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Abstract We provide analysis to determine the effects of
gravitational waves on electromagnetic waves, using pertur-
bation theory in general relativity. Our analysis is performed
in a completely covariant manner without invoking any coor-
dinates. For a given observer, using the geometrical-optics
approach, we work out the perturbations of the phase, ampli-
tude, frequency and polarization properties–axes of ellipse
and ellipticity of light, due to gravitational waves. With
regard to the observation of gravitational waves, we discuss
the measurement of Stokes parameters, through which the
antenna patterns are presented to show the detectability of
the gravitational wave signals.

1 Introduction

Light serves as a powerful means to observe gravitational
waves. In fact, most of the current and future gravitational-
wave detectors make use of light. As a primary example,
laser interferometers observe gravitational waves through
the interference patterns of light caused by the difference
of the photon transit times between two arms [1–3]. Viewing
this from a different perspective, the electromagnetic waves
propagating along each arm are perturbed by gravitational
waves, and the observation of gravitational waves is enabled
by the difference between the phases of the perturbed elec-
tromagnetic waves from the two arms: the electromagnetic
waves interfere when they meet at the intersection of the
arms, where a trace of the gravitational wave signals would
cause changes to the intensity of the superposed electromag-
netic waves [4]. As another example, pulsar timing arrays
observe gravitational waves through the changes in the elec-
tromagnetic pulse periods from pulsars. The phase of elec-
tromagnetic waves is delayed during the passage of gravi-
tational waves, which eventually causes the measured pulse
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frequency (or period) to vary slightly. Then the cumulative
variation of this (termed as a residual ) enables the observa-
tion of gravitational waves [5]: taking account of the cross-
correlation of the residuals of two pulsars nearby in the sky
(i.e., the quadrupolar interpulsar correlation) would enhance
confirmation of the observation [6].

There have been numerous studies investigating the effects
of gravitational waves on light in the context of general rela-
tivity. Some of the studies focus on the effects on the polariza-
tion of light. Among others, Montanari [7] obtained a solution
of Maxwell equations in a gravitational wave background to
one order of approximation beyond the geometrical-optics
limit, and applied this to the study of perturbations of the
linear polarization of electromagnetic waves. Calura and
Montanari [8] presented the exact solution to the linearized
Maxwell equations in spacetime slightly curved by a gravi-
tational wave only in the framework of the linearized general
relativity, without invoking the geometrical-optics approxi-
mation, and applied this to the case of a linearly polarized
electromagnetic field bounced between two parallel conduct-
ing planes. Halilsoy and Gurtug [9] analyzed the Faraday
rotation in the polarization vector of a linearly polarized
electromagnetic shock wave upon encountering with gravi-
tational waves. Hacyan [10,11] determined the influence of a
gravitational wave on the elliptic polarization of light, deduc-
ing the rotation of the polarization angle and the correspond-
ing Stokes parameters, and applied this effect to the detection
of gravitational waves, as a complement to the pulsar timing
method. Cabral and Lobo [12] obtained electromagnetic field
oscillations induced by gravitational waves and found that
these lead to the presence of longitudinal modes and dynam-
ical polarization patterns of electromagnetic radiation.

In this paper, we employ perturbation theory of general
relativity to analyze the influence of gravitational waves on
electromagnetic waves, concentrating mainly on the effects
on the polarization of light. Our analysis is then applied
to the observation of gravitational waves by means of
Stokes parameters. Largely, the paper proceeds in three steps
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through Sects. 2–4. In Sect. 2, we review the basics of grav-
itational and electromagnetic waves as described in the flat
spacetime background, and introduce our notational conven-
tions used in the paper. In Sect. 3, we work out a perturbation
of electromagnetic waves due to gravitational waves from
the perturbed Maxwell equations: using the geometrical-
optics approach, the perturbations of the phase, amplitude,
frequency and polarization properties–axes of ellipse and
ellipticity of light are determined. In Sect. 4, application of
our analysis to the observation of gravitational waves is dis-
cussed. Stokes parameters are employed as optical observ-
ables to identify the gravitational wave signals from, and
measured in a suitable observational frame. The antenna pat-
terns are defined via the Stokes parameters to exhibit the
detectability of the gravitational wave signals.

Throughout the paper, our analysis is conducted in a com-
pletely covariant manner without invoking any coordinates.
To express tensors, Roman indices (a, b, c, . . .) are used;
however, they should be distinguished from other unitali-
cized or Greek or parenthesized subscripts used occasion-
ally for special notations; e.g., Mo, Mε , ωg, ωe, E(p), E(s),
etc. Also, a parenthesized number on the top left of the sur-
rounding text denotes the degree of perturbation; e.g., (0)Tab
for the unperturbed tensor Tab, (1)Tab for the first-order per-
turbation of Tab, etc. We use the geometrized unit system
(c = 1, G = 1) for gravitation and the Gaussian unit system
(ε0 = 1

4π
, μ0 = 4π ) for electromagnetism.

2 Preliminaries

To discuss a perturbation of a quantity X in a spacetime(
Mo,

(0)g
)
, where Mo denotes a background manifold with a

metric (0)g , we consider a one-parameter family of perturbed
spacetimes (Mε, g (ε)), where ε is a perturbation parameter,
and Mε is a manifold associated with ε, with a metric g (ε)

defined on it, such that (Mε, g (ε)) tends to
(
Mo,

(0)g
)

as ε →
0. Then, a perturbation δX of the quantity X is defined as the
pull-back of X from Mε to Mo through a map between the
two manifolds, subtracted by X on Mo. By Taylor expansion,
δX can be split into pieces of orders of ε; i.e., δX = (1)X +
(2)X + O

(
ε3

)
, where (1)X and (2)X denote first-order and

second-order perturbations, respectively.
A gauge transformation associated with a perturbation

corresponds to changing a map between Mo and Mε .
Then, a gauge transformation of a first-order perturbation
is described by (1)X ′ − (1)X = Lξ X , where (1)X and (1)X ′
are first-order perturbations via two different maps, and Lξ X
denotes the Lie derivative of X with respect to ξ , a vector of
O (ε) defined from the two maps. A first-order perturbation
(1)X is guage-invariant if Lξ X vanishes for all ξ : it is pos-
sible only if X is zero, or a constant scalar, or constructed

by Kronecker delta with constant coefficients. This approach
was first introduced in [13] and reviewed later in [14].

Let us consider the Minkowski spacetime as the back-
ground manifold Mo. Then, a first-order perturbation of the
Riemann tensor is gauge-invariant as the Riemann tensor
vanishes in the background spacetime. With the stress-energy
tensor being assumed to vanish to first order in ε, a first-
order perturbation of Einstein equations becomes the classi-
cal gravitational wave equations: ∂c∂chab = 0 , with gauge
conditions ∂bhab = 0 and haa = 0 , where hab denotes a
first-order perturbation of a metric gab, and ∂ is the partial
derivative associated with the metric (0)g in the Minkowski
spacetime. We consider a monochromatic plane wave solu-
tion: hab = HabeiP , whereHab is a complex constant ampli-
tude, and P is a real phase scalar that satisfies (0)na∂a P < 0
for an arbitrary observer with the 4-velocity (0)na in the
Minkowski spacetime and vanishes at the second covari-
ant derivative. Also, the propagation vector for gravitational
waves is defined as ka ≡ ∂a P , which is a constant null vector.

For an inertial observer with (0)na living in the Minkowski
spacetime, the propagation vector ka can be decomposed into
ka = ωg

(
(0)na + κa

)
, where ωg ≡ −(0)na∂a P > 0 is the

frequency of gravitational waves measured by the observer,
and κa is a spatial unit vector orthogonal to (0)na in the
observer’s point of view. Further, if we impose an addi-
tional gauge condition hab(0)nb = 0 (which together with
haa = 0 constitutes a transverse-traceless gauge), then the
“electric” part of the Riemann tensor perturbation becomes
(1)Racbd

(0)nc(0)nd = 1
2ω2

ghab: it should be noted that hab
in our gauge conditions is proportional to a gauge-invariant
perturbation (1)Racbd

(0)nc(0)nd .
Although the observer’s 4-velocity na is not constant in a

perturbed spacetime Mε , we can impose the geodesic con-
dition nb∇bna = 0, with ∇ being the covariant derivative
associated with the metric g (ε) in Mε , which reduces to
(0)nb∂b(1)na = 0 in Mo; i.e., (1)na can be set to a con-
stant along (0)na . For instance, we can set (1)na = 0, which
implies that the 4-velocity of the geodesic observer in Mε is
not perturbed by gravitational waves to first-order; namely,
δna = O

(
ε2

)
. Throughout our analysis, we set (1)na = 0,

and δna = 0 to first order in ε.
Taking account of Einstein-Maxwell equations, we assume

no electric charge for a source. Through the equations, the
influence of the electromagnetic field on the spacetime geom-
etry is of second order, and a first-order perturbation of
the equations becomes the same classical gravitational wave
equations as above.

In the Lorenz gauge ∂a (0)Aa = 0, Maxwell equa-
tions become the classical electromagnetic wave equations:
∂b∂b

(0)Aa = 0, where (0)Aa denotes an electromagnetic
potential in Mo. Again, we consider a monochromatic plane
wave solution: (0)Aa = (0)Aaej(0)Q , where (0)Aa is a com-
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plex constant amplitude, and (0)Q is a real phase scalar that
satisfies (0)na∂a (0)Q < 0 for an arbitrary observer with the 4-
velocity (0)na in the Minkowski spacetime and vanishes at the
second covariant derivative. Also, the propagation vector for
electromagnetic waves is defined as (0)la ≡ ∂a (0)Q, which
is a constant null vector. Note that one must distinguish the
complex numbers i and j assigned to describe gravitational
waves and electromagnetic waves, respectively: in particular,
when they are mixed in quadratic forms, such as ij or ji. As i
and j describe a phase shift by π/2 with respect to the refer-
ence phase of each independent wave, they must be treated
separately. We impose the commutativity of multiplication
between i and j; namely, ij = ji.

For an inertial observer with (0)na living in the Minkowski
spacetime, the propagation vector (0)la can be decom-
posed into (0)la = (0)ωe

(
(0)na + (0)λa

)
, where (0)ωe =

−(0)na∂a (0)Q > 0 is the frequency of electromagnetic
waves measured by the observer, and (0)λa is a spatial
unit vector orthogonal to (0)na in the observer’s point of
view. Further, we impose an additional gauge condition
(0)Aa

(0)na = 0. Then, electric and magnetic fields become
(0)Ea = j(0)ωe

(0)Aa and (0)Ba = j(0)ωe
(0)εcab

(0)λb(0)Ac ,
respectively: it should be noted that (0)Aa in our gauge con-
ditions is proportional to a gauge-invariant quantity (0)Ea or
(0)Ba .

As shown in Appendix A, we can find a right-handed
orthonormal frame

{
(0)na, (0) pa, (0)sa, (0)λa

}
, in which the

electric field is written in the form (0)Ea = (
(0)E (p)

(0) pa
+j(0)E (s)

(0)sa
)
ej(0)Q , where (0)E (p) and (0)E (s) are real

scalars, representing the axes of polarization ellipse. The
ellipticity of polarization is defined as (0)χ ≡ tan−1

(
(0)E (s)/

(0)E (p)
)
.

The intensity of electromagnetic waves on the plane
orthogonal to a unit vector za is obtained from the time aver-
age of a Poynting vector (0)Pa = (0)εabc� (

(0)Eb
)� (

(0)Bc
)

contracted with za ; i.e., Intensity = 〈
za (0)Pa

〉
. The time aver-

age of a quantity f (t) is defined as 〈 f (t)〉 = limT→∞ 1
T

∫ t+T
t

f
(
t ′
)
dt ′, where t is the proper time measured by an observer

with (0)na [15].
Stokes parameters describe the polarization state of light

that are obtained by measurements of intensities using optical
devices, e.g., polarizers and waveplates: (0)S0 is a measure of
the total intensity of light, (0)S1 and (0)S2 jointly describe the
linear polarization, and (0)S3 describes the circular polariza-
tion. In the adapted frame

{
(0)na, (0) pa, (0)sa, (0)λa

}
for the

electric field (0)Ea = (
(0)E (p)

(0) pa + j(0)E (s)
(0)sa

)
ej(0)Q ,

we obtain (0)S0 = 1
2

(
(0)E2

(p) + (0)E2
(s)

)
, (0)S1 = 1

2

(
(0)E2

(p)

−(0)E2
(s)

)
, (0)S2 = 0, and (0)S3 = (0)E (p)

(0)E (s).

3 Perturbation of electromagnetic waves

Let us consider a perturbed spacetime Mε in which the Rie-
mann tensor does not vanish. Then Maxwell equations are
written as:

∇b∇b Aa = Rb
a Ab, (1)

with the Lorenz gauge condition,

∇a Aa = 0, (2)

where Rab = Rc
acb denotes the Ricci tensor. Eq. (1) presents

inhomogeneous Maxwell equations, namely, electromag-
netic wave equations extended to the curved (perturbed)
spacetime Mε . Then we can write down a solution in the
form:

Aa = Aae
jQ, (3)

whereAa and Q correspond to the amplitude and phase of an
electromagnetic wave, respectively in the Minkowski space-
time Mo. Note that Aa is not constant in general, unlike its
counterpart in Mo, and that la ≡ ∇aQ is not null in general,
unlike its counterpart in Mo. Then for the violation of the
null condition, we define a quantity:

ν ≡ gabl
alb. (4)

Also, Aa is not a transverse wave due to Aala 
= 0. Following
from Eq. (3), the field strength tensor Fab = ∇a Ab − ∇b Aa

is expressed in the same form:

Fab = Fabe
jQ, (5)

where

Fab ≡ 2∇[aAb] + 2jl[aAb]. (6)

Let us consider a geodesic observer with na in Mε , as
mentioned in the previous section. We introduce the 3+1 for-
malism to split a tensor into temporal and spatial parts, using
a projection tensor γab defined as

γ a
b ≡ δab + nanb. (7)

Then the propagation vector la can be decomposed into the
temporal component ωe and the spatial unit vector λa , given
respectively by

ωe ≡ −nala, (8)

λa ≡ γ a
blb√

γcdlcld
. (9)
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The electric and magnetic fields as measured by an observer
with na can be expressed in the same form as Eq. (3):

Ea = EaejQ, (10)

Ba = Bae
jQ, (11)

where

Ea = Fabn
b, (12)

Ba = 1

2
εa

bcFbc, (13)

where Fab refers to Eq. (6), and εabc ≡ ndεdabc denotes the
‘spatial’ Levi-Civita tensor while εdabc is the ‘spacetime’
Levi-Civita tensor.

According to Appendix A, we can introduce an adapted
orthonormal frame {pa, sa} into Mε with no restriction, in
which one can express

Ea = E(p) p
a + jE(s)s

a, (14)

for the electric field Eq. (10), where the axes of polarization
ellipse, E(p) and E(s) are real scalars given by

E(p) ≡
√

� (Ea)� (Eb) gab, (15)

E(s) ≡
√

� (Ea) � (Eb) gab, (16)

where � () and � () are defined by

�( f ) = 1

2

(
f + f ∗) , (17)

�( f ) = 1

2j

(
f − f ∗) , (18)

where f is a complex quantity and ∗ denotes the complex
conjugate with respect to j. There are multiple possible pairs
of {pa, sa} in Mε , but we choose one, whose values in the
limit ε → 0 coincide with {pa, sa} in Mo. Also, we define
the ellipticity as

χ ≡ tan−1
( E(s)

E(p)

)
. (19)

Note that the polarization plane spanned by {pa, sa} is not
orthogonal to λa in general. Then for the violation of the
transversity condition, we define a quantity:

τ ≡ λa Ea . (20)

Now, let us consider a first-order perturbation of Maxwell
equations. From Eq. (1) it becomes

∂b∂b
(1)Aa = 2Cbc

a∂c
(0)Ab + hbc∂b∂c

(0)Aa, (21)

where

Ca
bc ≡ CabceiP , (22)

Cabc ≡ i

2

(Ha
bkc + Ha

ckb − Hbck
a) . (23)

Note that the perturbation of the Ricci tensor term from the
right-hand side of Eq. (1) vanishes: it is due to the transverse-
traceless gauge. Assuming a solution in the form (1)Aa ∼
const. × eiPej(0)Q , it is obtained as:

(1)Aa =
(

−i
Cbca (0)Ab

(0)lc

kd (0)ld
− ij

Hbc
(0)lb(0)lc(0)Aa

2kd (0)ld

)

× eiPej(0)Q . (24)

Here we rule out the case of ka (0)la = 0, in which the right-
hand side of Eq. (21) vanishes and hence gravitational waves
do not affect the electromagnetic wave to the first-order per-
turbation.

From Eq. (3) perturbation of Aa to first order yields

(1)Aa =
(

(1)Aa + j(0)Aa
(1)Q

)
ej(0)Q . (25)

Matching this with Eq. (24), on the right-hand sides of the two
equations, the first terms correspond to each other and so do
the second terms: as la ∝ (0)ωe (from Eq. (8)), the first terms
are at O

(
(0)ω0

e

)
while the second terms are at O

(
(0)ω1

e

)
,

where (0)ωe serves as an order-counting parameter in the
geometrical-optics approach [16]. Then the perturbations of
amplitude and phase, (1)A and (1)Q can be identified respec-
tively as:

(1)Q = −i
Hbc

(0)lb(0)lc

2kd (0)ld
eiP , (26)

(1)Aa = −i
Cbca (0)Ab

(0)lc

kd (0)ld
eiP . (27)

Here one should be careful about the denominators, expressed
by ∼ ka (0)la = ωg

(0)ωe (−1 + cos θ), where θ is the angle
between the propagation directions of gravitational and elec-
tromagnetic waves. As θ → 0, the first term inside the round
brackets of Eq. (24) diverges while the second term con-
verges; hence, separation of the terms by order of (0)ωe fails.
Then the value of θ for the geometrical-optics approach to
be valid is given by

θ �
√

2
ωg

(0)ωe
. (28)

Substituting Eq. (26) into the first-order perturbation of ν

from Eq. (4) through la = ∇aQ, we obtain

(1)ν = 0. (29)
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This means that the null condition for the electromagnetic
wave is not violated to the first-order perturbation. In the same
manner, from perturbation of Eq. (8), we obtain the fractional
perturbation of the electromagnetic wave frequency, given by

(1)ωe
(0)ωe

= − 1

2�
Hab

(0)λa (0)λbeiP , (30)

where � ≡ 1−κa (0)λa = 1−cos θ . Note that (1)ν and (1)ωe

are gauge-invariant as they are constant scalars evaluated in
Mo.

From Eq. (6) perturbation of Fab to first order yields

(1)Fab = 2∂[a (1)Ab] + 2j
(
∂[a (1)Q

)
(0)Ab] + 2j(0)l[a (1)Ab].

(31)

Here the first term on the right-hand side, being at O
(
ωg

(0)ω0
e

)
,

can be ignored in comparison with the other terms at
O

(
(0)ω1

e

)
in the geometrical-optics approximation, provided

that (0)ω1
e � ωg

(0)ω0
e . Now, from Eqs. (12) and (13) the first-

order perturbations of Ea and Ba are given by

(1)Ea = (1)Fab
(0)nb, (32)

(1)Ba = 1

2
(0)εbca

(1)Fbc − (0)εbcah
d
b
(0)Fdc. (33)

In Eq. (33) we have used the fact that the perturbation of the
spatial Levi-Civita tensor vanishes:

(1)εabc = 0, (34)

which is shown in Appendix C.
Using these together with Eqs. (23), (26), (27), (31) and

(32) for the perturbations of E(p) and E(s) from Eqs. (15) and
(16), we obtain the fractional perturbations of the axes of
polarization ellipse, given by

(1)E (p)
(0)E (p)

=
(1)E (s)
(0)E (s)

= − 1

2�
Hab

(0)λa (0)λbeiP . (35)

Due to this, however, the perturbation of the ellipticity χ

from Eq. (19) vanishes:

(1)χ = 0. (36)

This means that the ellipticity is maintained while the per-
turbed axes of polarization ellipse oscillate with gravitational
waves: they expand and shrink periodically together.

Using Eqs. (9), (10), (12) and (32) for Eq. (20), we obtain
the perturbation of τ :

(1)τ = 0. (37)

This means that the transversity condition for the electro-
magnetic wave is not violated to the first-order perturbation.
Note that (1)E (p), (1)E (s), (1)χ , and (1)τ are gauge-invariant
as they are constant scalars evaluated in Mo.

4 Application: observation of gravitational waves

With regard to the observation of gravitational waves, one
can consider the measurement of Stokes parameters and
their perturbations. This requires that the Stokes parame-
ters be measured in a perturbed spacetime Mε . For this pur-
pose, we introduce another right-handed orthonormal frame
{na, xa, ya, za}, where za is directed along the time-averaged
Poynting vector Pa for electromagnetic waves, given by

za ≡ 〈Pa〉
√
gbc

〈
Pb

〉 〈Pc〉
. (38)

Here the Poynting vector Pa is defined as the cross product
of the real electric and magnetic fields in Mε :

Pa = εabc� (Eb) � (Bc) . (39)

And the time average of a quantity f (t) is defined as

〈 f (t)〉 = 1

T

∫ t+T

t
f
(
t ′
)
dt ′, (40)

where t is the proper time measured by an observer with na ,
and T is a time scale such that ωeT � 1 � ωgT with T
covering a finite number of oscillation periods of the electro-
magnetic fields; therefore, defined through the time average,
za contains the perturbation oscillating at ωg, exhibiting the
effects of gravitational waves, while its unperturbed part is
constant. xa and ya are perturbed accordingly while being
orthogonal to za and to each other. We consider that the frame
{na, xa, ya, za} defined in this manner is experimentally fea-
sible as it is determined naturally based on an observable;
namely, the time-averaged Poynting vector.

In this frame, the Stokes parameters are expressed as:

4π SI = 1

2

〈
�

{
pabI

(
EaB∗

b + EaBbe
2jQ

)}〉
, (41)

where I = 0, 1, 2, 3, and pabI denote projections defined by

pab0 ≡ xa yb − yaxb, (42)

pab1 ≡ xa yb + yaxb, (43)

pab2 ≡ −xaxb + ya yb, (44)

pab3 ≡ −j
(
xaxb + ya yb

)
. (45)
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It should be noted that the Stokes parameters SI in Mε , being
defined through the time average as above, contain the per-
turbations oscillating at ωg, induced by gravitational waves,
unlike their counterparts in Mo. Using rotational properties
of S1 and S2, we set {xa, ya} such that Stokes parameter S2

vanishes. There are two possible sets of {na, xa, ya, za} in
Mε satisfying this, but we choose one, whose values in the
limit ε → 0 coincide with

{
(0)na, (0) pa, (0)sa, (0)λa

}
in Mo.

Now, we consider perturbations of the Stokes parameters.
For this sake, we need a perturbation of the spatial Levi-
Civita tensor, as given by Eq. (34), together with the compo-
nents along (0) pa and (0)sa of the perturbations of the frame
{xa, ya},

(1)xa (0) pa = −1

2
Hab

(0) pa (0) pbeiP , (46)

(1)ya (0)sa = −1

2
Hab

(0)sa (0)sbeiP , (47)

the derivations of which are given in Appendix D. Using
these, we obtain the fractional perturbations of the Stokes
parameters from Eq. (41), given by

(1)S0
(0)S0

= − 1

�
Hab

(0)λa (0)λbeiP , (48)

(1)S1
(0)S1

= − 1

�
Hab

(0)λa (0)λbeiP , (49)

(1)S2 = 0, (50)
(1)S3
(0)S3

= − 1

�
Hab

(0)λa (0)λbeiP . (51)

Note that these are gauge-invariant quantities as they are con-
stant scalars evaluated in Mo.

In relation to the observation of gravitational waves, let
us discuss the antenna patterns for the measurement of h
through the Stokes parameters, defined by

h ≡ − 1

�
Hab

(0)λa (0)λbeiP . (52)

Now, we introduce an adapted frame for gravitational waves.
As shown in Appendix B, one can find a right-handed
orthonormal frame

{
(0)na, ua, va, κa

}
, in which the ampli-

tude of gravitational waves is expressed as:

Hab = H+e+
ab + iH×e×

ab, (53)

where H+ and H× are real scalars, the projections of the
amplitude onto the polarization tensors e+

ab and e×
ab, respec-

tively, defined by

e+
ab ≡ uaub − vavb, (54)

e×
ab ≡ uavb + vaub. (55)

Then the Euler angles (φ, θ, ψ) as defined in Refs. [17,18]
yield the following relations between the adapted spatial
frames

{
(0) pa, (0)sa, (0)λa

}
and {ua, va, κa} for electromag-

netic and gravitational waves, respectively:

ua = R
(

(0)λa, φ
)
R

(
(0)sa, θ

)
R

(
(0)λa, ψ

)
(0) pa, (56)

va = R
(

(0)λa, φ
)
R

(
(0)sa, θ

)
R

(
(0)λa, ψ

)
(0)sa, (57)

κa = R
(

(0)λa, φ
)
R

(
(0)sa, θ

)
R

(
(0)λa, ψ

)
(0)λa, (58)

where R (βa, α) denotes a rotation of a vector by the angle
α with respect to the axis βa .

Substituting Eq. (53) into Eq. (52), we obtain

h = (H+F+ + iH×F×) ei P , (59)

where F+ and F× are the antenna patterns for + and × polar-
ization states, respectively, given by

F+ = −2 cos2 (θ/2) cos (2ψ) , (60)

F× = 2 cos2 (θ/2) sin (2ψ) . (61)

These are in agreement with Refs. [19–22] , although our
angles θ and ψ are defined in a slightly different manner
than the ones in the literature. In Fig. 1 are presented the
antenna patterns of |F+| and |F×| as viewed in consideration
with gravitational waves, which propagate along the direc-
tion of the κ-axis while being polarized in the uv -plane in
a quadrupole manner. We evaluate the sky averages of the
following quantities over (φ, θ, ψ):

〈F+F+〉 = 2

3
, (62)

Fig. 1 Antenna patterns of |F+| and |F×| for the measurement of h;
as viewed in consideration with gravitational waves propagating along
the direction of the κ-axis while being polarized in the uv-plane in a
quadrupole manner. The frame {u0, v0, κ} is defined from an adapted
frame {u, v, κ} with ψ = 0. In this frame, the polar angle is defined as
ϑ = π − θ , where θ refers to the angle between the propagation direc-
tions of gravitational and electromagnetic waves, whereas the azimuthal
angle is defined as ϕ = π/2 + ψ
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〈F×F×〉 = 2

3
, (63)

〈F+F×〉 = 0. (64)

Then the angular efficiency factor as defined in Ref. [23] is

F ≡ 〈F+F+〉 + 〈F×F×〉 = 4

3
. (65)

And the sky average of |h|2 is given by

〈
|h|2

〉
= 2

3

(
H2+ + H2×

)
. (66)

5 Discussion

We have worked out a perturbation of electromagnetic waves
due to gravitational waves from the perturbed Maxwell equa-
tions, as given by Eqs. (25)–(27). The perturbation has
two oscillatory parts from electromagnetic and gravitational
waves. Inspecting it closely, the amplitude of the perturbed
electromagnetic waves in general contains the perturbations
of amplitude and phase mixed together in it. Then to disen-
tangle the mixed perturbations from each other, we invoke the
geometrical-optics approach, adopting the frequency of elec-
tromagnetic waves as an order-counting parameter. However,
it should be noted that the geometrical-optics approach can
break down if the propagation directions of electromagnetic
and gravitational waves are extremely close to each other; so
close as to almost coincide, as shown by our analysis with
Eq. (28) .

From this perturbation analysis, we have found that the
null condition for the electromagnetic wave is not violated to
the first-order perturbation, as shown by Eq. (29). Also, we
have obtained the fractional perturbation of the electromag-
netic wave frequency, as given by Eq. (30), and confirmed that
it is equivalent to the gravitational-wave-induced redshift in
the literature [5]. In addition, the axes of polarization ellipse
defined via the perturbed electric field exhibit the oscillatory
feature of gravitational waves, as shown by Eq. (35): they
expand and shrink periodically together. However, the ellip-
ticity and the orthogonality between the polarization ellipse
and the propagation direction of the electromagnetic wave are
preserved to the first-order perturbation due to gravitational
waves, as evidenced by Eqs. (36 and (37).

We have employed Stokes parameters as optical observ-
ables containing the gravitational wave signals. The measure-
ment of the Stokes parameters requires a suitable orthonor-
mal frame in which the parameters are expressed. To this
end, we set one spatial unit vector to be along the propa-
gation direction of the time-averaged Poynting vector, and
arrange the other two vectors perpendicular to this such that

the Stokes parameter S2 vanishes. We have obtained the frac-
tional perturbations of the other non-vanishing Stokes param-
eters, as given by Eqs. (48), (49) and (51), which have turned
out to be all identical. Interestingly, apart from the factor 2,
these are also identical to the fractional perturbations of the
electromagnetic wave frequency and the axes of polarization
ellipse, as given by Eqs. (30) and (35). The antenna patterns
defined through the Stokes parameters, as given by Eqs. (60
and (61), show that the detectability of gravitational wave
signals vanishes when the propagation directions of gravita-
tional and electromagnetic waves are opposite to each other,
whereas the detectability becomes the maximum when the
two waves propagate in the same direction, as described in
Fig. 1.

Our analysis might find its application to some prac-
tical issue in relation to Cosmic Microwave Background
(CMB) anisotropies, characterized by scalar perturbations
due to temperature fluctuations and tensor perturbations due
to generation of polarization. As for the latter, free charges,
being agitated by primordial gravitational waves propagating
through the CMB plasma, rescatter electromagnetic radia-
tion, and this imprints a characteristic pattern of linear polar-
ization on the CMB map, represented by E-modes and B-
modes, which are derived by means of the Stokes parameters
[24–30]. However, if other gravitational waves from differ-
ent sources pass through while observing the CMB radia-
tion, the Stokes parameters will be perturbed as given by
Eqs. (48), (49) and (51), causing the polarization pattern to
change through the perturbed E-modes and B-modes accord-
ingly. Therefore, for accurate measurement of the effects
from primordial gravitational waves alone, the effects from
other gravitational waves should be identified and disentan-
gled carefully, based on our analysis of polarization.

In this work, we have investigated the effect of gravita-
tional waves on one light ray. But it will also be fairly inter-
esting to study the effect of gravitational waves in a situation
where two or more light rays interfere with each other. With
respect to this, most analyses regarding the interferometry
in the literature have concentrated on the phase perturbation
so far. However, a more complete analysis of the interfer-
ometry would require consideration of the effect from the
amplitude perturbation as well. In addition, it will be inter-
esting to study the effect of gravitational waves in a situation
where the polarization directions of two or more light rays
are not aligned. We leave discussion of all these for the future
research.
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Appendix A: Adapted frame for electric field

Given an electric field Ea = EaejQ , one can consider that
there always exists a suitable phase α to make

Ea = Eae−jαej(Q+α) = E ′
ae

jQ′
, (A1)

such that

�j
(E ′

a

)�j
(E ′

b

)
gab = 0, (A2)

where �j () and �j () are defined by

�j( f ) = 1

2

(
f + f ∗) , (A3)

�j( f ) = 1

2j

(
f − f ∗) , (A4)

where f is a complex quantity and ∗ denotes the complex
conjugate with respect to j. Dropping the sign ′ from the left-
hand side, Eq. (A2) is the orthogonality condition for the
decomposed parts of Ea ; namely, �j (Ea) ⊥ �j (Ea) . Out of
this, we can construct an orthonormal frame {pa, sa} by

pa ≡ �j (Ea)
∥∥�j (E)

∥∥ , (A5)

sa ≡ �j (Ea)
∥
∥�j (E)

∥
∥ , (A6)

where ‖X‖ ≡ √
XaXbgab for a vector Xa . In this frame, Ea

is expressed in the form:

Ea = E(p) p
a + jE(s)s

a, (A7)

where E(p) ≡ ∥∥�j (E)
∥∥ and E(s) ≡ ∥∥�j (E)

∥∥ are real scalars.

Appendix B: Adapted frame for gravitational waves

Given a gravitational wave hab = HabeiP , one can consider
that there always exists a suitable phase β to make

hab = Habe
−iβei(P+β) = H′

abe
iP ′

, (B1)

such that

�i
(H′

ab

) �i
(H′

cd

)
gacgbd = 0, (B2)

where �i () and �i () are defined by

�i( f ) = 1

2

(
f + f ∗) , (B3)

�i( f ) = 1

2i

(
f − f ∗) , (B4)

where f is a complex quantity and ∗ denotes the complex
conjugate with respect to i. Dropping the sign ′ from the
left-hand side, Eq. (B2) is the orthogonality condition for the
decomposed parts of Hab; namely, �i (Hab) ⊥ �i (Hab).
Out of this, we can construct a tensor basis

{
e+
ab, e

×
ab

}
by

e+
ab = √

2
�i (Hab)

‖�i (H)‖ , (B5)

e×
ab = √

2
�i (Hab)

‖�i (H)‖ , (B6)

where ‖T ‖ ≡ √
TabTcdgacgbd for a rank (0, 2) tensor Tab.

In this basis, Hab is expressed in the form:

Hab = H+e+
ab + iH×e×

ab, (B7)

where H+ ≡ ‖�i (H)‖ /
√

2 and H× ≡ ‖�i (H)‖ /
√

2 are
real scalars.

We can create an orthonormal frame {ua, va} such that lin-
ear combinations of ua and va satisfy the following equalities
in view of Eqs. (B5)–(B7):

�i (Hab)
(
c1u

a + c2iva
) = c3ub + c4ivb, (B8)

�i (Hab)
(
c1u

a + c2iva
) = c5ub + c6ivb, (B9)

where c1, c2, c3, c4, c5, c6 are undetermined coefficients.
Contracting both sides of Eqs. (B8) and (B9) with c1ub +
c2ivb, and using ubub = vbvb = 1 and ubvb = 0, we find

�i (Hab)
[(

uaub − vavb
)

+ i
(
uava + vaua

)] = c3 − c4,

(B10)

�i (Hab)
[(

uaub − vavb
)

+ i
(
uava + vaua

)] = c5 − c6,

(B11)
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where setting c1 = c2 has simplified the equalities. Now,
defining the tensor basis by

e+
ab ≡ uaub − vavb, (B12)

e×
ab ≡ uavb + vaub, (B13)

and using Eqs. (B5)–(B7) for Eqs. (B10) and (B11), we deter-
mine c1 = c2 = 1, c3 = −c4 = H+, c5 = −c6 = iH×.
Then from Eqs. (B10) and (B11) we establish

Hab

(
e+ab + ie×ab

)
= 2 (H+ + iH×) , (B14)

which is equivalent to Eq. (B7).

Appendix C: Perturbation of Levi-Civita tensor

The spacetime Levi-Civita tensor εabcd is normalized by

−4! = εabcdεe f ghg
aegbf gcggdh . (C1)

From this perturbation of the tensor to first order yields

(1)εabcd = 1

2
hee

(0)εabcd . (C2)

By our choice of the perturbation gauge, haa = 0, (1)εabcd
vanishes. Then this leads to the perturbation of the spatial
Levi-Civita tensor εabc ≡ ndεdabc (for a geodesic observer
with the 4-velocity na) vanishing too:

(1)εabc = (0)nd (1)εdabc + (0)εdabc
(1)nd = 0. (C3)

Appendix D: Perturbation of normalized frame

The orthonormal frame {xa, ya} for the observation of Stokes
parameters must satisfy

xaxbgab = ya ybgab = 1, (D1)

xa ybgab = 0. (D2)

With no perturbation, the frame {xa, ya} would tend to{
(0) pa, (0)sa

}
in the background. Then from the normaliza-

tion condition (D1), perturbation of xa and ya to first order
yields

(1)xa (0) pa = −1

2
hab

(0) pa (0) pb, (D3)

(1)ya (0)sa = −1

2
hab

(0)sa (0)sb. (D4)
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