations for the metric
perturbation functions h0 and h1, and a second order equa-
tion for the electromagnetic perturbation function W2. This
system can be put into the form

∂r	A = MA	A, (27)

where 	A denotes the perturbation functions in the form

	A =

⎡
⎢⎢⎣

h0

h1

W2

∂rW2

⎤
⎥⎥⎦ , (28)

and MA denotes a 4×4 matrix which contains the background
functions, the angular number l, and the eigenvalue ω of
the quasinormal mode. To determine the axial quasinormal
modes, as for the radial ones, we have to impose the proper
set of boundary conditions at infinity (outgoing) and at the
horizon (ingoing). These can be found in the Appendix.

4.3 Polar perturbations

Since the radial perturbations are a set of polar perturbations
(l = 0), it is clear that the general polar perturbations involve
again all the fields. For the scalar field, we introduce the
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perturbation function φ1 and the Ansatz

φ = φ0(r) + εe−iωtφ1(r)Ylm(θ, ϕ). (29)

For the electromagnetic field, we employ the perturbation
functions a1, W1 and V1 and the Ansatz

A = (a0(r) + εe−iωt a1(r)Ylm(θ, ϕ))dt + εW1(r)e
−iωt Ylm(θ, ϕ)dr

+εV1(r)e
−iωt∂θYlm(θ, ϕ)dθ + εV1(r)e

−iωt∂ϕYlm(θ, ϕ)dϕ.

(30)

Finally, for the metric, we introduce the perturbation func-
tions N , H1, L and T , and employ the Ansatz

ds2 = −F(r)(1 + εe−iωt N (r)Ylm(θ, ϕ))dt2

−2εe−iωt H1(r)Ylm(θ, ϕ)dtdr

+1 − εe−iωt L(r)Ylm(θ, ϕ)

1 − 2m(r)/r
dr2

+(r2 − 2εe−iωt T (r)Ylm(θ, ϕ))(dθ2 + sin2 θdϕ2).

(31)

Inserting this Ansatz into the field equations (3)–(5) then
again results in a set of coupled differential equations, which
are shown in the Appendix. In fact, this system of equations
can be simplified when one introduces the new functions
F0, F1 and F2, that are defined in terms of the perturbation
functions W1, V1 and a1 (as discussed in the Appendix). The
resulting Master equations can again be put in vectorial form,

∂r	P = MP	P . (32)

The vector now contains 6 components:

	P =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1

T
F0

F1

φ1

∂rφ1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

The 6×6 matrix MP depends again on the background func-
tions, the angular number l and the eigenvalue ω of the quasi-
normal mode.

We remark that for a RN black hole, the equations for the
scalar perturbations are decoupled. However, the equations
for the electromagnetic perturbations couple with the equa-
tions for the metric perturbations. When the charged black
hole also carries scalar hair, all equations are coupled to each
other.

Again, we must impose the proper boundary conditions at
infinity (outgoing) and at the horizon (ingoing) to determine
the quasinormal modes. As in the axial case, these are shown
in the Appendix.

5 Quasinormal mode spectrum

In the following, we briefly discuss the method used to extract
the quasinormal mode spectrum of the EMs black holes and
recall the nomenclature for the modes. Then, we present our
numerical results for the l = 0, l = 1 and l = 2 cases and
discuss isospectrality breaking.

5.1 Numerics and nomenclature

We calculate the quasinormal modes of the black holes on
all three branches, bald, cold and hot, making sure that the
respective spectra match when the background solutions get
close. Since the RN quasinormal modes are well-known (see
e.g., [38–41]), this provides an independent check of the
numerics used, as well as a first guess for the spectrum of
the cold branch, which is typically close to the RN branch
for large values of the electric charge. All calculations are
performed for a coupling constant α = 200.

In a first step, we obtain the background solutions with
high precision, solving numerically the set of ODEs (10),
subject to the boundary conditions following from the expan-
sions at infinity (13) and at the horizon (14). For this pur-
pose, we employ the solver COLSYS [42], which uses a
collocation method for boundary-value ODEs together with
a damped Newton method of quasi-linearization. The prob-
lem is linearized and solved at each iteration step, employing
a spline collocation at Gaussian points. The solver features
an adaptive mesh selection procedure, refining the grid until
the required accuracy is reached.

Once the background solutions are known, we follow the
procedure that is analogous to the one we have used before to
calculate the quasinormal modes of hairy black holes [34,35,
43–45]. We split the space-time into two regions, the inner
region rH + εH ≤ r ≤ rJ , and the outer region rJ ≤ r ≤
r∞. In the inner region, we impose the respective ingoing
wave behavior; in the outer region, we impose the respective
outgoing wave behavior. Then, we calculate sets of linearly
independent solutions numerically and match them at the
common border rJ of the two regions. The eigenvalue ω of
the quasinormal modes is found when the functions and their
derivatives are continuous at the matching point rJ .

We follow a common nomenclature for quasinormal
modes that is used when scalar and electromagnetic fields
are coupled in the background solutions. Without such a cou-
pling in the background solutions, one would simply obtain
scalar or electromagnetic or gravitational modes by solving
the respective scalar, electromagnetic or gravitational pertur-
bation equations, since the different types of perturbations
would not be coupled to each other. However, when all fields
are already present in the background solutions, the differ-
ent types of perturbations couple. By taking the respective
charges, Qs and Q, to zero, the perturbations decouple again.
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Therefore, we employ a nomenclature that reveals this decou-
pling limit.

(i) Modes that are connected with purely scalar perturba-
tions are called scalar-led modes. Typically, they have
dominant amplitude A±

φ .
(ii) Modes that are connected with purely electromagnetic

perturbations are called EM-led modes. Typically, they
have dominant amplitude A±

F .
(iii) Modes that are connected with purely gravitational per-

turbations are called grav-led modes. Typically, they
have dominant amplitude A±

g .

Polar scalar-led modes exist for l ≥ 0, EM-led modes for l ≥
1 (polar and axial) and grav-led for l ≥ 2 (polar and axial).
In the following, we present our results for the quasinormal
modes for the cases l = 0, 1 and 2, successively.

5.2 Spectrum of l = 0 quasinormal modes

The l = 0 perturbations are most interesting, since they are
the ones that discriminate between stable and unstable EMs
black hole solutions. In particular, they feature an unstable
mode on the cold black hole branch, whereas the bald and
the hot black hole branches possess only stable modes, as our
study shows.

We exhibit the lowest scalar-led l = 0 modes vs. the
charge to mass ratioq in Fig. 2, showing the scaled real part of
the frequency MωR in Fig. 2a and the scaled imaginary part
−MωI in Fig. 2b. A positive imaginary part signals insta-
bility, whereas a negative imaginary part yields the damping
time of the mode. Following the color coding of Fig. 1, the
bald RN branch is shown in black, the cold EMs branch in
blue, and the hot EMs branch in red.

As seen in Fig. 2, the fundamental RN branch has only
little dependence on q, deviating only slightly from the
Schwarzschild mode all the way up to the extremal black
hole. The full RN branch is also free of unstable modes.

The cold EMs branch features an unstable scalar-led mode
throughout its domain of existence. The mode tends to vanish
for the largest charge to mass ratio of the cold branch, q =
1. The purely imaginary frequency grows as q decreases.
At a certain value of q it reaches a maximum, from where
it decreases again to the end point of the branch, where it
reaches a zero mode. Here the bifurcation with the hot branch
is encountered, and thus the minimal charge to mass ratioqmin

of both EMs branches is reached. Continuity then requires
that at qmin, also the hot EMs branch has a zero mode.

Besides the unstable mode, the cold branch features a sta-
ble scalar-led mode, which is close to the scalar-led mode of
the RN black hole. Along this branch, from q = 1 to qmin the
frequency MωR first decreases slowly and then increases,

becoming larger than the frequency of the RN branch, while
the damping rate |MωI | increases monotonically.

The corresponding stable scalar-led modes of the hot EMs
branch extend from qmin to qmax, where an extremal singular
EMs solution is reached. The fundamental branch starts at
the zero mode at qmin, from where both the frequency MωR

and the damping rate |MωI | rise at first almost vertically.
They continue to rise monotonically, reaching final values
above those of the extremal RN branch. The first overtone
branch starts at the stable scalar-led mode at the bifurcation
point. Its frequency MωR rises also monotonically, but its
damping rate |MωI | exhibits an overall but not monotonic
decrease.

The reason we exhibit not only the fundamental stable
mode for the hot EMs branch but also the first overtone is to
demonstrate continuity of the modes at the bifurcation with
the cold EMs branch. The zero mode of the cold EMs branch
turns into the fundamental mode of the hot EMs branch,
whereas the fundamental mode of the RN branch can be
followed via the first stable mode of the cold EMs branch to
the first stable overtone of the hot EMs branch.

Of course, all three classical branches feature sequences
of (further) overtones, not studied here in detail. In the RN
case, they are well known. There, the rapidly damped modes
possess several peculiar features. For instance, the higher
modes of the non-extremal black holes have been observed
to spiral towards the modes of the extremal black hole with
increasing q [38,39].

5.3 Spectrum of l = 1 quasinormal modes

The l = 1 modes consist of polar scalar-led modes and both
axial and polar EM-led modes. We start the discussion with
the scalar-led modes, shown in Fig. 3. Again, the lowest
RN mode changes smoothly with increasing charge to mass
ratio q. The frequency MωR increases monotonically, while
the damping rate |MωI | remains almost constant, showing a
slight decrease towards the extremal endpoint q = 1.

The lowest scalar-led l = 1 mode of the cold EMs branch
changes smoothly from the q = 1 point to the bifurcation
point with the hot EMs branch atqmin, exhibiting a monotonic
decrease of the frequency MωR and a monotonic increase
of the damping rate |MωI |. Along the hot EMs branch, the
change of the eigenvalue with increasingq is no longer mono-
tonic. As compared to the mode of the extremal RN solution,
the frequency MωR of the extremal EMs solution is lower
and the damping rate |MωI | is higher.

In Fig. 4 we exhibit the axial and polar EM-led l = 1
modes. The RN black holes are known to exhibit isospec-
trality, i.e., the axial and polar EM-led modes are degener-
ate. The EM-led RN modes have an analogous q-dependence
to the scalar-led RN modes, but their absolute values differ
somewhat.
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Fig. 3 Scalar-led modes for polar l = 1 perturbations: scaled frequency MωR (a) and scaled damping rate −MωI (b) vs. reduced charge q for
RN (black), and cold (blue) and hot (red) scalarized black holes (α = 200)

Starting from the q = 1 bifurcation point, the axial and
polar modes of the cold EMs branch follow closely the RN
modes at first. The frequencies MωR of both axial and polar
modes are slightly higher than the RN frequencies, but do
not deviate strongly even at the bifurcation point qmin with
the hot EMs branch. The damping rates |MωI | start to devi-
ate from the RN damping rate earlier, showing an opposite
behavior for the axial and polar modes. For the axial modes,
the damping rates increase monotonically, whereas for the
polar modes, a more sinusoidal pattern is seen.

Along the hot EMs branch from qmin ≤ q ≤ qmax, the
frequencies MωR of both axial and polar EM-led modes
rise monotonically, with the polar frequencies rising almost
twice as much compared to the axial ones. The damping rates
|MωI | change in a non-monotonic manner again, first rising
from the bifurcation point, and then exhibiting some oscilla-
tion. At the extremal EMs solution, the damping rates reach
similar values, corresponding to about twice the extremal RN
value.

5.4 Spectrum of l = 2 quasinormal modes

We now turn to the l = 2 modes, which consist of polar
scalar-led modes, axial and polar EM-led modes, and addi-
tionally axial and polar grav-led modes. Thus, we now have
five types of modes for generic EMs black holes. For the
RN case, however, there is again isospectrality of the axial
and polar EM-led modes, and there is also isospectrality of
the axial and polar grav-led modes. Thus, basically only three
types of modes are left, which all show a very similar pattern.
It also resembles the pattern seen for l = 0 and l = 1. We will
therefore now focus the discussion on the more interesting
and varied behavior of the modes of the EMs black holes.

As seen in Fig. 5, the scalar-led l = 2 modes change
monotonically on the cold EMs branch. The frequency MωR

decreases, and the damping rate |MωI | increases toward the
bifurcation point qmin. Along the hot EMs branch, the fre-
quency MωR rapidly reaches a minimum and then increases,
while the damping rate |MωI | exhibits a sinusoidal behav-
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Fig. 5 Scalar-led modes for polar l = 2 perturbations: scaled frequency MωR (a) and scaled damping rate −MωI (b) vs. reduced charge q for
RN (black), and cold (blue) and hot (red) scalarized black holes (α = 200)

ior. At the extremal EMs solution, both the frequency and the
damping rate are higher than at the extremal RN solution.

The EM-led l = 2 modes are exhibited in Fig. 6. They
show a pattern that is very similar to the pattern of the EM-
led l = 1 modes, although the numerical values of the fre-
quencies and damping rates differ, of course. The grav-led

l = 2 modes are exhibited in Fig. 7. The frequencies MωR

on the axial and polar cold EMs branches follow very closely
the RN branch almost up to the bifurcation point qmin. This
also holds for the damping rate |MωI | on the axial cold EMs
branch. Only the damping rate along the polar EMs branch
starts to deviate from the RN one somewhat earlier. Along
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the hot EMs branch, the frequencies MωR show opposite
behavior with the frequency increasing monotonically on the
axial branch, while decreasing monotonically along the polar
branch. The damping rate |MωI | also increases monotoni-
cally along the axial branch, whereas it exhibits a strong
sinusoidal behavior along the polar branch.

5.5 Isospectrality

As addressed in the above discussion, for RN black holes,
isospectrality of axial and polar quasinormal modes holds.
Here, axial and polar modes coincide for EM-led modes as
well as for grav-led modes, for any allowed angular number
l. Moreover, in the extremal case, the EM-led modes with
angular number l agree closely with the grav-led modes with
angular number l + 1 [38,39]. As seen above and once more
highlighted in Fig. 8, this isospectrality survives to a large
extent along the cold EMs branch, since the EMs modes
follow the RN modes closely over a large range of their exis-
tence. In view of Fig. 1, this may, however, not be too sur-
prising, since the cold EMs branch itself follows closely the
RN branch almost up to the bifurcation point qmin.

In contrast, the hot EMs branch reaches far beyond the
RN branch and thus also far beyond the cold EMs branch.
Its modes are therefore expected to show a generic behavior
on their own. In particular, this branch features a significant
background scalar field. The presence of a background scalar
field, however, leads to a coupling of all the different pertur-
bations (scalar, vector and gravitational) in the polar modes,
whereas the axial modes remain free of scalar perturbations.
Therefore, it should not be surprising that isospectrality gets
strongly broken along the hot EMs branch, as illustrated in
Fig. 8.

The breaking of isospectrality in the presence of a
scalar field has been observed before, of course, notably in
Einstein–Maxwell-dilaton black holes [45–47], and Einstein-
scalar-Gauss-Bonnet black holes [34,35,43,44].

6 Conclusion

EMs theories represent an interesting simple setting to study
generic properties of spontaneous scalarization of black holes
and, more generically, the interplay between bald and hairy
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black holes. Although the presence of scalar hair is charge-
induced, many similarities with the more realistic curvature-
induced spontaneous scalarization and scalar hairy black
holes have been observed, lending weight to EMs studies
beyond an intrinsic theoretical interest.

Here, we have investigated the linear mode stability of
EMs black hole solutions with a quadratic coupling func-
tion, representing type IIB characteristics: the presence of
scalarized black holes, while the RN branch remains stable
throughout. In particular, the system features besides the bald
RN branch a cold EMs branch and a hot EMs branch. The
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cold EMs branch exists in the interval qmin(α) ≤ q ≤ 1, and
the hot EMs branch in qmin(α) ≤ q ≤ qmax(α).

The EMs black holes on the cold branch have an unstable
scalar-led mode, present for all qmin(α) ≤ q ≤ 1. At qmin(α),
this instability becomes a zero mode that is shared with the
hot branch. By continuity, the hot branch then exhibits a sta-
ble scalar-led mode, starting at qmin(α).

In our mode analysis, we have calculated the lowest quasi-
normal modes of all types of perturbations (scalar-led modes,
axial and polar EM-led modes, and axial and polar grav-led
modes) for all three (bald, cold, hot) branches. For the stable
modes on the cold EMs branch, we have found close similar-
ity with the respective RN modes, almost up to the bifurcation
point with the hot EMs branch qmin(α). Since the cold EMs
branch itself follows closely the RN branch, this behavior
could have been anticipated. In contrast, the modes of the
hot EMs branch show a wide variation and large deviations
from the modes of the RN branch. But again, the hot EMs
branch reaches far beyond the RN branch (for sufficiently
large α).

RN black holes possess degenerate axial and polar modes
in the EM-led and grav-led sectors. As expected, this isospec-
trality gets broken in the presence of a non-trivial background
scalar field, since scalar perturbations contribute in the polar
case but not in the axial case. Not surprisingly, the breaking
of isospectrality is very limited on the cold EMs branch, but
becomes very strong on the hot EMs branch, away from the
bifurcation point.

The analysis here has focused on an illustrative value of
the coupling α = 200 and on 
 = 0, 1, 2, but the results
concerning instability are generic for all values of α, and
moreover, it is not to be expected that higher l modes intro-
duce more instabilities. Thus, our analysis has shown that
there are no further unstable modes apart from the unstable
scalar-led l = 0 mode of the cold EMs branch. This implies
that there are two linearly mode-stable branches in the sys-
tem, the bald RN branch and the hot EMs branch. While both
branches have large regions in parameter space, where their
black holes are the only existing black holes, there is also an
overlap region qmin(α) ≤ q ≤ 1. Here, both branches coexist
and both are mode-stable.

However, when these branches are considered from a ther-
modynamical point of view, their reduced horizon areas differ
except at one critical pointqth(α), where the two curves cross,
as seen in Fig. 1. This might suggest that the RN black holes
represent the physically preferred state for 0 < q < qth(α),
whereas the hot EMs black holes represent the physically
preferred state for qth(α) < q ≤ qmax(α). Here, dynami-
cal calculations of the EMs evolution equations might give
further insight into the interesting question of which type
of black hole will represent the end state of collapse in the
overlap region.
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Appendix A: Perturbation equations

In this appendix we present the explicit form of the pertur-
bation equations for the axial and polar case, and also the
first terms in the asymptotic expansion of the perturbation
functions.

A.1 Axial perturbations

By substituting the Ansatz (26) and (25) into the field equa-
tions (3)–(5), we obtain a set of differential equations for the
axial perturbations:

∂r h0 = −iωh1 − 4 f (φ0)(∂r a0)W2 + 2

r
h0

− i

2ω r3F
h1[−4(∂rφ0)

2F2r2(r − 2m)

−2r F2l(l + 1) + 2r F(∂r F)(r∂rm + m − r)

−2r2F(∂2
r F)(r − 2m)

+4r2 f (φ0)F(∂r a0)
2(r − 2m)

+(∂r F)2r2(r − 2m) + 4 (∂rm)r F2 + 4F2(r − m)],
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∂r h1 = −iωrh0

F(r − 2m)

+h1
2F(∂rm)r − r(∂r F)(r − 2m) − 2Fm

2r F(r − 2m)
,

∂2
r W2 =

(
4

F
f (φ0)(∂r a0)

2 − ω2r

F(r − 2m)
+ l(l + 1)

r(r − 2m)

)
W2

−
[

∂r F

2F
− ∂rm

r − 2m

+2
ḟ (φ0)

f (φ0)
∂rφ0 + m

r(r − 2m)

]
∂rW2

+ i(∂r a0)h1

2ωr3F2 [4F2(r − m) + 4r F2∂rm

−4r2F2(r − 2m)(∂rφ0)
2 − 2r F2l(l + 1)

+4Fr2 f (φ0)(r − 2m)(∂r a0)
2

−2Fr2(r − 2m)(∂2
r F) + r2(r − 2m)(∂r F)2

+(2r2F∂rm + 2r F(m − r))∂r F]
+h0

[(
∂r F

2F2 + ∂rm

m(r − 2m)
− 2

ḟ (φ0)

f (φ0)

∂rφ0

F

+ 3m − 2r

Fr(r − 2m)

)
∂r a0 − ∂2

r a0

F

]
. (34)

This system of coupled differential equations consists of
two first order differential equations for h0 and h1, plus a
second order differential equation for W2.

A perturbation with an outgoing wave behavior satisfying
this system of equations has to behave like

h0 = reiωR
[
A+
g (−ω + O(r−1)) + A+

F

(
Q

r2 + O(r−3)

)]
,

h1 = rωeiωR
[
A+
g (1 + O(r−1)) + A+

F

(−Q

ωr2 + O(r−3)

)]
,

W2 = eiωR
[
A+
g

(
Q(l − 1)(l + 2)

4ωr2 + O(r−3)

)
+ A+

F (1 + O(r−1))

]
.

(35)

In addition, close to the horizon, a perturbation with an
ingoing wave behavior has to satisfy

h0 = e−iωR
[
A−
g (1 + O(r − rH )) + A−

F (O(r − rH ))
]
,

h1 = ω

r − rH
e−iωR

⎡
⎣A−

g

⎛
⎝ r3/2

H

√
f (φH )

ω

√
F1
(
r2
H f (φH ) − Q2

)

+O (r − rH )) + A−
F (O (r − rH ))

⎤
⎦ ,

W2 = e−iωR
[
A−
g (O (r − rH )) + A−

F (1 + O (r − rH ))
]
.

(36)

The asymptotic expansion is determined by two indepen-
dent amplitudes, one related to the space-time perturbation
A±
g and another related to the electromagnetic perturbation

A±
F .

A.2 Polar case

By substituting the Ansatz for the polar perturbations (29)–
(31) into the field equations (3)–(5), we obtain the following
set of equations

L + N = 0,

∂r H1 = 4 f (φ0)(∂r a0)(W1 − ∂r V1)

+ (∂r δ)r(r − 2m) + 2(∂rm)r − 2m

r(r − 2m)
H1

− 2iωr2

r(r − 2m)
(T + L),

∂r (N + T ) = 4r3(∂rφ0)
2(r − 2m) f (φ0) − 4Q2

8(r − 2m)r2 f (φ0)
(L − N )

+ r − 3m

r(r − 2m)
N + r − m

r(r − 2m)
L

− 2e2δ

r(r − 2m)

(
Q(iωV1 + a1) − i

4
ωr2H1

)

+2φ1(∂rφ0),

∂r N = −r(∂rφ0)(∂rφ1) − 1

r − 2m
[(−(∂r δ)r(r − 2m)

−(∂rm)r − m + r)(∂r T )

−e2δ f (φ0)r
2(∂r a0)(∂r a1)

−ie2δωr H1 − L

−1

2
(2e2δ f (φ0)r

2(∂r a0)
2 + l(l + 1))N

−e2δ ḟ (φ0)(∂r a0)
2r2φ1

+2r3e2δω2 − l(l + 1)(r − 2m) + 2(r − 2m)

2(r − 2m)
T

−i(∂r a0)e
2δ f (φ0)ω r2W1

]
,

∂r T = i

8ωr2

(
4e2δ f (φ0)r

2 (∂r a0)
2

+4r (∂rφ0)
2 (r − 2m) + 2l(l + 1) − 8 (∂rm)

)
H1

+ L

r
+ φ1 (∂rφ0) − 1

r (r − 2m)
[r (∂r δ) (r − 2m)

+r ((∂rm) + 1) − 3m] T,

∂2
r T = 1

r
(∂r L) + (∂rφ0) (∂rφ1)

+ 1

4r(r − 2m)
[4 (r (∂rm) + 5m

−3 r) (∂r T ) + 4 (∂r a0) e
2δ f (φ0)r

2 (∂r a1)

+2r2e2δ ḟ (φ0) (∂r a0)
2 φ1

+ (4 e2δ f (φ0)r
2 (∂r a0)

2

+r (4∂rφ0)
2 (r − 2m) + 2l(l + 1) − 4 (2(∂rm) − 1)

)
L

−(4r (∂rφ0)
2 (r − 2m) − 8 ∂rm

)
N

+2 (l + 2) (l − 1) T

+4i (∂r a0) e
2δ f (φ0)ω r2W1

]
,

∂2
r (T + N ) = iωre2δ

r − 2m
(∂r H1)

−2 − 3r (∂r δ) − 4 (∂rm) + 6m (∂r δ)

r − 2m
(∂r N )
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+2 (∂rφ0) (∂rφ1)

+r(r − 2m) (∂r δ) + 2m − 2r + 2r (∂rm)

r − 2m
(∂r T )

−2re2δ f (φ0)

r − 2m
(∂r a0) (∂r a1)

− iωe2δ(m − r + r∂rm)

(r − 2m)2 H1

−2riωe2δ f (φ0) (∂r a0)

r − 2m
W1

−2re2δ ḟ (φ0)(∂r a0)
2

r − 2m
φ1

+ e2δω2r2

(r − 2m)2 (N − T ) + 2re2δ f (φ0) (∂r a0)
2

r − 2m
T

+
[

2∂2
r δ + 2

r − 2m
∂2
r m − 2 (∂rφ0)

2 − 2(∂r δ)
2

+2 (∂r δ) (m + r − 3r (∂rm))

r(r − 2m)

]
(N + T ),

∂r V1 = ie2δωr3

l(l + 1)(r − 2m)
[(∂r a1)

+ (∂r a0)

(
L + N − 2T + 2

ḟ (φ0)

f (φ0)
φ1

)]

+
[

1 − ω2r3e2δ

l(l + 1)(r − 2m)

]
W1,

∂2
r V1 = − r2e2δω

(r − 2m)2 [ωV1 − ia1] + ∂rW1

− 1

r(r − 2m)

[
2 (m − r∂rm) + r(r − 2m)

(
2
ḟ (φ0)

f (φ0)
(∂rφ0)

− (∂r δ))] [∂r V1 − W1] ,

∂2
r a1 = −iω (∂rW1) − (∂r a0) [∂r (L + N − 2T

+2
ḟ (φ0)

f (φ0)
φ1

)]

+ l(l + 1)

r (r − 2m)
(iωV1 + a1) −

(
ḟ (φ0)

f (φ0)
(2∂rφ0)

+(∂r δ) + 2

r

)
[(∂r a1) + iωW1]

−
[
(∂r a0) (2∂rφ0)

ḟ (φ0)

f (φ0)

+ (∂r δ) (∂r a0) + (∂2
r a0
)

+2

r
(∂r a0)

] [
2
ḟ (φ0)

f (φ0)
φ1 + 2(L + N )

]
,

∂2
r φ1 = (∂rφ0) [∂r (N + 2T − L)]

− irωe2δ∂rφ0

r − 2m
H1 − 2re2δ ḟ (φ0)

r − 2m
N

−2riωe2δ ḟ (φ0)

r − 2m
W1

−2re2δ ḟ (φ0) (∂r a0)

r − 2m
(∂r a1)

+2r (∂rm) + 2m − 2r + r(r − 2m) (∂r δ)

r(r − 2m)
(∂rφ1)

+ [2∂rφ0∂r δ − 2∂2
r φ0

−2re2δ ḟ (φ0) (∂r a0)
2

r − 2m

+2 (∂rφ0) (m − r + r∂rm)

r(r − 2m)

]
L

+
[

l(l + 1)

r(r − 2m)
− r2ω2e2δ

(r − 2m)2

−
(

ḟ (φ0)

f (φ0)

)2
2re2δ f (φ0) (∂r a0)

2

r − 2m

]
φ1. (37)

A useful redefinition of the electromagnetic perturbations
is

F0(r) = −iωW1(r) − dW1(r)

dr
, (38)

F1(r) = −iωV1(r) − a1(r), (39)

F2(r) = −W1(r) + dV1(r)

dr
, (40)

which allows to simplify the system of equations in a way that
is more convenient for numerical calculations. After some
algebra, the minimal set of differential equations, or Master
equations, can be written in vectorial form by defining a 6×6
matrix (see Eq. (32)).

Polar perturbations with an outgoing wave behavior at
infinity satisfying the previous equations behave like

H1 = reiωR
[
A+
g (−2 + O(r−1)) + A+

F

(
2i Q

ωr2 + O(r−3)

)

+A+
φ

( −i

4ω2r4

(
ω

ḟ

f

∣∣∣∣∞ Q2 − 2i QS

)
+ O(r−5)

)]
,

T = eiωR
[
A+
g (1 + O(r−1)) + A+

F

(−i Q

ωr2

+O(r−3)
)

+ A+
φ

(
i QS

2ωr3 + O(r−4)

)]
,

F0 = 1

r2 e
iωR
[
A+
g (−2Q + O(r−1))

+A+
F

(−il(l + 1)

ω
+ O(r−1)

)

+A+
φ

(
ḟ

f

∣∣∣∣∞
Q

r
+ O

(
r−2
))]

,

F1 = eiωR
[
A+
g

(
Q

r
+ O(r−2)

)

+A+
F (1 + O(r−1))

+A+
φ

(
− ḟ

f

∣∣∣∣∞
Q

4r2 + O(r−3)

)]
,

φ1 = 1

r
eiωR

[
A+
g

(
2QSM

r
− ḟ

f

∣∣∣∣∞
Q2

r
+ O(r−1)

)
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+A+
F

(
Ql(l + 1)

ω2r2

− i QQS

2ωr2 + O(r−3)

)
+ A+

φ (1 + O(r−1))

]
. (41)

Note that, since the background solutions we have consid-
ered satisfy φ(∞) = 0 and the theory coupling is such that
ḟ
f

∣∣∣∞ = 0, some of the terms in this expansion vanish.

On the other hand, polar perturbations with an ingoing
wave behavior at the horizon satisfy

H1 = 1

r − rH
e−iωR

×
[
A−
g

(
2ir2

H (2ieδH f (φH )ωr3
H + f (φH )r2

H − Q2)

(2rH eδH ω + il(l + 1))( f (φH )r2
H − Q2)

+O(r − rH ))

+A−
F

(
4eδH f (φH )Qr3

H

(r2
H f (φH ) − Q2)l(l + 1)

(r − rH )

+O((r − rH )2)
)

+A−
φ

(
ḟ (φH )

f (φH )

−4rH Q2r3
H

(r2
H f (φH ) − Q2)l(l + 1)

(r − rH )

+O((r − rH )2)
)]

,

T = e−iωR [A−
g (1 + O(r − rH ))

+A−
F

(
−2eδH f (φH )QrH (2rH eδH ω + il(l + 1))

(2r3
HeδH f (φH )ω + i f (φH )r2

H − i Q2)l(l + 1)
(r − rH )

+O((r − rH )2)
)

+A−
φ

⎛
⎝ ḟ (φH )

f (φH )

−Q2(2rH eδH ω + il(l + 1))(
2r3

HeδH f (φH )ω + i f (φH )r2
H − i Q2

)
l(l + 1)

(r − rH ) + O((r − rH )2)
)]

,

F0 = e−iωR
[
A−
g (O(r − r H))

+A−
F (1 + O(r − rH )) + A−

φ (O(r − r H))
]
,

F1 = e−iωR
[
A−
g

( −2iω

f (φH )l(l + 1)
+ O(r − rH )

))

+A−
F

(−ieδH ωr2
H

l(l + 1)
+ O(r − r H)

)

+A−
φ

(
ḟ (φH )

f (φH )2
iωQ

l(l + 1)

+O(r − r H))] ,

φ1 = e−iωR
[
A−
g (O(r − r H))

+A−
F (O(r − r H)) + A−

φ (1 + O(r − rH ))
]
. (42)

The asymptotic expansion of the polar perturbations is
characterized by three undetermined amplitudes: A±

g (space-

time perturbation amplitude), A±
F (electromagnetic perturba-

tion amplitude) and A±
φ (scalar perturbation amplitude).
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