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Abstract We investigate the redshift and blueshift of light
emitted by timelike geodesic particles in orbits around a
Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif-
ically we compute the redshift and blueshift of photons that
are emitted by geodesic massive particles and travel along
null geodesics towards a distant observer-located at a finite
distance from the KN(a)dS black hole. For this purpose
we use the killing-vector formalism and the associated first
integrals-constants of motion. We consider in detail stable
timelike equatorial circular orbits of stars and express their
corresponding redshift/blueshift in terms of the metric physi-
cal black hole parameters (angular momentum per unit mass,
mass, electric charge and the cosmological constant) and the
orbital radii of both the emitter star and the distant observer.
These radii are linked through the constants of motion along
the null geodesics followed by the photons since their emis-
sion until their detection and as a result we get closed form
analytic expressions for the orbital radius of the observer in
terms of the emitter radius, and the black hole parameters.
In addition, we compute exact analytic expressions for the
frame dragging of timelike spherical orbits in the KN(a)dS
spacetime in terms of multivariable generalised hypergeo-
metric functions of Lauricella and Appell. We apply our exact
solutions of timelike non-spherical polar KN geodesics for
the computation of frame-dragging, pericentre-shift, orbital
period for the orbits of S2 and S14 stars within the 1′′ of
SgrA*. We solve the conditions for timelike spherical orbits
in KN(a)dS and KN spacetimes. We present new, elegant
compact forms for the parameters of these orbits. Last but
not least we derive a very elegant and novel exact formula
for the periapsis advance for a test particle in a non-spherical
polar orbit in KNdS black hole spacetime in terms of Jacobi’s
elliptic function sn and Lauricella’s hypergeometric function
FD .

a e-mail: gkraniotis@uoi.gr (corresponding author)

1 Introduction

General relativity (GR) [1] has triumphed all experimental
tests so far which cover a wide range of field strengths and
physical scales that include: those in large scale cosmology
[2–4], the prediction of solar system effects like the perihe-
lion precession of Mercury with a very high precision [1,5],
the recent discovery of gravitational waves in Nature [6–10],
as well as the observation of the shadow of the M87 black
hole [11], see also [12].

The orbits of short period stars in the central arcsecond
(S-stars) of the Milky Way Galaxy provide the best current
evidence for the existence of supermassive black holes, in
particular for the galactic centre SgrA* supermassive black
hole [13–17].

One of the most fundamental exact non-vacuum solutions
of the gravitational field equations of general relativity is
the Kerr–Newman black hole [18]. The Kerr–Newman (KN)
exact solution describes the curved spacetime geometry sur-
rounding a charged, rotating black hole and it solves the cou-
pled system of differential equations for the gravitational and
electromagnetic fields [18] (see also [19]).

The KN exact solution generalised the Kerr solution [20],
which describes the curved spacetime geometry around a
rotating black hole, to include a net electric charge carried
by the black hole.

A wide variety of astronomical and cosmological obser-
vations in the last two decades, including high-redshift type
Ia supernovae, cosmic microwave background radiation and
large scale structure indicate convincingly an accelerating
expansion of the Universe [2,3,21,22]. Such observational
data can be explained by a positive cosmological constant�
(� > 0) with a magnitude� ∼ 10−56cm−2 [4]. On the other
hand, we note the significance of a negative cosmological
constant in the anti-de Sitter/conformal field theories corre-
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spondence [23–25]. Thus, solutions of the Einstein-Maxwell
equations with a cosmological constant deserve attention.

A more realistic description of the spacetime geometry
surrounding a black hole should include the cosmological
constant [5,26–34].

Taking into account the contribution from the cosmologi-
cal constant�, the generalisation of the Kerr–Newman solu-
tion is described by the Kerr–Newman de Sitter (KNdS) met-
ric element which in Boye-r-Lindquist (BL) coordinates is
given by [35–38] (in units where G = 1 and c = 1):

ds2 = �K N
r

�2ρ2 (dt − a sin2 θdφ)2 − ρ2

�K N
r

dr2 − ρ2

�θ
dθ2

− �θ sin2 θ

�2ρ2

(
adt − (r2 + a2)dφ

)2
(1)

�θ := 1 + a2�

3
cos2 θ, � := 1 + a2�

3
, (2)

�K N
r :=

(
1 − �

3
r2
)(

r2 + a2
)

− 2Mr + e2, (3)

ρ2 = r2 + a2 cos2 θ, (4)

where a,M, e, denote the Kerr parameter, mass and electric
charge of the black hole, respectively. The KN(a)dS metric is
the most general exact stationary black hole solution of the
Einstein–Maxwell system of differential equations. This is
accompanied by a non-zero electromagnetic field F = dA,
where the vector potential is [38,39]:

A = − er

�(r2 + a2 cos2 θ)
(dt − a sin2 θdφ). (5)

Properties of the Kerr–Newman spacetimes with a non-
zero cosmological constant are appropriately described by
their geodesic structure which determines the motion of test
particles and photons. The KN(a)dS dynamical system of
geodesics is a completely integrable system1 as was shown
in [26,35,36,39] and the geodesic differential equations take
the form:

∫
dr√
R′ =

∫
dθ√
�′ , (6)

ρ2 dφ

dλ
= − �2

�θ sin2 θ

(
aE sin2 θ − L

)

+ a�2

�K N
r

[
(r2 + a2)E − aL

]
, (7)

cρ2 dt

dλ
= �2(r2 + a2)[(r2 + a2)E − aL]

�K N
r

− a�2(aE sin2 θ − L)

�θ
, (8)

1 This is proven by solving the relativistic Hamilton–Jacobi equation
by the method of separation of variables.

ρ2 dr

dλ
= ±√

R′, (9)

ρ2 dθ

dλ
= ±√

�′, (10)

where

R′ := �2
[
(r2 + a2)E − aL

]2

−�K N
r (μ2r2 + Q +�2(L − aE)2), (11)

�′ :=
[
Q + (L − aE)2�2 − μ2a2 cos2 θ

]
�θ

−�2

(
aE sin2 θ − L

)2
sin2 θ

. (12)

Null geodesics are derived by settingμ = 0. The proper time
τ and the affine parameter λ are connected by the relation
τ = μλ. In the following we use geometrised units, G =
c = 1, unless it is stipulated otherwise. The first integrals of
motion E and L are related to the isometries of the KNdS
metric while Q (Carter’s constant) is the hidden integral of
motion that results from the separation of variables of the
Hamilton-Jacobi equation.

Although it is not the purpose of this paper to discuss how
a net electric charge is accumulated inside the horizon of the
black hole, we briefly mention recent attempts which address
the issue of the formation of charged black holes. Indeed, we
note at this point, that the authors in [40], have studied the
effect of electric charge in compact stars assuming that the
charge distribution is proportional to the mass density. They
found solutions with a large positive net electric charge. From
the local effect of the forces experienced on a single charged
particle, they concluded that each individual charged parti-
cle is quickly ejected from the star. This is in turn produces a
huge force imbalance, in which the gravitational force over-
whelms the repulsive Coulomb and fluid pressure forces. In
such a scenario the star collapses to form a charged black hole
before all the charge leaves the system [40]. A mechanism
for generating charge asymmetry that may be linked to the
formation of a charged black hole has been suggested in [41].
Besides these theoretical considerations for the formation of
charged black holes, recent observations of structures near
SgrA* by the GRAVITY experiment, indicate possible pres-
ence of a small electric charge of central supermassive black
hole [42,43]. Accretion disk physics around magnetised Kerr
black holes under the influence of cosmic repulsion is exten-
sively discussed in the review [44] 2. Therefore, it is quite

2 We also mention that supermassive black holes as possible sources
of ultahigh-energy cosmic rays have been suggested in [45], where it
has been shown that large values of the Lorentz γ factor of an escap-
ing ultrahigh-energy particle from the inner regions of the black hole
accretion disk may occur only in the presence of the induced charge of
the black hole.
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interesting to study the combined effect of the cosmological
constant and electromagnetic fields on the black hole astro-
physics.

Most of previous studies of the black hole backgrounds
with � > 0 were mainly concentrated on uncharged
Schwarzschild–de Sitter and Kerr–de Sitter spacetimes [5,
26,27,29,46–49]. Particle motion and shadow of rotating
spacetimes have been studied for the Kerr case in [50] for
the braneworld Kerr–Newman case with a tidal charge in
[51,52], and for the Kerr–de Sitter case in [53]. In a series of
papers we solved exactly timelike and null geodesics in Kerr
and Kerr–(anti) de Sitter black hole spacetimes [26,27,46],
and null geodesics and the gravitational lens equations in
electrically charged rotating black holes in [28]. We also
computed in [46] elegant closed form analytic solutions for
the general relativistic effects of periapsis advance, Lense–
Thirring precession, orbital and Lense–Thirring periods and
applied our solutions for calculating these GR-effects for
the observed orbits of S-stars. The shadow of the Kerr and
charged Kerr black holes were computed in [27,47] and [28]
respectively.

It is the main purpose of this work to derive new exact ana-
lytic solutions for timelike geodesic equations in the Kerr–
Newman and Kerr–Newman–de Sitter spacetimes as well as
to develop a theory of gravitational redshift/blueshift of pho-
tons emitted by geodesic particles in timelike orbits around a
Kerr–Newman–(anti) de Sitter black hole. We derive closed
form analytic solutions for both spherical orbits as well as
for non-spherical orbits. A special class of orbits around a
charged rotating black hole that we investigate in this paper
are spherical orbits i.e. orbits with constant radii that are not
necessarily confined to the equatorial plane. We solve for the
first time the conditions for spherical timelike orbits in Kerr–
Newman and Kerr–Newman–(anti) de Sitter spacetimes. As
a result of this procedure we derive elegant, compact forms
for the parameters of these orbits which are associated with
the Killing vectors of these spacetimes. For such spherical
orbits we derive closed form analytic expressions in terms of
special functions (multivariable hypergeometric functions of
Appell–Lauricella) for frame dragging precession. We per-
form an analysis of the parameter space for such spherical
orbits around a Kerr–Newman black hole and present many
examples of such orbits. We also derive the exact orbital
solution for non-spherical timelike geodesics around a Kerr–
Newman black hole, that cross the symmetry axis of the black
hole, in terms of elliptic functions. Moreover, for such orbits
we derive closed form analytic expressions for relativistic
observables that include the pericentre shift, frame-dragging
precession and the orbital period. We extend our analytic
computations by deriving a very elegant analytic solution for
the periapsis advance for a test particle in a non-spherical
polar orbit around a Kerr–Newman–de Sitter black hole.

As we mentioned a very important motivation for our
present work is to investigate frequency redshift/blueshift of
light emitted by timelike geodesic particles in orbits around
a Kerr–Newman–(anti) de Sitter black hole using the Killing
vector formalism.

Indeed, one of the targets of observational astronomers
of the galactic centre is to measure the gravitational red-
shift predicted by the theory of general relativity [54]. In the
Schwarzschild spacetime geometry the ratio of the frequen-
cies measured by two stationary clocks at the radial positions
r1 and r2 is given by [19]:

ν1

ν2
=

√
1 − 2GM/r2√
1 − 2GM/r1

, (13)

where G is the gravitational constant and M is the mass of
the black hole. Recently, the redshift/blueshift of photons
emitted by test particles in timelike circular equatorial orbits
in Kerr spacetime were investigated in [55].

The analytic computation we perform in this work for
the first time, for the redshift and blueshift of light emit-
ted by timelike geodesic particles in orbits around the Kerr–
Newman–(anti) de Sitter (KN(a)dS) black hole, extend our
previous results on relativistic observables. The theory we
develop enriches our arsenal for studying the combined effect
of the cosmological constant and electromagnetic fields on
the black hole astrophysics and can serve as a method to
infer important information about black hole observables
from photon frequency shifts. In addition, we derive new
exact analytic expressions for the pericentre-shift and frame-
dragging for non-spherical non-equatorial (polar) timelike
KNdS and KN black hole orbits. Moreover, we derive novel
exact expressions for the frame dragging effect for particles in
spherical, non-equatorial orbits in KNdS and KN black hole
geometries. These results could be of interest to the obser-
vational astronomers of the Galactic centre [13,14,16,17]
whose aim is to measure experimentally, the relativistic
effects predicted by the theory of General Relativity [28,56–
68] for the observed orbits of short-period stars-the so called
S-stars in our Galactic centre. During 2018, the close prox-
imity of the star S2 (S02) to the supermassive Galactic centre
black hole allowed the first measurements of the relativistic
redshift observable by the GRAVITY collaboration [69] and
the UCLA Galactic centre group whose astrometric measure-
ments were obtained at the W.M. Keck Observatory [70].3

The material of the paper is organised as follows: In
Sect. 2 we consider the killing vector formalism and the cor-
responding conserved quantities in Kerr–Newman–(anti) de
Sitter spacetime. In Sect. 3 we consider equatorial circular

3 Observational work is ongoing towards the detection of the periastron
shift of the star S2 and the discovery of putative closer stars-in the central
milliarcsecond of SgrA* supermassive black hole [71], which could
allow an astrometric measurement of the black hole spin as envisaged
e.g. in [46].

123



147 Page 4 of 37 Eur. Phys. J. C (2021) 81 :147

Fig. 1 Specific energy E+ for e = 0.11,�′ = 0.001 for different
values for the Kerr parameter

Fig. 2 Specific energy E+ for e = 0.11,�′ = 0.0001 for different
values for the Kerr parameter

geodesics in KN(a)dS spacetime and derive novel expres-
sions for the specific energy and specific angular momentum
for test particles moving in such orbits, see Eqs. (26) and (27).
Typical behaviour of these functions is displayed in Figs. 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20 and 21. Furthermore, we investigate the stability of such
timelike circular equatorial geodesics in Kerr–Newman–de
Sitter spacetime and derive a new condition that restricts their
radii, namely the inequality (34). In Sect. 4 we provide gen-
eral expressions for the redshift/blueshift that emitted pho-
tons by massive particles experience while travelling along
null geodesics towards an observer located far away from
their source by making use of the Killing vector formalism.
In Sect. 4.1 we derive novel exact analytic expressions for
the redshift/blueshift of photons for circular and equatorial
emitter/detector orbits around the Kerr–Newman–(anti) de
Sitter black hole-see Eqs. (69) and (70) respectively. In the
procedure we take into account the bending of light due to
the field of the Kerr–Newman–(anti)de Sitter black hole at

Fig. 3 Specific energy E+ for e = 0.11,�′ = 0.00001 for different
values for the Kerr parameter

Fig. 4 Radial profile for specific energy E+ of test particles moving
on equatorial circular orbits in KN(a)dS black hole with Kerr parameter
a = 0.52, and various values for the cosmological constant and the black
hole’s electric charge. The case of the Kerr black hole e = �′ = 0 is
displayed

the moment of detection by the observer. We derive the cor-
responding frequency shifts for circular equatorial orbits in
Kerr–de Sitter spacetime in Sect. 4.1.1. We also examine the
particular case when the detector is located far away from
the source. In Sect. 5 we study non-equatorial orbits in rotat-
ing charged black hole spacetimes. Specifically, we compute
in closed analytic form the frame-dragging for test particles
in timelike spherical orbits in the Kerr–Newman and Kerr–
Newman–de Sitter black hole spacetimes-equations (95),
Theorem 4 and (141) respectively. The former equation (KN
case) involves the ordinary Gauß hypergeometric function
and Appell’s F1 two-variable hypergeometric function, while
the latter (KNdS case) is expressed in terms of Lauricella’s
FD and Appell’s F1 generalised multivariate hypergeomet-
ric functions [72,73]. We solve the conditions for spheri-
cal orbits in Kerr Newman spacetime and derive new ele-
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Fig. 5 Radial profile for specific energy E+ of test particles moving
on equatorial circular orbits in KN(a)dS black hole with Kerr parameter
a = 0.9939, and various values for the cosmological constant and the
black hole’s electric charge. The case of the Kerr black hole e = �′ = 0
is displayed

Fig. 6 Specific energy E− for e = 0.11,�′ = 0.001 for different
values for the Kerr parameter

Fig. 7 Specific energy E− for e = 0.11,�′ = 0.0001 for different
values for the Kerr parameter

Fig. 8 Specific energy E− for e = 0.11,�′ = 0.00001 for different
values for the Kerr parameter

Fig. 9 Specific angular momentum L+ for e = 0.11,�′ = 0.001 for
different values for the Kerr parameter

Fig. 10 Specific angular momentum L+ for e = 0.11,�′ = 0.0001
for different values for the Kerr parameter
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Fig. 11 Specific angular momentum L+ for e = 0.11,�′ = 10−5 for
different values for the Kerr parameter

Fig. 12 Radial profile for specific angular momentum L+ of test par-
ticles moving on equatorial circular orbits in KN(a)dS black hole with
Kerr parameter a = 0.52, and various values for the cosmological con-
stant and the black hole’s electric charge. The case of the Kerr black
hole e = �′ = 0 is displayed

gant compact forms for the particle’s energy and angular
momentum about the φ-axis, Theorem 5, and relations (101),
(102). We investigated in some detail the ranges of r and
Carter’s constant Q for which the solutions (101), (102) are
valid. Having solved analytically the geodesic equations and
armed with Theorems 4 and 5, we present several examples
of timelike spherical orbits around a Kerr–Newman black
hole in Tables 1 and 2. In Sect. 5.1.3 we investigate an
important subset of spherical orbits: polar spherical orbits
i.e. timelike geodesics with constant coordinate radii cross-
ing the symmetry axis of the Kerr–Newman spacetime. We
perform an effective potential analysis and determine sim-
plified forms for the physical parameters of such orbits: rela-
tions (123) and (124). We solve analytically the geodesic
equations and derive closed analytic form expression for the
Lense–Thirring precession, Eq. (126). Moreover we present

Fig. 13 Radial profile for specific angular momentum L+ of test par-
ticles moving on equatorial circular orbits in KN(a)dS black hole with
Kerr parameter a = 0.9939, and various values for the cosmological
constant and the black hole’s electric charge. The case of the Kerr black
hole e = �′ = 0 is displayed

Fig. 14 Specific angular momentum L− for e = 0.11,�′ = 10−3 for
different values for the Kerr parameter

Fig. 15 Specific angular momentum L− for e = 0.11,�′ = 10−4 for
different values for the Kerr parameter
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Fig. 16 Specific angular momentum L− for e = 0.11,�′ = 10−5 for
different values for the Kerr parameter

Fig. 17 Specific energy E+ for e = 0.11,�′ = −0.001
for different values for the Kerr parameter. The radii of the
event horizons for the specific spins of the black hole (r+, a)
are:(1.59128,0.7939),(1.78524,0.6),(1.83972,0.52),(1.9516,0.26),
(1.96582,0.2)

several examples of such orbits in Table 3. Remarkably, In
Theorem 7 we have solved the conditions for timelike spheri-
cal orbits for the constants of motion E, L that are associated
with the two Killing vectors of the Kerr–Newman–(anti) de
Sitter black hole spacetime. The original elegant relations we
derive, Eqs. (144), (145), represent the most general forms for
these parameters of timelike spherical geodesics around the
fundamental Kerr–Newman(anti)de Sitter black hole: they
have as limits eqns (26), (27) and eqns (101), (102). In The-
orem 8 of Sect. 5.3.2 we derive a closed form analytic solu-
tion for frame dragging for a timelike polar spherical orbit in
Kerr–Newman de Sitter spacetime, Eq. (157). The solution is
written in terms of Lauricella’s hypergeometric function FD

and Appell’s F1. In Sects. 5.4 and 5.4.1 we derive new exact
solutions for the Lense–Thirring precession and the orbital
period for a test particle in a polar non-spherical orbit around

Fig. 18 Specific momentum L+ for e = 0.11,�′ =
−0.001 for different values for the Kerr parameter. The
radii of the event horizons for the specific spins of
the black hole (r+, a) are:(1.59128,0.7939),(1.78524,0.6),
(1.83972,0.52),(1.9516,0.26),(1.96582,0.2)

Fig. 19 Specific angular momentum L− for e = 0.6,�′ = −0.01 for
different values for the Kerr parameter

Fig. 20 Specific energy E− for e = 0.11,�′ = −0.001 for different
values for the Kerr parameter
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Fig. 21 Specific angular momentum L− for e = 0.11,�′ = −0.001
for different values for the Kerr parameter

a Kerr—Newman black hole, Eqs. (167) and (172) respec-
tively. In Sects. 5.5 and 5.6 we derive new closed form ana-
lytic expressions for the periapsis advance for test particles
in non-spherical polar orbits in KN and KNdS spacetimes
respectively. In the latter case we derive a novel, very ele-
gant, exact formula in terms of Jacobi’s elliptic function sn
and Lauricella’s hypergeometric function FD of three vari-
ables – see Eq. (202). The exact results of Sects, 5.4, 5.4.1,
5.5, are applied for the computation of the relativistic effects
for frame-dragging, pericentre shift and the orbital periods
for the observed orbits of stars S2 and S14 in the central
arcsecond of Milky way, assuming that the galactic centre
supermassive black hole is a Kerr–Newman black hole.

2 Particle orbits and killing vectors formalism in
Kerr–Newman–(anti)de Sitter spacetime

From the condition for the invariance of the metric tensor:

0 = ξα
∂gμν
∂xα

+ ∂ξα

∂xμ
gαν + ∂ξβ

∂xν
gμβ, (14)

under the infinitesimal transformation:

x ′α = xα + εξα(x), with ε → 0 (15)

it follows that whenever the metric is independent of some
coordinate a constant vector in the direction of that coordinate
is a Killing vector . Thus the generic metric:

ds2 = gttdt
2 + 2gtφdtdφ + gφφdφ2 + grrdr2 + gθθdθ2,

(16)

possesses two commuting Killing vector fields:

ξμ = (1, 0, 0, 0) timelike Killing vector, (17)

ψμ = (0, 0, 0, 1) rotational Killing vector. (18)

According to Noether’s theorem to every continuous sym-
metry of a physical system corresponds a conservation law.
In a general curved spacetime, we can formulate the conser-
vation laws for the motion of a particle on the basis of Killing
vectors. We can prove that if ξν is a Killing vector, then for a
particle moving along a geodesic, the scalar product of this
Killing vector and the momentum Pν = μ dxν

dτ of the particle
is a constant [19]:

ξνP
ν = constant (19)

Due to the existence of these Killing vector fields (17),
(18) there are two conserved quantities the total energy and
the angular momentum per unit mass at rest of the test particle
4:

E = Ẽ

μ
= gμνξ

μU ν = gttU
t + gtφU

φ, (20)

L = L̃

μ
= −gμνψ

μU ν = −gφtU
t − gφφU

φ. (21)

Thus, the photon’s emitter is a probe massive test parti-
cle which geodesically moves around a rotating electrically
charged cosmological black hole in the spacetime with a four-
velocity:

Uμ
e = (Ut ,Ur ,U θ ,Uφ)e. (22)

The conservation law (19) also applies to photon moving
in the curved spacetime. Thus, if the spacetime geometry
is time independent, the photon energy P0 is constant. In
Sect. 4.1 we will extract the redshift/blueshift of photons
from this conservation law.

3 Equatorial circular orbits in Kerr–Newman
spacetime with a cosmological constant

It is convenient to introduce a dimensionless cosmological
parameter:

�′ = 1

3
�M2, (23)

and set M = 1. For equatorial orbits Carter’s constant Q van-
ishes. For the following discussion, it is useful to introduce

4 As we mentioned already in the introduction, the charged Kerr solu-
tion possesses another hidden constant, Carter’s constant Q. Alterna-
tively, the complete integrability of the geodesic equations in KN(a)dS
spacetime can be understood as follows: The Kerr–Newman family of
spacetimes possesses in addition to the two Killing vectors a Killing
tensor field Kαβ . This tensor can be expressed in terms of null tetrads
(e.g. see eqn (7) in [74]) which implies the existence of a constant
of motion K = KμνUμU ν . This is related to Carter’s constant by:
K ≡ Q + (L − aE)2. See also [75,76].
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new constants of motion, the specific energy and specific
angular momentum:

Ê ≡ �E

μ
, (24)

L̂ ≡ �L

μ
. (25)

This is equivalent to setting μ = 1. Thus for reasons of
notational simplicity we omit the caret for the specific energy
and specific angular momentum in what follows.

Equatorial circular orbits correspond to local extrema of
the effective potential. Equivalently, these orbits are given
by the conditions R′(r) = 0, dR′/dr = 0, which have to be
solved simultaneously. Following this procedure, we obtain
the following novel equations for the specific energy and the
specific angular momentum of test particles moving along
equatorial circular orbits in KN(a)dS spacetime:

E±(r;�′, a, e)

=
e2 + r(r − 2)− r2(r2 + a2)�′ ± a

√
r4
(

1
r3 −�′

)
− e2

r

√
2e2 + r(r − 3)− a2r2�′ ± 2a

√
r4
(

1
r3 −�′

)
− e2

, (26)

L±(r;�′, a, e)

=
±(r2 + a2)

√
r4
(

1
r3 −�′

)
− e2 − 2ar − ar2�′(r2 + a2)+ ae2

r

√
2e2 + r(r − 3)− a2r2�′ ± 2a

√
r4
(

1
r3 −�′

)
− e2

(27)

The upper sign in (27)–(26) corresponds to the parallel ori-
entation of particle’s angular momentum L and black hole
spin a (corotation-prograde motion), the lower to the antipar-
allel one (counter-rotation or retrograde motion). The reality
conditions connected with Eqs. (26) and (27) are given by
the inequalities:

2e2 + r(r − 3)− a2r2�′ ± 2a

√
r4

(
1

r3 −�′
)

− e2 ≥ 0

(28)

⇔ 2e2

r2 + r − 3

r
− a2�′ ± 2a

√
1

r3 −�′ − e2

r4 ≥ 0, (29)

and5

5 We note that for zero electric charge and � > 0, inequality (30)
defines the concept of static radius rs at which, the gravitational attrac-
tion caused by the central mass is just compensated by the cosmic
repulsion due to cosmological constant. It has been shown that the
static radius gives an upper limit on an extension of disk-like structures
around black holes, coinciding with dimensions of large galaxies with
central supermassive black holes [77,78]. The static radius is relevant

1 −�′r3 ≥ e2/r. (30)

For zero electric charge e = 0 equations (26), (27) reduce
correctly to those in Kerr-anti de Sitter (KadS) spacetimes
[48]. For zero electric charge and zero cosmological constant
(� = e = 0) equations (26), (27) reduce correctly to the
corresponding ones in Kerr spacetime [84]. Relations (26),
(27) have also been discovered independently in [85].

In the Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20 and 21, for concrete values of the elec-
tric charge and the cosmological parameter we present the
radial dependence of the specific energy and specific angu-
lar momentum for various values of the black hole’s spin.
For the cosmological parameter �′ we choose the values
�′ = 10−5, 10−4, 10−3 as well as their negative counter-
parts. For stellar mass black holes, and positive cosmological
constant this corresponds to� ∼ 10−15cm−2 −10−13cm−2.
For supermassive black holes such as at the centre of Galaxy
M87 with mass MM87

BH = 6.7 × 109 solar masses [11] the
value of �′ = 10−5 corresponds to the value for the cos-
mological constant: � = 3.06 × 10−35cm−2. The physical
relevance of the graphs in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 lies in the fol-
lowing fact: the local extrema of the radial profiles of the
specific energy and specific angular momentum of particles
on equatorial circular orbits given by the relations (26) and
(27) correspond to the marginally stable orbits that we shall
discuss later. The apparent singularity that appears in some
graphs for negative cosmological constant e.g. in Figs. 17,
18 is due to fact that the quantity inside the larger root in the
denominator of the radial profiles in relations (26), (27), and
for a range of radii values, becomes negative and therefore
the constants of motion become complex numbers. In Figs. 5,
4, 12, 13 we plot the radial profiles for the direct constants
of motion for the KN(a)dS black hole together with the pro-
files that correspond to the Kerr case (e = � = 0) in order
appreciate the electric charge and cosmological constant con-
tributions.

Horizons of the KN(a)dS geometries are given by the con-
dition �K N

r = 0, which determines pseudosingularities of
the spacetime interval (1). This condition yields the relations:

�′ = �′
h(r, a, e) ≡ r2 + a2 + e2 − 2r

r2(r2 + a2)
. (31)

Figures 22, 23 exhibit typical behaviour of these functions
for positive and negative cosmological constant respectively.
For the KNdS black hole spacetime there are three hori-

Footnote 5 continued
also for the polytropic structures that could model dark matter halos,
because it represents the upper limit on their extension, as shown in
[79]. Moreover, it is relevant also for motion around galaxies, as dis-
cussed e.g. in [80–82]. On the other hand, see [83] for arguments about
the more likely detection of � in a galaxy which is in the Hubble flow.
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Fig. 22 Horizons of the Kerr–Newman–de Sitter spacetimes defined
by the function �′

h(r; a, e) illustrated for different values of the rota-
tional (Kerr) parameter a and the electric charge of the black hole

zons (event, apparent or Cauchy, cosmological) while for the
KNadS spacetime there are two horizons (event, apparent).

3.1 Stability of circular equatorial orbits in
Kerr–Newman–de Sitter spacetime

The loci of the stable equatorial circular orbits are determined
by the inequality condition:

d2R′

dr2 ≥ 0, (32)

which has to be satisfied simultaneously with the conditions
R′(r) = 0 and dR′/dr = 0 determining the specific energy
and specific angular momentum of the constant radius orbits.
Using relations (26)–(27) we find that:

d2R′

dr2 ≥ 0 ⇔
{[

∓8ar6
(

1

r3 −�′ − e2

r4

)3/2

Fig. 23 Horizons of the Kerr–Newman–anti de Sitter spacetimes
defined by the function �′

h(r; a, e) illustrated for different values of
the rotational (Kerr) parameter a and the electric charge of the black
hole

+ r2(6 − r + r3(−15 + 4r)�′)+ 4e4 + 3e2r(−3 + 4r3�′)

+ a2(−4e2 + r [3 + r2�′(1 − 4r3�′)])
]

× 2

(
2e2 + r

(
− 3 + r ± 2ar

√
1

r3 −�′ − e2

r4 − a2r�′
))}/

×
[

2e2 + r

(
−3 + r ± 2ar

√
1

r3 −�′ − e2

r4 − a2r�′
)]2

≥ 0.

(33)

Due to reality conditions (28) we find that the radii of
the stable orbits in Kerr–Newman—de Sitter spacetime are
restricted by the inequality:

∓ 8ar6
(

1

r3 −�′ − e2

r4

)3/2

+ r2(6 − r + r3(−15 + 4r)�′)+ 4e4 + 3e2r(−3 + 4r3�′)
+ a2(−4e2 + r [3 + r2�′(1 − 4r3�′)]) ≥ 0. (34)

The marginally stable orbits can be obtained by solving
the quadratic equation (embedded in (34)) for the rotational
parameter a procedure that yields the relation:

a2 = a2
ms(1,2) ≡

{
128r(1 − r3�′ − e2/r)3r2 − 4[−4e2 + r(3 + r2�′(1 − 4r3�′))]{r2(6 − r + r3(−15 + 4r)�′)

+ 4e4 + 3e2r(−3 + 4r3�′)} ± 32[r(1 − r3�′ − e2/r)3]1/2r
√
r3 ×

√
(1 − 4�′r3)

×
√

−2 + 3r − r2�′(6 + 10r − 15�′r3)− 4e4�′ + 3e2

r
(1 + 4r3�′)− 4e2 + 9�′e2r − 12r4�′e2

⎫⎬
⎭

× 4−1
[
−4e2 + r(3 + r2�′(1 − 4r3�′))

]−2
. (35)
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From (35) we deduce the following reality conditions :

�′ ≤ �′
ms(r) ≡ 1

4r3 , (36)

and

− 2 + 3r − r2�′(6 + 10r − 15�′r3)− 4e4�′

+ 3e2

r
(1 + 4r3�′)− 4e2 + 9�′e2r − 12r4�′e2 ≥ 0

(37)

⇔ �′215r5 +�′
[
−r2(6 + 10r)− 4e4 + 12e2r2 + 9e2r − 12r4e2

]

− 2 + 3r + 3e2

r
− 4e2 ≥ 0. (38)

From (38) and the fact that 15r5 > 0 we derive two more
conditions:

�′ ≤ �′
ms− or �′ ≥ �′

ms+, (39)

where�′
ms± are the two roots of the quadratic equation (38).

A detailed discussion of stability of the geodesic circular
equatorial motion in the KNdS spacetimes is presented in
[85].

3.1.1 Stability of equatorial circular geodesics in Kerr-de
Sitter spacetime

Our results in inequality (34), for zero electric charge, e = 0,
give a condition6 that agrees with the results in [49] and
restricts the radii of the stable orbits in Kerr–de Sitter space-
time:

±8ar2

√
1

r3 −�′ (−1 + r3�′)

+r(6 − r + r3(−15 + 4r)�′)
+a2(3 + r2�′(1 − 4r3�′)) ≥ 0. (40)

4 Gravitational redshift-blueshift of emitted photons

In this section we will provide general expressions for the
redshift/blueshift that emitted photons by massive particles
experience while travelling along null geodesics towards an
observed located far away from their source.

In general, the frequency of a photon measured by an
observer with proper velocity Uμ

A at the spacetime point PA

reads [19,55]:

ωA = kμU
μ
A |PA , (41)

6 We observe that for e = � = 0, (34) reduces correctly to the equation
that determines the radii of marginally stable orbits in Kerr spacetime:
r2 − 6Mr − 3a2 ∓ 8a

√
Mr = 0 for M = 1, [84].

where the index A refers to the emission (e) and/or detection
(d) at the corresponding point PA.

The emission frequency is defined as follows:

ωe = kμU
μ

= ktU
t + krU

r + kθU
θ + kφU

φ

= (kt E − kφL + grr k
rUr + gθθk

θU θ )|e. (42)

Likewise the detected frequency is given by the expression:

ωd = +kμU
μ

= (Ekt − Lkφ + grr k
rUr + gθθk

θU θ )|d . (43)

In producing (42), (43) we used the expressions for Ut and
Uφ in terms of the metric components and the conserved
quantities E, L:

Ut = −Egφφ − Lgtφ
g2
tφ − gtt gφφ

, (44)

Uφ = gtt L + gφt E

g2
tφ − gtt gφφ

. (45)

Thus, the frequency shift associated to the emission and
detection of photons is given by either of the following rela-
tions:

1 + z = ωe

ωd

= (kt E − kφL + grr krUr + gθθkθU θ )|e
(Ekt − Lkφ + grr krUr + gθθkθU θ )|d

= (EγUt − LγUφ + grr K rUr + gθθK θU θ )|e
(EγUt − LγUφ + grr K rUr + gθθK θU θ )|d

(46)

This is the most general expression for the redshift/blueshift
that light signals emitted by massive test particles experience
in their path along null geodesics towards a distant observer
(ideally located near the cosmological horizon in particular
or at spatial infinity assuming a zero cosmological constant).

4.1 The redshift/blueshift of photons for circular and
equatorial emitter/detector orbits around the
Kerr–Newman–(anti) de Sitter black hole

For equatorial circular orbits Ur = U θ = 0 thus

1 + z = (EγUt − LγUφ)|e
(EγUt − LγUφ)|d = Ut −�Uφ |e

U t −�Uφ |d
= Ut

e −�eU
φ
e

U t
d −�dU

φ
d

= Ut
e −�Uφ

e

U t
d −�Uφ

d

, (47)
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where � = Lγ /Eγ .7 For � = 0, 1 + zc = Ut
e

Ut
d

. Following

the procedure for the Kerr black hole in [55], we consider the
kinematic redshift of photons either side of the line of sight
that links the Kerr–Newman–de Sitter black hole and the
observer, and subtract from Eq. (47) the central value zc. We
note that zc corresponds to a gravitational frequency shift of
a photon emitted by a static particle located in a radius equal
to the circular orbit radius and on the signal line going from
the centre of coordinates to the far detector [55,86]. Then we
obtain:

zkin ≡ z − zc = Ut
e −�eU

φ
e

U t
d −�dU

φ
d

− Ut
e

Ut
d

= �Uφ
d U

t
e −�Uφ

e U t
d

U t
dU

t
d −�Uφ

d U
t
d

. (48)

We further comment on the different gravitational frequency
shifts of photons included in (47) and (48). In Eq. (47), the
redshift/blueshift is indeed gravitational, but it includes an
equivalent Doppler effect (redshift/blueshift) as the emitter
moves towards/away from the observer along the timelike
circular orbit and, additionally, two gravitational effects: a
gravitational redshift for the photon emitted by a static par-
ticle and a redshift/blueshift due to the rotation of the space
time (as is the case for the Kerr–Newman–de Sitter black
hole spacetime).

Let us now consider photons with 4-momentum vector
kμ = (kt , kr , kθ , kφ) which move along null geodesics
kμkμ = 0 outside the event horizon of the Kerr–Newman–de
Sitter black hole, which explicitly can be expressed as

0 = gtt (k
t )2 + 2gtφ(k

t kφ)+ gφφ(k
φ)2 + grr (k

r )2 + gθθ (k
θ )2. (49)

kt = �2�θ(r2 + a2)[(r2 + a2)Eγ − aLγ ] − a�2�K N
r (aEγ sin2 θ − Lγ )

�K N
r �θρ2

= Eγ [�2�θ(r2 + a2)2 − a2 sin2 θ�2�K N
r ] + Lγ [−a�2�θ(r2 + a2)+ a�2�K N

r ]
�K N

r �θρ2 , (50)

kφ = −�2�K N
r (aEγ sin2 θ − Lγ )+ a�2�θ sin2 θ [(r2 + a2)Eγ − aLγ ]

�K N
r �θρ2 sin2 θ

= [−�2�K N
r a sin2 θ + a�2�θ sin2 θ(r2 + a2)]Eγ + Lγ [�2�K N

r − a2�2�θ sin2 θ ]
�K N

r �θρ2 sin2 θ
, (51)

7 Since the constants of motion Eγ and Lγ are preserved along the
null geodesics followed by the photons from emission till detection, we
have �e = �d = �, i.e. this quantity is also constant along the whole
photons trajectory.

(kθ )2 =
Qγ �θ + (Lγ − aEγ )�2�θ − �2(aEγ sin2 θ−Lγ )2

sin2 θ

ρ4 , (52)

(kr )2 = �2[(r2 + a2)Eγ − aLγ ]2 −�K N
r (Qγ +�2(Lγ − aEγ )2)

ρ4 .

(53)

We must take into account the bending of light from the rotat-
ing and charged Kerr–Newman–(anti) de Sitter black hole.
In other words we need to find the apparent impact param-
eter � for every orbit, i.e. to find the map, � = �(r) as a
function of the radius r of the circular orbit associated with
the emitter. The criteria employed in [55] to construct this
mapping is to choose the maximum value of z at a fixed dis-
tance from the observed centre of the source at a fixed� and
that the apparent impact parameter must also be maximised.
The apparent impact factor �γ ≡ Lγ /Eγ can be obtained
from the expression kμkμ = 0 8 as follows:

kμkμ = 0 ⇔ kt kt + kφkφ = 0

⇔
[
Eγ gφφ + gtφLγ
g2
tφ − gφφgtt

]
(−Eγ )

+
[

−Lγ gtt − Eγ gφt
g2
tφ − gφφgtt

]
Lγ = 0

⇔ gφφ + 2gtφ�γ +�2
γ gtt = 0 (54)

Solving the quadratic equation we obtain:

8 Taking into account that kr = 0 and kθ = 0.
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�±
γ =

−gφt ±
√
g2
tφ − gφφgtt

gtt

= a(�K N
r − (r2 + a2))± r2

√
�K N

r

�K N
r − a2 , (55)

where we got two values, �+
γ and �−

γ (either evaluated at
the emitter or detector position, since this quantity is pre-
served along the null geodesic photon orbits, i.e., �e = �d )
that give rise to two different shifts respectively, z1 and z2

of the emitted photons corresponding to a receding and to
an approaching object with respect to a far away positioned
observer:

z1 = �−
d U

φ
d U

t
e −�−

e U
φ
e U t

d

U t
d(U

t
d −�−

d U
φ
d )

= �−
e U

φ
d U

t
e −�−

e U
φ
e U t

d

U t
d(U

t
d −�−

e U
φ
d )

,

(56)

z2 = �+
d U

φ
d U

t
e −�+

e U
φ
e U t

d

U t
d(U

t
d −�+

d U
φ
d )

= �+
e U

φ
d U

t
e −�+

e U
φ
e U t

d

U t
d(U

t
d −�+

e U
φ
d )

.

(57)

In general the two values z1 and z2 differ from each other due
to light bending experienced by the emitted photons and the
differential rotation experienced by the detector as encoded
in Uφ

d and Ut
d components of the four-velocity9.

In order to get a closed analytic expression for the grav-
itational redshift/blueshift experienced by the emitted pho-
tons we shall express the required quantities in terms of the
Kerr–Newman–(anti) de Sitter metric. Thus, the Uφ and Ut

components of the four-velocity for circular equatorial orbits
read:

Ut (r, π/2)

= −(�KN
r a2 − (r2 + a2)2)E − L(−a(�KN

r − (r2 + a2)))

�2r2�KN
r

�4

,

(58)

Uφ(r, θ = π/2)

= �2(�K N
r − a2)L + E�2(−a(�K N

r − (r2 + a2)))

r2�K N
r

.

(59)

9 The second term in the denominator in Eqs. (56)–(57) encodes the
contribution of the movement of the detector’s frame [55]. If this quan-
tity is negligible in comparison to the contribution steming from the Ut

d

component (Uφ
d � Ut

d ) then the detector can be considered static at spa-
tial infinity for the case of Kerr black hole. There are no static observers
in infinity of the Kerr–de Sitter (KdS) spacetimes [53]. Indeed, in the
KdS black hole spacetimes the free static observers are expected near the
static radius representing the outermost region of gravitationally bound
systems in Universe with accelerated cosmic expansion-see discussion
in [53].

Substituting the expressions (26)–(27) for E± and L± into
Ut (r, π/2),Uφ(r, π/2) we finally obtain remarkable novel
expressions for these four-velocity components in Kerr–
Newman–(anti) de Sitter spacetime:

Ut (r, π/2)

=
(r2 ± a

√
−e2 + r4

(
1
r3 −�′

)
) �2

r

√
2e2 + r(r − 3)− r2a2�′ ± 2a

√
−e2 + r4

(
1
r3 −�′

) , (60)

Uφ(r, π/2)

=
±
√

−e2 + r4
(

1
r3 −�′

)
�2

r

√
2e2 + r(r − 3)− r2a2�′ ± 2a

√
−e2 + r4

(
1
r3 −�′

) . (61)

We now compute the angular velocity �:

� ≡ dφ

dt
= 1

a ± r3/2√
1−�′r3− e2

r

. (62)

In terms of the angular velocities the quantities z1, z2 read
as follows:

z1 = �−
d �dU t

e −�−
e U

φ
e

U t
d −�−

d U
φ
d

= Ut
e [�−

d �d −�−
e �e]

Ut
d(1 −�−

d �d)

= Ut
e�

−
e [�d −�e]

Ut
d(1 −�−

e �d)
, (63)

z2 = �+
d �dU t

e −�+
e U

φ
e

U t
d −�+

d U
φ
d

= �+
d �dU t

e −�+
e U

φ
e

U t
d(1 −�+

d �d)

= Ut
e [�+

d �d −�+
e �e]

Ut
d(1 −�+

d �d)
= Ut

e�
+
e [�d −�e]

Ut
d(1 −�+

e �d)
. (64)

Thus for the Kerr–Newman–(anti) de Sitter black hole we
can write for the redshift and blueshift, respectively:

zred = �d�
−
d −�−

e �e

1 −�−
d �d

[r3/2
e ± a

√
Ge]

r3/4
e

√
2e2

r1/2
e

+ r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a
√
Ge

×
r3/4
d

√
2e2

r1/2
d

+ r3/2
d − 3

√
rd − r3/2

d a2�′ ± 2a
√
Gd

r3/2
d ± a

√
Gd

, (65)

zblue = �d�
+
d −�+

e �e

1 −�+
d �d

[r3/2
e ± a

√
Ge]

r3/4
e

√
2e2

r1/2
e

+ r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a
√
Ge

×
r3/4
d

√
2e2

r1/2
d

+ r3/2
d − 3

√
rd − r3/2

d a2�′ ± 2a
√
Gd

r3/2
d ± a

√
Gd

, (66)
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where now re and rd stand for the radius of the emitter’s and
detector’s orbits, respectively. We also define

Gd ≡ −e2/rd + r3
d

(
1

r3
d

−�′
)
, (67)

Ge ≡ −e2/re + r3
e

(
1

r3
e

−�′
)

(68)

These elegant and novel expressions can be written in
terms of the physical parameters of the Kerr–Newman–(anti)
de Sitter black hole and the detector radius, rd , as follows:

zred =
r3/4
d

√
2e2

r1/2
d

+ r3/2
d − 3

√
rd − r3/2

d a2�′ ± 2a
√
Gd

r3/4
e

√
2e2

r1/2
e

+ r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a
√
Ge

(
a(−�′r2

e (r
2
e + a2)− 2re + e2)− r2

e

√
�K N

r (re)
)
(±[r3/2

e
√
Gd − r3/2

d

√
Ge])

(r3/2
d ± a

√
Gd )[(�K N

r (re)− a2)r3/2
d + (ar2

e + r2
e

√
�K N

r (re))(±√
Gd )]

, (69)

zblue =
r3/4
d

√
2e2

r1/2
d

+ r3/2
d − 3

√
rd − r3/2

d a2�′ ± 2a
√
Gd

r3/4
e

√
2e2

r1/2
e

+ r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a
√
Ge

(
a(−�′r2

e (r
2
e + a2)− 2re + e2)+ r2

e

√
�K N

r (re)
)
(±[r3/2

e
√
Gd − r3/2

d

√
Ge])

(r3/2
d ± a

√
Gd )[(�K N

r (re)− a2)r3/2
d + (ar2

e − r2
e

√
�K N

r (re))(±√
Gd )]

, (70)

where we define:

�K N
r (re) := (1 −�′r2

e )(r
2
e + a2)− 2re + e2 (71)

and we have made use of the relation�e = �d . The remark-
able closed form analytic expressions for the frequency shifts
we obtained in Eqs. (69)–(70), constitute a new result in the
theory of General Relativity, in which all the physical param-
eters of the exact theory enter on an equal footing.

In the particular case when the detector is located far away
from the source and the detector radius rd is much larger than
the black hole parameters ( its mass,spin and electric charge),
the frequency shifts (69)–(70) become:

zred =
√

1 − a2�′ [a(�′r2
e (r

2
e + a2)+ 2re − e2)+ r2

e
√
�r (re)

] (±
√

1 −�′r3
e − e2

re

)

r3/4
e

√
2e2

r1/2
e

+ r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a

√
− e2

re
+ r3

e

(
1
r3
e

−�′
)
[�r (re)− a2]

, (72)

zblue =
√

1 − a2�′ [a(�′r2
e (r

2
e + a2)+ 2re − e2)− r2

e
√
�r (re)

] (±
√

1 −�′r3
e − e2

re

)

r3/4
e

√
2e2

r1/2
e

+ r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a

√
− e2

re
+ r3

e

(
1
r3
e

−�′
)
[�r (re)− a2]

. (73)
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4.1.1 Redshift/blueshift for circular equatorial orbits in
Kerr–de Sitter spacetime

For zero electric charge, e = 0, Eqs. (69)–(70) reduce to:

zred =
r3/4
d

√√√√r3/2
d − 3

√
rd − r3/2

d a2�′ ± 2a

√
r3
d

(
1
r3
d

−�′
)

r3/4
e

√
r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a

√
r3
e

(
1
r3
e

−�′
)

[a(−�′r2
e (r

2
e + a2)− 2re)− r2

e
√
�r (re)](±[r3/2

e

√
1 −�′r3

d − r3/2
d

√
1 −�′r3

e ])
(r3/2

d ± a
√

1 −�′r3
d )[(�r (re)− a2)r3/2

d + (ar2
e + r2

e
√
�r (re))(±

√
1 −�′r3

d )]
, (74)

zblue =
r3/4
d

√√√√r3/2
d − 3

√
rd − r3/2

d a2�′ ± 2a

√
r3
d

(
1
r3
d

−�′
)

r3/4
e

√
r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a

√
r3
e

(
1
r3
e

−�′
)

[a(−�′r2
e (r

2
e + a2)− 2re)+ r2

e
√
�r (re)](±[r3/2

e

√
1 −�′r3

d − r3/2
d

√
1 −�′r3

e ])
(r3/2

d ± a
√

1 −�′r3
d )[(�r (re)− a2)r3/2

d + (ar2
e − r2

e
√
�r (re))(±

√
1 −�′r3

d )]
. (75)

In Eqs. (74), (75) we define:

�r (re) := (1 −�′r2
e )(r

2
e + a2)− 2re. (76)

In the particular case when the detector is located far away
from the source and the detector radius rd is much larger than
the black hole parameters , the frequency shifts (69)–(70)
become:

zred =
√

1 − a2�′ [a(�′r2
e (r

2
e + a2)+ 2re)+ r2

e
√
�r (re)

] (±√1 −�′r3
e

)

r3/4
e

√
r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a

√
r3
e

(
1
r3
e

−�′
)
[�r (re)− a2]

,

(77)

zblue =
√

1 − a2�′ [a(�′r2
e (r

2
e + a2)+ 2re)− r2

e
√
�r (re)

] (±√1 −�′r3
e

)

r3/4
e

√
r3/2
e − 3

√
re − r3/2

e a2�′ ± 2a

√
r3
e

(
1
r3
e

−�′
)
[�r (re)− a2]

.

(78)

Fig. 24 The functions zred, zblue as functions of radius re. The spin of
the Kerr–Newman–de Sitter black hole was chosen as a = 0.52 and the
dimensionless cosmological parameter as �′ = 10−33

The frequency shifts (77)–(78) are plotted in Figs. 24 and
25 for different values of the spin of the central black hole and
for positive cosmological constant for the corotating case. As
the radius increases, zred → −zblue.

5 More general orbits for rotating charged black holes

5.1 Spherical orbits in Kerr–Newman spacetime

Depending on whether or not the coordinate radius r is con-
stant along a given timelike geodesic, the corresponding
particle orbit is characterised as spherical or nonspherical,
respectively. In this subsection we will focus on spherical
non-equatorial orbits.

5.1.1 Frame-dragging for timelike spherical orbits

Assuming � = 0 we derive from (7) and (10) the following
equation:

dφ

dθ
= −

aP
�K N − aE + L/ sin2 θ√

Q − L2 cos2 θ

sin2 θ
+ a2 cos2 θ(E2 − 1)

. (79)

In (79) �K N := r2 + a2 + e2 − 2Mr .10 Also P = E(r2 +
a2) − La. Using the variable z = cos2 θ , − 1

2
dz√
z

1√
1−z

=
sgn(π/2−θ)dθ we will determine for the first time in closed
analytic form the amount of frame-dragging for timelike
spherical orbits in the Kerr–Newman spacetime.11

10 When we set M = 1, �K N = r2 + a2 + e2 − 2r .
11 We should mention at this point the extreme black hole solutions
for spherical timelike non-polar geodesics in Kerr–Newman spacetime
obtained in [87] in terms of formal integrals. Latitudinal motion in the
Kerr and KN spacetimes has been studied in [88] and complemented in
[89].
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Fig. 25 The functions zred, zblue as functions of radius re. The spin of
the Kerr–Newman–de Sitter black hole was chosen as a = 0.9939 and
the dimensionless cosmological parameter as �′ = 10−33

Thus for instance, expressed in terms of the new variable:

L

sin2 θ

dθ√
�

= L

1 − z

(
−1

2

)
dz√
z

1√
αz2 − (α + β)z + Q

= L

1 − z

(
−1

2

)
dz√
z

× 1

|a|√1 − E2

1√
(z − z+)(z − z−)

, (80)

where α = a2(1 − E2), β = L2 + Q. The range of z for
which the motion takes place includes the equatorial value,
z = 0:

0 ≤ z ≤ z−. (81)

The integral of (79) will be split into two parts: Propositions 1
and 3. We prove first the exact result of Proposition 1:

Proposition 1

∫ z−

0

L

1 − z

(
−1

2

)
dz√
z

1

|a|√1 − E2

1√
(z − z+)(z − z−)

= − L

|a|√1 − E2

π

2
(1 − z−)−1(z+ − z−)−1/2

× F1

(
1

2
, 1,

1

2
, 1,

z−
z− − 1

,
z−

z− − z+

)

= − L

|a|√1 − E2

π

2
z−1/2
+ F1

(
1

2
,

1

2
, 1, 1,

z−
z+
, z−
)
, (82)

where F1(α, β, β
′, γ, x, y) denotes the first Appell’s hyper-

geometric function of two variables (x and y), which admits
the integral representation:

∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β(1 − uy)−β ′

du

= �(α)�(γ − α)

�(γ )
F1(α, β, β

′, γ, x, y). (83)

Also �(a) denotes Euler’s gamma function.

Proof We compute first the integral:

∫ z−

z j

L

1 − z

(
−1

2

)
dz√
z

1

|a|√1 − E2

1√
(z − z+)(z − z−)

.

(84)

Applying the transformation z = z− + ξ2(z j − z−) in (84)
we obtain

∫ z−

z j

L

1 − z

(
−1

2

)
dz√
z

1

|a|√1 − E2

1√
(z − z+)(z − z−)

= −L

2|a|√1 − E2

z− − z j
(1 − z−)

1√
z−

√
z− − z+

√
z j − z−

×
∫ 1

0

dx

[1 − x
(
z j−z−
1−z−

)
]

1√
1 − x

z−−z j
z−−z+

1√
x

1√
1 − x

z−−z j
z−

= −L

2|a|√1 − E2

z− − z j
(1 − z−)

1√
z−

√
z− − z+

√
z j − z−

× �
( 1

2

)
�(1)

�
( 3

2

)

× FD

(
1

2
, 1,

1

2
,

1

2
,

3

2
,
z j − z−
1 − z−

,
z− − z j

z−
,
z− − z j
z− − z+

)
, (85)

where x ≡ ξ2. In Eq. (85) FD denotes Lauricella’s fourth
multivariable hypergeometric function (here is a function of
three variables). The general multivariable Lauricella’s func-
tion FD is defined as follows:

FD(α,β, γ, z) =
∞∑

n1,n2,...,nm=0

(α)n1+···nm (β1)n1 · · · (βm )nm
(γ )n1+···+nm (1)n1 · · · (1)nm

zn1
1 · · · znmm (86)

where

z = (z1, . . . , zm),

β = (β1, . . . , βm). (87)

The Pochhammer symbol (α)m = (α,m) is defined by

(α)m = �(α + m)

�(α)

=
{

1, if m = 0
α(α + 1) · · · (α + m − 1) if m = 1, 2, 3

(88)

The series (86) admits the following integral representation:

FD(α,β, γ, z)= �(γ )

�(α)�(γ − α)

∫ 1

0
tα−1(1−t)γ−α−1(1−

z1t)
−β1 · · · (1 − zmt)

−βmdt

(89)
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Table 1 Properties including frame-dragging (Lense–Thirring precession) of spherical timelike Kerr–Newman (prograde) orbits, applying the
exact analytic formula (95) and the first branch of solutions for the constants of motion in Eqs. (101), (102)

Orbit r/M Q/M2 E L/M e/M a/M �φGT R

(a) 7 2 0.9329746347090826 2.6203403438437856 0 0.999999 6.85204

(b) 7 2 0.9329917521582036 2.6193683198162256 0.11 0.9939 6.84936

(c) 7 2 0.9330249803496844 2.6231975525737035 0 0.9939 6.84944

(d) 7 2 0.9347100491303167 2.71403958181262 0.11 0.8 6.76005

(e) 7 2 0.9346178572238036 2.7048064351873267 0.2 0.8 6.75993

(f) 4 8 0.9187670265667813 0.9264577651658418 0 0.9939 7.77146

(g) 4 8 0.9185597216627694 0.9130252832603007 0.11 0.9939 7.77188

(h) 4 8 0.9263820446220102 1.1924993953748733 0 0.8 7.49676

(i) 4 8 0.9253520786762164 1.1444194140656208 0.2 0.8 7.49741

Table 2 Properties including frame-dragging (Lense–Thirring precession) of spherical timelike Kerr–Newman (retrograde) orbits, applying the
exact analytic formula (95) and the second branch of solutions for the constants of motion in Eqs. (101), (102)

Orbit r/M Q/M2 E L/M e/M a/M �φGT R

(a) 7 12 0.9500313121192591 −1.3504453996037784 0 0.999999 −5.58661

(b) 7 12 0.9499790519730756 −1.3443270259214553 0 0.9939 −5.59099

(c) 7 12 0.9497202606484783 −1.313994954227598 0.11 0.9939 −5.59138

(d) 7 12 0.9482593233936484 −1.1250483727157161 0.11 0.8 −5.72968

(e) 7 12 0.9477180186254757 −1.046386864788553 0.2 0.8 −5.73048

(f) 10 1 0.9626040652152477 −4.1133141793233525 0 0.9939 −5.8465

(g) 10 1 0.9625680840381455 −4.109699623451054 0.11 0.9939 −5.84647

(h) 10 1 0.9611085421961251 −4.008398488785058 0.11 0.8 −5.93674

(i) 10 1 0.961033868172724 −4.000352717478337 0.2 0.8 −5.93669

which is valid for Re(α) > 0, Re(γ − α) > 0. . It con-
verges absolutely inside the m-dimensional cuboid:

|z j | < 1, ( j = 1, . . . ,m). (90)

For m = 2 FD in the notation of Appell becomes the two
variable hypergeometric function F1(α, β, β

′, γ, x, y) with
integral representation given by Eq. (83). Setting z j = 0 in
(85) yields:

∫ z−

0

L

1 − z

(
−1

2

)
dz√
z

1

|a|√1 − E2

1√
(z − z+)(z − z−)

= −L

2|a|√1 − E2
(1 − z−)−1(z+ − z−)−1/2

× �
( 1

2

)
�(1)

�
( 3

2

) FD

(
1

2
, 1,

1

2
,

1

2
,

3

2
,

−z−
1 − z−

, 1,
z−

z− − z+

)

= −L

2|a|√1 − E2
(1 − z−)−1(z+ − z−)−1/2

× �(1/2)2�
( 3

2

)

�
( 3

2

) F1

(
1

2
, 1,

1

2
, 1,

−z−
1 − z−

,
z−

z− − z+

)

= −L

2|a|√1 − E2
z−1/2
+ πF1

(
1

2
,

1

2
, 1, 1,

z−
z+
, z−
)
. (91)


�

For producing the result in the last line of Eq. (91), we used
the following transformation property of Appell’s hypergeo-
metric function F1:

Lemma 2

y1+β−γ (1 − y)γ−α−1(x − y)−β

× F1

(
1 − β ′, β, 1 + α − γ, 2 + β − γ,

y

y − x
,

y

y − 1

)

= y1+β−γ x−β

× F1

(
1 + β + β ′ − γ, β, 1 + α − γ, 2 + β − γ,

y

x
, y
)
.

(92)

On the other hand we compute analytically the second
integral that contributes to frame-dragging and we obtain:

Proposition 3

∫ z−

0

aP
�K N − aE√

�′ dθ

=
(

aP

�K N
− aE

)
1

|a|√1 − E2

(−1

2

)
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× �
( 1

2

)
�
( 1

2

)
√
z+ − z−

F

(
1

2
,

1

2
, 1,− z−

z+ − z−

)

=
(

aP

�K N
− aE

)
1

|a|√1 − E2

(
−π

2

) 1√
z+

× F

(
1

2
,

1

2
, 1,

z−
z+

)
. (93)

In Eq. (93) F(a, b, c, z) with a, b, c ∈ R and c /∈ Z≤0

denotes the Gauß’ hypergeometric function which is defined
by:

F(a, b, c, z) =
∞∑
n=0

(a)n(b)n
(c)nn! zn . (94)

We thus obtain the following fundamental result, in closed
analytic form, for the amount of frame-dragging that a time-
like spherical orbit in Kerr–Newman spacetime undergoes.

Theorem 4 As θ goes through a quarter of a complete oscil-
lation we obtain the change in azimuth φ, �φGTR:

�φGTR = L

|a|√1 − E2

π

2
z−1/2
+ F1

(
1

2
,

1

2
, 1, 1,

z−
z+
, z−
)

+
(

aP

�K N
− aE

)
1

|a|√1 − E2

(π
2

) 1√
z+

× F

(
1

2
,

1

2
, 1,

z−
z+

)
. (95)

Proof Using Propositions 1 and 3, we prove Eq. (95) and
Theorem 4. 
�

In Eq. (95) the quantities z± are given by:

z∓ = a2(1 − E2)+ L2 + Q ∓√(a2(E2 − 1)− L2 − Q)2 − 4a2(1 − E2)Q

2a2(1 − E2)
. (96)

5.1.2 Conditions for spherical Kerr–Newman orbits

In order for a non-equatorial spherical (NES) orbit in Kerr–
Newman spacetime to exist at radius r , the conditions R(r) =
dR
dr = 0 must hold at this radius. As in Sect. 3 where we
investigated equatorial circular geodesics, we solve these
two equations simultaneously, and the solutions now take
an elegant compact form when parametrised in terms of r
and Carter’s constant Q. There are four classes of solutions
(Ei , Li ) which we label by i = α, β, γ, δ. We obtain the
following novel relations for the first two:

Eα,β(r, Q; a, e,M)

= e2r2 + r3(r − 2M)− a(aQ ∓ √
ϒ)

r2
√

2e2r2 + r3(r − 3M)− 2a(aQ ∓ √
ϒ)

(97)

Lα,β(r, Q; a, e,M)

= −
(r2 + a2)

(
∓√

ϒ + aQ
)

+ 2aMr3 − ae2r2

r2
√

2e2r2 + r3(r − 3M)− 2a(aQ ∓ √
ϒ)

, (98)

where

ϒ ≡ a2Q2 + r2
[
−2e2Q + 3QrM − (e2 + Q)r2 + r3M

]
.

(99)

The third and fourth classes of solutions are related to the
first two by:

(Eγ,δ, Lγ,δ) = −(Eα,β, Lα,β). (100)

Theorem 5 Using dimensionless parameters or equivalently
setting M = 1, the constants of motion that solve the conditions
for spherical Kerr–Newman orbits are given by the equations:

Eα,β(r, Q; a, e) (101)

= e2r2 + r3(r − 2)− a(aQ ∓ √
ϒ)

r2
√

2e2r2 + r3(r − 3)− 2a(aQ ∓ √
ϒ)

Lα,β(r, Q; a, e) (102)

= −
(r2 + a2)

(
∓√

ϒ + aQ
)

+ 2ar3 − ae2r2

r2
√

2e2r2 + r3(r − 3)− 2a(aQ ∓ √
ϒ)

,

where

ϒ ≡ a2Q2 + r2
[
−2e2Q + 3Qr − (e2 + Q)r2 + r3

]
. (103)

Equations (101), (102), of Theorem 5, for zero electric
charge (e = 0) reduce correctly to the corresponding ones in
Kerr spacetime [90,91].

In order that the smaller square root appearing in the solu-
tions (101), (102) is real, we need to impose the condition

ϒ ≥ 0 (104)

⇔ a2Q2 + Q(−2e2r2 + 3r3M − r4)− e2r4 + r5M ≥ 0
(105)

Sinceϒ is quadratic in Carter’s constant Q its two roots are:

Q1,2 = r2

2a2

(
r(r − 3M)+ 2e2 ± √

S
)
, (106)
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where

S ≡ r4 − 6Mr3 + 9M2r2 + 4e4 − 4e2r(3M − r)

+4a2(e2 − rM). (107)

Now S is a quartic equation in r that is related to the study of
circular photon orbits in the equatorial plane around a Kerr–
Newman black hole [92]. The two largest roots ofS r1, r2 are
the radii of the prograde abd retrograde photon orbits, respec-
tively. They lie in the ranges M ≤ r1 < 3M < r2 ≤ 4M .
The locations of these two photon orbits will be significant
in what follows, as they will demarcate the allowed radii of
the timelike spherical orbits. It is useful to note that S is
negative in the range r1 < r < r2. This means that real solu-
tions for Q1,2 only exist outside this range. We have checked
that Q2 ≤ Q1 < 0 when r ≤ r1, and 0 < Q2 ≤ Q1 when
r ≥ r2.

Sinceϒ is quadratic in Q with positive leading coefficient
(a2 > 0), inequality (105) is satisfied when Q ≤ Q2 or
Q ≥ Q1. Thus when r < r1 or r > r2, the allowed ranges
for Carter’s constant are Q ≤ Q2 and Q ≥ Q1. On the other
hand, when r1 ≤ r ≤ r2, there is no restriction on the range
of Q.

For the solutions (101), (102) to be valid, the larger square
root appearing in them also has to be real. Thus we must
impose the condition:

�α,β ≡ 2e2r2 + r3(r − 3M)− 2a(aQ ∓ √
ϒ) ≥ 0. (108)

We first find the values of r and Q for which �α,β = 0.
Initially we obtain:

�α�β = r4S, (109)

thus we see that �α may vanish only if r = r1 or r = r2, and
similarly for �β . For either value of r , we have checked that
�α = 0 if Q ≥ Q2 and �α(r1,2) > 0 if Q < Q2(r1,2). On
the other hand, �β = 0 if Q ≤ Q2, and �β < 0 if Q > Q2.
Since we want to impose �α,β > 0, we deduce that the first
class of solutions (α) is allowed only if Q < Q2. The second
class of solutions (β) is not allowed at all.

When r < r1 or r > r2 recall that Q is allowed to take
the ranges Q ≤ Q2 and Q ≥ Q1. Note that �α,β = √

r4S

when Q = Q2, and �α,β = −√
r4S when Q = Q1. Thus

we deduce that �α,β > 0 if Q ≤ Q2 and �α,β < 0 if
Q ≥ Q1. Consequently, the range Q ≥ Q1 is ruled out for
these cases.

When r1 < r < r2, recall that there is no restriction on
the range of Q. We observe that �α,β = ±√−r4S when

Q = r2

2a2 (2e
2 + r(r − 3M)). Thus we conclude that �α > 0

and �β < 0 for any value of Q. As a result, the second class
of solutions (β) is not allowed in this case.

We also remark that the condition �α,β > 0 will imply
that the numerator of (101) is positive. Indeed, from (108)
we deduce:

2e2r2 + r3(r − 3M)− 2a(aQ ∓ √
ϒ) > 0

⇔ −a(aQ ∓ √
ϒ) > −1

2
r3(r − 3M)− e2r2 (110)

so that

e2r2 + r3(r − 2M)− a(aQ ∓ √
ϒ) >

1

2
r3(r − M) > 0.

(111)

The reality conditions from the square roots allow for the
Carter constant Q to be negative. In the uncharged Kerr black
hole it was argued that negative Q for spherical orbits were
not allowed [91]. In fact a necessary condition for negative
Q with E2 > 1 was presented in [91]:

a2(1 − E2)+ Q + L2 < 0. (112)

For the Kerr black hole it was argued that this condition
cannot be satisfied thus ruling out the case of negative Q for
spherical orbits [91]. Following a similar analysis with [91],
we will discuss now the non-negativity of Q for the more
general Kerr–Newman black hole. Substituting (101), (102)
into the left-hand side of (112) we obtain:

a2(1 − E2
α,β)+ Q + L2

α,β = �K N
α,β

r2�α,β
, (113)

where

�K N
α,β ≡ r3(r − M)(Mr3 + a2Q)− a2ϒ

+
(
Mr3 + a2Q ∓ 2a

√
ϒ
)2

+ e2r2
(
−r4 + r2a2 ± 2a

√
ϒ
)
. (114)

The ranges of Carter’s constant Q we have found so far ensure
that the quantities �α,β are positive. It remains to show that
�K N
α,β are also positive for these ranges.

We have checked by explicit calculation that �K N
α �K N

β

is quadratic in the invariant Q. For fixed r,�K N
α may vanish

only at the roots of this quadratic, and likewise for �K N
β .

We have checked that the discriminant of this quadratic is
negative, thus both roots are complex numbers in this case.
We infer that �K N

α,β do not vanish for any real value of Q.

Since �K N
α,β are continuous functions of Q for the ranges we

are interested in, it follows that their signs do not change as
Q is varied. Thus we still have to check that �K N

α and/or
�K N
β are positive for a specific value of Q in each of the

allowed ranges we have found.
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When r < r1 or r > r2, recall that Q is allowed to take
the range Q ≤ Q2. We compute:

�K N
α,β (Q2)

= �K N
α,β

(
r2

2a2 (r(r − 3M)+ 2e2 − √
S)

)

= 1

2
r4(r(r − M)+ e2 − √

S)2 + Mr5�K N

+ 2e2r4(2rM − e2 − 2r2)

4
, (115)

which is positive. Thus �K N
α,β > 0 if Q ≤ Q2

When r = r1 or r = r2, recall that Carter’s constant Q
is allowed to take the range Q < Q2, although only the first
class of solutions (α) is allowed. The above argument is still
valid by continuity, and we deduce that�K N

α > 0 if Q < Q2.
When r1 < r < r2 we found that there is no restriction on

the range of Q, although only the first class of solutions (α)
is allowed. We compute for Q = r2

2a2 (r(r − 3M)+ 2e2):

�K N
α

(
r2

2a2 (r(r − 3M)+ 2e2)

)

= 1

2
r4(r(r − M)+ e2 − √−S)2

+ Mr5�K N + 2e2r4(2rM − e2 − 2r2)

4
, (116)

which is positive. Thus �K N
α > 0 for any value of Q.

Thus we have shown that (113) is positive for all the ranges
of Carter’s constant of motion Q. The condition (112) does
not hold, in particular, when Q is negative. This rule out all
values of Q which lie in the negative range.

Having obtained exact analytic solutions of the geodesic
equations and solved the conditions for spherical orbits, we
present examples of particular timelike spherical orbits in
Kerr–Newman spacetime in Tables 1, 2. In Table 1 we display
examples of prograde orbits: �φGT R > 0 when L > 0
while in Table 2 retrograde orbits: �φGT R < 0 when L <

0, are exhibited. For a choice of values for the black hole
parameters a, e and for Carter’s constant Q, the constants
of motion associated with the Killing vector symmetries of
Kerr–Newman spacetime are computed from formulae (101),
(102). In the last column of Tables 1, 2 we present the change
�φGT R over one complete oscillation in latitude of the orbit,
which means we multiply Eq. (95) by four. In Sect. 5.1.3 we
will study spherical polar orbits ( a special case with zero
angular momentum L = 0 ) and we will determine the value
of Carter’s constant Q separating prograde and retrograde
orbits.

5.1.3 Frame-dragging for spherical polar Kerr–Newman
geodesics

In this subsection we shall investigate the physically impor-
tant class of polar orbits of massive particles, i.e. timelike
geodesics crossing the symmetry axis of the Kerr–Newman
spacetime. The first integral in Eq. (10) for zero cosmological
constant reads:

ρ4θ̇2 = Q + a2(E2 − 1) cos2 θ − L2 cot2 θ. (117)

It follows from (117) that in order for the orbit to reach the
polar axis, where cos2 θ = 1, it is necessary that [93]

L = 0. (118)

The polar orbits considered in this subsection, mean that our
test particle is supposed not only to cross the symmetry axis
but also to sweep the whole range of the angular coordi-
nate θ . Therefore, we demand that θ̇ does not vanish for any
θ ∈ [0, π ]. According to (117) and (118) , this condition is
equivalent to the demand that

Q > 0 when E2 ≥ 1 (119)

and

Q > a2(1 − E2) when E2 < 1. (120)

Spherical polar orbits (i.e polar orbits with constant radius)
are given by the conditions R(r) = 0, dR

dr = 0. Equivalently,
polar spherical orbits correspond to local extrema of the fol-
lowing effective potential:

V 2
e f f (r) := �K N (r2 + K )

(r2 + a2)2
, (121)

where K is the hidden constant of motion which for polar
geodesics reads K = Q+a2E2. The local extrema ofV 2

e f f (r)
occur at the roots of the equation:

e2r(r2 + a2)− e2(2r3 + 2r K )+ Mr4

−(K − a2)r3 + 3M(K − a2)r2

−(K − a2)a2r − MKa2 = 0. (122)

The general features of the r motion of a test particle in
polar orbit about the source of the Kerr–Newman field can
be deduced from graphs of V 2

e f f (r), such as those in Figs. 26,
27. As can be deduced from the graphs, a test particle follows
a bound orbit when its specific energy at infinity E is such
that E2 < 1. It can also be seen that, when E2 < 1 and a
black hole is involved, the particle gets dragged, disappearing
behind the event horizon, i.e., the surface r = r+, unless K
is such that V 2

e f f (r) develops a local maximum E2
max outside

the even horizon and E2 < E2
max. In this case, the particle

will not be swallowed by the black hole, provided it is initially
found in the region r > r0, where r0 is the point on the r axis
where V 2

e f f (r) = E2
max. Moreover, in the case of a rotating
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Fig. 26 The effective square potential V 2
e f f (r) for polar spherical

orbits in the neighbourhood of a rotating charged black hole with
a = 0.8, e = 0.2. The parameter K distinguishing the three curves
is Carter’s hidden integral of motion in the Kerr–Newman black hole

charged black hole with vanishing cosmological constant, i.e.
when e2 ≤ M2−a2, V 2

e f f (r) necessarily vanishes at the radii

of the event and Cauchy horizons r± = M±√
M2 − a2 − e2

which are the roots of the equation �K N = 0. Considering
the case of spherical orbits, we note that E2 = V 2

e f f (r0),
where r0 is a root of (122), is a necessary condition for a
spherical orbit to obtain. Thus, with the aid (122) we derive
the following relations for the specific energy and Carter’s
constant:

E2 = r(�K N )2

(r2 + a2)ZKN
, (123)

Q = Mr4 + a2r3 − 3Ma2r2 + a4r − e2r3 + e2ra2

ZKN

− a2E2, (124)

where

ZKN := 2e2r + r3 − 3Mr2 + a2r + Ma2. (125)

In addition, using the same techniques as in the proof of
Theorem 4, we derive the following Lense–Thirring preces-
sion �φGT R

Polar per revolution for a polar spherical orbit in
Kerr–Newman spacetime:

�φGT R
Polar = 4

(
aP

�K N
− aE

)
1

|a|√1 − E2

(π
2

) 1√
z+

F

(
1

2
,

1

2
, 1,

z−
z+

)
,

(126)

where P = E(r2 + a2) for L = 0, z+ = Q
a2(1−E2)

, z− = 1.
Equation (126) simplifies to:

�φGT R
Polar = 4aE(2Mr − e2)

�K N

π

2

1√
Q
F

(
1

2
,

1

2
, 1,

a2(1 − E2)

Q

)
.

(127)

Fig. 27 The effective square potential V 2
e f f (r) for polar spherical

orbits in the neighbourhood of a rotating charged black hole with
a = 0.52, e = 0.85. For comparison we also plot the case of a Kerr
black hole with a = 52, e = 0. The parameter K distinguishing the
corresponding curves is Carter’s hidden integral of motion in the Kerr–
Newman black hole

The exact analytic result in Eq. (127) shows that during a
revolution of the particle along the polar orbit the lines of
nodes advance in a direction which coincides with that of the
rotation of the central Kerr–Newman black hole. Thus this is
a typical dragging effect, so that if the rotation vanishes, the
change in azimuth φ vanishes too.

Using the convergent series expansion around the origin

(k2 ≡ a2(1−E2)
Q < 1 for bound orbits with E2 < 1) for the

Gauß’s hypergeometric function we obtain:

�φGT R
Polar

= 4aE(2Mr − e2)

�K N

π

2

1√
Q

×
(

1 + 1

4

a2(1 − E2)

Q
+ 9

64

(
a2(1 − E2)

Q

)2

+ · · ·
)

(128)

Also using Eqs. (123)–(125) we express the variable of the
hypergeometric function k2 as follows:

k2 =
( a
r

)2

× [r4 + 2r2a2 + a4 − 4Mr3 − re4

M + 4r2e2]
r4 + a4 + 2a2r2 − 4Mra2 − 2re2a2

M − a4e2

rM − a2e4

rM + 4a2e2 − e2r3

M

.

(129)

We present examples of spherical polar orbits in Table 3.
The larger the Kerr parameter the larger the frame drag-
ging precession. We note the small contribution of the elec-
tric charge on the Lense–Thirring precession for fixed Kerr
parameter.
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Table 3 Properties including frame-dragging (Lense–Thirring precession) of spherical timelike polar Kerr–Newman orbits applying the exact
analytic formula (127) and the relations (123), (124), for various values of the black hole’s spin and electric charge

Orbit r/M Q/M2 E e/M a/M �φGT R
Polar

(a) 10 14.198012556704303 0.955967687347955 0 0.8 0.316593 = 18.1394◦

(b) 10 14.175980906902574 0.9559475468735232 0.11 0.8 0.316593 = 18.1395◦

(c) 10 14.125237970658672 0.9559012400826655 0.2 0.8 0.316595 = 18.1396◦

(d) 10 14.149643079211955 0.9558495321451093 0 0.999999 0.394826 = 22.6219◦

(e) 10 14.149642728218016 0.9558495318270006 0.00044 0.999999 0.394826 = 22.6219◦

(f) 10 14.248389653442322 0.9560911507901617 0 0.52 0.206277 = 11.8188◦

(g) 10 14.175264277554161 0.9560237528884883 0.2 0.52 0.206278 = 11.8188◦

5.2 Periods

Squaring the geodesic differential equation for the polar vari-
able (10) (for � = 0), multiplying by the term cos2 θ sin2 θ ,
and making the change to the variable z, yields the following
differential equation for the proper polar period:

dτθ = (r2 + a2z)dz

2
√
z
√
a2(1 − E2)z2 + (−a2(1 − E2)− L2 − Q)z + Q

(130)

Finally, our closed form analytic computation for the
proper polar period after integrating (130) yields:

Proposition 5

τθ = 4

[
r2

|a|√1 − E2

π

2

1√
z+

F

(
1

2
,

1

2
, 1,

z−
z+

)

− a2

2|a|
1√

1 − E2

√
z+πF

(
1

2
,−1

2
, 1,

z−
z+

)

+ z+a2

2|a|
1√

1 − E2

π

2

1√
z+

F

(
1

2
,

1

2
, 1,

z−
z+

)]
. (131)

Proof The integral in (130) can be split into two parts:

τθ =
∫

r2dz

2|a|√1 − E2

1√
z
√
(z − z−)(z − z+)

+
∫

a2zdz

2
√
z|a|√1 − E2

√
(z − z+)(z − z−)

. (132)

We compute first:

∫ z−

0

r2dz

2|a|√1 − E2

1√
z
√
(z − z−)(z − z+)

= r2

2|a|√1 − E2
F

(
1

2
,

1

2
, 1,

−z−
z+ − z−

)
�

(
1

2

)

× �

(
1

2

)
1√

z+ − z−

= r2

2|a|√1 − E2

π

2

1√
z+

F

(
1

2
,

1

2
, 1,

z−
z+

)
. (133)

We then write:
∫ z−

z j

a2zdz

2|a|√1 − E2√z
√
(z − z+)(z − z−)

=
∫ z−

z j

a2(z − z+ + z+)dz
2|a|√1 − E2√z

√
(z − z+)(z − z−)

(134)

Applying the change of variables:z = z− + x(z j − z−)
we compute the term:
∫ z−

z j

a2(z − z+)dz
2|a|√1 − E2√z

√
(z − z+)(z − z−)

= a2

2|a|√1 − E2

(z+ − z−)(z j − z−)√
z−(z− − z+)(z j − z−)

×
∫ 1

0

dx
[
1 − x(z−−z j )

z−−z+

]1/2
√

1 − x(z−−z j )
z−

√
x

= a2

2|a|√1 − E2

(z+ − z−)(z j − z−)√
z−(z− − z+)(z j − z−)

×F1

(
1

2
,−1

2
,

1

2
,

3

2
,
z− − z j
z− − z+

,
z− − z j

z−

)

×�
( 1

2

)
�(1)

�
( 3

2

) (135)

Setting z j = 0 in the expression which involves Appell’s
hypergeometric function F1 yields:

∫ z−

0

a2(z − z+)dz
2|a|√1 − E2√z

√
(z − z+)(z − z−)

= −a2

2|a|
1√

1 − E2

(z+ − z−)√
z+ − z−

�
( 1

2

)

�
( 3

2

) �
( 3

2

)
�
( 3

2 − 1
2 − 1

2

)

�
( 3

2 − 1
2

)
�
( 3

2 − 1
2

)

× F

(
1

2
,−1

2
, 1,

−z−
z+ − z−

)

= −a2

2|a|
1√

1 − E2

√
z+�
(

1

2

)
�

(
1

2

)
F

(
1

2
,−1

2
, 1,

z−
z+

)

(136)

This yields the second term in Eq. (131). In our calculation in
(136), we made use of the following transformation property
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of Gauß’s hypergeometric function F , discovered by Kum-
mer [94]:

z1−c F(a − c + 1, b − c + 1, 2 − c, z)

= z1−c(1 − z)c−b−1F

(
1 − a, b − c + 1, 2 − c,

z

z − 1

)
.

(137)

We also used the special value for Appell’s hypergeometric
function F1:

F1(α, β, β
′, γ, x, 1)

= F(a, β ′, γ, 1)F(α, β, γ − β ′, x)

= �(γ )�(γ − α − β ′)
�(γ − α)�(γ − β ′)

F(α, β, γ − β ′, x),

�(γ − α − β ′) > 0, (138)

where in the second equality in (138) we applied the Gauß
summation theorem:

F(a, β ′, γ, 1)

= �(γ )�(γ − α − β ′)
�(γ − α)�(γ − β ′)

, �(γ − α − β ′) > 0. (139)


�

5.3 Spherical orbits in Kerr–Newman–(anti) de Sitter
spacetime

From (7) and (10) we derive the equation :

dφ

dθ
= a�2

�KN
r

[(r2 + a2)E − aL]√
�′

− �2
(

1 + a2�
3 cos2 θ

)
(sin2 θ)

aE sin2 θ − L√
�′

= a�2

�KN
r

[(r2 + a2)E − aL]√
�′

− �2
(

1 + a2�
3 z
)
(1 − z)

aE(1 − z)− L√
�′ . (140)

Using the variable z we obtain the following novel exact
result in closed analytic form for the amount of frame-
dragging that a timelike spherical orbit in Kerr–Newman–
(anti)de Sitter spacetime undergoes. As θ goes through a
quarter of a complete oscillation we obtain the change in
azimuth φ,�φGTR in terms of Lauricella’s FD and Appell’s
F1 multivariable generalised hypergeometric functions:

�φGTR
� = a�2

�KN
r

[(r2 + a2)E − aL]√
z+ − z−

√
z− − z�

�2
( 1

2

)

−2
√
a4 �

4

× F1

(
1

2
,

1

2
,

1

2
, 1,

z−
z− − z+

,
z−

z− − z�

)

+ H�2aE

2
√

a4�
3

�2
(

1

2

)

× FD

(
1

2
,

1

2
,

1

2
, 1, 1,

z−
z− − z+

,
z−

z− − z�
,−η
)

+ −HL�2

2
√

a4�
3

�2
( 1

2

)

1 − z−

× FD

(
1

2
,

1

2
,

1

2
, 1, 1, 1,

z−
z− − z+

,
z−

z− − z�
,−η, −z−

1 − z−

)
,

(141)

where we define:

H ≡ 1√
z+ − z−

√
z− − z�

1(
1 + a2�z−

3

)

η ≡ −a2�z−
1 + a2�

3 z−
. (142)

The variables z+, z−, z� appearing in the hypergeometric
functions in (141) are the roots of polynomial equation (205).

In our calculations we used the following property for the
values of Lauricella’s multivariate function FD:

F (n)D (α, β1, . . . , βn, γ, 1, x2, . . . , xn)

= �(γ )�(γ − α − β1)

�(γ − α)�(γ − β1)

× F (n−1)
D (α, β2, . . . , βn, γ − β1, x2, . . . , xn),

max{|x2|, . . . , |xn|} < 1, �(γ − α − β1) > 0. (143)

5.3.1 Conditions for spherical orbits in Kerr–Newman
spacetime with a cosmological constant

We now proceed to solve the conditions for timelike spherical
orbits in the Kerr–Newman spacetime in the presence of the
cosmological constant. As before, for a spherical orbit to exist
at radius r , the conditions R′(r) = dR′/dr = 0 must hold
at this radius. The procedure of solving these conditions will
lead us to a generalisation of Eqs. (101), (102) and (26), (27).
We solved these conditions simultaneously and the novel
solutions take the following elegant and compact form when
parametrised in terms of r and Carter’s constant Q:
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Theorem 7

Eα,β(r, Q;�′, a, e) (144)

= r2e2 + r3(r − 2)− r2(r2 + a2)�′r2 − a(aQ ∓ √
ϒ�)

r2
√

2e2r2 + r3(r − 3)− a2r4�′ − 2a(aQ ∓ √
ϒ�)

,

Lα,β (r, Q;�′, a, e) (145)

= − (r
2+a2)(∓√

ϒ�+aQ)+2ar3+ar4�′(r2+a2)−ae2r2

r2
√

2e2r2+r3(r−3)−a2r4�′−2a(aQ ∓ √
ϒ�)

,

where

ϒ� ≡ a2Q(Q + r4�′) (146)

+ r2(−2e2Q − (e2 + Q)r2 + 3Qr + r3 − r6�′).

For vanishing cosmological constant Eqs. (144), (145)
reduce to the first integrals Eqs. (101) and (102) for spherical
timelike orbits in Kerr–Newman spacetime. For vanishing
Carter’s constant Q, Eqs. (144), (145) reduce to the con-
stants of motion, Eqs. (26), (27), that describe prograde and
retrograde timelike circular orbits in the equatorial plane of
the Kerr–Newman–(anti) de Sitter black hole.

Thus, in Theorem 7 we have derived the most general
solutions for the constants of motion E, L that are associated
with the two Killing vectors of the Kerr–Newman–(anti) de
Sitter black hole spacetime, which satisfy the conditions for
timelike spherical orbits.

To ensure that the smaller square root appearing in the
solutions (144), (145) is real, we need to impose the condi-
tion:

ϒ� ≥ 0. (147)

Note from (146) that ϒ� is quadratic in Carter’s constant
Q, and its two roots are:

Q1,2 = r2

2a2 (−a2r2�′ + r(r − 3)+ 2e2 ±
√
G�), (148)

where

G� ≡ a4r4�′2 + 2a2�′r2(r2 + 3r − 2e2)+ r4 + 9r2 − 6r3

+4e4 − 4e2r(3 − r)+ 4a2e2 − 4a2r. (149)

We mention at this point, that G� is a polynomial equation
in r that is familiar from the study of circular photon orbits in
the equatorial plane around a Kerr–Newman–(anti) de Sitter
black hole [39].

Our Theorem 7 also generalises in a non-trivial way our
results for the gravitational frequency shifts in Sect. 4. Using
our solutions for the invariant parameters in (144), (145) we
can investigate the redshift and blueshift of light emitted by
timelike geodesic particles in spherical orbits that are not
necessarily confined to the equatorial plane, around a Kerr–
Newman–(anti) de Sitter black hole. We can work either with
Eq. (46) or the corresponding of Eq. (48). Indeed in Eq. (46)
with Ur = 0:

1 + z = (kt E − kφL + gθθkθU θ )|e
(Ekt − Lkφ + gθθkθU θ )|d

= (EγUt − LγUφ + gθθK θU θ )|e
(EγUt − LγUφ + gθθK θU θ )|d (150)

we substitute E, L through relations (144) and (145) to
obtain:

1 + z = (kt Eα,β (r, Q;�′, a, e)− kφLα,β (r, Q;�′, a, e)+ gθθ kθU θ )|e
(Eα,β (r, Q;�′, a, e)kt − Lα,β (r, Q;�′, a, e)kφ + gθθ kθU θ )|d

(151)

Also the velocity component U θ of the test massive particle
is given by:

(U θ (r, θ, Q;�′, a, e)2

=
[
(Q + (Lα,β (r, Q;�′, a, e)− aEα,β (r, Q;�′, a, e))2 − a2 cos2 θ)�θ

− (aEα,β (r, Q;�′, a, e) sin2 θ − Lα,β (r, Q;�′, a, e))2

sin2 θ

]/
ρ4 (152)

The impact factor for such more general orbits (non-
equatorial) is computed in Sect. 5.8 see Eq. (217).

A thorough investigation will appear in a separate publi-
cation.

5.3.2 Frame-dragging for spherical polar geodesics in
Kerr–Newman–de Sitter spacetime

The generalisation of the effective potential eqn (121) in the
presence of the cosmological constant is:

V 2
e f f.� = �K N

r (r2 + K )

(r2 + a2)2
. (153)

From the local extrema of the effective potential (153) we
determine the following first integrals of motion for spherical
polar geodesics in Kerr–Newman–de Sitter spacetime:

K = −�′r3(r2+a2)2−�′r3(2r2 + a2)(r2 + a2)+2�′r5(r2+a2)+Mr4+(a2 − e2)r3 − 3Ma2r2 + ra2(a2 + e2)

Z�
,

(154)
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E = r(�K N
r )2

(r2 + a2)Z�
, (155)

where

Z� ≡ 2e2r + r3 − 3Mr2 + a2r + Ma2

+�′r(2r2 + a2)(r2 + a2)− 2�′r3(r2 + a2). (156)

Theorem 8 The Lense–Thirring precession�φGT R
Spher Polar� per

revolution for a polar spherical orbit in Kerr–Newman–de Sitter
spacetime is expressed in closedanalytic form in termsofAppell’s
F1 and Lauricella’s FD multivariable hypergeometric functions
as follows:

�φGT R
Spher Polar� (157)

= 4a�2(r2 + a2)E

�K N
r

√
a4�/3

π

2

1√
z+

1√−z�

× F1

(
1

2
,

1

2
,

1

2
, 1,

z−
z+
,
z−
z�

)

− 4�2aEπ

2

1

1 + a2�
3 z−

1√
a4�/3

1√
z+

1√−z�

1√
1 + η

× FD

(
1

2
,

1

2
,

1

2
, 1, 1,

z−
z+
,
z−
z�
,

−η
−η − 1

)
.

Proof The relevant differential equation is:

dφ

dθ
= a�2

�K N
r

[
(r2 + a2)E√

�′

]
− �2aE(

1 + a2�
3 z
)√

�′
. (158)

The integration of Eq. (158) splits into two parts. Integrating
the first part yields:

a�2(r2 + a2)E

�K N
r

∫
dθ√
�′

= −a�2(r2 + a2)E

�K N
r

1√
a4�/3

1√
z+ − z−

1√
z− − z�

π

2

× F1

(
1

2
,

1

2
,

1

2
, 1,

z−
z− − z+

,
z−

z− − z�

)

= −a�2(r2 + a2)E

�K N
r

1√
a4�/3

π

2

1√
z+

1√−z�

× F1

(
1

2
,

1

2
,

1

2
, 1,

z−
z+
,
z−
z�

)
. (159)

In deriving the last line in Eq. (159) we used the following
Lemma for Appell’s hypergeometric function F1:
Lemma 6

F1(α, β, β
′, γ, x, y) = (1 − x)−β (1 − y)−β ′

F1

(
γ − α, β, β ′, γ, x

x − 1
,

y

y − 1

)
.

(160)

Likewise, using initially the transformation as before: z =
z− + ξ2(z j − z−) and then setting z j = 0, integration of the
second term gives:

∫ −aE�2

(1 + a2�
3 z

dθ√
�′ = H1√

a4�/3

√
π√
π/2

FD

×
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1
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2
,

1

2
,
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2
, 1,

3

2
,
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z−
,
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,
z− − z j
z− − z�

,−η
)

z j=0= 1√
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1√
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1(
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3 z−
) 1√

a4�/3

× �2aE

2

√
π√
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FD

(
1

2
,

1

2
,

1

2
,

1

2
, 1,

3

2
, 1,

z−
z− − z+

,
z−

z− − z�
,−η
)

(143)= 1√
z+ − z−

1√
z− − z�

1(
1 + a2 �

3 z−
) 1√

a4�/3

× �2aEπ

2
FD

(
1

2
,

1

2
,

1

2
, 1, 1,

z−
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,
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,−η
)

= 1(
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) 1√

a4�/3

�2aEπ

2

1√
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1√−z�

1√
1 + η

× FD

(
1

2
,

1

2
,

1

2
, 1, 1,

z−
z+
,
z−
z�
,

−η
−η − 1

)
, (161)

where H1 = −(z j−z−)(�2aE/2)√
z−

√
z j−z−

√
z−−z+

√
z−−z�(1+a2 �

3 z−)
. In deriv-

ing the last line of (161) we used the following Lemma for
Lauricella’s multivariate hypergeometric function FD:

Lemma 7

FD(α, β, β
′, β ′′, γ, x, y, z) = (1 − x)−β(1 − y)−β ′

(1 − z)−β ′′
FD

(
γ − α, β, β ′, β ′′, γ, x

x − 1
,

y

y − 1
,

z

z − 1

)
. (162)


�
The quantities z+, z−, z�, of the hypergeometric func-

tions in Eq. (157) are roots of the cubic equation:

z3
(
a4�

3

)

− z2
(
a2�

3
(Q + a2E2�2)− a2�(1 − E2�)

)

− z((Q + a2E2�2)�+ a2 + 2aE�2(−aE))+ Q = 0.
(163)
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5.4 Frame-dragging effect for polar non-spherical bound
orbits in Kerr–Newman spacetime

In this section we will derive novel closed-form expressions
for frame-dragging (Lense–Thirring precession) for polar
non-spherical timelike geodesics in Kerr–Newman space-
time. Thus we assume in this section that � = L = 0. The
relevant differential equation for the calculation of frame-
dragging is:

dφ

dr
= (2ar − ae2)E

�K N
√
R

. (164)

The quartic radial polynomial R is obtained from R′ in (11)
for � = L = 0. Using the partial fractions technique we
integrate from the periastron distance rP to the apoastron
distance rA:

We apply the transformation:

z = 1

ω

r − αμ+1

r − αμ+2
= α − γ

α − β

r − β

r − γ
(165)

and denote the real roots of the radial polynomial R by
α, β, γ, δ, α > β > γ > δ. We organise all the roots in
the ascending order of magnitude:

αρ > ασ > αν > αi , (166)

with the correspondence αρ = αμ = α, ασ = αμ+1 =
β, αν = αμ+2 = γ, αi = αμ−i , i = 1, 2, 3, αμ−1 =
aμ−2 = r±, αμ−3 = δ, where r+, r− denote the radii of the
event horizon and the inner or Cauchy horizon respectively.

We thus compute the following new exact analytic result
for Lense–Thirring precession that a test particle in a non-
spherical polar orbit undergoes, in terms of Appell’s hyper-
geometric function F1:

�φGT R
tpK N

= 2

[
−ω

3/2

H+
A+
tpK N F1

(
3

2
, 1,

1

2
, 2, κ t2+ , κ ′2

)
π

2

+
√
ω

H+
A+
tpK N F1

(
1

2
, 1,

1

2
, 1, κ t2+ , κ ′2

)
π

− ω3/2

H−
A−
tpK N F1

(
3

2
, 1,

1

2
, 2, κ t2− , κ ′2

)
π

2

+
√
ω

H−
A−
tpK N F1

(
1

2
, 1,

1

2
, 1, κ t2− , κ ′2

)
π

]
(167)

where the partial fraction expansion parameters are given by:

A+
tpK N = −r+2aE + ae2E

r− − r+
,

A−
tpK N = +r−2aE − ae2E

r− − r+
. (168)

The variables of the hypergeometric functions are given in
terms of the roots of the quartic and the radii of the horizons
by the expressions:

κ t2± := α − β

α − γ

r± − γ

r± − β
, κ ′2 := α − β

α − γ

δ − γ

δ − β
, (169)

while

H± ≡
√
(1 − E2)(αμ+1 − αμ−1)

√
αμ − αμ+1√

αμ+1 − αμ−3

=
√
(1 − E2)(β − r±)

√
α − β

√
β − δ. (170)

5.4.1 Exact calculation of the orbital period in
non-spherical polar Kerr–Newman geodesics

In this section we will compute a novel exact formula for
the orbital period for a test particle in a non-spherical polar
Kerr–Newman geodesic. The relevant differential equation
is:

cdt

dr
= r2 + a2

�K N
√
R
E(r2 + a2)− a2E sin2 θ√

R
, (171)

and we integrate from periapsis to apoapsis and back to peri-
apsis. Indeed, our analytic computation yields:

ct ≡ cPK N = Eβ22GM
c2

2
√

1 − E2 2
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√
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×
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β

π
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√
ω
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√
(α − β)(β − δ)

×F(1/2, 1/2, 1, κ2)π

+4EGM

c2

√
ω
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+ω
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(172)

where

ϕ = am

(
2
√
Q

4
2
√

1 − E2

1
2
√
α − γ

1
2
√
β − δ

π

2

× F

(
1

2
,

1

2
, 1, κ2

)
,
a2(1 − E2)

Q

)
(173)

AKN+ := −a2 + e2 − 2r ′+
r ′− − r ′+

,

AKN− := −−a2 − e2 + 2r ′−
r ′− − r ′+

, (174)

and the moduli (variables) of the hypergeometric function of
Appell are given by:

μ2 = κ2 = α − β

α − γ

δ − γ

δ − β

κ2± = α − β

α − γ

r ′± − γ

r ′± − β
, κ2′ = a2(1 − E2)

Q
. (175)

Also ω = α−β
α−γ , H± ≡ √(1 − E2)(β−r ′±)

√
α − β

√
β − δ

and r ′± = r±
GM
c2

are the dimensionless horizon radii. In Eq.

(173) am(u, k2′) denotes the Jacobi amplitude function [95].
The last three terms in (172) arise after integrating the sec-

ond term on the right hand side of (171). Details of this par-
ticular angular integration are given in Appendix A.1, pages
1801–1802 in [46].

For zero electric charge, e = 0, Eq. (172) reduces cor-
rectly to Eq. (33) in [46] for the case of a Kerr black hole.
The Lense–Thirring period for a non-spherical polar timelike
geodesic in Kerr–Newman BH geometry, is defined in terms

of the Lense–Thirring precession Eq. (167) and its orbital
period Eq. (172) as follows:

LTP := 2π PKN

�φGT R
tpK N

. (176)

We now proceed to calculate using our exact analytic
solutions and assuming a central galactic Kerr–Newman
black hole, the Lense–Thirring effect and the correspond-
ing Lense–Thirring period for the observed stars S2,S14 for
various values of the Kerr parameter and the electric charge
of the central black hole-see Tables 4 and 5. The choice
of values for the invariant parameters Q, E is restricted by
requiring that the predictions of the theory for the periap-
sis, apoapsis distances and the period PKN are in agree-
ment with the orbital data from observations in [15]. We note
here the orbital data from observations that we use to con-
strain our theory. For S2 the eccentricity measured is eS2 =
0.8760 ± 0.0072, its orbital period PS2(yr) = 15.24 ± 0.36,
and the semimajor axis aS2(arcsec) = 0.1226±0.0025 [15].
The corresponding orbital measurements for S14, reported
in [15] eS14 = 0.9389 ± 0.0078, PS14(yr) = 38.0 ± 5.7,
aS14(arcsec) = 0.225±0.022. The theoretical prediction for
the eccentricity of the S2 orbit for the choice of values for
the invariant parameters Q, E in the last two lines in Table 4
is etheoryS2 = 0.883 . It is consistent with the upper allowed
value by experiment. On the other hand the prediction of the
exact theory, for the choice of values for the constants of
motion Q, E in the first three lines in Table 4, for the orbital
eccentricity is etheoryS2 = 0.8755 in precise agreement with
experiment. We observe that the contribution of the electric
charge on the frame-dragging precession is small.

5.5 Periapsis advance for non-spherical polar timelike
Kerr–Newman orbits

In this section we shall investigate the pericentre advance for
a non-spherical bound Kerr–Newman polar orbit, assuming
a vanishing cosmological constant. We shall first obtain the
exact solution for the orbit and then derive an exact closed
form formula for the periastron precession. The relevant dif-
ferential equation is:

∫ r dr√
R

= ±
∫ θ dθ√

�
(177)

Now applying the transformation (165) on the left hand side
of (177) yields:

∫
dr√
R

= 1
GM
c2

∫ dr√
(1−E2)(−)(r−α)(r−β)(r−γ )(r−δ)

= 1
GM
c2

∫ dz
√
ω√

(1−E2)
√
(α−β)(β−δ)

√
z(1−z)(1−k2z)

, (178)
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Table 4 Lense–Thirring precession for the star S2 in the central
arcsecond of the galactic centre, using the exact formula (167). We
assume a central galactic Kerr–Newman black hole with mass MBH =
4.06 × 106M� and that the orbit of S2 star is a timelike non-spherical
polar Kerr–Newman geodesic. The computation of the orbital period

of the star S2 was performed using the exact result in Eq. (172). The
periapsis and apoapsis distances for the star S2 in the first three lines
are respectively 1.82 × 1015 cm and 2.74 × 1016 cm. In the last two
lines these distances are: rP = 1.68 × 1015 cm, rA = 2.71 × 1016 cm

Star Q/M2 E e/M a/M �φGT R
tpK N PK N (yr) LT P(yr)

S2 5693.30424 0.999979485 0.33 0.52 3.14284 arcsec
revol. 15.15 6.25 × 106

S2 5693.30424 0.999979485 0.11 0.52 3.14295 arcsec
revol. 15.15 6.25 × 106

S2 5693.30424 0.999979485 0 0.52 3.14297 arcsec
revol. 15.15 6.25 × 106

S2 5273.53220 0.999979145 0.11 0.52 3.5261 arcsec
revol. 14.78 5.43 × 106

S2 5273.53220 0.999979145 0.33 0.52 3.52596 arcsec
revol. 14.78 5.43 × 106

Table 5 Lense–Thirring precession for the star S14 in the central
arcsecond of the galactic centre, using the exact formula (167). We
assume a central galactic Kerr–Newman black hole with mass MBH =
4.06 × 106M� and that the orbit of S14 star is a timelike non-spherical
polar Kerr–Newman geodesic. The computation of the orbital period

of the star S14 was performed using the exact result in Eq. (172). The
periapsis and apoapsis distances for the star S14 in the first two lines
are respectively 1.64 × 1015 cm and 5.22 × 1016 cm, whereas in the
last two lines are predicted to be 1.29 × 1015 cm and 4.73 × 1016 cm
respectively

Star Q/M2 E e/M a/M �φGT R
tpK N PK N (yr) LT P(yr)

S14 5321.06355 0.999988863 0.11 0.9939 6.64977 arcsec
revol. 37.88 7.38 × 106

S14 5321.06355 0.999988863 0 0.9939 6.64981 arcsec
revol. 37.88 7.38 × 106

S14 4204.76359 0.999987653 0.11 0.9939 9.47145 arcsec
revol. 32.45 4.44 × 106

S14 4204.76359 0.999987653 0 0.9939 9.47151 arcsec
revol. 32.45 4.44 × 106

where

k2 = α − β

α − γ

δ − γ

δ − β
≡ ω

δ − γ

δ − β
. (179)

The roots α, β, γ, δ of the quartic polynomial equation:

R = ((r2 + a2)E)2 − (r2 + a2 + e2 − 2r)(r2 + Q + a2E2)

= 0, (180)

are organised as αμ > αμ+1 > αμ+2 > αμ−3, and we have
the correspondence α = αμ, β = αμ+1, γ = αμ+2, δ =
αμ−3.

By setting, z = x2, we obtain the equation
∫

dx√
(1 − x2)(1 − k2x2)

=
√

1 − E2
√
α − β

√
β − δ

2
√
ω

∫
dθ√
�
. (181)

Using the idea of inversion for the orbital elliptic integral on
the left-hand side we obtain

x = sn

(√
1 − E2√α − γ

√
β − δ

2

∫
dθ√
�
, k2

)
. (182)

In terms of the original variables we derive the equation

r =
β − γ

α−β
α−γ sn2

(√
1−E2

√
(α−γ )(β−δ)
2

∫ dθ√
�
, k2
)

1 − α−β
α−γ sn2

(√
1−E2

√
(α−γ )(β−δ)
2

∫ dθ√
�
, k2
) GM

c2 . (183)

Equation (183) represents the first exact solution that des-
cribes the motion of a test particle in a polar non-spherical
bound orbit in the Kerr–Newman field in terms of Jacobi’s
sinus amplitudinus elliptic function sn. The function sn2(y, k2)

has period 2K (k2) = πF
( 1

2 ,
1
2 , 1, k2

)
which is also a period

of r . This means that after one complete revolution the angu-
lar integration has to satisfy the equation

−
∫

dθ√
�

= 1√
Q

∫
∂�√

1 − k′2 sin2 �

= 4√
1 − E2

1√
α − γ

1√
β − δ

π

2
F

(
1

2
,

1

2
, 1, k2

)
,

(184)

where the latitude variable � := π/2 − θ has been intro-
duced. Equation (184) can be rewritten as
∫

dx ′
√
(1 − x ′2)(1 − k′2x ′2)

= √Q
4√

1 − E2

1√
α − γ

1√
β − δ

π

2
F

(
1

2
,

1

2
, 1, k2

)

(185)

and

k′2 := a2(1 − E2)

Q
. (186)
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Also x ′2 = sin2 � = cos2 θ. Equation (185) determines
the exact amount that the angular integration satisfies after a
complete radial oscillation for a bound non-spherical polar
orbit in KN spacetime. Now using the latitude variable� the
change in latitude after a complete radial oscillation leads to
the following exact expression for the periastron advance
for a test particle in a non-spherical polar Kerr–Newman
orbit, assuming a vanishing cosmological constant, in terms
of Jacobi’s amplitude function and Gauß’s hypergeometric
function

��GTR
KN = �� − 2π

= am

(√
Q

4√
1 − E2

1√
α − γ

1√
β − δ

π

2

× F

(
1

2
,

1

2
, 1, κ2

)
,
a2(1 − E2)

Q

)
− 2π. (187)

The Abel–Jacobi’s amplitude am(m, k′2) is the function that
inverts the elliptic integral
∫ �

0

∂�√
1 − k′2 sin2 �

= m (188)

We compute with the aid of (187) the periapsis advance
for the stars S2 and S14 assuming that they orbit in a timelike
non-spherical polar Kerr–Newman geodesic. Our results are
displayed in Tables 6 and 7. We observe that the effect of e
is small.

We also compute with the aid of the following exact
formula for the periapsis advance for an equatorial non-
circular timelike geodesic in the Kerr–Newman spacetime,
first derived in [28]:

δteK N
P := �φGT R

teK N − 2π, (189)

where

�φGT R
teK N = 2

[
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√
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, 1, κ t2+ , κ ′2

)
π

− ω3/2

H−
A−
teK N F1

(
3

2
, 1,

1

2
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π
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+
√
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(
1

2
, 1,

1

2
, 1, κ t2− , κ ′2
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π

]

+ 2
√
ωL√

(1 − E2)(α − β)(β − δ)
F

(
1

2
,

1

2
, 1, κ ′2

)
π

(190)

the pericentre-shift for the stars S2 and S14 for various val-
ues for the spin and charge of the central black hole. The
derivation of the formula (190) as well as the definition of
the coefficients A±

teK N , H± can be found in [28, pp 24–26].

By performing this calculation, we gain a more complete
appreciation of the effect of the electric charge of the rotat-
ing galactic black hole (we assume that the KN solution
describes the curved spacetime geometry around SgrA*) on
this observable. We also assume that the angular momentum
axis of the orbit is co-aligned with the spin axis of the black
hole and that the S-stars can be treated as neutral test parti-
cles i.e. their orbits are timelike non-circular equatorial Kerr–
Newman geodesics. Our results are displayed in Tables 8 and
9. The choice of values for the constants of motion L , E is
restricted by requiring that the predictions of the theory for
the periapsis apoapsis distances and the orbital period are in
agreement with published orbital data from observations in
[15]. It is evident in this case that the value of electric charge
plays a significant role in the value of the pericentre-shift
as opposed to the results in Tables 6 and 7 especially for
moderate values of the spin of the black hole.

We note at this point that a more precise analysis would
involve the calculation of relativistic periapsis advance for
more general timelike non-spherical orbits, inclined non-
equatorial and non-polar in the KN(a)dS spacetime, which
is beyond the scope of the current publication. Such a gener-
alisation is important because the observed high eccentricity
orbits of S-stars are such that: neither of the S stars orbits is
equatorial nor polar. Such a general analysis will be a subject
of a future publication.12

A few further comments are in order. The values of the
hypothetical electric charge of the central Kerr–Newman
black hole have been chosen so that the surrounding space-
time represents a black hole, i.e. the singularity surrounded
by the horizon, the electric charge and angular momentum J
must be restricted by the relation:

GM

c2 ≥
[(

J

Mc

)2

+ Ge2

c4

]1/2

⇔ (191)

GM

c2 ≥
[
a2 + Ge2

c4

]1/2

⇒ (192)

e2 ≤ GM2(1 − a′2) (193)

where in the last inequality a′ = a
GM/c2 denotes a dimen-

sionless Kerr parameter.
The values of the electric charge used for instance in

Tables 7, 8, for the SgrA* galactic black hole correspond

12 For non-spherical non-polar orbits with orbital inclination 0◦ <

i < 90◦ one expects that the resulting periapsis advance has a value
between those calculated using formula (187) and (190) (assuming the
three orbital configurations, polar,non-polar and equatorial have the
same eccentricity and semimajor axis and fixed values of the black hole
parameters).
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Table 6 Periastron precession for the star S2 in the central arcsecond of
the galactic centre, using the exact formula (187). We assume a central
galactic Kerr–Newman black hole with mass MBH = 4.06×106M� and

that the orbit of S2 star is a timelike non-spherical polar Kerr–Newman
geodesic

Star Q/M2 E e/M a/M ��GTR
KN Periapsis rP Apoapsis rA

S2 5693.30424 0.999979485 0.11 0.9939 682.512 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

S2 5693.30424 0.999979485 0.11 0.52 682.533 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

Table 7 Periastron precession for the star S14 in the central arcsecond
of the galactic centre, using the exact formula (187) . We assume a cen-
tral galactic Kerr–Newman black hole with mass MBH = 4.06×106M�

and that the orbit of S14 star is a timelike non-spherical polar Kerr–
Newman geodesic

Star Q/M2 E e/M a/M ��GTR
KN Periapsis rP Apoapsis rA

S14 5321.06355 0.999988863 0.11 0.9939 730.351 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

S14 5321.06355 0.999988863 0.11 0.52 730.376 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

Table 8 Periastron precession for the star S2 in the central arcsecond of
the galactic centre, using the exact formula Eq. (190). We assume a cen-
tral galactic Kerr–Newman black hole with mass MBH = 4.06×106M�

and that the orbit of the star S2 is a timelike non-circular equatorial
Kerr–Newman geodesic

Star L/M E e/M a/M δteK N
p Periapsis rP Apoapsis rA

S2 75.4539876 0.999979485 0.11 0.9939 670.565 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

S2 75.4539876 0.999979485 0.025 0.9939 671.876 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

S2 75.4539876 0.999979485 0.025 0.52 677.571 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

S2 75.4539876 0.999979485 0.1 0.52 676.5 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

S2 75.4539876 0.999979485 0.85 0.52 595.1 arcsec
revol. 1.82 × 1015 cm 2.74 × 1016 cm

S2 72.6190898 0.999979145 0 0.9939 725.018 arcsec
revol. 1.68 × 1015 cm 2.71 × 1016 cm

S2 72.6190898 0.999979145 0.11 0.9939 723.525 arcsec
revol. 1.68 × 1015 cm 2.71 × 1016 cm

S2 72.6190898 0.999979145 0 0.52 731.407 arcsec
revol. 1.68 × 1015 cm 2.71 × 1016 cm

S2 72.6190898 0.999979145 0.11 0.52 728.176 arcsec
revol. 1.68 × 1015 cm 2.71 × 1016 cm

Table 9 Periastron precession for the star S14 in the central arcsecond
of the galactic centre, using the exact analytic formula (189), (190) for
different values of the electric charge and the spin of the galactic black

hole. We assume a central black hole mass MBH = 4.06 × 106M�
and that the orbit of the star S14 is a timelike non-circular equatorial
Kerr–Newman geodesic

Star L/M E e/M a/M δteK N
p Periapsis rP Apoapsis rA

S14 72.9456205 0.999988863 0.11 0.9939 717.128 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

S14 72.9456205 0.999988863 0.025 0.9939 718.531 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

S14 72.9456205 0.999988863 0.11 0.52 723.432 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

S14 72.9456205 0.999988863 0.33 0.52 711.595 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

S14 72.9456205 0.999988863 0.85 0.52 636.568 arcsec
revol. 1.64 × 1015 cm 5.22 × 1016 cm

S14 64.8441485 0.999987653 0 0.9939 907.686 arcsec
revol. 1.29 × 1015 cm 4.73 × 1016 cm

S14 64.8441485 0.999987653 0.11 0.9939 905.812 arcsec
revol. 1.29 × 1015 cm 4.73 × 1016 cm

S14 64.8441485 0.999987653 0 0.52 916.661 arcsec
revol. 1.29 × 1015 cm 4.73 × 1016 cm

S14 64.8441485 0.999987653 0.11 0.52 914.786 arcsec
revol. 1.29 × 1015 cm 4.73 × 1016 cm

to magnitudes:

e = 0.85
√

6.6743 × 10−84.06 × 106 × 1.9884 × 1033esu

= 1.77 × 1036esu ⇔ 5.94 × 1026 C,

e = 0.11
√

6.6743 × 10−84.06 × 106 × 1.9884 × 1033esu

= 2.29 × 1035esu ⇔ 7.65 × 1025 C . (194)

Concerning these tentative values for the electric charge e we
used in applying our exact solutions for the case of SgrA*
black hole we note that their likelihood is debatable: There is
an expectation that the electric charge trapped in the galactic

123



Eur. Phys. J. C (2021) 81 :147 Page 31 of 37 147

nucleous will not likely reach so high values as the ones
close to the extremal values predicted in (193) that allow
the avoidance of a naked singularity. However, more precise
statements on the electric charge’s magnitude of the galactic
black hole or its upper bound will only be reached once the
relativistic effects predicted in this work are measured and
a comparison of the theory we developed with experimental
data will take place.13

5.6 Periapsis advance for non-spherical polar timelike
Kerr–Newman–de Sitter orbits

In this section we are going to derive a new closed form
expression for the pericentre-shift of a test particle in a time-
like non-spherical polar Kerr–Newman–de Sitter geodesic.

After one complete revolution the angular integration has
to satisfy the equation:

∫
dθ√
�′ = 2

∫ rP

rA

dr√
R′ = 2

√
ω√
�
3 H

×
[
−FD

(
1

2
,

1

2
,

1

2
,

1

2
, 1, κ2, λ2, μ2

)
π

+ ωFD

(
3

2
,

1

2
,

1

2
,

1

2
, 2, κ2, λ2, μ2

)
π

2

]
(195)

For computing the radial hyperelliptic integral in (195)14 in
closed analytic form in terms of Lauricella’s multivariable
hypergeometric function FD , we apply the transformation
[46]:

13 In this regard, we also mention that the author in [96], under the
assumption that the curved geometry surrounding the massive object in
the Galactic Centre is a Reissner–Nordström (RN) spacetime, obtained
an upper bound of e � 3.6 × 1027C. This upper bound does not distin-
guish yet between a RN black hole scenario and a RN naked singularity
scenario.
14 The sextic polynomial R′ is obtained by setting μ = 1 and L = 0 in
(11).

z′ = αμ−1 − αμ+1

αμ − αμ+1

r − αμ

r − αμ−1
(196)

The roots of the sextic radial polynomial are organised as
follows:

αν > αμ > αρ > αi , (197)

where αν = αμ−1, αρ = αμ+1 = rP , αμ = rA, αi =
αμ+i+1, i = 1, 3. Also we define:

H ≡ √(αμ − αμ+1)(αμ − αμ+2)(αμ − αμ+3)(αμ − αμ+4),

(198)

ω := αμ − αμ+1

αμ−1 − αμ+1
. (199)

The integral on the left of Eq. (195) is an elliptic integral
of the form:∫

dθ√
�′ = −1

2

∫
dz

√
z
√
a4�

3 (z − z�)(z − z+)(z − z−)
,

(200)

Inverting the elliptic integral for z we obtain:

z = −β1

ω1sn2

(
2

√
ω√
�
3 H

[
−FD

( 1
2 ,β, 1, x

)
π + ωFD

( 3
2 ,β, 2, x

)
π
2

]√
ω1

√
δ1−β1

√
α1−β12a2

2ω1

√
�
3 , �

2

)
− 1

. (201)

Equivalently the change in latitude after a complete radial
oscillation leads to the following exact novel expression for
the periastron advance for a test particle in an non-spherical
polar Kerr–Newman–de Sitter orbit:

θ = arccos ±√
z

= cos−1

⎛
⎜⎜⎜⎜⎜⎝

±
√√√√√√

−β1

ω1sn2

(
2

√
ω√
�
3 H

[
−FD

( 1
2 ,β, 1, x

)
π + ωFD

( 3
2 ,β, 2, x

)
π
2

]√
δ1−β1

√
α1−β1a2√
ω1

√
�
3 , �

2

)
− 1

⎞
⎟⎟⎟⎟⎟⎠
, (202)

where:

β ≡
(

1

2
,

1

2
,

1

2

)
, x ≡

(
κ2, λ2, μ2

)
. (203)

Also the Jacobi modulus � of the Jacobi’s sinus amplitudi-
nous elliptic function in formula (202), for the periapsis
advance that a non-spherical polar orbit undergoes in the
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Kerr–Newman–de Sitter spacetime, is given in terms of the
roots of the angular elliptic integral by:

�2 = ω1δ1

δ1 − β1
= α1 − β1

α1

δ1

δ1 − β1
. (204)

The roots z�, z+, z− appearing in (200) are roots of the poly-
nomial equation:

z3
(
a4�

3

)
− z2 a

2�

3
[Q + (L − aE)2�2] + a2�z2(1 − E2�)

− z{[Q + (L − aE)2�2]�+ a2 + 2aE�2(L − aE)} + Q = 0,
(205)

after setting15 L = 0. Also the variables of the hypergeomet-
ric function FD are:

κ2 = ω
αμ−1 − αμ+2

αμ − αμ+2
= α − β

r1
� − β

r1
� − γ

α − γ

λ2 = ω
αμ−1 − αμ+3

αμ − αμ+3
= α − β

r1
� − β

r1
� − δ

α − δ
(206)

μ2 = ω
αμ−1 − αμ+4

αμ − αμ+4
= α − β

r1
� − β

r1
� − r2

�

α − r2
�

5.7 Computation of first integrals for spherical timelike
geodesics in Kerr–Newman spacetime

The equations determining the timelike orbits of constant
radius in KN spacetime are:

R = r4 + (2Mr − e2)(ηQ + (ξ − a)2)

+ r2(a2 − ξ2 − ηQ)− a2ηQ − r2�
K N

E2 = 0, (207)

∂R

∂r
= 4r3 + 2M

(
ηQ + (ξ − a)2

)
+ 2r(a2 − ξ2 − ηQ)

− 2r
�K N

E2 − r2

E2 (2r − 2M) = 0, (208)

where we define:

ξ ≡ L/E, ηQ ≡ Q

E2 . (209)

Equations (207)–(208) can be combined to give:

3r4 + a2
(
r2 − re2

M

)
− ηQ

(
r2 − a2 − re2

M

)

15 We have the correspondence α1 = z+, β1 = z−, δ1 = z�.

− r2

E2 (3r
2 − 4rM + a2 + e2)

+ re2

ME2 (2r
2 − 3Mr + a2 + e2)− 2e2r3

M

=
(
r2 − e2r

M

)
ξ2, (210)

r4 + ηQ

(
a2 − Mr + e2r

M

)

− r2

E2 r(r − M)− Mra2

+ re2

ME2 (2r − 3Mr + a2 + e2)− 2e2r3

M

= Mr(ξ2 − 2aξ)− e2r

M
ξ2. (211)

These equations can be solved for ξ and ηQ . Thus, elimi-
nating ηQ between them, we obtain:

a2(r − M)ξ2 − 2aM

(
r2 − a2 − e2r

M

)
ξ

−
{
(r2 + a2)[r(r2 + a2)− M(3r2 − a2)+ 2e2r − a2e2

M
]

+2a2e2r

M

(
r − e2

M

)
+ a2e4

M2 − (�K N )2

E2

}
= 0. (212)

We find that the solution of this quadratic equation is given
by:

ξ =
M
(
r2 − a2 − e2r

M

)
± r�K N

√
1 − (1 − M

r

) 1
E2 − (e2−2rM)e2(r−M)a2

rM2(�K N )2
− (r−M)(r2+a2)a2e2

M(�K N )2r2

a(r − M)
. (213)

The parameter ηQ is then determined from equation:

− ηQ

(
r2 − a2 − re2

M

)

= −3r4 − a2
(
r2 − re2

M

)

+ r2

E2 (3r
2 − 4rM + a2 + e2)

− re2

ME2 (2r
2 − 3Mr + a2 + e2)

+ 2e2r3

M
+
(
r2 − e2r

M

)
ξ2. (214)

For zero electric charge e = 0, Eqs. (213) and (214) reduce
correctly to the corresponding equations for the first integrals
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of motion in Kerr spacetime [76]:

ξ =
M(r2 − a2)± r�

√(
1 − 1

E2 (1 − M
r )
)

a(r − M)
,

(215)

ηQa
2(r − M) = r3

M
[4a2M − r(r − 3M)2]

− 2r3M

r − M
�

[
1 ±
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1 − 1

E2

(
1 − M

r

)]

+ r2

E2 [r(r − 2M)2 − a2M]. (216)

5.8 The apparent impact factor for more general orbits

The apparent impact parameter � for the Kerr–Newman–
(anti) de Sitter black hole can also be computed in the case
in which the considered orbits depart from the equatorial
plane and therefore θ �= π/2. Again, we compute this quan-
tity from the kμkμ = 0 relation just taking into account its
maximum character, i.e., that kr = 0. Our calculation yields:

�γ =
−[a�2(r2 + a2)− a�2�K N

r ] ±
√
�2�K N

r [�2r4 + Qγ (a2 −�K N
r )]

−a2�2 +�2�K N
r

.

(217)

Our exact expression (217) for the apparent impact parameter
in the KN(a)dS spacetime, for zero cosmological constant
(� = 0) and zero electric charge (e = 0), reduces to Eq. (59)
(the apparent impact parameter for the Kerr black hole) in
[55]. Also for zero value for Carter’s constant Qγ Eq. (217)
reduces to Eq. (55).

6 Conclusions

In this work using the Killing-vector formalism and the asso-
ciated first integrals we computed the redshift and blueshift
of photons that are emitted by geodesic massive particles and
travel along null geodesics towards a distant observer-located
at a finite distance from the KN(a)dS black hole. As a concrete
example we calculated analytically the redshift and blueshift
experienced by photons emitted by massive objects orbiting
the Kerr–Newman–(anti) de Sitter black hole in equatorial
and circular orbits, and following null geodesics towards a
distant observer.

In addition and extending previous results in the litera-
ture we calculated in closed analytic form firstly, the frame-
dragging that experience test particles in non-equatorial
spherical timelike orbits in KN and KNdS spacetimes in
terms of generalised hypergeometric functions of Appell and
Lauricella. We also derived new exact results for the frame-

dragging, pericentre-shift and orbital period for timelike non-
spherical polar geodesics in Kerr–Newman spacetime and
applied them for the computation of the corresponding rela-
tivistic effects for the orbits of stars S2 and S14 in the central
arcsecond of SgrA*, assuming the Galactic centre supermas-
sive black hole is a Kerr–Newman black hole for various val-
ues of the Kerr parameter and electric charge. Secondly, we
computed in closed analytic the periapsis advance for time-
like non-spherical polar orbits in Kerr–Newman and Kerr–
Newman de Sitter spacetimes. In the Kerr–Newman case,
the pericentre-shift is expressed in terms of Jacobi’s ampli-
tude function and Gauß hypergeometric function, while in
the Kerr–Newman–de Sitter the periapsis-shift is expressed
in an elegant way in terms of Jacobi’s sinus amplitudinus
elliptic function sn and Lauricella’s hypergeometric function
FD with three-variables.

We also computed the first integrals of motion for
non-equatorial Kerr–Newman and Kerr–Newman–de Sitter
geodesics of constant radius. We achieved that by solving
the conditions for timelike spherical orbits in KNdS and
KN spacetimes. We derived new elegant compact forms for
the parameters (constants of motion) of these orbits. Our
results are culminated in Theorems 5 and 7. These expres-
sions together with the analytic equation for the apparent
impact factor we derived in this work-Eq. (217), can be used
to derive closed form expressions for the redshift/blueshift of
the emitted photons from test particles in such non-equatorial
constant radius orbits in Kerr–Newman and Kerr–Newman
(anti) de Sitter spacetimes. A thorough analysis will be a task
for the future.16 Such a future endeavour will also involve the
computation of the redshift/blueshift of the emitted photons
for realistic values of the first integrals of motion associated
with the observed orbits of S-stars (the emitters) such as those
of Sect. 5.5, especially when the first measurements of the
pericentre-shift of S2 will take place. The ultimate aim of
course is to determine in a consistent way the parameters
of the supermassive black hole that resides at the Galactic
centre region SgrA*.

It will also be interesting to investigate the effect of a
massive scalar field on the orbit of S2 star and in particular
on its redshift and periapsis advance by combining the results
of this work and the exact solutions of the Klein–Gordon–
Fock (KGF) equation on the KN(a)dS and KN black hole
backgrounds in terms of Heun functions produced in [99,

16 Another interesting application of the theory of the frequency shift
of the photons developed in this paper, is the possibility to focus on
the measurements of the special class of the principal null congruences
(PNC) photons as was shown for PNC photons emitted from sources on
equatorial circular orbits around a Kerr naked singularity in [97]. The
significance of the PNC photon trajectories lies in the fact that they mold
themselves to the spacetime curvature in such a way that, ifCαβγ δ is the
Weyl conformal tensor and ∗Cαβγ δ is its dual, then Cαβγ [δkε]kβkγ = 0
and ∗Cαβγ [δkε]kβkγ = 0 [98].
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100] (see also [74]) . This research will be the theme of a
future publication.17

The fruitful synergy of theory and experiment in this fas-
cinating research field will lead to the identification of the
resident of the Milky Way’s Galactic centre region and will
provide an important test of General Relativity at the strong
field regime.
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Appendix A: Linking the equatorial circular radii for
emitter and detector

In this Appendix and for the case of a Kerr–Newman black
hole we will show how the radii of the emitter and detec-
tor can be linked for circular equatorial orbits through the
constants of motion Lγ , Eγ . The procedure was followed
in [55] for the Kerr black hole. Indeed, from the fact that
the first integrals of motion Lγ , Eγ and hence the apparent
impact parameter� are preserved along the whole trajectory
followed by the photons, the latter quantity is the same when
evaluated either at the emitter or detector positions, rendering
the following relation �e = �d . For circular and equatorial
orbits the maximised impact parameter for a Kerr–Newman

17 An initial study of such hypothetical scalar effects has been per-
formed by Gravity Collaboration for the Kerr background and in solv-
ing approximately the KGF equation for the case in which the Compton
wavelength of the scalar field is much larger than the gravitational radius
of the black hole [68].

black hole is given by the expression:

�γ = −a(2Mr − e2)± r2
√
r2 + a2 + e2 − 2Mr

r2 + e2 − 2Mr
. (218)

Its preservation provides the following equation that must be
satisfied by the radius of a circular equatorial observer:

(r2 − 2Mr + e2)

× (r4 + r2(a2 −�e)+ 2Mr(�e − a)2

− e2(�e − a)2) = 0 (219)

The roots of the quartic equation in (219) can be obtained
either by the Ferrari algorithm or in a more elegant way by
the use of the Weierstraß functions making use of the addition
theorem for points on the elliptic curve [28]:

α = 1

2

℘′(−x1/2 + ω)− ℘′(x1)

℘ (−x1/2 + ω)− ℘(x1)
, (220)

β = 1

2

℘′(−x1/2 + ω + ω′)− ℘′(x1)

℘ (−x1/2 + ω + ω′)− ℘(x1)
, (221)

γ = 1

2

℘′(−x1/2 + ω′)− ℘′(x1)

℘ (−x1/2 + ω′)− ℘(x1)
, (222)

δ = 1

2

℘′(−x1/2)− ℘′(x1)

℘ (−x1/2)− ℘(x1)
, (223)

where the point x1 is defined by the equation:

a2 −�2 = −6℘(x1), (224)

and ω,ω′ denotes the half-periods of the elliptic function ℘.
The equations

2(a −�)2 = 4℘′(x1),−3℘2(x1)+ g2 = −e2(�− a)2

(225)

determine the Weierstraß invariants (g2, g3) with the result:

g2 = 1

12
(a2 −�2)2 − e2(�− a)2, (226)

g3 = − 1

216
(a2 −�2)3 − 1

4
(a −�)4

− e2(�− a)2
(
a2 −�2

6

)
. (227)

The maximum root provides the circular radius of the detec-
tor. For zero electric charge, e = 0 (i.e. Kerr black hole) the
detector radius reduces to the result obtained in [55]:

rd =
√
�e − a

3

[(
−
√

27M2(�e − a)

+
√

27M2(�e − a)+ (�e + a)3
) 1

3
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+ (�e + a)

(
−
√

27M2(�e − a)

+
√

27M2(�e − a)+ (�e + a)3
)− 1

3
]
. (228)
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Astron. 48, 653 (1998)
60. G.F. Rubilar, A. Eckart, A&A 374, 95 (2001)
61. P.C. Fragile, G.J. Mathews, ApJ 542, 328 (2000)
62. N.N. Weinberg, M. Milosavljević, A.M. Ghez, ApJ 622, 878
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