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Abstract We revisit a nearly 10-year old controversy on
the diphoton decay of the Higgs particle. To a large extent,
the controversy turned around the respective merits of the
regularization techniques employed. The novel aspect of our
approach is that no regularization techniques are brought
to bear: we work within the Bogoliubov–Epstein–Glaser
scheme of renormalization by extension of distributions.
Solving the problem actually required an expansion of this
method’s toolkit, furnished in the paper.

Die Eule der Minerva beginnt erst mit der einbrechenden Dämmerung
ihren Flug

– Georg Wilhelm Friedrich Hegel

1 Introduction: the controversy

Due to its cleanness, it is hard to overstate the experimen-
tal importance of the decay of the Higgs particle into two
photons. It goes mainly via virtual W -bosons, the heavier
charged particles of flavourdynamics. The amplitude of this
contribution was calculated to the first non-vanishing order
(one-loop, cubic in the couplings) long ago in the light-higgs
limit [1] – and then “exactly” in [2]. The accepted result was
confirmed many times – see [3] for a particularly clever cal-
culation. It does not vanish in the heavy-higgs limit – which
seems to fly in the face of the “decoupling theorem” (DT) in
[4], as often understood.

Much more recently, those calculations were questioned
in [5,6]. The ensuing debate highlights the theoretical rel-
evance of this decay. The authors of these papers made the
point that, since the higgs cannot couple directly to the pho-
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tons, the one-loop contribution must be finite: there are no
couplings requiring “renormalization”. The roundabout pro-
cedures through “renormalizable gauges”, they concluded,
were unnecessary. Eschewing dimensional regularization,
they recomputed the amplitude in the unitary gauge of elec-
troweak (EW) theory. They did obtain a result differing from
the standard one by an additive constant, which shows up
for instance in the heavy-higgs limit – whereby their result
is equal to zero.

There was no shortage of rejoinders [7–14] to [5,6]. The
authors of [9] are the ones of the original calculation [2].
Those papers made several points, some rather implausibly
arguing that at a given point in the calculation in [6] electro-
magnetic gauge invariance is lost, and criticizing the inter-
pretation of the DT made in [5,6]. There was in some of
the the rejoinders an explanatory reliance on the heuristics
of the Brout–Englert–Higgs mechanism, throwing back the
so-called “equivalence theorem” (GBET).

The criticisms received a rejoinder in turn in [15]. This
later paper argues by the example that two computations
of the same process in different gauges (Rξ versus unitary
gauge) may yield different results. This goes against the
grain, although of course no theorem contradicts such an
assertion. Meanwhile, a dispersion relation calculation car-
ried out in [16] appeared to support the contentions of [5,6],
and got in turn a – quite thoughtful – rejoinder in [17]. More
recent papers dealing with the same or related issues are
[18,19].

By and large, the majority’s opinion and the experimental
results [20] support the first tally. On the other hand, from
the theoretical point of view the situation is still obscure: it
had to be so, since both parties draw strength from different
casuistics of the calculations in perturbative quantum field
theory.

The debate about the uses and abuses of the unitary gauge
and the role of the decoupling and equivalence “theorems”
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is to be saluted as salutary. And it is safe to admit that up to
now we lack a full conceptual understanding of the problem.
The cleanest way to address this lack is surely to renounce
all the heuristics of mathematically ill-defined quantities, in
favour of a method in which there can be no argument on the
meaning of infinite terms. Such is the truly (perturbatively)
stringent scheme by Bogoliubov, Epstein and Glaser (BEG)
of “renormalization” without regularization, by extension of
distributions.

In the BEG construction, governed by causality, there is
no such thing as a “divergent diagram”: one never encounters
infinities. There may, however, remain in the extension pro-
cedures some additive ambiguity, that can be restricted (but
not always completely removed) by physical principles. This
is rather to be regarded as a strength of the BEG paradigm,
because those ambiguities express precisely how, and to what
extent, the theory is determined by the fundamental princi-
ples of perturbative QFT.

A particular advantage of the inductive BEG construction
[21] of the (functional) S-matrix is that in principle one is
allowed to stay on configuration space, which makes more
transparent the physics under examination. For examples of
calculations within the BEG scheme explicitly carried out in
configuration space, see [22] or [23, Sect. 3.5]. It is only for
computational convenience that we switch at some moment
to momentum space.

Since we do not deal in infinities, we refer as normal-
ization to the processes taking the place of regularization
and renormalization in the BEG framework. For its relative
paucity of diagrams, in our context the underlying argument
is made clearer by working mostly in the unitary gauge –
whereupon only the physical particles’ data are brought to
bear.1

To summarize, so far: we were motivated to tackle this
subject by wondering why most knowledgeable people, bor-
rowing different (but all apparently sound) methods to work
on such a basic process, were divided on the outcome. It all
turns around a subtlety uncovered by use of the BEG nor-
malization. That condenses the purpose of the present paper.

1.1 Main results and plan of the article

In Appendix A we introduce our conventions and notations,
recalling a few well-known formulae of QFT needed in the
body of the paper, in particular the propagators for the EW
theory in the unitary gauge. Let mh denote the mass of the
higgs h. The amplitude coming from the one-loop calcula-
tions may be quoted as [25–27]:

1 The paper [24] dwells usefully on the subject of the Rξ -versus-unitary
gauges, leaning to demonstrate the validity of the latter at the quantum
level.

A = gα

2π M
F1(ρ)Pμν,

with α the fine structure constant, g the EW coupling con-
stant, M the mass of the intermediate W -boson and ρ :=
m2

h/4M2. The polarization factor Pμν , reflecting electromag-
netic gauge invariance (EGI) of A,2 is written in this paper
as

Pμν := (k1k2)gμν − k1νk2μ; (P•νk1) = (Pμ•k2) = 0,

(1.1)

with k1, k2 the outgoing photons’ momenta. Finally, for the
dimensionless factor:

F1(ρ) := 2 + 3

ρ
+ 3

ρ

(
2 − 1

ρ

)
f (ρ). (1.2)

Now that we are at that, we quote as well the comparable
result for a charged scalar particle of mass M at the place of
the W -boson:

F0(ρ) = 1

ρ

(
1 − f (ρ)

ρ

)
; so that

F1(ρ) = 3F0(ρ)+ 6 f (ρ)

ρ
+ 2. (1.3)

For the benefit of the reader coming to the subject of this paper
for the first time, Appendix B introduces the distribution f (ρ)

appearing in both F1 (1.2) and F0 (1.3) – as well as in the
amplitude of diphoton decay of h via virtual fermions.

The bone of contention is that the first summand 2 in (1.2)
should not be there, according to [5,6,16]. Relations (B.3)
and (B.6) tell us that, as ρ ↓ 0:

F1 = 2 + 3

ρ
+

(
6

ρ
− 3

ρ2

)(
ρ + ρ2

3
+ 8ρ3

45
+ · · ·

)

= 7 + 22

15
ρ + O(ρ2);

so F1(0) = 7 and F1(∞) = 2 from (1.2). Precisely the
former figure is what was calculated in the paper [1]. The
result argued by the “heretics” in the controversy is F1 −
2, so their respective assertions are instead F1(0) = 5 and
F1(∞) = 0. Also, from (1.3): F0(0) = −1/3 and F0(∞) =
0.

Appendices A and B of this paper deal with conven-
tions and mathematical prerequisites. The basics of the BEG
scheme are recalled in Appendix C. Understanding of the
BEG method is indispensable in what follows, and even read-
ers familiar with it are advised not to miss our review. The
relation between the normalization problem by extension of
distributions (or by “distribution splitting”) and dispersion
integrals is treated in its Sect. 1. New results in this respect
are required, announced in the short Sect. 2 and proved in
Sects. 3.2 and 3.3 of this paper. So for aficionados of BEG

2 That is, transversality of the outgoing photons.
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normalization there is novelty here – whose interest goes
beyond the particular problem that motivated it.

Sections 3 and 4 constitute the heart of the paper. The
scalar model leading to F0 is worked out in Sect. 3. One is
able to perform the “adiabatic limit” of Epstein and Glaser
at an intermediate step, which simplifies computations – this
is rigorously justified. This “toy model” allows the reader
to familiarize with the BEG construction of time-ordered
products in a relatively simple case. For it, the ambiguity in
the Epstein–Glaser result can be disposed of, and the unique
outcome happens to coincide with the result of a “naive”
on-shell calculation, of the kind performed in [16].

Finally, in Sect. 4, we compute the EW amplitude, work-
ing first in the unitary gauge. We start in earnest by illustrat-
ing in this relevant instance the machinery of the BEG for-
malism in constructing time-ordered products, at the lowest
non-trivial order: from cubic interaction vertices, identified
to time-ordered products at first order in the couplings, we
derive the quartic, second-order AAW W †-vertex.

It is time to aver why the “no-renormalization” argument
in [6] is not watertight. A direct hγ γ coupling in flavourdy-
namics is forbidden also because of EGI. Thus to obtain the
general amplitude, which lives off-shell, one must add to the
naive calculations a polynomial in the external momenta,
of degree given by the singular order of that amplitude.
Computing the 1-loop contribution in the unitary gauge by
the Epstein–Glaser method, we ratify this fact. To find the
coefficients of that polynomial, beyond EGI here we call
upon gauge-fixing independence of the on-shell amplitude.
This locks in the indetermination; and in the end we do
obtain F1(ρ). Within the unitary gauge, a different argument
to the same purpose is discussed at the end of this Sect. 4.
Section 5 is the conclusion.

2 The obstruction to distribution splitting for null
momenta

Formula (C.16) in Appendix C is our main workhorse: in
momentum space the Epstein–Glaser distribution splitting
amounts to a dispersion integral. But it pertains to remark
that, by construction, prescriptions (C.14) and (C.16) are in
principle valid only for timelike k. Thus, in order to solve
the problem in this paper, one has to run an extra mile.
The explicit splitting procedure introduced here exhibits rel-
evant novel features: we have to compute the central solu-
tion ac(k1, k2) for null momenta. Hence, one cannot immedi-
ately use the dispersion integrals (C.14) or (C.16). On trying
to work instead with the convolution integral (C.13), there
appears the problem that, in spite of k2

j = 0, it generally holds

that (k j − v j )
2 �= 0 because v j ∈ V+; it does not suffice to

know the causal distribution d(k1, k2) only for k2
1 = 0 = k2

2.

The next section solves this problem for models such that
0 < (k1 + k2)

2 < 4M2 and k0
1k0

2 > 0. The proof’s strategy
is as follows: starting from the dispersion integral (C.14)
for k2

1 > 0, k2
2 > 0 and k0

1k0
2 > 0, we intend to show

that d(k1, k2) is regular enough that this integral commutes
with the limit (k2

1 ↓ 0 ∧ k2
2 ↓ 0). Therefore the disper-

sion integrals (C.14) and (C.16) keep their usefulness for
k2

1 = 0 = k2
2: indeed, for computing ac(k1, k2)|k2

1=0=k2
2

it

suffices to know d(k1, k2) only for k2
1 = k2

2 = 0, because
k2

1 = k2
2 = 0 implies (tk1)

2 = (tk2)
2 = 0 for all t .

Crucially, in the resulting dispersion integrals (C.14) and
(C.16) for k2

1 = 0 = k2
2, the parameter ω is the singular order

of the off-shell d(k1, k2). As a consequence, the general solu-
tion (prior to imposition of other invariance rules) of the dis-
tribution splitting is obtained by adding to ac(k1, k2)|k2

1=0=k2
2

a polynomial in k1, k2, in principle arbitrary, whose degree
is given by the singular order of the off-shell amplitude
d(k1, k2). Now, it frequently happens that the singular order
of d(k1, k2)|k2

1=0=k2
2

has a smaller value. Consequently, it
may happen that the required dispersion integral appears to
be “oversubtracted” – i.e., it would be convergent also for a
smaller value of ω. Examples for this are the “toy model” in
the next section and the EW diphoton decay of the higgs in
the unitary gauge (Sects. 3.3 and 4.3, respectively).

These issues were realized by Raymond Stora, who, refer-
ring to the very subject process of this paper, pointed out to
one of us that the good behaviour of the absorptive part of the
form factor involving Compton scattering of the W -bosons
should not make one forget that BEG-generated dispersion
integrals, just as perturbative renormalization theory in gen-
eral, applies off-shell. 3

3 Higgs to diphoton decay via a charged scalar field

The scalar electrodynamics computation leading to F0 works
like a kind of toy model, allowing the reader to familiarize
with our methods in a less complicated, although non-trivial
case. We develop it in the present section. Notice the follow-
ing: in the Epstein–Glaser scheme the “seagull” e2 AAϕϕ†-
vertex is derived by implementing EGI within the construc-
tion rules of the method – as any other part of T2 [28]. We
give full details on how this comes about for the quartic ver-
tex in the EW theory in Sect. 4.1. The game here would be
similar, only simpler. The reader is advised to keep in mind
the methods and standard notations recalled in Sect. C.2.

3 Private communication, early 2013.
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3.1 A causal distribution on-shell

The starting point is given by the lower order time-ordered
products (TOPs):

T1(x3) = gM h(x3) ϕ(x3) ϕ†(x3);
T1(x j ) = −ieAλ(x j ) ϕ†(x j )

←→
∂λ ϕ(x j ), j = 1, 2;

T2(x1, x2)

= −e2 Aμ(x1)Aν(x2)
[
ϕ†(x1) ∂μ�F (x1 − x2) ∂νϕ(x2)

− ∂μϕ†(x1)�
F (x1 − x2) ∂νϕ(x2)

+ ϕ†(x1)
(
∂ν∂μ�F (x1 − x2)+ igμν δ(x1 − x2)

)
ϕ(x2)

− ∂μϕ†(x1) ∂ν�
F (x1 − x2) ϕ(x2)

]
+ (x1 ↔ x2)+ T1(x1) T1(x2)

+ [irrelevant loop diagram terms],

where �F denotes the Feynman propagator (A.3).
From our formulas (C.4) and (C.5):4

D3(x1, x2, x3) = −[T 1(x1), T2(x2, x3)]
−[T 1(x2), T2(x1, x3)] + [T 2(x1, x2), T1(x3)]. (3.1)

Because the photons emitted at x1, x2 are on-shell, only
the third commutator is relevant here – in the language of
Cutkosky rules, one needs only the triangle cut separating
the higgs vertex from the propagator connecting the photons.
We give the explanation further on. From the general formula
for the antichronological product (C.3), we particularly know
that

T 1(x1) = T1(x1); T 2(x1, x2) = −T2(x1, x2)

+T1(x1)T1(x2)+ T1(x2)T1(x1). (3.2)

For the same reasons just argued, only the connected tree
diagram part of the T2(x1, x2) summand in T 2(x1, x2) con-
tributes.

A most convenient parallel for the coming calculation is
the treatment of the vertex function in QED in the first edition
of the finite QED book by Scharf [29, Sect. 3.8]. Going to
the contractions, bringing in the vertices and the propagators
(A.2), (A.4), apart from a factor 4ge2 M we obtain:

Aμ(x1)Aν(x2)h(x3)
[
�−(1) ∂μ�F (1 − 2) ∂ν�−(2)

− ∂μ�−(1) ∂ν�F (1 − 2) �−(2)

− ∂μ�−(1) �F (1 − 2) ∂ν�−(2)+�−(1)
(
∂μ∂ν�F (1 − 2)

+ igμν δ(1 − 2)
)
�−(2)

− [the same four terms with �− replaced by �+] + · · · ]
=: Aμ(x1)Aν(x2)h(x3) dμν(1, 2),

4 The Dn are always linear combinations of commutators.

where 1 ≡ y1 := x1 − x3, 2 ≡ y2 := x2 − x3. Here and
further down, the dots stand for the terms coming from the
other two cuts and further terms not contributing to the on-
shell amplitude. Note the advertised additional +igμν δ to
∂μ∂ν�F , corresponding to the “closed seagull” or fish-like
diagram contribution to the h → 2γ decay in this model.

We now proceed to momentum space, where compu-
tations are carried out more simply. For Fourier transfor-
mations, consult the convention (C.7). In this section and
the next, in keeping with physicists’ notation, we indi-
cate the transforms by just exhibiting the variables, namely:
dμ(k1, k2) ≡ d̂μ(k1, k2). We obtain

dμν(k1, k2) = 1

(2π)2

[
4(I μν

+ − I μν
− )+ 2kν

2 (I μ
+ − I μ

−)

− 2kμ
1 (I ν+ − I ν−)− kμ

1 kν
2 (I+ − I−)

− i

(2π)2 gμν (J+ − J−)

]
+ · · · (3.3)

with the integrals

I {·|μ|μν}
± (k1, k2) :=

∫
d4k {1|kμ|kμkν}�±(k1 − k)

�F (k)�±(k + k2),

J±(k1, k2) :=
∫

d4k �±(k1 − k)�±(k + k2), (3.4)

where the J±-term is the contribution of the fish-like diagram.
Keep in mind that the terms belonging to A′3 := A3 − T3 are

those coming from the integrals I ·|μ|μν
− and J−, whereas the

contribution of R′
3 := R3−T3 is given by the integrals I ·|μ|μν

+
and J+.

For our purposes one may perform the adiabatic limit
already at this stage. Since all internal lines of the diagrams
correspond to massive fields, this limit can be done here in
the naive way by just setting the switching function g(x)

in (C.1) to 1:

∫
dx1 dx2 dx3 Aμ(x1)Aν(x2)h(x3) dμν(x1 − x3, x2 − x3)

= (2π)2
∫

dk1 dk2 h(k1 + k2)Aμ(−k1)Aν(−k2) dμν(k1, k2).

(3.5)

In this limit the momenta k1 and k2 become the momenta of
the external photons: k2

1 = k2
2 = 0.

From now on, we compute dμν(k1, k2)|k2
1=0=k2

2
. Were we

to have included the other cuts in (3.1) or T1T1T1-terms, there
would appear �±-type propagators at the place of the Feyn-
man propagators above. The former are ∼ δ(k2 − M2), with
k denoting the internal momentum variable in the loop: so to
speak, in contrast with the Feynman propagators, the �± are

123



Eur. Phys. J. C (2021) 81 :131 Page 5 of 25 131

“always on-shell”, even within loops.5 Thus no further inter-
nal momenta can be on-shell: assuming k2 = M2 one obtains
(k1 − k)2 = M2 − 2(k1k) �= M2; similarly for (k + k2). 6

Scalar integrals I±.
We have to compute

I∓(k1, k2)

:= i

(2π)4

∫
d4k θ(∓(k0

1 − k0)) δ((k1 − k)2 − M2)

× 1

k2 − M2 + i0
θ(∓(k0 + k0

2)) δ((k + k2)
2 − M2).

Let us make a change of variable q := k + k2, and introduce
P := k1 + k2, noting for later purposes that P2 = 2(k1k2).
One obtains the integral:

∫
d4q θ(∓(P0 − q0)) δ((P − q)2 − M2)

1

(q − k2)2 − M2 + i0
θ(∓q0) δ(q2 − M2). (3.6)

It follows that I∓(k1, k2) ∝ θ(∓P0) θ(P2 − 4M2), and that
sgn k0

1 = sgn k0
2 for P2 ≥ 4M2.

Performing the q0-integration and using the notation
Eq :=

√|q|2 + M2, we extract

I∓(k1, k2) = i

(2π)4 θ(∓P0) θ(P2 − 4M2)

×
∫

d3q

2Eq
θ(∓(P0 − q0)) δ((P − q)2 − M2)

1

(q − k2)2 − M2 + i0

∣∣∣∣
q0=∓Eq

.

Since P2 > 0, one may choose a particular Lorentz frame
such that

P = (P0, 0); hence

k1 = −k2, k0
1 = ∓|k1| = ∓|k2| = k0

2 =
1

2
P0. (3.7)

Taking into account q2 = M2, we observe that (P − q)2 −
M2 = 2P0( 1

2 P0 − q0), which yields

δ((P − q)2 − M2) = δ(q0 − 1
2 P0)

2|P0| = δ(Eq − 1
2 |P0|)

2|P0| ,

by using q0 = ∓Eq . For later aims, we point out that in the
chosen frame this distribution implies q0 = k0

2; hence

k P = (q − k2)P = (q0 − k0
2)P0 = 0. (3.8)

5 This point is made in [30, Sect. 6.4].
6 Compare the discussion after [29, Eq. (3.8.24)].

From ∓q0 = ∓ 1
2 P0 comes ∓(P0 − q0) = ∓ 1

2 P0 > 0.
Therefore the factor θ(∓(P0 − q0)) is redundant. Changing
the integration variables,∫

d3q · · · =
∫ ∞

M
d Eq Eq

√
E2

q − M2

∫
d�q · · · ,

the Eq -integration can trivially be done, and we are left with:

I∓(k1, k2) = i θ(∓P0) θ(P2−4M2)√
(P0)2 − 4M2

(2π)4 8|P0|
∫

d�q

(q − k2)2 − M2 + i0

∣∣∣∣
q0=P0/2

. (3.9)

Let α be the angle between k2 and q, and let z :=
cos α. Due to q2 = M2, k2

2 = 0, |q| =
√

E2
q − M2 =

1
2

√
P2

0 − 4M2 and relations (3.7) and (3.8), we obtain

(q − k2)
2 − M2 = −2(k2q) = −2(k0

2q0 − |q| · |k2| z)

= a
2 (−a + bz), (3.10)

where

a := |P0| > 0, 0 ≤ b :=
√

(P0)2 − 4M2 < a.

We point out that (−a + bz) < 0 for all z ∈ [−1, 1]: there
is no infrared problem in our triangle graph. The remaining
�q -integral can be easily computed:

4π

a

∫ 1

−1

dz

−a + bz

= 4π

|P0|
√

(P0)2 − 4M2
log

(P0)2 − |P0|
√

(P0)2 − 4M2 − 2M2

2M2 .

(3.11)

To obtain the result in a generic Lorentz frame, replace (P0)2

by s := P2 = 2(k1k2), so

I∓(k1, k2) = iθ(∓P0) θ(s − 4M2)

4(2π)3 s
log

[
s −√

s(s − 4M2)

2M2 − 1

]

=: θ(∓P0) θ(s − 4M2)F(s). (3.12)

The result for J±(k1, k2) can be read off from (3.9) by
omitting the Feynman propagator i(2π)−2 ((q−k2)

2−M2+
i0)−1. One obtains for the contribution of the J -integrals:

J±(k1, k2) = 1

8π
θ(±P0) θ(s − 4M2)

√
1 − 4M2/s .

Vector integrals I μ
∓ .

For the same reasons as for the scalar integral, it must
hold that I μ

∓(k1, k2) ∝ θ(∓P0) θ(s − 4M2). From Lorentz
covariance and I μ

±(k1, k2) = −I μ
±(k2, k1) it follows

I μ
∓(k1, k2) = θ(∓P0) θ(s − 4M2) (kμ

1 − kμ
2 ) G(s)

123



131 Page 6 of 25 Eur. Phys. J. C (2021) 81 :131

for appropriate G(s). An immediate consequence is I μ Pμ =
0. To procure G(s), compute

k2,μ Iμ
∓(k1, k2) = 1

2
θ(∓P0) θ(s − 4M2) s G(s)

= (−i/8 (2π)3)
θ(∓P0) θ(s−4M2)

√
1−4M2/s

The second equality is obtained by comparing with the scalar
integral: there is an extra factor (k2k) = (k2q) = −a(−a +
bz)/4, where (3.10) is used. Then the �q -integral becomes
trivial. Thus we glean

G(s) = −i

32 π3 s

√
1 − 4M2/s . (3.13)

Tensor integrals I μν
∓ .

Proceeding analogously to the vector integrals, one argues
that

I μν
∓ (k1, k2) = θ(∓P0) θ(s − 4M2)

[
(kμ

1 kν
1 + kμ

2 kν
2 ) A(s)

+(kμ
1 kν

2 + kμ
2 kν

1 ) B(s)+ gμν C(s)
]
.

We need three independent identities to compute A(s), B(s)
and C(s). A first one is:

I μν
∓ k2μk2ν = θ(∓P0) θ(s − 4M2) A(s) s2/4

= θ(∓P0) θ(s − 4M2)
−i

25 (2π)3
s
√

1 − 4M2/s .

(3.14)

The second equality is obtained by a modification of the
computation of the scalar integral: there is the extra factor
(k2k)2 = a2(−a + bz)2/16. This yields A(s) = G(s)/2.
A second identity is given by the trace. The result is again
obtained by comparing with the computation of the scalar
integral: there is an additional factor k2 = (q − k2)

2 =
M2 − 2(k2q) = M2 − 2(kk2), hence

I μ
∓,μ = θ(∓P0) θ(s − 4M2) (s B + 4C) = M2 I∓ − 2k2,μ I μ

∓ .

A third identity following from (3.8) reads:

I μν
∓ Pν = θ(∓P0) θ(s − 4M2) Pμ

(
(A + B)s/2 + C

) = 0.

Pulling together these results, one arrives at

B(s) = −M2 F(s)/s and C(s) = M2 F(s)/2 − s G(s)/4.

•At this point we are able to show that the triangle plus
fish-like parts constitute a gauge-invariant quantity. For that,
insert the results already known for the integrals into (3.3),
obtaining:

dμν(k1, k2)

∣∣∣∣
k2

1=0=k2
2

= sgn(P0) θ(s − 4M2)

(2π)2

[
kμ

1 kν
2 [4G(s)

− (1 + 4M2/s)F(s)]

+ 2M2gμν F(s)− kν
1 kμ

2
4M2

s
F(s)

]

= sgn(P0) θ(s − 4M2)
4M2

(2π)2 Pμν F(s)

s
. (3.15)

The kμ
1 kν

2 -terms have been dropped in the last identity, due
to kμ Aμ(−k) = 0. The remainder is electromagnetically
gauge-invariant. Introducing the dimensionless variable

ρ̃ := s

4M2 = P2

4M2 ,

keeping in mind formula (3.12), and on use of (B.5), equation
(3.15) can be rewritten as

dμν
gi (k1, k2)

∣∣∣∣
k2

1=0=k2
2

:= i sgn(P0) θ(ρ̃ − 1)

(2π)5
Pμν b(ρ̃)

(3.16)

with

b(ρ̃) := 1

16 M2 ρ̃2 log
(
2ρ̃ − 2

√
ρ̃(ρ̃ − 1)− 1

)

= − 1

16 M2 ρ̃2 log
1 +√

1 − ρ̃−1

1 −√
1 − ρ̃−1

,

where ‘gi’ stands for the gauge invariant part. The singular
order of dμν

gi

∣∣
k2

1=0=k2
2

is ω = −2 by power counting; whereas

for the off-shell dμν(k1, k2) the value is ω = 0.

3.2 Regularity of absorptive parts in momentum space

This subsection is devoted to prove essential regularity
properties of the off-shell d-distribution, more precisely of
dμν(k1, k2), for (k1, k2) ∈ V := (

V+\{0}
)×2∪(

V−\{0}
)×2.

We look at the terms coming from (3.3) by means of (3.4).
Introducing the new integration variable q := −k + 1

2 (k1 −
k2), the internal lines’ momenta are

q1 = q + 1

2
P, q2 = q − 1

2
P, q3 = q − 1

2
(k1 − k2),

(3.17)

and one sees that the considered terms are all of the type

Hμν(k1, k2)

:=
∫

d4q
(
θ(q0

1 ) θ(−q0
2 )

− θ(−q0
1 ) θ(q0

2 )
)
δ(q2

1 − M2) δ(q2
2 − M2)

hμν(k1, k2, q)

M2 − q2
3
(3.18)

123
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for (k1, k2) ∈ V1 :=
(
V \ {0})×2 with V := V+ ∪ V−, and

where hμν : R4×3 → C is a polynomial of degree 2. We
have used that for (k1, k2) ∈ V1 it holds true that

∫
d4q

(
θ(q0

1 ) θ(−q0
2 )

−θ(−q0
1 ) θ(q0

2 )
)
δ(q2

1 − M2) δ(q2
2 − M2) δ(q2

3 − M2) = 0.

(3.19)

This last relation can be argued as follows:7the various θ -
and δ-distributions yield the restrictions (q1, q2) ∈ (H+

M ×
H−

M ) ∪ (H−
M × H+

M ) and q3 ∈ H+
M ∪ H−

M ; taking moreover
into account that q3 = q2 + k2 and q3 = q1 − k1, it ensues
that the various restrictions on q3 are not compatible.

The same identity implies that terms of the kind T1(xπ1)

T1(xπ2) T1(xπ3) do not contribute to the third commutator
in formula (3.1) for D3 when (k1, k2) ∈ V1, for all permu-
tations π : the whole contribution to dμν(k1, k2)|(k1,k2)∈V1

coming from this commutator is of the kind (3.18).
The contributions to dμν(k1, k2)|(k1,k2)∈V coming from

the other two commutators in (3.1) are of the same form up
to cyclic permutations k1 �→ k2 �→ −(k1 + k2) �→ k1 of
the external momenta. Here we use that (k1, k2) ∈ V implies
(k2,−k1−k2) ∈ V1 and (−k1−k2, k1) ∈ V1, hence we may
apply the identity (3.19) also for the permuted momenta.
However, note that the polynomials hμν

j , j = 2, 3, belong-
ing to these other two cuts are not obtained by cyclic permu-
tations of the external momenta in the original polynomial
hμν

1 , meant in (3.18). This is due to the difference between the
higgs vertex and the photon vertices; in particular, these other
two cuts contain no term giving rise to a fish-like diagram.
Summing up, it holds that

dμν(k1, k2)
∣∣
(k1,k2)∈V

= Hμν
1 (k1, k2)+ Hμν

2 (k2,−k1 − k2)+ Hμν
3 (−k1 − k2, k1),

(3.20)

for some Hμν
j ( j = 1, 2, 3) of the form (3.18), the pertinent

polynomials hμν
j being of degree 2.

Lemma 1 Let q1, q2, q3 andV1 be defined as above in (3.17)
and after (3.18), and let Hμν : R4×2 → C be given in terms
of a generic polynomial hμν : R4×3 → C of degree ζ ∈ N0,
as in (3.18). Then for all (k1, k2) ∈ V1 and for some C > 0
the function Hμν is continuous in the region V1, and can be
bounded as follows:

|Hμν(k1, k2)|
≤ C

(1 + |(k1, k2)|)ζ
|(k1k2)| θ((k1 + k2)

2 − 4M2) log((k1 + k2)
2/M2).

(3.21)

7 We borrow the standard notation for the mass shell: H±
M := { p ∈

R
4 : p2 = M2, ±p0 > 0 }.

Note that |(k1k2)| > 0 if (k1, k2) ∈ V1 and (k1+k2)
2 ≥ 4M2.

Proof Let P := k1 + k2 and k := k1 − k2. We first observe,
on the strength of

q2
1 − q2

2 = 2(Pq), q2
1 + q2

2 − 2M2 = 2(q2 + 1
4 P2 − M2)

and of M2 − q3 = (M2 − q2 − 1
4 P2)+ 1

4 P2 − 1
4 k2 + (kq) that

Hμν(k1, k2) ∼ sgn(P0)

∫
d4q δ(q2 + 1

4 P2−M2)

δ((Pq))
hμν(k1, k2, q)

P2/4 − k2/4 + (kq)
,

omitting irrelevant prefactors. Since q1 − q2 = P and
(q1, q2) ∈ (H+

M × H−
M ) ∪ (H−

M × H+
M ), we know that

Hμν(k1, k2) vanishes for P2 < 4M2. Hence, to perform
the integrals in q0 and |q| using the Dirac deltas, we may
work in the frame in which P = 0. There the δ-distributions
yield q0 = 0 and |q| =

√
P2

0 /4 − M2.

With the notation p̂ := p/| p| for p ∈ {q, k}, it follows
that

1
4 P2 − 1

4 k2 + (kq) = (k1k2)

(
1 − (q̂ k̂)

√
1 − 4M2/P2 |P0| |k|

2(k1k2)

)
,

and one verifies that

0 ≤ P2
0 |k/2|2 = (k1k2)

2 − k2
1k2

2, (3.22)

with k1 = (k0
1, k1) and k2 = (P0 − k0

1,−k1). With the help
of these results we obtain

(k1k2) Hμν(k1, k2) ∼ sgn(P0) θ(P2 − 4M2)

√
1 − 4M2/P2

×
∫
S2

d�(q̂)
hμν

(
k1, k2, (0,

√
P2/4 − M2 q̂)

)
1 − (q̂ k̂)

√
(1 − 4M2/P2) (1 − k2

1k2
2/(k1k2)2)

,

(3.23)

valid in the frame in which P = 0. Let moreover VM
1 :=

{ (k1, k2) ∈ V1 : (k1 + k2)
2 ≥ 4M2 }. We know that

4M2/P2 ∈ (0, 1] and k2
1k2

2/(k1k2)2 ∈ [0, 1] for (k1, k2) ∈ VM
1 ;

hence a :=
√

(1 − 4M2/P2) (1 − k2
1k2

2/(k1k2)2) ∈ [0, 1).

In particular, the denominator in the integrand of (3.23)
does not vanish for (k1, k2) ∈ VM

1 . Since θ(P2 − 4M2)√
1 − 4M2/P2 is continuous, Hμν is continuous on V1.
Observe now that for all q̂ ∈ S

2 the inequality

∣∣hμν
(
k1, k2, (0,

√
P2/4 − M2q̂)

)∣∣ ≤ const(1 + |(k1, k2)|)ζ

holds, with |(k1, k2)|2 := ∑3
j=0(k

2
1 j + k2

2 j ).

Setting z := (
q̂ k̂

)
, the remaining integral is of the type

∫ 1

−1

dz

1 − az
= 1

a
log

(
1 + a

1 − a

)
≤ 2(1 − log(1 − a)),
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valid for a ∈ [0, 1). Using that a ≤ √
1 − 4M2/P2 ≤ (1 −

2M2/P2) and monotonicity of the logarithm, we see that

− log(1 − a) = log
1

1 − a
≤ log

P2

2M2 .

Putting together the estimates, we end up with

|(k1k2) Hμν(k1, k2)|
≤ const · θ(P2 − 4M2) (1 + |(k1, k2)|)ζ (

1 + log(P2/2M2)
)
,

(3.24)

impliying (3.21), since 1+ log(P2/2M2) < 2 log(P2/M2)

for P2 ≥ 4M2. ��
The reader should keep in mind that dμν(k1, k2) is sup-

ported outside a certain neighbourhood of the origin on
momentum space – have a look back at Eq. (3.23).

Corollary 2 The off-shell d-distribution dμν(k1, k2) given
in (3.20) is continuous on V and fulfills the bound:

|dμν(k1, k2)| ≤ const
(1 + |(k1, k2)|)ω+2

|(k1k2)|
log(2 + |(k1, k2)|/M) for all (k1, k2) ∈ V. (3.25)

Proof Continuity follows immediately from Lemma 1. For
the bound (3.25) we have substituted ω+2 ≡ ω(d)+2 for ζ

of the Lemma, since the singular order of Hμν
j ( j = 1, 2, 3)

is ζ − 2 by power counting in (3.18). In addition, for
Hμν

1 (k1, k2) we have used that (k1 + k2)
2 ≤ 4 |(k1, k2)|2,

and in order to omit the θ -distribution we have replaced
log(2 |(k1, k2)|/M) by 2 log(2 + |(k1, k2)|/M). One deals
analogously with Hμν

2 (k2,−k1−k2) and Hμν
3 (−k1−k2, k1).

��

3.3 Distribution splitting by the dispersion integral for null
momenta

Recall that for (k1, k2) ∈ Vη × Vη the advanced part aμν

of dμν can be computed by the dispersion integral (C.14).
Using the regularity properties of dμν given in Corollary 2,
we finally aim to show that the limit k2

1 ↓ 0, k2
2 ↓ 0 in (C.14)

commutes with integration; that is, the dispersion integral is
also valid for k2

1 = 0 = k2
2. To formulate the assertion, let

K := { (k1, k2) ∈ (R4)×2 : k2
1, k2

2< 4M2,

(k1 + k2)
2 < 4M2, (k1k2) �= 0 }. (3.26)

Bearing in mind the factors θ(q2 − 4M2) for q ∈
{k1, k2, k1 + k2} appearing in each term of dμν(k1, k2), we
see that for (k1, k2) ∈ (Vη × Vη)∩K, formula (C.14) can be
rewritten as:

aμν(k1, k2) = iη

2π

∫
|t |≥tmin

dt
dμν(tk1, tk2)

tω+1(1 − t)
, (3.27)

for some tmin > 1 depending on k1, k2. Now, as discussed
in Sect. 1, one knows aμν(k1, k2) to be analytic on the
region K. The Lebesgue dominated convergence theorem
[31, Th. 4.6.3] with the bound (3.25) allows us conclude that
(3.27) is a valid identity for (k1, k2) ∈ V ∩K. Indeed, intro-
ducing the set of limit points

M := V ∩K ∩ {(k1, k2) ∈ R
8 : k2

i = 0}
= {(k1, k2) ∈ R

8 : k2
i = 0, 0 < (k1 + k2)

2 < 4M2},
it is enough to observe that for any (k̃1, k̃2) ∈M – implying
(k̃1 k̃2) > 0 and k̃0

1 k̃0
2 > 0 – there is a neighbourhood U

(k̃1,k̃2)

such that

∣∣∣∣θ(|t | − tmin)
d(tk1, tk2)

tω+1(1 − t)

∣∣∣∣
≤ const · θ(|t | − tmin)

|t (1 − t)|
(
1 + |(k1, k2)|

)ω+2

|(k1 k2)|
log(2 + |t | |(k1, k2)|/M)

≤ C
θ(|t | − t1)

|t (1 − t)| log(2 + C1 |t |),

for all (k1, k2) ∈ (Vη×Vη)∩K∩U(k̃1,k̃2)
, for some C, C1 > 0

and some t1 > 1 independent of (k1, k2). The function on
the right hand side is absolutely integrable in t – here we see
the reason for the condition (k1k2) �= 0 in (3.26).

3.4 Normalization of the scalar model by distribution
splitting

We must finally compute the gauge invariant part tμν
gi (k1, k2)

for momenta lying on the set M. Considering the formula
T3 = A3 − A′3 and reckoning that a′μν(k1, k2)|k2

1=0=k2
2

con-

tains the factor θ(P2 − 4M2) where P := k1 + k2, we see
that on M its contribution vanishes, that is tμν = aμν there.

The upshot of the preceding two subsections is that we
may compute valid terms of the central solution aμν |M ≡
ac μν |M by inserting the on-shell amplitude (3.15) into the
dispersion integral, with ω the singular order of the off-shell
dμν , equal to 0 in the present case.

Looking at (3.15), observe that a kμ
r kν

s - or gμν-term of dμν

goes over to a kμ
r kν

s - or gμν-term of aμν , respectively. There-
fore, such factors may be taken out of the dispersion integral.
Since moreover Pμν(tk) = t2 Pμν(k), we see that the gauge
invariant part aμν

gi can be obtained by inserting just the gauge

invariant part dμν
gi in (3.16) into the dispersion integral. The

latter is of the form (C.15). So we may use the version (C.16)
of the dispersion integral.

Lastly, tμν
gi |M = aμν

gi |M is obtained from (C.16) by setting
ω = 0 and substituting there b(uρ̃) as given in (3.16) for
f
(
u(k2

1, k2
2, (k1 + k2)

2)
)

– in our case only (k1 + k2)
2 = s

is present. Allowing for the dilation factor in Pμν this leads,

123
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for (k1, k2) ∈M, to

tμν
gi (k1, k2)

= − Pμν

(2π)6

∫ ∞

ρ̃−1
du

u b(uρ̃)

u(1 − u)

= Pμν

16M2 (2π)6

∫ ∞

ρ̃−1

du

ρ̃2u2(1 − u)
log

1 +√
1 − u−1ρ̃−1

1 −√
1 − u−1ρ̃−1

= − Pμν

8 (2π)6

J2(ρ̃)

M2 , (3.28)

where

2 J2(ρ̃) :=
∫ ∞

1
dv

1

(v − ρ̃)v2 log
1 +√

1 − v−1

1 −√
1 − v−1

,

after the change of integration variable v := uρ̃. Integrals
like J2 have been computed in [19]. From Appendix C of
that reference:

J1(ρ̃, a) := 1

2

∫ ∞

1
dv

1

(v − ρ̃)(v − a)
log

1 +√
1 − v−1

1 −√
1 − v−1

= f (ρ̃)− f (a)

ρ̃ − a
(3.29)

for 0 ≤ ρ̃ ≤ 1, 0 ≤ a ≤ 1, where f is the distribution (B.3).
We infer that

J2(ρ̃) = ∂

∂a

∣∣∣∣
a=0

J1(ρ̃, a)

= f (ρ̃)

ρ̃2 − 1

ρ̃
for 0 ≤ ρ̃ ≤ 1, (3.30)

by bringing in the values f (0) = 0 and f ′(0) = 1, which
can be read off from (B.6).

Summing up, the final result reads, as expected:

tμν
gi (k1, k2) = Pμν

8 (2π)6

1

M2

(
1

ρ̃
− f (ρ̃)

ρ̃2

)

= Pμν

8 (2π)6

F0(ρ̃)

M2 for (k1, k2) ∈M, (3.31)

where F0 was given in (1.3). We conjecture that this formula
holds true for all (k1, k2) satisfying k2

1 = 0 = k2
2 and (k1 +

k2)
2 > 0.
The reader should remember that (3.31) stands in principle

for just a member of a solution set. Since ω = 0, the gen-
eral Lorentz-invariant Epstein–Glaser solution is obtained
by adding to expression (3.31) a term of the type Cgμν with
C ∈ C arbitrary. But such a term with C �= 0 would violate
EGI. Therefore we regard the above result as unique.

Recovering formula (3.5) and the factor 4ge2 M , one ends
up with

∫
dx1 dx2 dx3 T3(x1, x2, x3)

= gα

(2π)3 M

∫
dk1 dk2 h(k1 + k2)Aμ(−k1)Aρ(−k2) Pμν F0(ρ̃),

which, on substituting ρ for ρ̃, that is, m2
h for s ≡ (k1+k2)

2,
agrees with the literature [25].

Remark 1 In the occasion an (unsubtracted) dispersion inte-
gral applied to b(u), performed in [16, Eq. (3.2)], leads to
the same integral (3.28) and so the same correct result. As
the next section shows, this does not hold for the higgs to
diphoton decay via EW vector bosons.

4 Higgs to diphoton decay via EW vector bosons

4.1 Derivation of the quartic AAW W †-vertex in the unitary
gauge

The amplitude in question in this paper describes an EW
decay process at third order in the coupling constant. Its
structure is given by the cubic vertices in the first TOP T1

– that is the sole “empirical” input. Here in going from T1

to T2 we derive the AAW W †-vertex which contributes by
a “fish-like” diagram to the amplitude to be computed, see
Fig. 1.

The general idea is to examine the propagator which is
to become the internal line linking the di-photon in the
one-loop, three-vertex graph, and to obtain the one-loop,
two-vertex graph from a modification of that propagator,
demanded by EGI – by which here we precisely understand
invariance of the S-matrix under the variations Aμ(x) →
Aμ(x)+∂μ�(x): interaction dictates symmetry. The method
is similar to the derivation of the AAϕϕ† “seagull” vertex
from the cubic coupling in scalar QED, first performed in
this way in [28].

The concept works on configuration space, as follows.
Recall the pertinent Hermitian vertex – see for instance [32,
Sect. 7.2.2], explicitly referring to the unitary gauge. With
Gμν := ∂μWν − ∂νWμ, one has:

T1(x1) = ie[(W μG†
μν − W †μGμν)Aν − W μW †

ν F ν
μ ](x1).

(4.1)

All indicated operator products are Wick products. We copy
a second vertex similar to (4.1):

T1(x2) = ie[(W ρG†
ρλ − W †ρGρλ)Aλ − W ρW †

λ F λ
ρ ](x2),

(4.2)
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and proceed to make the contractions, according to the BEG
method to construct (the relevant sector of) the second-
order T2(x1, x2) out of T1(x1), T1(x2). Now T2(x1, x2) =
T1(x1)T1(x2) for x1 not to the past of x2, and T2(x1, x2) =
T1(x2)T1(x1) for x2 not to the past of x1.

In view of the triangle diagram given in Fig. 1, we are only
interested in contractions yielding a connected tree diagram
with the photons uncontracted. Once they are made, we ana-
lyze the terms for which the resulting distributions are not
uniquely defined on the diagonal x1 = x2. The ambigui-
ties in this extension are eliminated by EGI as sole selection
criterion.

From the last pair of terms in (4.1) and (4.2), and with
�μβ standing for the Feynman–Proca propagator (A.8) for
the W -bosons, there comes:

− e2 (
Fμν(x1)W †ν(x1)〈〈T Wμ(x1) W †β(x2)〉〉Wα(x2)Fαβ(x2)

+ Fμν(x1)Wμ(x1)〈〈T W †ν(x1) Wα(x2)〉〉W †β(x2)Fαβ(x2)
)

= −e2 Fμν(x1)Fαβ(x2)W †ν(x1)�μβ(x1 − x2)Wα(x2)

+ (x1 ↔ x2), denoted T D
2 (x1, x2) for later use; (4.3)

where explicitly �
μ
β = −(

gμ
β + ∂μ∂β/M2

)
�F with �F

the scalar Feynman propagator (A.2). Electromagnetic gauge
variations obviously do not affect (4.3).

By pairing the last term in (4.2) with A-type terms in (4.1)
and the last term in (4.1) with A-type terms in (4.2) we obtain
eight terms, that we organize as follows:

e2 Aμ(x1)Fρβ(x2)
[
G†

αμ(x1)�αβ(x1 − x2) W ρ(x2)

− Gαμ(x1)�αρ(x1 − x2) W β†(x2)+
W α(x1)(−gρ

μ∂α + gρ
α∂μ)�F (x1−x2)W β†(x2)

− W α†(x1)(−gβ
μ∂α + gβ

α ∂μ)�F (x1−x2)W ρ(x2)
]

+ (x1 ↔ x2) =: T B
2 (x1, x2)+ T C

2 (x1, x2), (4.4)

where T C
2 denotes the (x1 ↔ x2)-term. As noted in

Appendix A, third-order derivatives of �F cancel here of
their own accord. In order to verify EGI in the above expres-
sion, note first that it can only be violated on the diagonal
x1 = x2, that is by contact terms – see the discussion on
this in Sect. C.2. Therefore in computing the divergence of
expressions like the above one selects only such terms that
under ∂

μ
1 produce local expressions. For instance, the third

term in (4.4) brings forth:

W α(x1) gρ
α ∂

μ
1 ∂μ �F (x1 − x2) W β †(x2)

= −iW ρ(x1)W †β(x1) δ(x1 − x2)+ · · ·
where the dots stand for a term ∼ M2W�F W †; but it is
not hard to see that it is cancelled by a similar one com-
ing from the next term. In conclusion: T B

2 is individually

electromagnetically gauge-invariant, and T D
2 , T B

2 , T C
2 cal-

culated up to now have no bearing on the generation of the
AAW W †-vertex in constructing T2.

Still, we are left with the most interesting contractions to
calculate. By pairing the two first terms in (4.1) with the two
first in (4.2) we get:

− e2 Aμ(x1)Aρ(x2)
[−W α(x1)D̃αμ βρ(x1 − x2)W β†(x2)

− G†
αμ(x1)�αβ(x1 − x2) Gβρ(x2)+

G†
αμ(x1)(g

α
ρ ∂β − gα

β∂ρ)�F (x1 − x2)W β(x2)

+ W α†(x1)(−gβ
μ∂α + gβ

α ∂μ)�F (x1 − x2)Gβρ(x2)
]

+ (x1 ↔ x2) =: T A
2 (x1, x2). (4.5)

Outside the diagonal the distribution D̃αμ βρ necessarily
coincides with Dαμ βρ , defined in Eq. (A.9) as the propaga-
tor for the G-fields. Following the Epstein–Glaser method,
we now look for the most general Lorentz-covariant exten-
sion of this distribution having the same scaling degree. The
solution reads:

D̃αμ,βρ(y) = Dαμ,βρ(y)+ i(a gαβgμρ − b gαρgμβ) δ(y)

(4.6)

with as yet unknown numbers a, b ∈ C. Note that the sec-
ond term in the above propagator generates a contact term
eventually yielding the AAW W †-vertex

TF (x1, x2) := e2 Aμ(x1)Aρ(x2)W α(x1)W †β(x2) i(a gαβgμρ

−b gαρgμβ) δ(x1 − x2). (4.7)

A third Lorentz tensor might appear in the Ansatz (4.6),
namely gαμgρβ δ(y). However, on insertion into (4.5), one
obtains the same contribution as gαρgμβ δ(y), namely

e2 Aμ(x1)Aρ(x1)Wμ(x1)W †
ρ (x1) δ(x1 − x2).

Since EGI of T2 can be violated only by local terms, it will
suffice to select the terms which are ∼ (∂)δ(x1 − x2) after
taking the divergence ∂

μ
1 . Those can be of two types:

(a) Either the contact term already contains a δ(x1 − x2); or
(b) Such terms are generated when the ∂

μ
x1 acts on ∂μ�F (x1−

x2) or on ∂∂μ�F (x1 − x2), due to (�+m2)�F = −iδ.

From the W (x1) W †(x2) part in (4.5), we find:
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• The type (a) contributions:

i∂μWα(x1) (−a gαβ gμρ + b gαρgμβ) δ(x1 − x2) Wβ †(x2)

+ iWα(x1)
(
(−a gαβ∂ρ + b gαρ∂β)δ

)
(x1 − x2) Wβ †(x2)

= i
(−a ∂ρWα(x1)W †

α(x1)

+ b ∂β Wρ(x1)Wβ†(x1)
)
δ(x1 − x2)

− ia Wα(x1)W †
α(x2) ∂ρδ(x1 − x2)

+ ib Wρ(x1)Wβ†(x2) ∂βδ(x1 − x2), (4.8)

and the type (b) contribution:

iW α(x1)
(
(gαβ∂ρ − gαρ∂β)δ

)
(x1 − x2) W β †(x2)

= iW α(x1)W †
α (x2) ∂ρδ(x1 − x2)

− iWρ(x1)W β†(x2) ∂βδ(x1 − x2). (4.9)

• From the W †(x1) W (x2)-part of the exchange term, we
obtain terms (4.8) and (4.9) with W ↔ W † interchanged.

• From the W †(x1) G(x2)-part of the original term, we get
the type (b) contribution:

iW α†(x1) gβ
α δ(x1 − x2)

(−∂β Wρ(x2)+ ∂ρWβ(x2)
)

= i
(−W α†(x1) ∂αWρ(x1)+ W α†(x1) ∂ρWα(x1)

)
× δ(x1 − x2). (4.10)

• From the W (x1) G†(x2)-part of the exchange term, we
obtain the term (4.10) with W ↔ W † interchanged.

Summing up, the requirement is:

0
!= W α(x1)W †

α(x2) ∂ρδ(x1 − x2) (1 − a)

+ Wρ(x1)W β†(x2) ∂βδ(x1 − x2) (b − 1)

+ ∂β Wρ(x1)W β†(x1) δ(x1 − x2) (b − 1)

+ ∂ρW α(x1)W †
α(x1) δ(x1 − x2) (1 − a)

+ [W ↔ W †]. (4.11)

Generally, for two free fields B(x), C(x) it holds that the
three terms

∂ B(x1) C(x1) δ(x1 − x2), B(x1) ∂C(x1) δ(x1 − x2) and

B(x1) C(x2) ∂δ(x1 − x2)

are linearly independent. We conclude that condition (4.11)
has a unique solution, namely a = 1 = b. In fine, the result-
ing contact term may be written as

D̃αμ,βρ(y)− Dαμ,βρ(y) = i
2 (2gαβ gμρ − gαρ gμβ − gμαgρβ) δ(y),

(4.12)

which reproduces the seagull e2 AAW W †-vertex in the Feyn-
man rules for the EW interaction.

Fig. 1 Diagrams contributing to the amplitude to be computed

•Recapitulation: assembling T3 from T1 and T2 by the
Epstein–Glaser method, the above derived AAW W †-vertex
(which is part of T2) generates the fish-like diagram in Fig. 1.
In the Feynman gauge, the AAW W †-vertex was already
derived in [33] by the same method. The fact that we had
to modify only D•••• (i.e., the G-propagator), and not �•• (i.e.,
the W -propagator), although here both are of the same sin-
gular order ω = 0, is in accordance with the corresponding
modification in the Feynman gauge or, more generally, in a
Rξ gauge: in such gauges the AAW W † term can be derived
in the same way, but only the G-propagator may be modified,
because only this propagator has ω = 0. The W G and GW -
propagators have singular order ω = −1 (see Eqs. (A.11)
and (A.12)) and are not to be modified.

•In conclusion: almost the first thing to learn when work-
ing in the BEG scheme is that what is usually taken from a
top-down, mysterious prevalence in particle physics of clas-
sical non-Abelian gauge theories, with their quartic, second-
order couplings, is here derived by pure quantum field theory
operations. To wit, the inductive construction of the time-
ordered products respecting “gauge invariance”, in the sense
of [28,33–36], order by order in the couplings. In fact, all
of the reductive Lie algebra structure of the Standard Model
interactions, up to including at least one scalar particle, comes
automatically in the BEG formalism from respecting first
principles of quantum field theory in building the S-matrix8

– without invoking unobservable mechanisms. To go further
into this subject here would take us too far afield. We have
merely dealt with the example necessary for our purposes.

4.2 Computation of the causal distribution at third order

We wish to mention here that triangular graphs in Epstein–
Glaser theory have been examined, for instance, in [39,
Chap. 3.8] – the vertex correction in QED; in [40] – anoma-

8 The derivation of the reductive Lie algebra structure was annunciated
by Stora [37]. His kind of principled bottom-up approach has long been
neglected in textbooks. A refreshing exception is [38, Problem 9.3].
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lies; as well as in [41] and [23, Sect. 3.2].9 Of course, here
we shall have more terms and a forest of indices.

Proceeding similarly to Sect. 3, we perform the adiabatic
limit already at this stage. Since all the propagators in the
loop are massive, we may use (3.5); hence, we only have
to compute the restricted distribution dμν(k1, k2)|k2

1=0=k2
2
.

Again, because of the kinematic constraints, only the first cut
in formula (3.1) for D3 counts (including the “fish graph” as
derived in the previous subsection). Moreover, the discus-
sions and general conclusions of Sects. 2, 3.2 and 3.3 hold
here, and will be assumed without further ado.

The two W W A-vertices are given in (4.1) and (4.2), and
the W W h-vertex reads

T1(x3) = gM h(x3)W ν(x3)W †
ν (x3).

The first step is to compute R′A|B|C|D|F
3 (x1, x2; x3) :=

T A|B|C|D|F
2 (x1, x2) T1(x3)

∣∣�, where the lower-order TOPs
T •

2 have been respectively given by lexicographical order
in (4.5), (4.4), (4.3), and finally (4.7) together with (4.12).
As it happens, their sum is symmetric in (x1, x2), so we just
introduce a general factor 2 and need not mention exchange
anymore.

We start with

R′D
3 (x1, x2; x3)

= −2e2gM h(x3)Fμν(x1)Fαβ(x2) r ′Dμν,αβ(y1, y2), where

r ′Dμν,αβ(y1, y2)

:= �γ +
ν (y1)�μβ(y1 − y2)�+

αγ (y2), and

yk := xk − x3. (4.13)

The “fish” diagram contribution reads:

R′F
3 (x1, x2; x3) = −2e2gM h(x3)Aμ(x1)Aν(x2) r ′Fμν(y1, y2) with

r ′Fμν(y1, y2) := i δ(y1 − y2)
[−gμν �

γ +
β (y1) �β +

γ (y1)

+�γ +
ν (y1) �+

μγ (y1)
]
. (4.14)

Next we compute R′B
3 :

R′B
3 (x1, x2; x3)

= −2e2gM h(x3)Aμ(x1)Fνβ(x2) r ′Bνβ

μ (y1, y2)

with r ′Bνβ

μ (y1, y2)

:= (gγ
μ∂α − gγ

α ∂μ)�+(y1)�αβ(y1 − y2)�ν+
γ (y2)

+�αγ +(y1) (gν
μ∂α − gν

α∂μ)�F (y1 − y2)�β +
γ (y2).

(4.15)

9 Some of these works are very instructive, in that they show that cher-
ished invariance properties cannot always be preserved under distribu-
tion splitting.

The relation R′C
3 (x1, x2; x3) := R′B

3 (x2, x1; x3) obviously
holds. Finally, for R′A

3 , we collect

R′A
3 (x1, x2; x3)

= −2e2gM h(x3)Aμ(x1)Aν(x2) r ′Aμν(y1, y2), with

r ′Aμν(y1, y2)

:= −(gγ
μ∂α − gγ

α ∂μ)�+(y1)�αβ(y1 − y2) (gνγ ∂β

− gβγ ∂ν)�
+(y2)

−�αγ +(y1) Dαμ,βν(y1 − y2)�β +
γ (y2)

− (gγ
μ∂α − gγ

α ∂μ)�+(y1) (gα
ν ∂β

− gα
β∂ν)�

F (y1 − y2)�β +
γ (y2)

+�αγ +(y1) (gμβ∂α − gαβ∂μ)�F (y1 − y2)

(gγ ν∂
β − gβ

γ ∂ν)�
+(y2). (4.16)

Next we express the resulting integrals by momentum
space integrals. By using Fμν(k) = −i

(
kμ Aν(k)−kν Aμ(k)

)
and R′

3 := R′A
3 + R′B

3 + R′C
3 + R′D

3 + R′F
3 we gather

∫
dx1 dx2 dx3 R′3(x1, x2; x3)

= −2e2gM(2π)2
∫

dk1 dk2 h(k1 + k2)

Aμ(−k1)Aν(−k2) r ′μν(k1, k2), (4.17)

where r ′μν(k1, k2) := r ′Aμν(k1, k2)+ r ′Fμν(k1, k2)

+ [
ikβ

2 (r ′Bμ,βν(k1, k2)− r ′Bμ,νβ(k1, k2))+ (k1, μ) ↔ (k2, ν)
]

− kβ
1 kα

2
[
r ′Dβμ,αν(k1, k2)− r ′Dμβ,αν(k1, k2)

− r ′Dβμ,να(k1, k2)+ r ′Dμβ,να(k1, k2)
]
. (4.18)

To compute the (combinations of) Fourier transformed
r ′......-distributions appearing on the right hand side of (4.18),
we bring in k2

1 = 0 = k2
2, and omit all terms containing a fac-

tor k1μ or k2ν : this is allowed in view of kλ Aλ(−k) = 0. Sim-
ilarly to the analogous computation for the scalar model in
the previous section, let us work with the integration variable
q := k+k2, and introduce P := k1+k2, hence k1−k = P−q
and s := P2 = 2k1k2 and Pk1 = k1k2 = Pk2. Due to the
factors �+(q) and �+(P − q), we may use the relations

q2 = M2, (P − q)2 = M2, hence

2Pq = s = 2(k1k2), implying

(P − q)q = (k1k2)− M2, 0 = (P(q − k2)) = (Pk),

(q − k2)
2 = M2 − 2(qk2),

and ((P − q) k1) = (qk2), that is, (qk1) + (qk2) = (k1k2).
Remember also that we may replace Pμ → k2μ and Pν →
k1ν .
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To tally the fish diagram contribution, we introduce the
integrals

J {·|μ|μν}(P) :=
∫

d4q {1|qμ|qμqν}�+(P − q)�+(q).

(4.19)

These symbols J •(P) generalize that of the scalar J (P),
defined in (3.4). We obtain:

r ′Fμν(k1, k2) = i

(2π)4

(
gμν

(
−2 + s

M2 −
s2

4M4

)
J (P)

− k2μk1ν

M2 J (P)

+ 1

M2

(
k2μ Jν(P)+ k1ν Jμ(P)

s

2M2

)

− Jμν(P)
( 1

M2 +
s

2M4

))
. (4.20)

To figure out Jμ and Jμν one first argues that

Jμ(P) = θ(P0) θ(s − 4M2) Pμ g(s),

Jμν(P) = θ(P0) θ(s − 4M2) (Pμ Pν a(s)+ gμνc(s)),
(4.21)

for appropriate g(s), a(s) and c(s). The latter can be obtained
from the identites

Jμ(P)Pμ = 1

2
s J (P), Jμ

μ (P) = M2 J (P),

Jμν(P)Pμ Pν = 1
4 s2 J (P).

and from J (P) = θ(P0) θ(s − 4M2) 4iπ2 s G(s) – see
(3.13). So we arrive at

g(s) = 2iπ2s G(s); a(s) = 4iπ2

3
(s − M2)G(s);

c(s) = 4iπ2

3
(M2 − s/4)s G(s),

yielding

r ′Fμν(k1, k2) = 1

4π2 θ(P0) θ(s − 4M2) G(s)

[(
14

3

− 11

6

s

M2 +
5

12

s2

M4

)
gμν(k1k2)

+ k1νk2μ

(
−1

3
+ 2

3

s

M2 −
1

12

s2

M4

)]
. (4.22)

Other new integrals. We introduce already all the new inte-
grals required in this section. By means of (q−k2)

2−M2 =

−2(qk2), implying (qk2)�F (q − k2) = −i/8π2, some of
the integrals to appear are calculated:

K {·|μ|μν}(P) :=
∫

d4q {1|qμ|qμqν} (qk2)�+(P − q)

�F (q − k2)�+(q) = − i

8π2 J {·|μ|μν}(P),

L(P) :=
∫

d4q (qk2)2 �+(P − q)

�F (q − k2)�+(q) = k2μ K μ.

The following integrals will also be needed:

N {·|μ|μν}(P)

:=
∫

d4q {1|qμ|qμqν}�+(P − q)�F (q − k2)�+(q).

By using kν
2 = 0, they are easily be expressed in terms of the

integrals computed in Sect. 3.1:

N (P) = I (P), Nμ(P) = I μ(P)+ kμ
2 I (P),

Nμν(P) = I μν(P)+ kμ
2 I ν(P),

Electromagnetic gauge invariance. The computation of the
individual terms in (4.18) is lengthy, but straightforward. For
the r ′B-terms we reap

ikβ
2

(
r ′Bμ,βν(k1, k2)− r ′Bμ,νβ(k1, k2)

)

= 1

(2π)2

{
−2N (P)(gμν(k1k2)− k1νk2μ)

+ gμν(k1k2)

(
2

K (P)

M2 − L(P)

M4

)
− k1νk2μ(k1k2)

K (P)

M4

+ Nμν(P)

(
2
(k1k2)

M2 − (k1k2)2

M4

)

+ k2μ

(
Nν(P)

(
−2

(k1k2)

M2 + (k1k2)2

M4

)
+ Kν(P)

(k1k2)

M4

)

+ k1ν Kμ(P)

(
− 2

M2 + k1k2

M4

)}
.

Inserting the integrals calculated above, one reaches for
ikβ

2

(
r ′Bμ,βν(k1, k2) − r ′Bμ,νβ(k1, k2)

) + (k1, μ) ↔ (k2, ν) the
following result:

θ(P0) θ(s − 4M2)

(2π)2

(
gμν(k1k2)− k1νk2μ

) (
F(s)

(
−2 − s

2M2

)

+ G(s)
s

M2

)
. (4.23)

Note that ikβ
2

(
r ′Bμ,βν(k1, k2) − r ′Bμ,νβ(k1, k2)

)
is individually

gauge invariant. This reflects the known fact that T B
2 given

by (4.4) is individually gauge invariant.
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Analogously, since T D
2 (4.3) is trivially gauge invariant,

we expect the combination

−kβ
1 kα

2

(
r ′Dβμ,αν(k1, k2)− r ′Dμβ,αν(k1, k2)

−r ′Dβμ,να(k1, k2)+ r ′Dμβ,να(k1, k2)
)
,

to contain the factor gμν(k1k2)− k1νk2μ. Indeed, we obtain

1

(2π)2

{
−2(gμν(k1k2)− k1νk2μ) N (P)

+ gμν

(
−2

L(P)

M2 + (k1k2)
(

2
K (P)

M2 − L(P)

M4

))

+ k1νk2μ (k1k2)
K (P)

M4 + Nμν

(
2
(k1k2)

M2 + (k1k2)
2

M4

)

+ k1ν

(
−2

K1μ(P)

M2 − (k1k2)
Kμ(P)

M4

)

+ k2μ

(
2

Kν(P)

M2 − 2
(k1k2)

M2 Nν(P)

− (k1k2)
2

M4 Nν(P)+ (k1k2)
K1ν(P)

M4

)}

= θ(P0) θ(s − 4M2)

(2π)2 (gμν(k1k2)

− k1νk2μ)

[(
−1 + s

4M2

)
F(s)− s2

4M4 G(s)

]
. (4.24)

Finally, for r ′A we get

r ′Aμν(k1, k2)

= 1

(2π)2

{
−2(gμν(k1k2)− k1νk2μ) N (P)

+ gμν

((
2 + 2(k1k2)

M2

)
K (P)−

( 2

M2 + (k1k2)

M4

)
L(P)

)

+ k1νk2μ

(
− (k1k2)

M4

)
K (P)+ k1ν

(
− 2

M2 + (k1k2)

M4

)
Kμ(P)

+ k2μ

((
−12 + 2

(k1k2)

M2 − (k1k2)2

M4

)
Nν(P)+

( 4

M2

+ (k1k2)

M4

)
Kν(P)

)

+
(

12 − 2
k1k2

M2 + (k1k2)2

M4

)
Nμν(P)

−
( 2

M2 + 2
(k1k2)

M4

)
Kμν(P)

}
.

After insertion of the integrals, this is equal to

θ(P0) θ(s − 4M2)

(2π)2

{
(gμν(k1k2)

− k1νk2μ) F(s)
(
−3 + 12

M2

s
+ s

4M2

)

+ G(s)

[
gμν(k1k2)

(
−14

3
+ 5

6

s

M2 −
1

6

s2

M4

)

+ k1νk2μ

(1

3
+ s

3M2 −
s2

6M4

)]}
.

The sum r ′A + r ′F is indeed gauge invariant:

r ′Aμν(k1, k2)+ r ′Fμν(k1, k2)

= θ(P0) θ(s − 4M2)

(2π)2 (gμν(k1k2)− k1νk2μ)

×
(

F(s)
(
−3 + 12

M2

s
+ s

4M2

)

+ G(s)
(
− s

M2 +
s2

4M4

))
,

as expected from the outcome of the discussion in Sect. 4.1.
The G(s)-terms are seen to cancel out, and for the total r ′

we obtain the following gauge-invariant result:

r ′μν(k1, k2) = θ(P0) θ(s − 4M2)

(2π)2 (gμν(k1k2)

−k1νk2μ) 6F(s) (−1 + 2M2/s). (4.25)

Like for the scalar model, a′μν(k1, k2) is obtained from
r ′μν(k1, k2) in (4.25) by replacing θ(P0) by θ(−P0), and
hence dμν = a′μν − r ′μν by replacing θ(P0) by − sgn(P0).

Hence dμν
gi (k1, k2)|k2

1=0=k2
2

is of the form

dμν
gi (k1, k2)

∣∣
k2

1=0=k2
2
= Pμν(k1, k2) d0(P), where

d0(P) := i sgn(P0) θ(ρ̃ − 1)

(2π)5
b1(ρ̃),

b1(ρ̃) := − 3

16M2 ρ̃

(
1

ρ̃
− 2

)
log

1 +√
1 − ρ̃−1

1 −√
1 − ρ̃−1

. (4.26)

The factor 3 above was to be expected, since the Proca field
has three components. The singular order of the on-shell dis-
tribution dμν

gi (k1, k2)|k2
1=0=k2

2
is clearly equal to zero. It is

also easy to show that power counting rules imply that the
singular order of the off-shell d-distribution 10 dμν satisfies
the bounds 6 ≥ ω := ω(dμν) ≥ 2.

10 This notation is badly abused in this paper. But that is hardly avoid-
able.
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4.3 Distribution splitting in EW theory

The off-shell dμν-distribution for the diphoton decay of the
higgs via EW vector bosons is also of the genre (3.20),
the difference being that the pertinent polynomials hμν

j
are of a higher degree, i.e., ω := ω(dμν) has a greater
value. Therefore, the distribution splitting method for null
momenta developed in Sect. 2 does apply: tμν

gi |M = ac μν
gi |M

can be computed by inserting the light-cone restriction of
dμν

gi (k1, k2) into the dispersion integral (3.27). Again, this
restricted d-distribution is of the genre (3.16) for the given b1.
Hence, the central solution compatible with EGI is obtained
by:

tc μν
gi (k1, k2) = Pμν(k1, k2) tc

gi(P), where

tc
gi(P) = iη

2π

∫
|t |≥√1/ρ̃

t2 d0(t P) dt

(1 − t) tmax{ω+1, 0}

= − 1

(2π)6

∫ ∞

1/ρ̃

u b1(uρ̃) du

umax{�ω/2�+1, 0}(1 − u)
, (4.27)

for (k1, k2) ∈ M. Let us first assume that ω = 2. Before
computing, we recall that the ambiguity of the result for tμν

gi
will be given in that case by a polynomial of second degree
in (k1, k2) containing the factor Pμν ; that is, in the occasion,
a constant multiple of Pμν itself.

Besides a global factor −3(16M2(2π)6)−1, in view of
(4.26) and making the customary change of variable v = uρ̃,
to obtain tc

gi(ρ̃) we ought to compute:

ρ̃

∫ ∞

1
dv

[
log

(
1 +√

1 − v−1
)
/
(
1 −√

1 − v−1
)

v3(ρ̃ − v)

− 2 log
(
1 +√

1 − v−1
)
/
(
1 −√

1 − v−1
)

v2(ρ̃ − v)

]

=
∫ ∞

1
dv

[
log

(
1 +√

1 − v−1
)
/
(
1 −√

1 − v−1
)

v2(ρ̃ − v)

− 2 log
(
1 +√

1 − v−1
)
/
(
1 −√

1 − v−1
)

v(ρ̃ − v)

]

+
∫ ∞

1
dv

[
log

(
1 +√

1 − v−1
)
/
(
1 −√

1 − v−1
)

v3

− 2 log
(
1 +√

1 − v−1
)
/
(
1 −√

1 − v−1
)

v2

]
.

Notice that the last two integral terms just yield a number,
equal to minus the sum of the values of the two previous ones
at ρ̃ = 0. The first integral term is already known from the
discussion in Sect. 3.4, and in all yields

3

8M2(2π)6 J2(ρ̃) = −3

8M2(2π)6

(
1

ρ̃
− f (ρ̃)

ρ̃2

)
.

This is essentially 3F0(ρ̃), that clearly contributes to the
expected final result for F1(ρ̃) – recall (1.3). According to
Eq. (3.29) – also in Sect. 3.4 – in the case a = 0, the second
integral term yields

− 2 · 3

8M2(2π)6 J1(ρ̃, 0) = − 6

8M2(2π)6

f (ρ̃)

ρ̃
.

Including the last two integrals, we recover tc
gi(ρ̃) ∼ F1(ρ̃)−

7. Taking into account the Epstein–Glaser ambiguity as lim-
ited by EGI, and bringing in constant prefactor appearing
in (4.17), we end up with the amplitude

− 2e2gM(2π)2 tμν
gi (k1, k2) = e2g

4(2π)4 M
Pμν(k1, k2)

(
F1(ρ̃)+ C

)
,

(4.28)

with C an arbitrary constant.
If ω > 2, the central solution within the unitary gauge

is obtained by adding the following expression to the above
obtained result, more precisely, to−(8M2(2π)6)−1

(
F1(ρ̃)−

7
)
:

− 1

(2π)6

∫ ∞

ρ̃−1
du

b1(uρ̃)

1 − u

(
1

u�ω/2� −
1

u

)

= − 1

(2π)6

∫ ∞

ρ̃−1
du b1(uρ̃)

�ω/2�−2∑
k=0

1

u�ω/2�−k

=
�ω/2�−2∑

k=0

c̃k ρ̃�ω/2�−1−k; where the

c̃k := − 1

2π

∫ ∞

1
dv

b1(v)

v�ω/2�−k
(4.29)

do not depend on ρ̃; in the first step we have used the relation

1

u�ω/2� −
1

u
= (1 − u)

�ω/2�−2∑
k=0

1

u�ω/2�−k
,

and in the last step we have made again the substitution v :=
uρ̃. The point is that (4.29) is a polynomial in ρ̃ allowed by
the surviving Epstein–Glaser ambiguity. Therefore, without
knowing the precise value of ω, the general Epstein–Glaser
solution respecting EGI can be written as

−2e2gM(2π)2 tμν
gi (k1, k2)

= e2g

4(2π)4 M
Pμν(k1, k2)

(
F1(ρ̃)+

�ω/2�−1∑
k=0

Ck ρ̃
k
)

,

(4.30)

where the constants Ck are all arbitrary. However, terms cor-
responding to ω ≥ 4 can be discarded on grounds of pertur-
bative unitarity.

123



131 Page 16 of 25 Eur. Phys. J. C (2021) 81 :131

Let us now to come back to reference [16]. It is argued
there that the convergent integral

t0(ρ̃) :=
∫ ∞

ρ̃−1
du

b1(uρ̃)

1 − u

leads to the correct result. From the standpoint of this refer-
ence, formula (4.27) is “oversubtracted”. One obtains there,
yet again

Pμν t0(ρ̃) = Pμν

∫ ∞

ρ̃−1
du

b1(uρ̃)

1 − u

= − 3 Pμν

8M2(2π)6 (2J1(ρ̃, 0)− J2(ρ̃))

= − Pμν

8M2(2π)6

[
3

ρ̃
+ 6 f (ρ̃)

ρ̃
− 3 f (ρ̃)

ρ̃2

]

= − Pμν

8M2(2π)6 (F1(ρ̃)− 2). (4.31)

So the naive on-shell computation yields a particular
Epstein–Glaser solution. In the present case, however, equa-
tion (4.30) tells us that we are forced to add (at least) a poly-
nomial of degree two respecting EGI, that is, a term C Pμν

for C an indeterminate constant – with which our result for
the amplitude is compatible with the generally accepted one.

Remark 2 From our viewpoint, the expression in (4.31) is the
unique Epstein–Glaser solution respecting EGI, correspond-
ing to the following causal d-distribution: let the result (4.26)
for dμν

gi (k1, k2) (obtained by light-cone restriction of the pho-
ton momenta) be interpreted as an unrestricted element of
S′(R8), that is, all values (k1, k2) ∈ R

8 are admitted. One
easily verifies that this d-distribution has causal support, so
the splitting problem is well defined, and since its singular
order is zero, the EGI requirement selects a unique splitting
solution. Writing the latter suitably as a dispersion integral
in momentum space, one verifies the claim. This procedure
strongly simplifies explicit computations, but it is not con-
ceptually correct.11

4.4 Fixing the normalization polynomial by agreement
with the Feynman gauge

In order to determine the normalization polynomial we may
as well invoke the computation of the h → γ γ decay in
the Feynman gauge and gauge-fixing independence, namely,
the requirement that observable quantities should not depend

11 Actually, in the first edition of the book by Scharf on quantum elec-
trodynamics (i.e., [29] rather than [39]), the vertex function in QED at
third order was computed by such a method.

on the choice of gauge.12 Motivated by results of [43],13 we
contend that the “entirely on-shell” amplitude coming out
of our previous computation should coincide with that of
an Epstein–Glaser computation in the Feynman gauge. By
“entirely on-shell” we mean that not only the photons, but
also the higgs is on-shell, that is, ρ̃ = ρ := m2

h/4M2.
Denote the Epstein–Glaser result for the d-distribution

in the Feynman gauge by d1
μν . In contrast with the unitary

gauge, there additionally contribute diagrams with Stück-
elberg fields and Faddeev–Popov ghosts (as inner lines) to
d1
μν , see e.g. [15]. We spare the reader the details of the con-

struction of the TOPs, and in particular the derivation of the
AAW W †-vertex in this context. For photons on-shell with
physical polarizations (setting k2

1 = 0 = k2
2 and omitting

pure gauge terms ∼ k1μ or ∼ k2ν), our result reads:

d1
μν(k1, k2) = − 1

23 (2π)6 M2

×
[
(k1k2)gμν

(
− 3

ρ̃2 +
7

ρ̃
− ρ

ρ̃2

)

− k2μk1ν

(
− 3

ρ̃2 +
8

ρ̃
− 2ρ

ρ̃2

) ]
� f (ρ̃). (4.32)

The tedious computation of the above absorptive part was
done with the aid of the Mathematica package FeynCalc [44].
The computation proceeds along the lines of the computa-
tions of related absorptive parts in scalar electrodynamics
and electroweak theory in the unitary gauge presented in
full detail in Sects. 3.1 and 4.2 , respectively. As before,
all terms contributing to the distribution d1

μν can be repre-
sented by Feynman diagrams with cuts – for the complete
list see e.g. [15]. Just like in Sects. 3.1 and 4.2 , because of
the kinematic constraints one needs to consider only the cut
separating the higgs vertex from the photon vertices. All the
appearing expressions have a very similar structure to those
that have been already considered in the above-mentioned
parts. Thanks to the presence of the cut, each integral over
the four-momentum flowing in the loop can be converted into
an integral over a sphere, which can be evaluated explicitly.
We stress the fact that, due to compactness of the region of
integration, the computation of the absorptive part does not
involve any regularization.

12 The equivalence or inequivalence of calculations performed in dif-
ferent gauges was a nagging worry of Raymond Stora in his last years.
The classic paper [42] illustrates the difficulties lurking here.
13 This reference works with a formulation of gauge invariance suitable
for the BEG scheme. In that framework it was shown for the various
Rξ -gauges that the T -products can be normalized in such a way that the
physical S-matrix (i.e., for in- and out-states being on-shell) does not
depend on the gauge-fixing parameter ξ in the formal adiabatic limit;
and that this normalization is compatible with gauge invariance in the
mentioned sense.
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An important feature of electroweak theory in the Rξ -
gauges is the fact that all interaction vertices have dimensions
lower or equal to four (because dim W μ = 1, in contrast to
the value dim W μ = 2 for the unitary gauge). In particular,
a straightforward power counting argument gives the upper
bound ω

(
d1
μν

) ≤ 0 for the singular order of the off-shell
distribution d1

μν . Noting that ρ̃ = (k1k2)/2M2 and f (ρ̃) =
O(log ρ̃) we see that the on-shell restriction of d1

μν(k1, k2)

in Eq. (4.32) grows logarithmically for big values of ρ̃. For
the off-shell d1

μν , this implies the equality ω
(
d1
μν

) = 0. This
should be contrasted with the bounds 6 ≥ ω

(
dμν

) ≥ 2 in the
case of the absorptive part computed in the unitary gauge.

The off-shell distribution d1
μν is again of the type con-

sidered in Sects. 3.2. In particular, the method of distribution
splitting developed in Sect. 3.3 is applicable. For photons on-
shell with physical polarizations, the central solution reads

t1 c
μν(k1, k2) = − 1

23 (2π)6 M2

×
{

gμν(k1k2)

[(
− 3

ρ̃2 +
7

ρ̃
− ρ

ρ̃2

)
f (ρ̃)+ 3

ρ̃
+ 2ρ

ρ̃

]

− k1νk2μ

[(
− 3

ρ̃2 +
8

ρ̃
− 2ρ

ρ̃2

)
f (ρ̃)+ 3

ρ̃
+ 2ρ

ρ̃

]}
.

(4.33)

According to the postulate ‘Divergence degree’ (in Sect.
C.1), we have to demand for the off-shell t1

μν that

ω
(
t1
μν

) = ω
(
d1
μν

) = 0.

This implies that the pertaining normalization freedom con-
sists of a constant term which is a tensor with two indices. By
the Lorentz invariance such a term has to be proportional to
the metric tensor. Consequently, the general off-shell solution
of the splitting problem is of the form

t1
μν(k1, k2) = t1 c

μν(k1, k2)+ gμν D, (4.34)

where D is an arbitrary constant; note that this relation holds
also after restriction to on-shell photons with physical polar-
izations.

Observe that, in contrast to the unitary gauge, as long
as the higgs is off-shell, the distributions (4.32) and (4.33)
are not electromagnetically gauge-invariant. This was to be
expected and is related to the presence of unphysical degrees
of freedom in electroweak theory in the Rξ -gauges. How-
ever, entirely on-shell EGI can be satisfied: setting ρ̃ := ρ

in (4.33), we plainly get

t1
μν(k1, k2)

∣∣
ρ̃=ρ

= − 1

23 (2π)6 M2

(
Pμν(k1, k2) F1(ρ)+ D gμν

)
, (4.35)

and one sees that D must be put equal to zero. This fixes
completely the normalization freedom in the construction

of t1
μν in the Feynman gauge. At this level there is of course

coincidence with the result in [45], despite different game
rules.

Recall that in the unitary gauge, for on-shell photons
with physical polarizations, the general normalization free-
dom fulfilling electromagnetic gauge invariance and Lorentz
covariance is given by the last term in (4.30), where ω ≡
ω(dμν). We stress that the constants Ck appearing in that
term cannot be fixed without imposing some further normal-
ization conditions. To address this problem, observe that it
is possible to adjust the coefficients Ck of the polynomial in
the expression (4.30) for tgi,μν in the unitary gauge in such a
way that the following equality

tgi,μν(k1, k2)
∣∣
ρ̃=ρ

= t1
μν(k1, k2)

∣∣
ρ̃=ρ

. (4.36)

holds entirely on-shell, i.e. for ρ̃ = ρ. In fact, we must set
C0 := 2 and Ck := 0 for all k ≥ 1 in (4.30), which fixes
completely the normalization freedom of tgi,μν . Eq. (4.36)
expresses the independence of the physical amplitude of the
diphoton decay of the higgs of the choice of the gauge. We
regard (4.36) as a normalization condition of time-ordered
products. We have shown that this condition can be satisfied
in the case at hand and determines uniquely the indeterminate
normalization polynomial of tgi,μν in the expression (4.30).

In summary, our final result for the entirely on-shell EW
h → γ γ decay reads:

tμν(k1, k2)
∣∣
ρ̃=ρ

= − 1

23 (2π)6 M2 Pμν(k1, k2) F1(ρ),

in agreement with the majority of the literature.

4.5 On settling the controversy

Should one infer that by computing in the “physical” unitary
gauge there is no way to entirely settle the controversy that
motivates this work, by removing the remaining ambiguity in
determining the amplitude in question? Not without at least
pondering credible “heavy-higgs” (or M → 0) and “light-
higgs” (or M →∞) arguments to bolster the case of F1(ρ)

versus F1(ρ)− 2, that have been made in the literature.
Now, for the present authors the question is not whether

either class of arguments is compelling enough. Instead, the
question is whether they can be made within the BEG pre-
scriptions, and at the level of rigour of this paper. The argu-
ments in the first-named class involve plays with field trans-
formations, power counting rules and the adiabatic limit that
we find hard to countenance in the BEG formalism.

However, those of the second class are persuasive within
our purview. Note that F(0), for both scalar and vector boson
charged fields, as well as for Dirac fermions, must coincide
with (the first coefficient of) the β-function series associated
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to electric charge renormalization.14 It was a fortunate his-
torical fact that a calculation of the effective Lagrangian for
charged Proca particles [46] was already available when the
first “exact” computation of the higgs to digamma process
that we are aware of was performed [2] – thus making possi-
ble a dependable “light-higgs” argument. A computation of
the renormalization of the electric charge of massive vector
bosons in the unitary gauge by means of BEG technology
is in principle feasible – cf. in this respect [41, Sect. 7] and
[47] – and expected to yield the required value F1(0) = 7.
That would complete the analysis of this paper, without going
beyond the unitary gauge framework.

5 Conclusion

Contrary to custom, we begin this section by declaring what
we have not done in the paper. Finite QFT à la Bogoliubov–
Epstein–Glaser is mathematically a rigorous method. So,
referring to what is found in the literature – like that cited in
the Introduction – we have not employed dimensional regu-
larization, deemed an “artifact” by some. Nor do we borrow
Pauli–Villars’, nor cutoff regularizations, for that matter. We
did not have to practice “judicious routings of the external
momenta” [6], nor adopt the “loop regularization method”
[10], or any of the techniques to handle divergent integrals,
resulting from the blind application of Feynman graph tech-
nology on momentum space. We do not pore over divergent
integrals, at all. Each and every one of the integrals appearing
in this paper produces an unambiguous result; each ampli-
tude is finite.

We expected the BEG procedure to yield a conceptually
clear understanding of the EW h → γ γ decay in the unitary
gauge. We have succeeded in this – at a price. According to
Epstein and Glaser, the adiabatic limit is to be performed after
distribution splitting. Such an off-shell procedure for the h →
γ γ decay in the unitary gauge demands computations more
than one order of magnitude greater than the ones performed
in this paper – compare the computation of the QED vertex
function in [39, Chap. 3.8] and in [48].

We were not disposed to inflict this on ourselves, nor our
surviving readers. Thus we were forced to innovate on the
method, generalizing the splitting dispersion integral to pro-
duction of massless particles, and showing that in the present
situation the adiabatic limit may be performed before distri-
bution splitting. Only, then one may have to add to the result
so obtained an a priori indeterminate polynomial in the exter-
nal momenta, of a degree given by the singular order of the
amplitude off-shell. It is precisely the addition of this poly-
nomial that is missing in references [5,6] and [16]. We have

14 F0(0) = −1/3, which has been calculated in this paper, means
precisely this.

resolved the ambiguity by recourse to gauge-fixing indepen-
dence of the entirely on-shell amplitude. Alternatively, the
ambiguity could be resolved within the unitary gauge in the
BEG scheme, by invoking the low-energy argument.15 We
have not attempted here a rigorous proof of this argument,
nor computed the relevant coefficient of the beta function,
leaving the task for a separate analysis in future work.
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Appendix A: Notations and prerequisites

Our Minkowski metric is mostly-negative. The Minkowski
inner product of two vectors x ≡ xμ, p ≡ pν is denoted
with parentheses: (xp) = xμ pμ. When (we hope) it does not
cause confusion, we often denote p2 = (pp).

We signal the standard formula for time-ordered 2-point
function:

〈〈T ϕ(x) χ(x ′)〉〉 := i

(2π)4

∫
d4 p

e−i(p(x−x ′))

p2 − M2 + i0
Mϕχ (p),

(A.1)

15 Variants of the “light-higgs” or “low energy” argument besides [2,
9,17] are found for instance in [27, Ch. 24.8], in [49] and in [50].
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where Mϕχ is the multiplier appearing in the corresponding
2-point function for the fields ϕ, χ with the same mass M .

Propagators for a (complex) scalar field. Clearly, for
(say, complex) scalar fields the Feynman propagator

�F (x − x ′) := 〈〈T ϕ(x) ϕ†(x ′)〉〉 (A.2)

fulfils

��F (x − x ′) = −M2�F (x − x ′)− iδ(x − x ′), (A.3)

where M is the mass of the ϕ-field. Also, with θ denoting the
Heaviside function, the Wightman functions

�+(x − x ′) := 〈〈ϕ(x)ϕ†(x ′)〉〉
= 〈〈ϕ†(x)ϕ(x ′)〉〉 = 1

(2π)3

∫
d4 p θ(p0) δ(p2 − M2)e−i(p(x−x ′))

so that (�+ M2)�+(x) = 0, �−(x) := −�+(−x),

(A.4)

are used in our calculations.
Massive vector fields. A dreibein er (p) on Minkowski

momentum space, with the properties:(
er (p) es(p)

) = −δrs for r, s = 1, 2, 3; (
p er (p)

) = 0,

describes polarization states for particles with squared mass
M2 = p2 > 0 and spin j = 1. From the above identities,
one derives the projector formula:

3∑
r=1

eμ
r (p)eν

r (p) = −gμν + pμ pν

M2 . (A.5)

The set e is regarded as an intertwiner matrix mapping the
natural representation space of the Lorentz group onto the
representation space C

3 for spin 1 objects. Let a†
r (p) and

ar (p) be respectively the creation and annihilation opera-
tors on the boson Fock space for such particles – whose 1-
particle subspace is the corresponding Wigner unirrep space;
and b†

r (p) and br (p) for their antiparticles.
There is a quantum vector field acting on that space given

by the formula

W μ(x) :=
∑

r

∫
dμ(p)

[
ei(px)eμ

r (p) b†
r (p)

+e−i(px)eμ∗
r (p) ar (p)

]; (A.6)

In (A.6) and in other formulas dμ(p)denotes the usual invari-
ant measure d3 p/2E(p) = d3 p/

√
m2 + | p|2 over the mass

hyperboloid H±
M := {p ∈ M | p2 = M2 ∧ ±pn > 0}. By

its definition, the charged Proca field W is divergenceless:
(∂W ) = 0. Its equations of motion can be variously written
as

(�+ M2)W μ = (�+ M2)W μ − ∂μ(∂W )

= ∂νGνμ(x)+ M2W μ = 0, (A.7)

where Gμν := ∂μW ν − ∂νW μ.
The theory of massive vector fields is a gauge theory

[51,52], its Proca version being a “unitary gauge” for it. It
has been analyzed, in terms parallel to Maxwell field theory,
in [53]; wherein the associated BRST machinery is “decon-
structed” in terms of Koszul cohomology.

The high-energy limit of (−gμν + pμ pν/M2)/(p2 −
M2) apparently signals quadratic divergences and trouble
with unitarity of the scattering matrix: cross-sections would
appear to grow without bound due to the longitudinal momen-
tum states. The difficulty lies with the closure relation (A.5)
of the intertwiners er , whose dimension does not allow the
standard sufficiency criterion for renormalizability. This is
usually “cured” nowadays by the cohomological extension
of the Wigner representation space for massive spin-1 par-
ticles into spaces populated by Faddeev-Popov ghosts and
anti-ghosts and Stückelberg fields.

In this paper we work mainly with the Proca field (i.e., we
use the unitary gauge), where these additional unphysical
fields do not appear; the apparently bad UV-behaviour of the
propagators is under control, as we verify, thanks to amazing
cancellations in the amplitudes.

Propagators for the EW theory in the unitary gauge.
We will make frequent use of

�α
β(x − x ′) := 〈〈T W α(x) W †

β (x ′)〉〉 = −(gα
β + ∂α∂β/M2)

×�F (x − x ′), (A.8)

where M is the mass of the W -field, and its properties:

��α
β=−M2�α

β+i(gα
β+∂α∂β/M2)δ; ∂μ�μ

ν = i∂νδ/M2.

The corresponding formulas for the Wightman functions
respectively read:

�α+
β (x − x ′) := 〈〈W α(x) W †

β (x ′)〉〉 = 〈〈W α †(x) Wβ(x ′)〉〉
= −(gα

β + ∂α∂β/M2)�+(x − x ′)
and ��α+

β = −M2�α+
β , ∂μ�μ+

ν = 0.

We will invoke also the Maxwell-like fields, where # = † or
naught,

Fμν := ∂μ Aν − ∂ν Aμ; G#
μν := ∂μW #

ν − ∂νW #
μ,

and introduce the propagator

Dαμ
βρ (x − x ′) := 〈〈T Gαμ(x) G†

βρ(x ′)〉〉 = 〈〈T Gαμ †(x) Gβρ(x ′)〉〉
= 〈〈T(∂αWμ(x)− ∂μWα(x))(∂β W †

ρ (x ′)− ∂ρ W †
β (x ′))〉〉

= −∂μ
(
∂ρ�α

β(x − x ′)− ∂β�α
ρ(x − x ′)

)
+ ∂α

(
∂ρ�

μ
β (x − x ′)− ∂β�

μ
ρ (x − x ′)

)
= (gα

β ∂
μ
ρ − gα

ρ ∂
μ
β − gμ

β ∂α
ρ + gμ

ρ ∂α
β )�F (x − x ′),

∂α
ρ := ∂α∂ρ, (A.9)
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since in

∂ρ�α
β − ∂β�α

ρ = (−gα
β∂ρ + gα

ρ ∂β)�F (A.10)

the terms with three derivatives cancel out, due to the anti-
symmetry of G#

μν . That fact is relevant in this paper. Analo-
gously we obtain

Dαμ+
βρ (x − x ′) := 〈〈Gαμ(x) G†

βρ(x ′)〉〉 = 〈〈Gαμ †(x) Gβρ(x ′)〉〉
= (gα

β∂
μ
ρ − gα

ρ ∂
μ
β − gμ

β ∂α
ρ + gμ

ρ ∂α
β )�+(x − x ′),

without third-order derivatives. We also note that

∂μDαμ
βρ =(gα

β∂ρ − gα
ρ ∂β)��F =(−gα

β∂ρ+gα
ρ ∂β)(M2�F + iδ),

since third-order derivatives appear only in the form ∂��F ,
removable with the help of (A.3).

For the 2-point functions with one G# plus one W #, we
use (A.10) to get rid of the terms with three derivatives. For
time-ordered ones we obtain

〈〈T W μ(x) G†
αν(x ′)〉〉 = 〈〈T W μ †(x) Gαν(x ′)〉〉

= −(∂α�μ
ν (x − x ′)− ∂ν�

μ
α (x − x ′)) = (gμ

ν ∂α − gμ
α ∂ν)

×�F (x − x ′),
〈〈T G†

αν(x) W μ(x ′)〉〉
= 〈〈T Gαν(x) W μ †(x ′)〉〉
= (−gμ

ν ∂α + gμ
α ∂ν)�

F (x − x ′). (A.11)

With the parallel Wightman functions we proceed similarly:

〈〈W μ(x) G†
αν(x ′)〉〉 = 〈〈W μ †(x) Gαν(x ′)〉〉

= (gμ
ν ∂α − gμ

α ∂ν)�
+(x − x ′),

〈〈G†
αν(x) W μ(x ′)〉〉 = 〈〈Gαν(x) W μ †(x ′)〉〉

= (−gμ
ν ∂α + gμ

α ∂ν)�
+(x − x ′).

(A.12)

Comparing with the Feynman gauge, in which the W # two-
point functions �α

β and �α+
β are replaced by−gα

β�F (A.13)

and−gα
β�+ (A.14), respectively, we find the W #G#, G#W #

and G#G# two-point functions to be the same, thanks to the
cancellations in (A.10).

Propagators for the EW theory in the Feynman gauge.
The Feynman propagator and the Wightman two-point func-
tion for the W -field in the Feynman gauge read

〈〈T W α(x) W †
β (x ′)〉〉 = −gα

β�F (x − x ′), (A.13)

〈〈W α(x) W †
β (x ′)〉〉 = 〈〈W α †(x) Wβ(x ′)〉〉 = −gα

β�+(x − x ′).
(A.14)

Besides the W -field the computation from Sects. 4.4 involves
the Stückelberg fields ϕ± and the ghost and anti-ghost fields
C±, C̄± – where φ± := 1√

2
(φ1 ± iφ2

)
for φ = ϕ, C, C̄ .

Below we list the non-vanishing Feynman propagators and
two-point functions for these fields:

〈〈T ϕ+(x) ϕ−(x ′)〉〉 = �F (x − x ′),
(A.15)

〈〈ϕ+(x) ϕ−(x ′)〉〉 = 〈〈ϕ−(x) ϕ+(x ′)〉〉 = �+(x − x ′),
(A.16)

〈〈T C+(x) C̄−(x ′)〉〉 = 〈〈T C−(x) C̄+(x ′)〉〉 = �F (x − x ′),
(A.17)

〈〈C+(x) C̄−(x ′)〉〉 = −〈〈C̄−(x) C+(x ′)〉〉 = �+(x − x ′),
(A.18)

〈〈C−(x) C̄+(x ′)〉〉 = −〈〈C̄+(x) C−(x ′)〉〉 = �+(x − x ′).
(A.19)

Appendix B: An interesting distribution

In this appendix we study the distribution f (ρ) appearing in
the amplitude of the h → γ γ decay via both scalar QED and
flavourdynamics.

To define
√·: C→ C and log : C→ C one uses a cut on

the negative real axis:√
r eiϕ = √

r eiϕ/2, log reiϕ = log r + iϕ,

both with ϕ ∈ (−π, π ].
The complex function

f̃ :
{
C \ (

(−∞, 0) ∪ (1,∞)
) −→ C

z �−→ −(
log(

√
1 − z + i

√
z)

)2 (B.1)

is analytic, in view of the two cuts on the real axis. The
distribution f (ρ) is defined by

f : [0,∞) −→ C : ρ �−→ f (ρ) := f̃ (ρ + i0). (B.2)

We claim that

f (ρ) = (arcsin
√

ρ
)2 =

[
arctan

ρ√
1 − ρ2

]2
for 0 ≤ ρ ≤ 1,

(B.3)

f (ρ) = −1

4

[
log

1 +
√

1 − ρ−1

1 −
√

1 − ρ−1
− iπ

]2

for ρ ≥ 1, (B.4)

from which one easily obtains the following formula for the
imaginary part:

� f (ρ) = θ(ρ − 1)
π

2
log

√
ρ +√

ρ − 1√
ρ −√

ρ − 1

= −θ(ρ − 1)
π

2
log

(
2ρ − 2

√
ρ(ρ − 1)− 1

)
. (B.5)
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The first claim (B.3) follows immediately from the identity

arcsin
√

ρ = −i log
(√

1 − ρ + i
√

ρ
)

for ρ ∈ [0, 1],
which is obvious from exp(i arcsin x) = √

1 − x2 +
i x, |x | ≤ 1.

To prove the second claim (B.4), first note that one has√
1 − (ρ + i0) = −i

√
ρ − 1 for ρ ≥ 1. Hence, there holds:

log
(√

1 − (ρ + i0)+ i
√

ρ
) = log

(√
ρ −√

ρ − 1
)+ iπ/2

= 1

2

(
log

(
(
√

ρ −√
ρ − 1)2)+ iπ

)

= 1

2

(
log

√
ρ −√

ρ − 1√
ρ +√

ρ − 1
+ iπ

)
− 1

2

(
log

1 +√
1 − ρ−1

1 −√
1 − ρ−1

− iπ

)
,

from which assertion (B.4) follows.
We point out that, for ρ ∈ [0, 1], in the distribution

F0(ρ) = ρ−1
(
1 − ρ−1 f (ρ)

)
in Eq. (1.3) the terms ∼ ρ−1

cancel. We bring in the power series expansion

arcsin x = x + x3

2 · 3
+ 3 x5

2 · 4 · 5

+ 3 · 5 x7

2 · 4 · 6 · 7
+ · · · for |x | ≤ 1, yielding

f (ρ) = (arcsin
√

ρ )2 = ρ + ρ2

3

+ 8ρ3

45
+ · · · so that F0(ρ) = −1

3
− 8

45
ρ + · · · .

(B.6)

Appendix C: Bogoliubov–Epstein–Glaser normalization

Epstein and Glaser [21,54] started from Bogoliubov’s func-
tional S[g]-matrix [55, Sect. 21], based on [56] and on previ-
ous work by Stückelberg and Rivier [57]. That is an expan-
sion of operator-valued distributions (OVD) on configuration
space, of the form

S[g] = 1

+
∞∑

n=1

in

n!
∫

d4x1 · · · d4xn Tn(x1, . . . , xn) g(x1) · · · g(xn),

g ∈ S(R4,R). (C.1)

We have taken h̄ = 1. The g’s are multiplets of coupling
functions which work as adiabatic cutoffs. The Tn , symmet-
ric in their arguments, are identified with chronological or
time-ordered n-products. This is Bogoliubov’s version of the
summands in the formal Dyson expansion for the scatter-
ing matrix in the interaction picture. One tries to recursively
build the Tn from natural postulates: the ultraviolet problem
is solved in that construction. In the “adiabatic limit” g ↑ 1

the functional scattering matrix (C.1) is expected to converge
to the physical S in suitable senses [58].

C.1: The Epstein–Glaser postulates

Beginning of induction: The procedure is perturbative,
the basic building blocks being finite sets of quantum
free fields on their corresponding Fock spaces. Precisely,
T1(x) is a Wick polynomial in those and their derivatives
– a well-defined OVD.16 The coupling constants of the
model are included in the Tn , the expansion being a power
series on them. The other postulates shall enable us to
construct the Tn from T1 by induction on n.
Causality: This is the key requirement, for which the
Epstein–Glaser manufacturing of TOPs is also called
“causal perturbation theory”. Let V± and V± respectively
denote the open forward and backward lightcones and
their closures. If g1, g2 are such that

supp g2 ∩
(
supp g1 + V−

) = ∅, then

S[g1 + g2] = S[g2]S[g1];
equivalently, Tn(x1, . . . , xn)

= Tr (x1, . . . , xr ) Tn−r (xr+1, . . . , xn) whenever

{x1, . . . , xr } ∩
({xr+1, . . . , xn} + V−

) = ∅,
for all r and n with1 ≤ r ≤ n − 1.

This is a powerful postulate, called causal factorization.
It means that on large open sets of the n-point Minkowski
space (M4)

×n ≡ M
n the TOP Tn can be built up from

its lower-order counterparts. In the inductive step of the
Epstein–Glaser method, this requirement uniquely deter-
mines Tn on the set of Schwartz functions S(Mn\�n),
in terms of the given Tk at lower orders k ≤ n − 1,
where �n is the “thin” diagonal �n := { (x1, . . . , xn) :
x1 = x2 = · · · = xn }. Perturbative normalization is
the extension of the operator-valued distribution Tn from
S′(Mn \�n) to S′(Mn). The gist of BEG normalization
is that in local quantum field theory this problem finds a
solution, the induction process going through. So there is
no need to deal with infinities. The solution of the exten-
sion problem is non-unique: in principle one may add any
OVD which is supported on �n . All further postulates of
Epstein–Glaser have the purpose of giving guidance for
this problem; hence they may be called “normalization
conditions”.
Causal Wick expansion: The TOPs are required to sat-
isfy the Wick expansion formula. We display the latter
in terms of the interaction T1(x) = ϕk(x), for ϕ a real

16 One can think of T1 as an “interaction Lagrangian”. However, the
Lagrangian mindset is inessential here.

123



131 Page 22 of 25 Eur. Phys. J. C (2021) 81 :131

scalar field:

Tn
(
ϕk(x1), . . . , ϕ

k(xn)
)

=
k∑

l1,...,ln=0

(
k

l1

)
· · ·

(
k

ln

)
〈〈Tn(ϕk−l1(x1), . . . ,

× ϕk−ln (xn))〉〉ϕl1(x1) · · ·ϕln (xn)

with 〈〈· · · 〉〉denoting vacuum expectation value. This pos-
tulate reduces the extension problem for the OVD Tn(· · · )
to one of numerical distributions – a simpler task.
Poincaré Covariance: Let there be given the standard
lifting U (a,�) to Fock space of the Poincaré unitary
irreducible representations (unirreps) on 1-particle sub-
spaces. Then

U (a,�)S[g]U †(a,�) = S
[
(a,�) · g

]
,

where ((a,�) · g)(x) = g(�−1(x − a)). In particu-
lar, translation invariance implies that the coefficients
in the causal Wick expansion depend only on the rel-
ative coordinates. Therefore, the extension problem for
the numerical distributions is step by step simplified to
an extension to one point, namely from S′(R4(n−1) \ {0})
to S′(R4(n−1)).
Unitarity (conservation of probability):

S[g]S†[g] = S
†[g]S[g] = 1; here we denote:

S
−1[g]

=: 1 +
∞∑

n=1

(−i)n

n!
∫

d4x1 · · · d4xn T n(x1, . . . , xn)

× g(x1) · · · g(xn).

Divergence degree: Heuristically, this is the requirement
that normalization does not make the T -product “more
singular” (in the UV-region). This is expressed in terms
of the scaling degree of the coefficients (i.e., the numer-
ical distributions) in the causal Wick expansion of the
T -product: that degree may not be increased by the exten-
sion. The standard definitions of the scaling degree sd(t)
and the singular order ω(t) of a distribution t ∈ S′(Rk)

or t ∈ S′(Rk \ {0}) – see, e.g., [23, Sect. 3.2.2] – are as
follows:

sd(t) := inf{ r ∈ R : lim
λ↓0

λr t (λx) = 0 }, ω(t) := sd(t)− k,

(C.2)

where inf ∅ := ∞ and inf R := −∞. For instance, for
a translation-invariant distribution d(x1 − x3, x2 − x3) ∈
S′(R8) fulfilling sd(d) = 8, equivalently ω(d) = 0, we

say that the amplitude superficially is “logarithmically
divergent”.
Other invariance rules and physical requirements: Dis-
crete symmetries can be accomodated in the Epstein–
Glaser construction [59]. A Ward identity playing a
paramount role in this paper corresponds to EGI – see
Sects. 3.1 and 4.2 for this. For different types of require-
ments, consult Sects. 4.4 and 4.5.

C.2: Iterative building of the time-ordered products

To assemble the Tn outside of the thin diagonal �n from
the inductively known (Tk)1≤k≤n−1 directly by causal fac-
torization, one would need a partition of unity subordinate
to an open cover of Mn \ �n – see [60] and [23, Sect. 3.3].
This is problematic for practical computations. For this rea-
son the original Epstein–Glaser construction [21,39] is less
direct: it introduces an intermediate Dn-distribution having
causal support; and the crucial step is the splitting of Dn into
its advanced and retarded parts. This splitting corresponds
precisely to the above-mentioned extension problem, that is,
to perturbative normalization. A decisive advantage of the
method is that the problem is solved in momentum space by
a dispersion integral.

To explain the construction, we first express the antichrono-
logical product T n in terms of the TOPs (Tk)1≤k≤n . Let
N = {x1, . . . , xn} and I ⊆ N with |I | �= 0 elements. Define
T|I |(I ) = T|I |(xi : xi ∈ I ). By the standard inversion of a
formal power series with noncommuting terms in terms of
set compositions, we obtain

T |N |(N ) =
n∑

k=1

(−)n+k
∑

I1$···$Ik=N

T|I1|(I1) · · · T|Ik |(Ik),

(C.3)

where the disjoint union is over nonempty blocks I j . The ter-
minology of antichronological products is appropriate, since
if I ∩ (J + V−) = ∅, then T (I ∪ J ) = T (J ) T (I ).

Retarded and advanced products, denoted by Rn and An

respectively, are the coefficients in the perturbative expansion
of the respective retarded and advanced interacting fields. For
them we follow the convention in the book [23], identical to
that of [21] except that Rn and An have an extra factor in−1.
In general, Bogoliubov’s definitions read:

Rn+1(x1, . . . , xn+1) := in
∑

I⊂{1,...,n}
(−1)|I | T |I |(I ) T|I c |+1(I c, xn+1),

(C.4)

An+1(x1, . . . , xn+1) := in
∑

I⊂{1,...,n}
(−1)|I | T|I c |+1(I c, xn+1) T |I |(I ),

(C.5)
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where I c := {1, . . . , n}\I . Epstein and Glaser [21] prove that
An+1, Rn+1 have advanced or retarded support, respectively:

supp An+1 ⊆ { x ∈M
n+1 : x j − xn+1 ∈ V+ ∀ j };

supp Rn+1 ⊆ { x ∈M
n+1 : x j − xn+1 ∈ V− ∀ j }.

In the induction step n → n+1 neither the Tn+1 nor the Rn+1

nor the An+1 are known. But by the induction hypothesis
the difference Dn+1, defined by Dn+1 := An+1 − Rn+1,
only depends on known quantities. For instance, in D3 the
unknown T3 has dropped out – and T 1, T 2 are uniquely given
in terms of T1 and T2. It follows that Dn+1 has causal support:

supp Dn+1 ⊆ { x ∈M
n+1 : x j − xn+1 ∈ V+ ∀ j }

∪{ x ∈M
n+1 : x j − xn+1 ∈ V− ∀ j }.

If one finds a way to extract the advanced part An+1 of Dn+1,
that is, to split the OVD Dn+1 into An+1 and −Rn+1 in
such a way that the latter two satisfy the just given support
properties, then one can construct a candidate for Tn+1.17

For the sake of normalization conditions, at this stage we
may add to Tn+1 any OVD supported on �n+1 which is sym-
metric in x1, . . . , xn+1. The Dn+1 fulfils all the normaliza-
tion conditions, in particular the ‘Causal Wick expansion’
and ‘Translation invariance’, because of the validity of those
for the inductively given (Tk)1≤k≤n . Therefore, the splitting
problem for Dn+1 translates into a consonant problem for the
coefficients d(x1−xn+1, . . . , xn−xn+1) ∈ S′(R4n,C) in the
Wick expansion of Dn+1, yielding a, r(x1 − xn+1, . . . , xn −
xn+1) ∈ S′(R4n,C), which are the coefficients in the Wick
expansion of An+1 and Rn+1, respectively.

In fine, by the induction process, one specifies the ambigu-
ity in the vacuum expectation value of each Tn+1 by adding
to it a contact term, that is,

t (x1 − xn+1, . . . , xn − xn+1)

+
∑
|a|≤ω

ca ∂aδ(x1 − xn+1, . . . , xn − xn+1), (C.6)

where ω is the singular order of the pertinent d(x1 −
xn+1, . . . ) and the coefficients ca ∈ C depending on the
multi-index a are arbitrary, up to restrictions coming
from the ‘Poincaré covariance’ and ‘Other invariance rules’
requirements.

C.3: Dispersion integrals from splitting in BEG
normalization: the central solution

For simplicity, here we restrict ourselves to the case of two
four-variables, relevant for this paper. For the Fourier trans-

17 That sometimes needs to be symmetrized, by adding a suitable OVD
supported on �n+1.

form of f ∈ S
(
R

8
)

we employ the following convention:

f (y1, y2) = (2π)−4
∫

dk1 dk2 e−i(k1 y1+k2 y2) f̂ (k1, k2).

(C.7)

Let �± := V± × V± henceforth. Given a “causal distribu-
tion”, that is, d ∈ S′(R8) with

supp d ⊆ �+ ∪ �− and sd(d) < ∞, (C.8)

by a splitting solution of d we mean a distribution a ∈ S′(R8)

with

(a − d)
∣∣
S(R8\�−)

=0, supp a ⊆ �+ and sd(a)≤sd(d).

(C.9)

In what follows we assume that the Fourier transform d̂ of
the causal d-distribution we wish to split vanishes in an open
ball R ⊂ R

8 centered at k = 0. This holds if all propagators
contributing to d are massive, as it is the case in this paper –
see [21, Sect. 5.2]. Also in [21] it is shown for any splitting
solution a that d̂|R = 0 entails analyticity of â(k) on R.
In this case there exists a distinguished splitting solution, the
so-called central solution ac, characterized by the conditions

∂aâc(0) = 0, for all |a| ≤ ω(d). (C.10)

As indicated in Eq. (C.6), for sd(d) ≥ 8 – i.e., for ω(d) ≥ 0,
as defined in Eq. (C.2) – the splitting solution of d is not
uniquely determined. Any two solutions a1 and a2 differ by

a1(y)− a2(y) =
ω(d)∑
|a|=0

Ca ∂aδ(y) or equivalently,

â1(k)− â2(k) = 1

(2π)4

ω(d)∑
|a|=0

Ca (−ik)a,

with arbitrary constants Ca ∈ C.
Essential for dealing with our situation is that the central

solution of the splitting problem in momentum space can
be computed by a dispersion integral. Now we sketch the
derivation of a few versions of this distinguished splitting
integral. 18 The naive way to extract the advanced part a of
d is to multiply the latter by a θ -function:

anaive(y1, y2) := d(y1, y2) χ(y1, y2) with

χ(y1, y2) := θ
(
(y1v1)+ (y2v2)

)
,

where v := (v1, v2) ∈ V+ × V+ is arbitrary. But for
sd(d) ≥ 8 the pointwise product dχ exists only as an ele-
ment of S′(R8 \ {0}). Therefore, the splitting problem is an

18 For further detail we refer to [39, Sect. 3.2], which relies on [21,
Sect. 6.5].
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extension problem: we have to extend dχ ∈ S′(R8 \ {0}) to
an a ∈ S′(R8) such that sd(a) = sd(dχ) = sd(d).19

The problem is studied in its particulars in [23, Sect. 3.2.2].
Given a with singular order ω, there exists an obvious exten-
sion aω, belonging in the dual space S′ω(R8) of

Sω(R8) := { f ∈ S(R8) : ∂b f (0) = 0 for all |b| ≤ ω },
uniquely determined by the requirement that sd(aω) =
sd(d). Next, a projection is introduced:

Wω : S(R8) −→ Sω(R8);
Wω f (y) := f (y)− w(y)

ω∑
|b|=0

yb

b! ∂b f (0), (C.11)

where the suitably decaying function w must fulfil w(0) = 1
and ∂bw(0) = 0 for 1 ≤ |b| ≤ ω. One verifies that a solution
aw (depending on the choice of the function w) of the splitting
problem (C.9) is obtained by setting

〈aw | f 〉 := 〈aω | Wω f 〉. (C.12)

The aω involved here is dχ with enlarged domain. If further-
more assumption d|R = 0 is satisfied, the infrared behaviour
of d(y) is harmless. Hence, one may simply choose w(y) = 1
for all y ∈ R

4. Then the correspondent splitting solution
aw=1 is actually the central solution ac (C.10). Substituting
dχ for aω and further using the convolution formula

f̂ � χ̂(k) = (2π)4 i

2π

∫
R

dt

t + i0
f̂ (k − tv)

and f̂ g = (2π)−4 f̂ � ĝ, we see that

âc(k) = i

2π

∫
R

dt

t + i0

[
d̂(k − tv)−

ω∑
|b|=0

kb

b! ∂bd̂(−tv)

]
.

(C.13)

This splitting integral does not depend on the choice of v ∈
V+ × V+. Moreover, for k ∈ Vη × Vη, where η ∈ {+,−},
we may choose v := ηk – that v vary with k is admissible.
With some extra work [39, Prop. 3.4], this formula is then
simplified into a convergent dispersion integral:

âc(k)

= iη

2π

∫
R

dt
d̂(tk)

(t − ηi0)max{ω+1, 0}(1 − t + iη0)
for k ∈ Vη × Vη .

(C.14)

In the applications treated in this paper, d(tk) is of the form

d̂(tk)

=η sgn(t) θ(t2 − t2
min) f

(
t2k2

1 , t2k2
2 , t2(k1+k2)2)

for k∈Vη × Vη,

(C.15)

19 A priori, it might happen that sd(dχ) < sd(d); but in the applica-
tions to Epstein–Glaser normalization known to us one always finds
sd(dχ) = sd(d). Hence we assume the latter relation to hold true.

for some f ∈ S′(R3), where tmin > 0 depends on the squares
of the momenta. So finally, introducing the new integration
variable u := t2, the integral (C.14) goes over into

âc(k)

= i

2π

∫ ∞

t2
min

du
f (uk2

1 , uk2
2 , u(k1 + k2)

2)

umax{�ω/2�+1, 0}(1 − u + iη0)
for k ∈ Vη × Vη,

(C.16)

where �·� denotes the integer part.
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