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Abstract Effective-one-body (EOB) theory was originally
proposed based on the post-Newtonian (PN) approximation
and plays an important role in the analysis of gravitational
wave signals. Recently, the post-Minkowskian (PM) approx-
imation has been applied to the EOB theory. The energy map
and the effective metric are the two key building blocks of the
EOB theory, and in PN approximation radial action variable
correspondence is employed to construct the energy map and
the effective metric. In this paper, we employ the PM approx-
imation up to the second order, and use the radial action
variable correspondence and the precession angle correspon-
dence to construct the energy map and the effective metric.
We find that our results based on the radial action variable
correspondence, are exactly the same with those obtained
based on the precession angle correspondence. Furthermore,
we compare the results obtained in this work to the previous
existing ones.

1 Introduction

Since the first direct detection of gravitational waves (GW)
by LIGO [1], more than 50 GW detection events have been
confirmed [2–6]. The era of gravitational wave astronomy is
coming and it can be used as a powerful tool to investigate
gravitational physics [7]. In the success of GW detection, the
gravitational waveform template, which is an essential part of
the matched filtering technique, plays a very important role.
To construct gravitational waveform template, the theoreti-
cal models of gravitational radiation are necessary. Among
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several existing theoretical models, the effective-one-body-
numerical-relativity (EOBNR) has been widely used in prac-
tical GW detection [7–10].

Currently, the EOBNR model is a combination of effective-
one-body (EOB) theory and numerical relativity (NR) [9].
The EOB theory, which is inspired by the electromagneti-
cally interacting quantum two-body problem [11], has been
applied to compute the gravitational waveform emitted by
binary black holes [11–14]. The original EOB theory is based
on post-Newtonian (PN) approximation, and the basic idea
is to map the real two-body problem to an effective one body
problem. More precisely, the EOB formalism consists of two
main parts: the conservative dynamics part and the radiation
reaction part. The conservative dynamics of a two-body sys-
tem is described by an effective Hamiltonian. To build the
relations between the real two-body system and the effective-
one-body system, the energy map between the real relativistic
energy E (in the center of mass frame) and the effective one
E0 is essential. Similar to the Bohr–Sommerfeld quantiza-
tion conditions of bound states in quantum mechanics, the
energy map can be obtained by identifying the real radial
action variable IR to the effective one I 0

R . Consequently, the
energy map

f : E → E0, (1.1)

can be expressed as a PN expansion series [11]
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Enr
0 = E0 − m0c

2,

Enr
real = E − (m1 + m2)c

2,

μ = m1m2

m1 + m2
, (1.3)

where m1,m2 are the masses of the real two-body system,
m0 is the mass of the effective particle and ‘nr’ means non-
relativistic. It is striking that the energy map, at the 4PN order,
exhibits a very simple structure [15]

α1 = ν

2
, α2 = α3 = α4 = 0, (1.4)

where

ν = m1m2

(m1 + m2)2 (1.5)

is the symmetric mass ratio. By substituting the above strik-
ingly simple formula into the relativistic real energy E and
the effective energy E0, the energy map (1.2) at the 4PN order
becomes

E0

m0c2 = E2 − m2
1c

4 − m2
2c

4

2m1m2c4 . (1.6)

In 2016, Damour investigated the energy map based on
post-Minkowskian (PM) approximation [16]. Different to the
PN approach in which v

c is assumed to be small, the PM
approach uses the gravitational constant G as an expansion
parameter and v

c is not required to be small any more [17,18].
Damour considered a scattering state of a two-body system
[16] and calculated the real two-body scattering function
χ real

1PM and the effective-one-body scattering function χeff
1PM at

the 1PM approximation. By identifying χ real
1PM and χeff

1PM, he
found that the energy map between the real two-body energy
E and the energy E0 of the effective particle takes the form
as Eq. (1.6) at 1PM order. Since PM approximation does not
assume v

c is small, this means Eq. (1.6) is valid for all orders
of v

c .
In 2017, Bini and Damour studied the gravitational spin-

orbit coupling of a binary system at the 1PM order [19], and
they extended the results to the 2PM order later [20]. Based
on the scattering “spin holonomy”, they showed the energy
map obtained in Ref. [16] still holds at the 2PM order. In
addition, they calculated the two gyrogravitomagnetic ratios
which is adopted to describe the spin-orbit coupling in the
EOB formalism. But they did not give the explicit expres-
sion of effective metric at the 2PM order [19,20]. The PM
approximation has attracted great attention in recent years.
For example, the structure properties and the scattering of
tidally interacting bodies in PM approximation are discussed
[21,22], and see Refs. [22–37], for more information on this
direction.

In 2018, Damour found a 2PM effective Hamiltonian
based on the calculation of scattering angles [38]. A gen-
eralized mass-shell condition, which contains a Finsler-type
contribution has been used in such an effective Hamiltonian.

Along this way, Antonelli et al extended the 2PM effective
Hamiltonian to the 3PM order and discussed the binding
energy of a two-body system [39].

In order to construct gravitational waveform model for
compact binary objects coalescence, a bound state instead of
a scattering state is needed. An interesting question is whether
the PM effective Hamiltonian can be derived from a bound
state. Since the Finsler-type term in the related Hamiltonian
[38] is introduced artificially, another interesting question is
whether the PM effective Hamiltonian can be derived without
using the Finsler-type term. In this paper, we answer these
two questions up to the 2PM order. We show that the energy
map (1.6) still holds for bound state, and construct the effec-
tive metric at the 2PM order. Two independent methods are
used to construct the effective metric: one is based on the
calculation of the action variables of the real two-body sys-
tem and the EOB system, and the other one is based on the
calculation of the precession angle.

The rest of the paper is organized as follows. In Sect. 2, we
compute the radial action variable IR from the 2PM Hamil-
tonian of the real two-body system. Then the effective radial
action variable I 0

R of a test particle moving in a deformed
Schwarzschild spacetime (effective background spacetime)
is calculated at the 2PM order. Based on these results, the
energy map between the real relativistic energy E of a two-
body system and the effective relativistic energy E0 of the
EOB system are obtained, and the effective metric is derived.
In Sect. 3, we get the effective metric at the 2PM order by
calculating and comparing the precession angle of a real two-
body system and the EOB system. We find that the results are
consistent to those obtained in Sect. 2. In Sect. 4, we compare
our 2PM effective Hamiltonian with the existing results and
show that all the results are consistent at 3PN accuracy. At
last, summary and discussion are given in Sect. 5.

We use the unit with c = 1 throughout the paper, which
is suitable for calculations within the PM framework.

2 Energy map and effective metric based on action
variable

In this section, we first calculate the action variable both for a
two-body system and the EOB system at 2PM order, respec-
tively. By identifying the action variables, the energy map
and the effective metric in EOB theory are then constructed.

2.1 Radial action variable of a two-body system at 2PM
order

In 2019, it was shown by Bern et al. [31,32] that the con-
servative Hamiltonian of a massive spinless binary system at
the 2PM approximation can be expressed explicitly as
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Based on the above Hamiltonian (2.1), the radial action
can be calculated. Within a spherical coordinate system
{r, θ, φ}, we have

�p2 = p2
r + p2

θ

r2 + p2
φ

r2 sin2 θ
,

�r · �p = rpr ,

�p2�r2 − (�r · �p)2 = p2
θ + p2

φ

sin2 θ
, (2.2)

which implies that there are two conservative quantities, i.e.
the energy E and the angular momentum J = pφ . Due to
the conservative quantity J , the orbit is restricted in a plane.
Without loss of generality, we set θ = π

2 . The reduced Hamil-
tonian in the equatorial (θ = π

2 ) plane becomes
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(2.3)

123



97 Page 4 of 12 Eur. Phys. J. C (2021) 81 :97

We use the Hamilton–Jacobi approach to solve the 2PM
dynamics. In polar coordinates, the reduced action is

S = −E t + Jφ + Sr (r, E, J ). (2.4)

Then the Hamilton–Jacobi equation
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Now we solve pr (≡ dSr
dr ) from Eq. (2.6). Following the

prescriptions given in Ref. [32], we expand p2
r as
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Plugging Eq. (2.7) into Eq. (2.6), we obtain
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According to the Hamilton–Jacobi theory, the radial effec-
tive potential R(r, E, J ) at the 2PM order reads
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From definition of the radial action variable [11]
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one obtains∫ rmax
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Putting Eq. (2.11) into Eq. (2.12), together with Eqs. (2.8),
(2.9), (2.10) and (2.14), we obtain the explicit expression of
the radial action variable of the real two-body system at the
2PM order as
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2.2 Radial action variable of the EOB system at 2PM order

In this subsection, we calculate the effective radial action
variable I 0

R , which is deduced from the dynamics of a test
particle with rest mass m0 moving in an effective curved
background spacetime with metric geff

μν . Following the spirit
of EOB approach [11,16], the effective metric which corre-
sponds to a spinless two-body system is given by

ds2
eff = −A(R)dt2 + B(R)dR2

+C(R)R2(d	2 + sin2 	d
2). (2.16)

At the second order in G, A(R) and B(R) can be expanded
as
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where β1, a2, b2 are dimensionless parameters and M0 is a
mass parameter which denotes the the mass of the effective
background [16]. The function C(R) may be fixed either to
C(R) = 1 in Schwarzschild coordinates or to C(R) = B(R)

in isotropic coordinates.
For a test particle moving in the effective background

spacetime, the effective Hamilton–Jacobi equation reads

gμν
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+ m2
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In the equatorial plane (	 = π
2 ), Seff reduces to

Seff = −E0t + J0
 + S0
R(R, E, J0), (2.20)

where E0 and J0 are the effective energy and the angular
momentum, respectively.

By substituting Eq. (2.20) into Eq. (2.19), we obtain
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Based on the definition of the effective radial action vari-
able I 0

R(E0, J0)
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R(E0, J0) = 2
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√
R0(R, E0, J0), (2.23)

we calculate the effective radial action variable I 0
R(E0, J0)

both in the Schwarzschild and in the isotropic gauges in the
following.

2.2.1 Action variable in the Schwarzschild gauge

For this case, C(R) = 1. By substituting Eqs. (2.17) and
(2.18) into Eq. (2.22), and letting a2, β1 and b2 as expansion
coefficients, we get

R0(R, E0, J0) = Â + 2B̂

R
+ Ĉ
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R4 , (2.24)
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In general, it is hard to get the exact expression of
I 0
R(E0, J0) by direct calculation. Fortunately, there exists a

simpler way to obtain I 0
R(E0, J0) which does not need to con-

sider the explicit value of the turning points rmin and rmax.
If
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where A < 0, B > 0, C < 0, D1 = O(ε), D2 and D3 =
O(ε2), we have [40]
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Using Eq. (2.27), the effective radial action variable
I 0
R(E0, J0) at the second order in G turns into
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]
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2.2.2 Action variable in the isotropic gauge

For this case, C(R) = B(R). Following the same procedures
shown in the above, we get
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0 + m2

0

+M2
0G

2(E2
0 (4 − ã2 + b̃2 + 4β̃1) − m2

0b̃2)

2J0
.

(2.29)

By comparing Eq. (2.28) with Eq. (2.29), we obtain

β̃1 = β1,

ã2 = a2 + 2β1,

b̃2 = b2

2
− β2

1

2
. (2.30)

which is consistent with the results given in Ref. [11].

2.3 Energy map and effective metric at the 2PM order

In this subsection, we investigate the relations between the
EOB system and the real two-body system. Especially, we
show that the energy map between the two systems is consis-
tent to the one given in the Ref. [16]. We would like to empha-
size that the energy map in [16] was deduced by investigating
the scattering angle while here we use the radial action vari-
able or precession angle. Moreover, the effective background
metric is constructed at the 2PM order.

A natural and physical choice of the relations between
EOB quantities and real two-body ones are [11,16]

m0 = m1m2

m1 + m2
, (2.31)

M0 = m1 + m2. (2.32)

Moreover, following the Ref. [11], we choose

β1 = 1 (2.33)

which means the effective metric coincides with the lin-
earized Schwarzschild metric with M0 = m1 + m2.

Inspired by the Bohr–Sommerfeld quantization condi-
tions, we adopt the following identification of the effective
radial action variable I 0

R and the real two-body one IR :

I 0
R(E0, J0) = IR(E, J ). (2.34)

By combining Eqs. (2.15), (2.28), (2.31), (2.32), (2.33) and
(2.34), we can get the energy map

E0 = f [E]. (2.35)

More precisely, the 0th-order (in G) of the Eq. (2.34) gives

J0 = J. (2.36)

The 1st-order of the Eq. (2.34) yields

E0 = E2 − m2
1 − m2

2

2(m1 + m2)
, (2.37)

which is just the energy map between the relativistic energy
E of a real two-body system and the relativistic energy E0 of
the EOB system. This result is consistent to Eq. (1.6), which
is also exactly the result obtained by Damour in the Ref. [16].

The 2nd order of I 0
R is

G2

16J

[
(11 − 2a2 + b2)E4 + (11 − 2a2 + b2)(m

4
1 + m4

2)

−2(11 − 2a2 + b2)E2(m2
1 + m2

2)

+2(13 − 2a2 − b2)m
2
1m

2
2

]
. (2.38)

Correspondingly the second order of IR is

G2

16J

15(m1 + m2)

E
[
E4 + (m4

1 + m4
2)

−2E2(m2
1 + m2

2) + 6

5
m2

1m
2
2

]
. (2.39)

Combining Eqs. (2.38) and (2.39), we obtain

11 − 2a2 + b2 = 15(m1 + m2)

E ,

13 − 2a2 − b2 = 9(m1 + m2)

E , (2.40)
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which lead to

a2 = 6(E − m1 − m2)

E , (2.41)

b2 = E + 3m1 + 3m2

E . (2.42)

From Eqs. (2.41) and (2.42), we can see that the effective met-
ric at the 2PM order depends not only on m1,m2, but also
on the relativistic energy E of the real binary system.Since E
is determined by the initial configuration of the binary sys-
tem and different initial configuration may yield different
gravitational radiation, the above dependence just means the
gravitational radiation depends on the initial configuration of
the binary system. Therefore, we think such kind of effective
metric is physically reasonable. As a special case, we con-
sider the test particle limit of the behaviors of a2 and b2. For
this purpose, by introducing the dimensionless ratio h

h := E
m1 + m2

− 1, (2.43)

so that we have

a2 = 6h

1 + h
, b2 = 4 + h

1 + h
. (2.44)

From the energy map (2.37), the dimensionless energy vari-
able Êeff ≡ E0

m0
reads [38]

Êeff = h2 + 2h + 2ν

2ν
, (2.45)

then we obtain

h + 1 =
√

1 + 2ν(Êeff − 1), (2.46)

and from Eq. (2.44) one gets

a2 =
6

(√
1 + 2ν(Êeff − 1) − 1

)
√

1 + 2ν(Êeff − 1)

, (2.47)

b2 = 3 +
√

1 + 2ν(Êeff − 1)√
1 + 2ν(Êeff − 1)

. (2.48)

For the test particle limit (ν → 0), a2 and b2 reduce to

a2 = 0, b2 = 4. (2.49)

This result is consistent to the case that a test particle moving
in the Schwarzschild spacetime since
(

1 − GM0

R

)−1

= 1 + 2GM0

R
+ 4

(
GM0

R

)2

+ O(G3).

(2.50)

Back to the general case, if we work in the isotropic gauge
and choose β̃1 = 1, the energy map and effective metric can

be obtained from Eqs. (2.15), (2.29), (2.31), (2.32) and (2.34).
More precisely, direct calculation gives the energy map

E0 = E2 − m2
1 − m2

2

2(m1 + m2)
. (2.51)

It coincides with Eq. (2.37), the one obtained in Schwarzschild
gauge, as we expected. Furthermore, the expansion coeffi-
cients in Eqs. (2.17) and (2.18) in the isotropic gauge can be
deduced as

ã2 = 2(4E − 3m1 − 3m2)

E , (2.52)

b̃2 = 3(m1 + m2)

2E . (2.53)

3 Energy map and effective metric based on precession
angle

Damour have studied the energy map between a real two-
body system and the EOB system, by calculating the scat-
tering angles, at the 1PM order [16]. Since here we focus on
the bound states of a two-body system, the scattering angle
should be replaced by the precession angle. In this section,
we investigate the energy map and the effective metric at the
2PM order by analyzing the precession angles.

3.1 Precession angle of real two-body system at 2PM order

For a real two-body system, we have shown in Sect. 2 that
the expression of p2

r at the 2PM order is

p2
r = P0r2 − J 2

r2 + P1

(
G

r

)
+ P2

(
G

r

)2

, (3.1)

where P0, P1, P2 are given by Eqs. (2.8), (2.9) and (2.10).
For a general central-field Hamiltonian, H(r, �p2), the pre-

cession angle is given by

ψ = −2π + 2J
∫ r2

r1

dr

r2
√
p2
r

, (3.2)

where r1 and r2 are the roots of p2
r = 0, and from Eq. (3.1),

they are given by

r1 =
−P1G +

√
P2

1 G
2 − 4P0P2G2 + 4P0 J 2

2P0
, (3.3)

and

r2 =
−P1G −

√
P2

1 G
2 − 4P0P2G2 + 4P0 J 2

2P0
. (3.4)

To calculate the precession angle, we first introduce a for-
mula∫ a

b

1

x
√−(x − b)(x − a)

dx = π√
ab

, (3.5)
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where a > b > 0. This formula may be proved directly, by
transforming the variable from x to t ,

t =
√
a − x

x − b
, (3.6)

and one then obtains∫ a

b

1

x
√−(x − b)(x − a)

dx

= lim
u→b+ lim

v→a−

∫ v

u

1

x(x − b)
√

a−x
x−b

= − 2√
ab

(
0 − π

2

)
= π√

ab
. (3.7)

Using Eq. (3.5), the precession angle may be calculated as

ψ = −2π + 2J
∫ r2

r1

dr

r2
√
p2
r

= P2π

(
G

J

)2

+ O(G3).(3.8)

By inserting Eq. (2.10) into Eq. (3.8), the precession angle
of a real two-body system at the 2PM order becomes

ψ = 3(m1 + m2)π

8E
(

5E4 + 5m4
1 + 5m4

2

+6m2
1m

2
2 − 10E2(m2

1 + m2
2)

)(
G

J

)2

. (3.9)

It should be mentioned that one can also get the precession
angle from the of scattering information [35], which gives
the same result as above.

3.2 Precession angle of EOB system at the 2PM order

We now compute the effective precession angle ψ0 in
isotropic gauge (C(R) = B(R)). For an EOB system, we
have obtained, in Sect. II, that

P2
R = dS0

R

dR
= B(R)

c2A(R)
E2

0 − B(R)

(
m2

0c
2 + J 2

0

C(R)R2

)
,

(3.10)

where A(R), B(R) are given by Eqs. (2.17) and (2.18) with
expansion coefficients ã2, β̃1 and b̃2.

Within isotropic coordinates, direct calculation shows that
P2
R at the 2PM order is

P2
R = A0R2 − J 2

0

R2 + A1

(
G

R

)
+ A2

(
G

R

)2

, (3.11)

where

A0 = E2
0 − m2

0,

A1 = 2M0(−m2
0β̃1 + E2

0 (1 + β̃1)),

A2 = M2
0 (−b̃2m

2
0 + E2

0 (4 − ã2 + b̃2 + 4β̃1)). (3.12)

The zeros of P2
R are given by

R1 =
−A1G +

√
A2

1G
2 − 4A0A2G2 + 4A0 J 2

0

2A0
, (3.13)

and

R2 =
−A1G −

√
A2

1G
2 − 4A0A2G2 + 4A0 J 2

0

2A0
. (3.14)

From Eq. (3.5), the effective precession angle can be com-
puted and the result is

ψ0 = M2
0 π

(
− b̃2m

2
0 + E2

0 (4 − ã2 + b̃2 + 4β̃1)

)(
G

J0

)2

.

(3.15)

3.3 Effective metric at 2PM order based on precession
angle

Now we construct the effective metric through identifying
the effective scattering angle ψ0 to the real two-body one ψ :

ψ0(E0, J0) = ψ(E, J ). (3.16)

Recall that

E0 = E2 − m2
1 − m2

2

2(m1 + m2)
, J0 = J, (3.17)

then Eq. (3.15) becomes

ψ0 = G2π

4J 2

[
(8 − ã2 + b̃2)E4 + (8 − ã2 + b̃2)(m

4
1 + m4

2)

−2(8 − ã2 + b̃2)E2(m2
1 + m2

2)

+(16 − 2ã2 − 2b̃2)m
2
1m

2
2

]
, (3.18)

where we have used Eqs. (2.31), (2.32) and β̃1 = 1. By
noticing that Eq. (3.9) can be rewritten as

ψ = 15(m1 + m2)πG2

8E J 2

[
E4 + (m4

1 + m4
2)

−2E2(m2
1 + m2

2) + 6

5
m2

1m
2
2

]
, (3.19)

and from Eqs. (3.16), (3.18) and (3.19), we obtain

8 − ã2 + b̃2 = 15(m1 + m2)

2E ,

16 − 2ã2 − 2b̃2 = 9(m1 + m2)

E , (3.20)

which lead to

ã2 = 2(4E − 3m1 − 3m2)

E ,

b̃2 = 3(m1 + m2)

2E . (3.21)

This is consistent with Eqs. (2.52) and (2.53).
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4 Comparison with existing results

In the Schwarzschild gauge, we have shown that the effective
metric is

ds2
eff = −A(R)dt2 + B(R)dR2

+C(R)R2(d	2 + sin2 	d
2), (4.1)

with

A(R) = 1 − 2GM0

R
+ a2

(
GM0

R

)2

, (4.2)

B(R) = 1 + 2GM0

R
+ b2

(
GM0

R

)2

, (4.3)

where

a2 = 6(E − m1 − m2)

E = 6(

√
1 + 2ν(Êeff − 1) − 1)√

1 + 2ν(Êeff − 1)

,

b2 = E + 3m1 + 3m2

E = 3 +
√

1 + 2ν(Êeff − 1)√
1 + 2ν(Êeff − 1)

.

(4.4)

For later convenience, we introduce the following dimen-
sionless quantities [38]

pμ = Pμ

m0
, u = 1

r
= GM

R
, (4.5)

so that, at the 2PM order, a2 and b2 can be rewritten as

a2 =
6

(√
1 + 2ν(ĤSchw − 1) − 1

)
√

1 + 2ν(ĤSchw − 1)

, (4.6)

b2 = 3 +
√

1 + 2ν(ĤSchw − 1)√
1 + 2ν(ĤSchw − 1)

, (4.7)

where ĤSchw, the reduced effective Hamiltonian of a test
particle moving in a Schwarzschild background, is given by
[38],

Ĥ2
Schw = (1 − 2u)

(
1 + (1 − 2u)p2

r + p2
ϕu

2
)

. (4.8)

Moreover, the squared reduced effective Hamiltonian Ê2
eff =

E2
0

m2
0

at the 2PM order reads

Ê2
eff = (1 − 2u + a2u

2)

(
1 + p2

r

1 + 2u + b2u2 + p2
ϕu

2
)

.

(4.9)

In the following, we compare our 2PM effective Hamil-
tonian to the corresponding PN-expanded effective Hamil-
tonian at 3PN accuracy analytically and compare our 2PM

Hamiltonian to the existing 2PM Hamiltonian obtained in the
Ref. [38].

4.1 Comparison with existing 3PN result

We use Ê2
eff − 1 as PN expansion parameter. At the 3PN

accuracy,

ĤSchw − 1 = 1

2
(Ĥ2

Schw − 1) − 1

8
(Ĥ2

Schw − 1)2

+O((Ĥ2
Schw − 1)3), (4.10)

and then

a2 = 6

(
1 − 1√

1 + 2ν(ĤSchw − 1)

)

= 6ν(ĤSchw − 1) − 9ν2(ĤSchw − 1)2

+O((ĤSchw − 1)3)

= 3ν(Ĥ2
Schw − 1) −

(
3ν

4
+ 9ν2

4

)
(Ĥ2

Schw − 1)2

+O((Ĥ2
Schw − 1)3), (4.11)

b2 = 1 + 3√
1 + 2ν(ĤSchw − 1)

= 4 − 3

2
ν(Ĥ2

Schw − 1) + 3

8
(ν + 3ν2)(Ĥ2

Schw − 1)2

+O((Ĥ2
Schw − 1)3). (4.12)

By substituting Eqs. (4.11), (4.12) and (4.8) into the Eq. (4.9),
we obtain the squared reduced effective Hamiltonian at
“2PM+3PN” order as

(Ê2PM+3PN
eff )2 = (1 − 2u)

[
1 + (1 − 2u + 3νu2)p2

r

+(1 + 3νu2)p2
ϕu

2]

+
[15

4
p4
r + 3p2

r p
2
ϕu

2 − 3

4
p4
ϕu

4

−9ν

4
(p4

r + 2p2
r p

2
ϕu

2 + p4
ϕu

4)

]
νu2.

(4.13)

On the other hand, the 3PN effective Hamiltonian is given
by [13]

(Ê3PN
eff )2 = A(u′)

(
1 + A(u′)

D(u′)
p′
r

2 + p′
ϕ

2u′2
)

+ z3u
′2 p′

r
4
,

(4.14)
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where

A(u′) = 1 − 2u′ + 3νu′3

+
(

94

3
− 41

32
π2 + 2ωstatic

)
νu′4, (4.15)

D(u′) = 1 − 6νu′2 + 2(3ν − 26)νu′3, (4.16)

z3 = 2(4 − 3ν)ν. (4.17)

At “3PN+2PM” accuracy,

(Ê3PN+2PM
eff )2 = (1 − 2u′)

[
1 + p′

r
2
(1 − 2u′ + 6νu′2)

+p′
ϕ

2u′2] + (8ν − 6ν2)u′2 p′
r

4
. (4.18)

In order to check the consistence between Eqs. (4.13) and
(4.18), we take a canonical transformation

q ′i = qi + ∂g(q, p′)
∂ p′

i
, (4.19)

pi = p′
i + ∂g(q, p′)

∂qi
. (4.20)

One can show directly that Eqs. (4.13) and (4.18) are consis-
tent to each other at 2PM and 3PN accuracy by choosing the
canonical generating function as

g(q, p′) = p′
r

(
− 3ν

2r
− (13 − 9ν)ν p′

ϕ
2

8r3

−1

8
(17 − 15ν)ν

p′
r

2

r

)
. (4.21)

This implies our 2PM effective Hamiltonian is consistent to
the existing result at 3PN accuracy.

4.2 Comparison to the existing results

In this subsection, we compare our EOB predictions for the
binding energy of a two body system on a quasi-circular orbit
to the results of existing PM EOB models [38,39]. To this
end, we introduce

e ≡ E − M

m0
, l ≡ L

GMm0
, (4.22)

where E and L are the total energy and angular momentum
of a two-body system, and use adiabatic approximation [39]
to investigate the energy-angular momentum relation.

We compare the e-l relation for previous PM EOB Hamil-
tonian to our new PM EOB Hamiltonian in Fig. 1. Our 1PM
EOB behaves exactly the same as Damour’s 1PM result.
Damour’s 2PM EOB Hamiltonian used Finsler-type correc-
tions. Our new 2PM EOB Hamiltonian does not use Finsler-
type corrections. Along with a binary evolves from inspiral
to merger, l decrease and the difference increases. When l
goes to lISCO [39], the relative deviation of binding energy
increases to about 1%. At the mean time we note that 1PM

H1 PM,our

H1 PM

H2 PM,our

H2 PM

H3 PM

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
l

0.060

0.055

0.050

0.045

0.040

0.035

0.030

0.025
e

H1 PM,our

H1 PM

H2 PM,our

H2 PM

H3 PM

3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80
l

0.058

0.056

0.054

0.052

0.050
e

Fig. 1 The above plot shows the energetics of different EOB Hamil-
tonians. H1PM,our and H2PM,our mean the 1PM and 2PM results got
in the current work. H1PM [38], H2PM [38] and H3PM [39] are the
existing results. The bottom plot corresponds to the zooming in for the
l ∈ (3.45, 3.65) range

result is even closer to 3PM result than 2PM results. We
blame this behavior to the nonmonotonic convergence of PM
expansion. Due to this reason, we can not judge whether our
2PM result or Damour’s 2PM result is more accurate. More
investigation on the PM approximated EOB theory is needed.

5 Summary and discussion

The EOB formalism is a successful theory to investigate the
gravitational radiation emitted by binary black holes. Com-
bined with the results of numerical relativity, the EOBNR
model has been developed and has played an important role
in the analysis of the gravitational wave signals. The seminal
EOB theory is based on the knowledge of a PN description
of the relativistic two-body dynamics. The PM approach is
another useful approximation method to deal with the rela-
tivistic two-body problem. Recently, Damour et al. began to
construct the EOB theory based on the PM approximation.
At the 1PM order, by identifying the scattering angle of the
scattering states of a real two-body system and the effec-
tive one [16], the energy map between the relativistic energy
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of real two-body system and the one of effective one-body
system takes form

E0

m0
= E2 − m2

1 − m2
2

2m1m2
. (5.1)

In 2018, Damour found the 2PM Hamiltonian based on the
calculation of scattering angle of the effective one-body sys-
tem by using a generalized mass-shell condition which con-
tains a Finsler-type contribution [38]. Antonelli et al extended
Damour’s results to the 3PM order and discussed the ener-
getics of two-body Hamiltonians in the 3PM accuracy [39].

In this work, we investigate the energy map, the effective
metric and the effective Hamiltonian in the EOB theory at the
second PM approximation based on a quite different scheme.
We calculate the radial action variables and precession angles
for bound states, and show that the energy map (5.1) is still
valid for a two-body problem at the 2PM order. Furthermore,
we construct the effective metric within EOB formalism at
the 2PM order based on the action variable method and pre-
cession method respectively, and observe that both methods
give the same results. When we calculate the effective metric,
we do not take any other extra assumptions besides the PM
approximation. This is different to Damour’s work where a
Finsler-type contribution is assumed. Our effective metric at
the 2PM order depends on the relativistic energy E of the real
binary system, which is physically reasonable because dif-
ferent E corresponds to different initial configuration of the
binary system and different initial configuration may result
in different gravitational radiation. In addition, we compare
our 2PM effective Hamiltonian with the existing results and
find they are consistent with each other at the 3PN accuracy.

In this paper, we extend Damour’s discussion on effective
one-body theory (based on PM approximation) from scat-
tering states to bound states. Our derivation is based on the
direct investigation of a bound state, and we give the effec-
tive metric explicitly which is useful to further investigate
gravitational waves produced by a binary system. In the next
step we would like to construct the energy map and effective
metric to higher-order PM approximation and to generalize
the framework obtained in this work to a binary system with
spin.
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