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Abstract Theories with generalised conformal structure
contain a dimensionful parameter, which appears as an over-
all multiplicative factor in the action. Examples of such the-
ories are gauge theories coupled to massless scalars and
fermions with Yukawa interactions and quartic couplings for
the scalars in spacetime dimensions other than 4. Many prop-
erties of such theories are similar to that of conformal field
theories (CFT), and in particular their 2-point functions take
the same form as in CFT but with the normalisation con-
stant now replaced by a function of the effective dimension-
less coupling g constructed from the dimensionful parame-
ter and the distance separating the two operators. Such theo-
ries appear in holographic dualities involving non-conformal
branes and this behaviour of the correlators has already been
observed at strong coupling. Here we present a perturba-
tive computation of the two-point function of the energy-
momentum tensor to two loops in dimensions d = 3, 5,
confirming the expected structure and determining the cor-
responding functions of g to this order, including the effects
of renormalisation. We also discuss the d = 4 case for com-
parison. The results for d = 3 are relevant for holographic
cosmology, and in this case we also study the effect of a
�6 coupling, which while marginal in the usual sense it is
irrelevant from the perspective of the generalised conformal
structure. Indeed, the effect of such coupling in the 2-point
function is washed out in the IR but it modifies the UV.
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1 Introduction

The space of quantum field theories contains distinguished
points describing end-points of renormalisation group (RG)
flow, where the theory becomes1 a conformal field theory
(CFT). At the fixed point the structure of correlators is highly
constrained and in particular the 2- and 3-point functions are
uniquely determined up to constants [9]. Away from the fixed
point, the structure of correlators is far less constrained and
in general it is determined by case-by-case computations. In
this paper we will discuss a class of quantum field theories
that sit in between the case of general QFTs and CFTs: this
is the case of QFTs with generalised conformal structure.

Theories with generalised conformal structure have a
dimensionful parameter, which appears in the action only as
an overall parameter. This implies that the elementary fields
can be assigned a scaling dimension such that all terms in the
action scale the same way and all other parameters that enter
in the action are dimensionless. Examples of such theories
are gauge theories coupled to massless scalars and fermions,
with Yukawa coupling and quartic couplings for the scalars.
After appropriate rescaling of all fields one may arrange such
that the Yang-Mills (YM) coupling constant (which is dimen-
sionful in dimensions other than 4) appears only as an overall
constant in the action. Assigning “four-dimensional” scaling
to all fields, i.e. dimension 1 for gauge fields and scalars
and dimension 3/2 for fermions, all terms in the action have
dimension 4. Examples of such theories are maximally super-
symmetric YM theories and it is in this context where gen-
eralised conformal symmetry was first introduced [10,11].
It was observed that if one promotes the YM coupling con-
stant to a field that transforms appropriately under conformal
transformations then these theories are conformally invari-
ant. Relatedly, these theories can be coupled to background
gravity in a Weyl invariant way, provided the coupling con-
stant also transforms appropriately under Weyl transforma-
tions [12].

While this is not a bona fide symmetry, it still constraints
the structure of the correlators of the theory [12]. In particular,
2-point functions take the same form as in CFTs, except that
now the constants become functions of the effective dimen-
sionless coupling,

〈O�(x)O�(0)〉 = c̃�(g̃)

x2�
(1.1)

1 Strictly speaking, vanishing of beta functions only implies scale
invariance, but it turns out that often the theory at the fixed point is a
CFT, see [1–6] for a sample of works regarding the issue of scale versus
conformal invariance in dimension d = 2, 4 and [7,8] for a counterex-
ample in d �= 4: Maxwell theory. We note that this counterexample is
a theory with generalised conformal structure.

where g̃ = g2
YMx4−d , or in momentum space, which we will

use throughout this paper,

〈O�(q)O�(−q)〉 = q2�−dc�(g) (1.2)

with g = g2
YM/q4−d , and we suppress a momentum con-

serving delta function. � is the dimension associated with
the generalised conformal structure and c�(g) is a general
function of g (and similar for c̃�(g̃)). In CFTs c� is a con-
stant (in general may depend on exactly marginal couplings).
In perturbation theory, g � 1 and

c�(g) = c1 + c2g + · · · (1.3)

with ci constants that may be obtained by an i-loop compu-
tation. So the dependence of the correlator on the momentum
q is predetermined (similar to CFTs) and it is only the con-
stants ci that depend on which theory one is considering. It is
the purpose of this paper to confirm this picture and compute
the constants ci , which we will call generalised conformal
structure constants (GCSC), for the class of theories we con-
sider. We emphasise that all computations that we present
here are compatible with standard QFT expectations and do
not requite any mentioning of general generalised conformal
structure. Generalised conformal structure however provides
a new view on these results. For example, the implications of
dimensional analysis are reinterpreted as that of generalised
scale invariance.

Note that since g depends on q the question of whether
perturbation theory is valid depends on the energy scales that
we probe. For d < 4 the theory is asymptotically free, i.e.
g → 0 for q → ∞, so the expansion in (1.3) is justified in
the UV region, and for d > 4 the theory is free in the IR and
we only expect (1.3) to be valid in the IR.

Quantum corrections could still modify (1.3), even in the
perturbative regime. We will use dimensional regularisation
to address this issue to 2-loops. Since the theory is massless,
there are no infinities at 1-loop in odd dimensions, so when
d = 3, 5 the first correction appears at 2-loops and gives rise
to a logarithmic correction,

c�(g) = c1 + c2g + c̃2g log g + · · · (1.4)

where the log is due to UV and IR divergences in d = 3
and due to UV divergences in d = 5. We will not discuss
the d < 3 cases, which have severe IR singularities. We note
however these dimensions include important models such
as the D0 and D1 branes and the SYK model 2. In even
dimensions, there are singularities already at 1-loop. Since
we exclude d < 3, the first case to discuss is d = 4. In
this case however there is no generalised conformal struc-
ture: g2

YM is dimensionless and the perturbative expansion
does not determine the form of the momentum dependence.

2 See in particular [13] for a relevant discussion of this model and [14]
for the connection to generalised conformal symmetry.
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Nevertheless, as QFT in d = 4 is textbook material this
case serves as benchmark for the d = 3 and d = 5 cases.
Moreover, to our knowledge the renormalised 2-point of the
energy-momentum tensor for the general class of theories
we discuss here has not appeared before. The next case is
d = 6. An example would be D5-branes but it is known
that at least at strong coupling this case is special (see for
example[15,16]), and we will not discuss it here.

In the opposite regime (IR ford < 4 and UV ford > 4) the
effective coupling g becomes strong, and one may question
whether the generalised conformal structure would survive
in this regime. Remarkably, in the cases where there is a
working gauge/gravity duality [15,16] the dual supergrav-
ity solution exhibits generalised conformal structure [10–
12]. In such cases the correlators still take the form (1.2)
but now c�(g) has a strong-coupling expansion. In these
strong-coupling examples the generalised conformal struc-
ture is further linked with a strong-coupling fixed point but in
“fractional number of dimensions”: the bulk action and the
solutions can be obtained from a higher dimensional AdS via
a generalised dimensional reduction (compactification over
a torus and then continuation in the dimension of the torus)
[17].

We emphasise that in all cases (1.2) is valid only for a
limited range of momenta. For example, the �4 O(N ) vec-
tor model in d = 3 is governed by generalised conformal
structure for a range of momenta near the UV fixed point,
but it flows to a non-trivial fixed point in the IR. In the
gauge/gravity examples discussed in [12,15,16] one takes
the large N limit while keeping fixed and large the effective
’t Hooft coupling λ = gN but still small relative to N such
that the dilaton is small. However, there is always a regime (a
range of momenta) in which the dilaton becomes large and
the theory exits the phase governed by generalised conformal
structure. For example, in the case of D2 and D4 branes the
strong dilaton regime takes us to M-theory with the D2 and
D4 branes lifted to M2 and M5 branes and correspondingly
the D2 theory flows in the IR to the ABJM theory and the D4
theory becomes in the UV the (2,0) theory.

In this paper we will discuss the perturbative computa-
tion of the 2-point function of the energy-momentum tensor
to 2-loops. The original motivation for this computation was
its application to holographic cosmology. Three dimensional
QFTs with generalised conformal structure were proposed in
[18] as holographic models describing a non-geometric very
early Universe. The 1-loop computation was discussed in
[19] and the structure of the 2-point function to 2-loops in
[20]. The same paper contained a custom-fit of these mod-
els to WMAP and found that these models are compatible to
CMB data and competitive to �CDM. With the view to com-
parison to PLANCK data, a precise 2-loop computation was
needed. The result of the 2-loop computation was reported
(without derivation) in [21], which discusses the custom-fit

of these models to PLANCK data (see also [22]), again find-
ing that these models are competitive to �CDM. Another
purpose of this paper is to provide the technical details that
led to the results used in [21].

Working with dimensional regularisation, the regularised
computation may be used in different dimensions. To renor-
malise the 2-point function of the energy-momentum tensor,
one first needs to renormalise the 2-point functions of ele-
mentary fields. This computation also serves to illustrate (1.2)
but now with O� being an elementary field (scalar, fermion
or gauge field). This computation may also be used to jus-
tify the assignments of dimensions to the elementary fields
under generalised conformal structure. The three cases we
discuss (d = 3, 4, 5) cover super-renormalisable, renormal-
isable and non-renormalisable theories. Yet up to 2-loops the
computations can be done in parallel.

The perturbative computation requires the evaluation of
2-loop tensor integrals. We developed a tensor reduction
to scalar integrals implementing in the TARCER package
[23] an algorithm proposed by Tarasov [24,25]. The results
for the integrals may be of general use and are listed in
“Appendix B”.

Perturbative analysis of correlators of the energy-momentum
tensor has been done before but mostly in the context of con-
formal field theories. Previous perturbative results (almost
all 1-loop) were reported for d = 3 in [18,19,26–29] and for
d = 4 in [30–37]. The analysis of correlation functions of
elementary fields have been performed in the past in various
gauges, up to 2-loop level, most notably the background field
gauge [38–40], focused around the case d = 4. We are not
aware of any similar perturbative computations of energy-
momentum correlators in d > 4.

Returning to holographic cosmology, one outstanding
question is how to exit from the non-geometric phase to Ein-
stein gravity. This would be the analogue of the reheating
phase of conventional inflationary models. Recall that time
evolution is mapped to inverse RG flow in holographic cos-
mology, and as discussed in [20] in order to exit from the
non-geometric phase we would need to change the UV of
the holographic theory. Here we take a first step towards
building such model: we add a �6 terms in the Lagrangian
and compute its contribution at low energies. While such
term is marginal in the usual sense, it is irrelevant relative
to the generalised conformal structure. Indeed, we will see
that it induces a beta function for the quartic coupling and
we will discuss its contribution to the 2-point function of the
energy-momentum tensor.

This paper is organised as follows. In Sect. 2 we intro-
duce the QFT we will analyse and discuss our conventions.
Then in Sect. 3 we discuss the UV structure of the corre-
lators and outline the tensor reduction method we used to
calculate the relevant 2-loop diagrams. Section 4 is devoted
to the analysis of the 2-point of elementary fields; we present
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their expressions first for general dimensions and then in
d = 3, 4 and 5 dimensions, discussing in each case specific
aspects of their renormalisation. We then turn to the study of
the TT correlator in Sect. 5 and discuss how to renormalise
it in Sect. 6. In Sect. 7 we address the application of our
results to holographic cosmology, followed by an analysis of
the implications of the addition of a �6 term to the action
in Sect. 8. We conclude in Sect. 9 with a discussion of our
results. “Appendix A” contains details of the 2-loop compu-
tations and “Appendix B” the technical details of the tensor
reduction and the list of all 2-loop integrals computed using
it.

2 The model

We consider an SU (N ) Yang-Mills theory with coupling
constant gYM, coupled to massless scalars and fermions,
all transforming in the adjoint of SU (N ), with generators
(T a)bc = −i f abc, in terms of the SU (N ) structure con-
stants f abc. The model contains a single gauge field A,
N� scalars �M (M = 1, . . . ,N�) and Nψ fermions ψ L

(L = 1, . . . ,Nψ). The numbers of scalars and fermions will
be kept arbitrary, as well as the Yukawa interactions of the
fermions with the scalars. For the scalars we will introduce
generic quartic couplings that will be specialised below. All
the fields are given by ϕ = ϕaT a with group generators
normalised as trT aT b = 1/2 δab. The (Euclidean) action is
defined as

S = 2

g2
YM

∫
dd x tr

[
1

4
Fi j Fi j + 1

2ξ
(∂i Ai )

2 + ∂i c̄Di c

+1

2
(D�J )2 + ψ̄ L /Dψ L +√

2 μML1L2�
M ψ̄ L1ψ L2

]

+ 1

4!λ
(1)
M1M2M3M4

tr �M1�M2�M3�M4

+ 1

4! N λ
(2)
M1M2M3M4

tr �M1�M2 tr �M3�M4 , (2.1)

where

Diφ ≡ Dab
i �b = (δab∂i − i(T c)ab Ac

i )�
b, (2.2)

Fi j = Fa
i j T

a, Fa
i j = ∂i A

a
j − ∂ j A

a
i + f abc Ab

i A
c
j . (2.3)

The fields ci and c̄i are the ghost and antighost fields, appear-
ing in the Faddeev-Popov terms in the Lagrangian (2.1).
Notice that we have included a covariant gauge-fixing and
we have adopted the Feynman-’t Hooft gauge ξ = 1. The
Yang-Mills coupling has mass dimension (4 − d), while the
Yukawa and the quartic-scalar couplings are dimensionless
in any spacetime dimension. We assume a completely sym-
metric quartic-scalar coupling. This automatically selects a
completely symmetric gauge structure in the interaction ver-

tex, namely

Str T a1T a2T a3T a4 = 1

4!
∑
π

tr T aπ(1)T aπ(2)T aπ(3)T aπ(4) ,

Str[T a1T a2 ][T a3T a4 ] = 1

4!
∑
π

tr T aπ(1)T aπ(2) tr T aπ(3)T aπ(4) ,

(2.4)

where the sum is over all permutations of the indices and

tr T aT bT cT d = 1

4N
δabδcd + 1

8

[
dabsdcds − f abs f cds

+i
(
dabs f cds + f absdcds

)]
. (2.5)

On the other hand, in the Yukawa interaction only the anti-
symmetric component of the gauge structure is to be taken
into account

Atr T aT bT c = i

4
f abc . (2.6)

We work with the Wick rotated QFT (with a metric of pos-
itive definite signature) and we normalise the γ matrices as
trγiγ j = −2[d/2]δi j ({γi , γ j } = −2δi j1d), where [a] is the
integer part of a and the negative sign is a consequence of
the Euclidean signature.

We first present all the results in an arbitrary dimension
d, specialising to definite d only at the end. In particular we
consider the d = 3, 4, 5 cases as an example of a super-
renormalisable, renormalisable and non-renormalisable the-
ory respectively, discussing in detail the structure of the sin-
gularities, both infrared and ultraviolet, in each case. The
d = 3 case has also an important application in the compu-
tation of the power-spectrum of the cosmological perturba-
tions in the holographic cosmological models. We will use
dimensional regularisation in the MS scheme with modified
minimal subtraction.

3 UV structure and Feynman integrals

Before presenting the explicit results for the 2-point func-
tions, we will first discuss in this section what we expect
based on power counting. We will also outline the compu-
tation of the Feynman integrals and the present the basis of
integrals relevant for our computation.

3.1 Power-counting

We are interested in computing the 2-point function of the
energy-momentum tensor to 2-loops. This computation leads
to infinities that need to be renormalised. The first step in this
process is to take into account the renormalisation of elemen-
tary fields. After this step there are generally still infinities
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because the energy-momentum tensor is a composite opera-
tor; these should be subtracted using new counterterms that
involve the source that couples to the composite operator, i.e.
the background metric in our case.

Renormalisation of elementary field at some loop order
would affect the renormalisation of the energy-momentum
tensor at higher loops. Thus, for the computation of the 2-
point function of the energy-momentum tensor at 2-loops
we only need the renormalisation of elementary fields at 1-
loop. Moreover, since interactions start contributing to this
computation from 2-loops on, we do not need to discuss the
renormalisation of 3- and higher-point functions of elemen-
tary fields. It follows that for the computation of the 2-point
function of the energy-momentum tensor at 2-loops it would
suffice to renormalise the 2-point functions at 1-loop order.
Nevertheless, we will discuss this computation to 2-loops,
as this computation also serves to illustrate the generalised
conformal structure.

There is one additional issue to check: renormalisation
may induce additional terms beyond the ones listed in (2.1)
that would affect the computation of interest. On general
grounds, the UV behaviour of the different diagrams can be
obtained using the superficial degree of divergence D

D = d −
∑
f

E f (s f + d

2
− 1) −

∑
i

Ni�i ,

=
∑
f

I f (2s f + d − 2) +
∑
i

Ni (di − d) + d (3.1)

where the two expressions are linked via the standard identify

2I f + E f =
∑
i

Ni ni f (3.2)

and we follow the conventions in [41]. In particular, f sums
over fields and i over the interactions, while s f takes into
account the contribution of the field propagators (s f = 0
for scalars and gauge bosons and s f = 1/2 for fermions).
Ni represents the number of interactions of type i . �i =
d−di−∑ f ni f (s f + d

2 −1) is the dimension of the interaction
of type i , di denotes the number of derivatives and ni f the
number of fields of type f in the interaction of this type.
E f are the number of external lines of field type f . For the
classification of the diagrams it is also useful to determine
the number of loops which is given by

L =
∑
i

Ni

⎛
⎝1

2

∑
f

ni f − 1

⎞
⎠− 1

2

∑
f

E f + 1 . (3.3)

One may check, using these formulas, that power counting
implies that there are superficially divergent diagrams asso-

ciated with 3-point functions of scalars (in all dimensions
of interest). Were such diagrams non-zero, renormalisation
would induce tr �3 terms in the action, thus invalidating the
generalised conformal structure, already at leading order. So
our first task is to examine whether such terms are generated.

A tr �3 coupling is odd under � → −�, and all terms in
the action (2.1) are even under this transformation except for
the Yukawa couplings, ��̄�. It follows that such term could
only be generated by diagrams that involve an odd number
of Yukawa couplings, call this number NY . Applying (3.2)
to the fermions of the diagrams with 3 extrernal scalar lines
we find

I� = NY + NA�2 (3.4)

where NA�2 is the number of gauge-fermion vertices. Since
NY is odd, so is the sum of I� + NA�2 and since each mass-
less fermion propagator and each gauge-fermion vertex con-
tributes one gamma matrix, each fermionic loop will involve
a trace of an odd number of gamma matrices and therefore
will be zero, and thus no tr �3 coupling is generated. The
same argument implies that no higher odd power of � is
generated either.

When d = 3, �i > 0 for all the interactions in (2.1)
and the theory is super-renormalisable, while when d = 4
�i = 0 and the theory is renormalisable by power-counting,
so no new interactions beyond those listed in (2.1) will be
generated. When d = 5 however �i < 0 and the theory is
non-renormalisable, and additional higher dimension terms
will be generated. One should view the results we derive
here as valid at energies low compared to the scale set by the
lowest such higher dimension operator.

3.2 Tensor reduction

In this section we describe the method we used to cal-
culate the relevant Feynman integrals. To our knowledge
the 2-loop reduction formulas are new and are tabulated in
“Appendix B”.

The 1- and 2- loop diagrams have been computed exploit-
ing the technique of tensor reduction to 1- and 2-loop scalar
integrals. We briefly go through details of the computation
highlighting the most critical steps. The 1-loop tensor reduc-
tion of the 2-point functions is straightforward. By direct
inspection of the diagrams contributing to the 2-point func-
tions of the fields and the T T correlator, it is easy to realise
that the highest rank needed in the computation is 4. In this
case, all the scalar coefficients arising from the Lorentz-
covariant decomposition of a tensor integral can be reduced
by algebraic manipulations to the main scalar integral B0

B0 =
∫

ddk1

(2π)d

1

k2
1 (k1 + p)2

= pd−4

(4π)d/2 G1 , (3.5)
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where G1 is given by

G1 = �(2 − d/2)�(d/2 − 1)2

�(d − 2)
. (3.6)

The tensor reduction of the 2-loop diagrams is more
involved for several reasons. Firstly, the highest rank of the
tensor integrals appearing in the computation of the energy-
momentum tensor 2-point function is 6. Secondly, the pres-
ence of two integration momenta provides different tensor
expansions for a given rank. For the same reason and dif-
ferently from the 1-loop case, one cannot rely on a fully-
symmetrised tensor basis. The 2-loop tensor decomposition
described here can be (tediously) extended to tensor integrals
of arbitrary rank. The scalar coefficients can be written as
f (d) pn where n is fixed by the mass dimensions of the orig-
inal integral and of the corresponding element of the tensor
basis, while f (d) is a complicated function of the spacetime
dimensions.

The scalar coefficients f (d) can be further simplified by
expanding them onto a minimal basis of scalar integrals.
For such purpose we employed the algorithm proposed by
Tarasov [24,25] and implemented in the TARCER package
[23]. On general grounds, the algorithm allows to reduce the
2-loop 2-point integral

∫
ddk1

(2π)d

ddk2

(2π)d

(k2
1)n1(k2

2)n2(p · k1)
n3(p · k2)

n4(k1 · k2)
n4

(k2
1 − m2

1)
ν1(k2

2 − m2
2)

ν2(k2
3 − m2

3)
ν3(k2

4 − m2
4)

ν4(k2
5 − m2

5)
ν5

, (3.7)

with k3 = k1 + p, k4 = k2 + p and k5 = k1 −k2, into a linear
combination of simpler scalar integrals in which the integra-
tion momenta have been removed from the numerator. This
is achieved by exploiting standard algebraic manipulations
first, in which irreducible numerators (where only powers of
p · k1 and p · k2 appear) are obtained, and then enforcing the
algorithm described in [24,25].

In the massless case and with νi = 0, 1 (realised in our
calculations) it is possible to show by direct computation that
the basis is populated by only two elements, namely, (J0, B2

0 )

where

J0 =
∫

ddk1

(2π)d

ddk2

(2π)d

1

k2
1 k

2
4 k

2
5

= p2d−6

(4π)d
G2 , (3.8)

is a genuine 2-loop topology while B2
0 is just the square of 1-

loop scalar 2-point function. The loop function G2 is defined
as

G2 = �(3 − d)�(d/2 − 1)3

�(3d/2 − 3)
. (3.9)

From the previous expressions it is clear that G1 in (3.6)
develops a singularity only in even dimensions, while, in the
odd-dimensional case, G1 is finite but G2 in (3.9) diverges.
Therefore for even d, 1- and 2-loop corrections to the 2-point
functions are both divergent with, respectively, a single and a

double pole in 1/(d−2k). For odd d, only 2-loop corrections
are singular, with a single pole in 1/(d − (2k + 1)).

4 2-Point functions of elementary fields at 1- and 2-loop
level

Before discussing the 〈T T 〉 correlator, we present the
momentum space results for the 2-point functions, up to 2-
loop order, of the fundamental fields, namely the gauge field
(A), the fermions (�) and the scalars (�). The topologies of
the corresponding diagrams are shown in Fig. 1. The 2-point
functions can be fixed by generalised conformal invariance
as

〈ϕ(q)ϕ(−q)〉 = q2�−dc�(g) (4.1)

where ϕ = {A,�,ψ}, with � = {1, 1, 3/2} their 4-
dimensional mass dimensions and g = g2

YM/q4−d the
dimensionless coupling constant. In the perturbative regime,
the function c�(g) can be expanded as

c�(g) = c0g + c1g
2 + c2g

3 + · · · (4.2)

where ci is the i-loop contribution.

The ci are expressed in terms of the self-energies (the
amputated 2-point functions) which, on general ground, can
be decomposed as

�ab
A i j (q) = δab �A i j (q) = g−1δab qd−2

×
(
λ �

(1)
A i j + λ2 �

(2)
A i j + · · ·

)
, (4.3)

�ψ
ab
L1L2

(q) = −iδabq/�ψ L1L2(q) = −ig−1 δabq/ qd−4

×
(
λ �

(1)
ψ L1L2

+ λ2 �
(2)
ψ L1L2

+ · · ·
)

, (4.4)

��
ab
M1M2

(q) = δab �� M1M2(q) = g−1 δab qd−2

×
(
λ �

(1)
� M1M2

+ λ2 �
(2)
� M1M2

+ · · ·
)

, (4.5)

where we expressed the answer in terms of the effective ’t
Hooft coupling λ = gN so that the structure of the large N
limit is clear. Here the ellipses stand for higher loop correc-
tions. Lower-case latin letters a, b denote the gauge indices
in the adjoint representation which appear in the factorised
Kronecker delta. On the other hand, upper-case latin letters
are used for describing the flavour structure. From each term
in the equations above we have extracted the momentum
dependence and the dimensionless coupling constant g, so
that the � coefficients are functions of the spacetime dimen-
sion d and of the dimensionless couplings λ(1), λ(2) of the
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Fig. 1 Topologies of 2-loop contributions to the 2-point functions of the elementary fields. The blob in the fourth diagram represents an insertion
of a 1-loop self-energy

single and double trace quartic terms and the Yukawa cou-
plings μ. Gauge invariance fixes the structure of the gauge
self-energy as �A i j = πi j �A where the tensor πi j is the
usual transverse projection tensor defined as

πi j = δi j − qiq j

q2 . (4.6)

Having introduced the decomposition of the self-energies, we
can detail the perturbative expansion of the 2-point functions,
which in the three cases are given by

〈Aa
i (q)Ab

j (−q)〉 = g q2−d δab
∑
k=0

λkcAk i j

= g q2−d δab
{
δi j + λ �

(1)
A πi j

+λ2
[(

�
(1)
A

)2 + �
(2)
A

]
πi j + O(λ3)

}
,

〈ψ̄a
L1

(q)ψb
L2

(−q)〉 = −ig q/ q2−d δab
∑
k=0

λkcψ
k L1L2

= −ig q/ q2−d δab
{
δL1L2 + λ �

(1)
ψ L1L2

+λ2
[
�

(1)
ψ L1L3

�
(1)
ψ L3L2

+ �
(2)
ψ L1L2

]

+O(λ3)
}

,

〈�a
M1

(q)�b
M2

(−q)〉 = g q2−d δab
∑
k=0

λkc�
k M1M2

= g q2−d δab
{
δM1M2 + λ �

(1)
� M1M2

+λ2
[
�

(1)
� M1M3

�
(1)
� M3M2

+ �
(2)
� M1M2

]

+O(λ3)
}

(4.7)

where the summation runs over the perturbative orders cov-
ered by the expansion, and where the coefficients are

cϕ
0 I1 I2

= δI1 I2 , cϕ
1 I1 I2

= �
(1)
ϕ I1 I2

,

cϕ
2 I1 I2

= �
(1)
ϕ I1 I3

�
(1)
ϕ I3 I2

+ �
(2)
ϕ I1 I2

, (4.8)

with the index I = {i, L , M} for ϕ = {A, ψ,�}.
We proceed by presenting the expressions of the scalar

form factors at 1- and 2-loop level �(1,2) in the three cases.

• One-loop
At 1-loop order and for arbitrary d dimensions, the 2-
point self-energies take the form

�
(1)
A = [

3d − 2 + 2(2 − d)Nψ − N�

] 1

2(d − 1)

G1

(4π)d/2 , (4.9)

�
(1)
ψ L1L2

=
[
−d − 2

2
δL1L2 + 1

4
μ

(0)
L1L2

]
G1

(4π)d/2 ,

(4.10)

�
(1)
� M1M2

=
[

2 δM1M2 + 1

2
μ

(0)
M1M2

]
G1

(4π)d/2 , (4.11)

whereN� counts all the scalar fields and we have defined

μ
(0)
L1L2

= μML1L3 μML3L2 , L → fermion flavours ,

μ
(0)
M1M2

= μM1L1L2 μM2L2L1 , M → scalar flavours .

(4.12)

At two loop level we will be needing additional defi-
nitions of such products, which can be found in (A.5).
Notice that we have introduced the same notation μ(0)

to denote two different contractions of two Yukawa cou-
plings. There is no risk of ambiguity as we always use the
latin letters L and M to represent fermionic and scalar
flavour indices, respectively.

• Two-loop

Moving to 2-loop level, the corrections to the scalar form
factors in the expansion of the self-energies of all the fields
are given by

�
(2)
A = 1

(4π)d

{
αA0

[
αA1G

2
1 + αA2G2

]

+μ2
Y

[
1

4
G2

1 + 8 − 3d

2(d − 4)
G2

]}
(4.13)

�
(2)
ψ L1L2

= 1

(4π)d

{
αψ0

(
αψ1G

2
1 + αψ2G2

)
δL1L2

+ μ
(0)
L1L2

4(d − 4)2

[
αψ3G

2
1 + αψ4G2

]

+ 1

16(d − 4)

[
μ

(1)
L1L2

(d − 4)G2
1

+ 4((d − 2)μ
(2)
L1L2

+ (d − 3)μ
(3)
L1L2

)G2

] }
,

(4.14)
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�
(2)
� M1M2

= 1

(4π)d

{
α�0

[
α�1G

2
1 + α�2G2

]
δM1M2

+ μ
(0)
M1M2

4(d − 4)2

[
α�3G

2
1 + α�4G2

]

+ 1

8(d − 4)

[
μ

(5)
M1M2

(d − 4)(G2
1 − 2G2)

+4 μ
(6)
M1M2

(d − 2)G2

]
+ 1

144
λ

(0)
M1M2

G2

}
,

(4.15)

where αAi , αψ j , α�k which are functions both of the dimen-
sion d and the field multiplicities Nψ , N� and are given in
“Appendix A.1”. λ(0), μ2

Y and μ(i) are quadratic and quartic
products of the couplings λ and μ defined in (2.1), of the
form

λ
(0)
M1M2

= λ
(1)
M1M3M4M5

λ
(1)
M2M3M4M5

(
1 − 6

N 2 + 18

N 4

)

+λ
(2)
M1M3M4M5

λ
(2)
M2M3M4M5

2

N 2

(
1 + 1

N 2

)

+
(
λ

(1)
M1M3M4M5

λ
(2)
M2M3M4M5

+λ
(1)
M2M3M4M5

λ
(2)
M1M3M4M5

) 2

N 2

(
2 − 3

N 2

)
,

μ2
Y = μML1L2 μML2L1 ,

μ
(1)
L1L2

= μM1L1L3 μM2L3L4 μM1L4L5 μM2L5L2 , (4.16)

with the remaining μ(i) differing from the way the indices of
the μ’s are contracted and can be found in “Appendix A.1”.

4.1 Generalised conformal structure constants: results in
d = 3

This case represents an example of a super-renormalisable
SU (N ) theory in which the gauge coupling constant gYM is
dimensionful with mass dimension 1/2.

In d = 3, G1 is finite but G2 develops a singularity
parametrised, in dimensional regularisation, by a single pole
in d − 3. Concerning the self-energy of the gauge field, one
can show using power-counting arguments that all diagrams
but one are UV divergent. The exception is the last diagram
in Fig. 1, which is the product of two UV-finite 1-loop bub-
bles. Actually, the UV singularity cancels in the full 2-loop
result and only an IR divergence survives. This can be easily
proven introducing a small mass regulator to control the small
momentum behaviour of the correlator. The use of the regu-
lator is particularly useful to disentangle the poles of dimen-
sional regularisation which, otherwise, would hide their UV
or IR nature in the ε expansion. The two IR divergent con-
tributions in the perturbative expansion of the 2-loop 2-point
function of the gauge fields are depicted in Fig. 2. Similarly,

the 2-point function of the fermion fields develops an IR sin-
gularity.
The structure of the self-energy of the scalar fields is instead
different, because the UV divergence does not cancel and
must be removed by a suitable mass counterterm as shown
below.

In d = 3 dimensions, the 2-point functions of the funda-
mental fields, up to 2-loop in perturbation theory, are given
by

〈Aa
i (q)Ab

j (−q)〉 = g q−1 δab
{
δi j + πi j

[
λ cA1 + λ2 cA2

+λ2 log λ c̃A2 IR

]
+ O(λ3)

}
,

〈ψ̄a
L1

(q)ψb
L2

(−q)〉 = −ig q/ q−1 δab
{
δL1L2 + λ cψ

1 L1L2

+λ2 cψ
2 L1L2

+ λ2 log λ c̃ψ
2 IR L1L2

+O(λ3)
}

,

〈�a
M1

(q)�b
M2

(−q)〉 = g q−1 δab
{
δM1M2 + λ c�

1 M1M2

+λ2 c�
2 M1M2

+ λ2 log λ c̃�
2 IR M1M2

+λ2 log λ c̃�
2 UV M1M2

+ O(λ3)

}
,

(4.17)

where λ ≡ gN and the explicit results for the 1- and 2-loop
generalised conformal structure constants of the gauge field
are

cA1 = 1

32

[
7 − 2Nψ − N�

]
,

c̃A2 IR = 1

32π2

[
(−7 + 2Nψ + 5N� + μ2

Y

]
,

cA2 = − c̃A2 IR

2

(
1

ω
+ 2 log

g2
YMN

μIR

)
+ 1

1024π2

× [−16(μ2
Y + 20Nψ − 2N� − 15)

+ π2(4μ2
Y + (2Nψ + N� − 2)(2Nψ + N�) + 29)

]
,

(4.18)

while for the fermion fields they take the form

cψ
1 L1L2

= 1

32

[
−2 δL1L2 + μ

(0)
L1L2

]
,

c̃ψ
2 IR L1L2

= − 1

192π2

[(−14 + 4Nψ + 2N�

)
δL1L2

+12μ
(0)
L1L2

+ 3μ
(2)
L1L2

]
,

cψ
2 L1L2

= − c̃ψ
2 IR L1L2

2

(
1

ω
+ 2 log

g2
YMN

μIR

)
+ 1

576π2

×
[
−
(

64 + 4Nψ + 5N� − 9

2
π2
)

δL1L2 + 18 μ
(0)
L1L2

+9

2

(
−μ

(2)
L1L2

+ μ
(3)
L1L2

+ π2

8
(μ

(1)
L1L2

+ μ
(4)
L1L2

)

)]
.
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(4.19)

The IR singularity is described in dimensional regularisa-
tion by a single pole in ω = d − 3. Similarly, for the scalar
2-point function we obtain

c�
1 M1M2

= 1

16

[
4 δM1M2 + μ

(0)
M1M2

]
,

c̃�
2 UV M1M2

= − 1

32π2

[
(1 − 2Nψ − N�)δM1M2 + 2μ

(0)
M1M2

+1

2
μ

(5)
M1M2

+ μ
(6)
M1M2

− 1

72
λ

(0)
M1M2

]
,

c̃�
2 IR M1M2

= − 1

96π2

[(
19 − 2Nψ − N�

)
δM1M2 + 3 μ

(0)
M1M2

]
,

c�
2 M1M2

= − c̃�
2 IR M1M2

2

(
1

ω
+ 2 log

g2
YMN

μIR

)

−c̃�
2 UV M1M2

log
g2

YMN

μUV

− 1

192π2

[(
2 − 3

N 2

)
λ

(1)
M1M2M3M4

+
(

1 + 1

N 2

)
λ

(2)
M1M2M3M4

](
δM3M4 + 1

8
μ

(0)
M3M4

)
1

ω̄

+ 1

192π2

[
1

6

(
662 − 16Nψ + 16N� + 27π2) δM1M2

+3

(
14 + 3π2

4

)
μ

(0)
M1M2

+ 3

(
1

8
(−12 + π2)μ

(5)
M1M2

− μ
(6)
M1M2

+ π2

4
μ

(7)
M1M2

)

+1

8
λ

(0)
M1M2

]
. (4.20)

Notice that we have absorbed the γE − log 4π term in the
1/ω pole and we have introduced the UV and IR scales μUV

and μIR.
As discussed before, the 2-point function of the scalar

field is the only one affected by a UV divergence. This has
been removed in the MS renormalisation scheme by a mass
counterterm δm2

M1M2
tr �M1�M2/2, where

δm2
M1M2

= (g2
YM N )2

64π2

[
(1 − 2Nψ − N�)δM1M2 + 2μ

(0)
M1M2

+1

2
μ

(5)
M1M2

+ μ
(6)
M1M2

− 1

72
λ

(0)
M1M2

+ 1

24

[(
2 − 3

N 2

)
λ

(1)
M1M2M3M4

+
(

1 + 1

N 2

)
λ

(2)
M1M2M3M4

] (
8 δM3M4 + μ

(0)
M3M4

) ]1

ε
,

(4.21)

with ε = 3 − d.

4.2 Generalised conformal structure constants: results in
d = 4

In this section we offer more details about the renormalisation
of the 2-point functions of all the fields in d = 4 dimensions.

Fig. 2 IR divergent contributions to the 2-loop self-energy of the gauge
field. The blob represents the 1-loop correction

Differently from the d = 3 case, in d = 4 dimensions the
UV singularities already appear at 1-loop level through a
1/(d − 4) pole in the G1 function, and at 2-loop as single
and double poles. On the other hand, the IR singularities
do not affect the 2-point functions. These divergences can
be absorbed, as usual, in the redefinition of the fields ϕ →
Z1/2ϕ, through the wave-function renormalisation constants,
and of the couplings. In particular, the UV divergences of
the 2-point functions are removed by counterterms extracted
from the kinetic part of the action. These are given by

δ�ab
A i j (q) = − 1

g2
YM

(
ZAZ

−1
g − 1

)
δabq2πi j (q) ,

δ�ab
c (q) = − 1

g2
YM

(
ZcZ

−1
g − 1

)
δabq2 ,

δ�ψ
ab
L1L2

(q) = i

g2
YM

(
Zψ L1L2

Z−1
g − δL1L2

)
δabq/ ,

δ��
ab
M1M2

(q) = − 1

g2
YM

(
Z�M1M2 Z

−1
g − δM1M2

)
δabq2 ,

(4.22)

with ZA, Zc, Z� and Z� being the wave-function renormali-
sation constants of the gauge, ghost, fermion and scalar fields
respectively, while Zg renormalises the gauge coupling g2

YM.
The renormalisation factors are characterised by the usual
pole expansion in d = 4 − ε

Z = 1 + g2
YM

Z (1)

ε
+ g4

YM

(
Z (2)

ε2 + Z (12)

ε

)
+ . . . (4.23)

where we have omitted a possible flavour structure. Notice
that the indices (12) in Z (12) refer to the order of the pole
(order 1) and of the perturbative expansion (2). The finite
parts of the corresponding counterterms will be labelled the
same way (as δ(12)). The δ�ab

c (q) represents the counterterm
of the self-energy of the ghost field which, at 1-loop level and
in d dimensions, is given by

�ab
c (q) = δab

N

2
qd−2 G1

(4π)d/2 . (4.24)

The 1-loop renormalisation of the 2-point function of the
ghost fields is in this case necessary, since it contributes to
the perturbative expansion of the correlator of the gauge field
at 2-loop order.
From the structure of the singularity of the 2-point functions
at 1-loop order one can easily extract the corresponding coun-
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terterms, which are given by

δ
(1)
A = Z (1)

A − Z (1)
g = − 1

48π2

(−10 + 4Nψ + N�

)
,

δ(1)
c = Z (1)

c − Z (1)
g = 1

16π2 ,

δ
(1)
ψ L1L2

= Z (1)
ψ L1L2

− Z (1)
g δL1L2

= 1

32π2

(
−4δL1L2 + μ

(0)
L1L2

)
,

δ
(1)
� M1M2

= Z (1)
� M1M2

− Z (1)
g δM1M2

= 1

16π2

(
4δM1M2 + μ

(0)
M1M2

)
. (4.25)

The previous relations are not sufficient to completely deter-
mine the five 1-loop renormalisation constants Z (1) appear-
ing in Eq. (4.22). In order to close the set of equations, the
analysis of the UV divergence of one of the 3-point functions
involving one gauge field is still necessary. Furthermore, the
knowledge of the 1-loop counterterms of the vertices is also
required by the renormalisation of the 2-loop 2-point func-
tions of the elementary fields. Indeed, these counterterms
appear in the perturbative expansion as vertex insertions in
diagrams of a 1-loop topology.

We have explicitly computed the divergence of the
fermion-gauge boson vertex at 1-loop level from which the
corresponding 1-loop counterterm, proportional to the renor-
malisation constant Zψ Z1/2

A Z−1
g − 1, is identified and it is

given by the expression

δ
(1)

Aψ̄ψ L1L2
=
(
Z (1)
A

2
− Z (1)

g

)
δL1L2 + Z (1)

ψ L1L2

= 1

32π2

(
−8 δL1L2 + μ

(0)
L1L2

)
. (4.26)

The counterterms on the other 3-point vertices, with the
only exception of the Yukawa coupling, are related by gauge
invariance to the fermion-gauge boson correlator and to the
2-point functions, and do not need to be computed indepen-
dently. They are given by

δ
(1)
AAA = 3

2
Z (1)
A − Z (1)

g = − 1

48π2

(−4 + N� + 4Nψ

)
,

δ
(1)
Ac̄c = 1

2
Z (1)
A + Z (1)

c − Z (1)
g = − 1

16π2 ,

δ
(1)
A�� M1M2

=
(
Z (1)
A
2

− Z (1)
g

)
δM1M2 + Z (1)

� M1M2

= 1

16π2

(
2 δM1M2 + μ

(0)
M1M2

)
, (4.27)

which correspond, respectively, to the 3-gauge, the ghost-
gauge and the scalar-gauge boson vertices. As stated above,
the renormalisation of the 1-loop Yukawa vertex requires an
independent computation from which we extract the coun-

terterm

δ
(1)

�ψ̄ψ ML1L2
= − 1

32π2

(
12 μML1L2

+μML1L3μM1L3L4μML4L2

)
. (4.28)

As already noticed above, the 1-loop counterterms appear in
the 2-loop perturbative expansion as propagator and vertex
insertions in diagrams with a 1-loop topology. They remove
the momentum-dependent single-pole singularities of the
form 1/ε log p, which could not be absorbed by the renor-
malisation constants characterised by the structure given in
Eq. (4.23). All the remaining divergences, ε−1 and ε−2, are
proportional to constant coefficients and can be absorbed,
respectively, in the renormalisation constants Z (12) and Z (2)

of Eq. (4.23). The 2-loop counterterms can be found in
“Appendix A.2”. This complete the renormalisation program
of the 2-loop self-energies of the fundamental fields.

In d = 4 dimensions, the renormalised 2-point functions
exhibit the following perturbative structure

〈Aa
i (q)Ab

j (−q)〉 = g q−2 δab
∞∑
n=0

n∑
k=0

λn cA,(n,k)
i j logk

q

μUV
,

〈ψ̄a
L1

(q)ψb
L2

(−q)〉 = −ig q/ q−2 δab
∞∑
n=0

n∑
k=0

λn cψ,(n,k)
L1L2

logk
q

μUV
,

×〈�a
M1

(q)�b
M2

(−q)〉 = g q−2 δab
∞∑
n=0

n∑
k=0

λn c�,(n,k)
M1M2

logk
q

μUV
,

(4.29)

where n counts the perturbative order and k the logarithm
power. The first coefficient, corresponding to n = 0, repre-
sents the identity matrix in the respective space, cϕ,(0,0)

lm =
δlm . The coefficients at 1-loop are given by

cA,(1,0)
i j = 1

144π2 (31 − 10Nψ − 4N�) πi j ,

cA,(1,1)
i j = −δ

(1)
A πi j ,

cψ,(1,0)
L1L2

= − 1

32π2

(
2δL1L2 − μ

(0)
L1L2

)
,

cψ,(1,1)
L1L2

= −δ
(1)
ψ L1L2

,

c�,(1,0)
M1M2

= 1

16π2

(
4δM1M2 + μ

(0)
M1M2

)
,

c�,(1,1)
M1M2

= −δ
(1)
� M1M2

, (4.30)

with δ
(1)
ϕ defined in Eqs.(4.27). At 2-loop, in the gauge sector

we have

cA,(2,0)
i j = 1

73728π4

(
− 4444Nψ − 2113N� + 6490

+144 ζ3(8Nψ + N� − 2) − 504 μ2
Y

)
πi j

+cA,(1,0)
ik cA,(1,0)

k j ,
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cA,(2,1)
i j = 1

9216π4

(
(−790 + 436Nψ + 187N�)

+36 μ2
Y

)
πi j + 2 cA,(1,0)

ik cA,(1,1)
k j ,

cA,(2,2)
i j = cA,(1,1)

ik cA,(1,1)
k j − δ

(2)
A πi j . (4.31)

The expressions of the remaining coefficients at 2-loop are
given in “Appendix A.3”.

4.3 Generalised conformal structure constants: results in
d = 5

As a last example we consider a non-renormalisable theory in
d = 5 described by the same action in Eq. (2.1). The 2-point
functions of the elementary fields develop a UV divergence
at 2-loop order in perturbation theory, while the 1-loop con-
tributions remain finite. The singularities can be removed by
counterterm operators of dimension 6 which are quadratic
in the fields. The corresponding action can be written in the
following form

Sct = 2

g2
YM

∫
d5x tr[δ

(2)
A

4
Fi jD2Fi j

+δ
(2)
� M1M2

2
(D�M1)D2(D�M2)

+δ
(2)
ψ L1L2

ψ̄ L1D2 /Dψ L2 ]1

ε
(4.32)

where D2 = DiDi is required by gauge invariance even
though we only needed the � to renormalise the 2-point func-
tions. The coefficients δ

(2)
A , δ

(2)
� M1M2

and δ
(2)
ψ L1L2

are deter-
mined by the UV finiteness condition of the 2-loop 2-point
functions

δ
(2)
A = g4

YM
N 2

105 × 210π4

×
[
−152 + 6Nψ + 10N� + 7μ2

Y

]
,

δ
(2)
ψ L1L2

= g4
YM

N 2

215040π4

[ (−390 + 36Nψ + 6N�

)
δL1L2

+52μ
(0)
L1L2

− 3μ
(2)
L1L2

− 2μ
(3)
L1L2

]
,

δ
(2)
� M1M2

= g4
YM

N 2

215040π4[
(−344 + 144Nψ + 24N�)δM1M2

+66μ
(0)
M1M2

+ μ
(5)
M1M2

− 6μ
(6)
M1M2

− 1

36
λ

(0)
M1M2

]
. (4.33)

In order to highlight the generalised conformal structure of
the 2-point functions we introduce the dimensionless cou-
pling λ = g2

YMN q. According to this definition, the coupling

coefficients at 1- and 2-loop order are given by

cA1 = 1

1024π

[−13 + 6Nψ + N�

]
,

c̃A2 UV = 1

105 × 210π4

[
−152 + 6Nψ + 10N� + 7μ2

Y

]
,

cA2 = −c̃A2 UV log
(
g2

YMNμUV

)
+ 1

3675 × 213π4

×
[
62593 + 12016Nψ − 4135N� − 4018μ2

Y

]

+ 1

220π2

[
8(−3 − 12Nψ + N�) + (−13

+6Nψ + N�)2 + 16μ2
Y

]
, (4.34)

where we have used the same notation introduced in
Eq. (4.17) for the d = 3 case. Similar expressions are derived
for the coefficients related to the scalars and the fermions, and
can be found in “Appendix A.4”.

5 The 〈TT〉 correlation function and the A and B form
factors

In this section we move to discuss the structure of the 1- and
2-loop contributions to the 2-point function of the energy-
momentum tensor, presenting the general expressions in d
dimensions.

We start by recalling that the the energy-momentum tensor
of the model is defined as

Ti j = 2√
g

δS

δgi j

∣∣∣∣
gi j=δi j

= T A
i j + T g. f.

i j

+T gh
i j + Tψ

i j + T�
i j + T Y

i j , (5.1)

where the different terms denote, respectively, the contribu-
tion of the gauge fields, the gauge-fixing, the ghost sector,
the fermions, the scalars and the Yukawa interactions. These
are explicitly given by

T A
i j = 2

g2
YM

tr

[
Fik Fjk − δi j

1

4
Fkl Fkl

]
,

T g. f.
i j = 2

g2
YM

1

ξ
tr

[
Ai∂ j (∂k Ak) + A j∂i (∂k Ak)

−δi j

(
Ak ∂k∂l Al + 1

2
(∂k Ak)(∂l Al)

)]
,

T gh
i j = 2

g2
YM

tr
[
∂i c̄D j c + ∂ j c̄Di c − δi j∂k c̄Dkc

]
,

Tψ
i j = 2

g2
YM

tr

[
1

2
ψ̄ Lγ(i

↔
D j) ψ L − δi j

1

2
ψ̄ Lγk

↔
Dk ψ L

]
,

T�
i j = 2

g2
YM

tr

[
Di�

MD j�
M − δi j

1

2
(D�M )2

+ξM

(
δi j∂

2 − ∂i∂ j

)
(�M )2

]
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− 2

g2
YM

δi j

[
1

4!λ
(1)
M1M2M3M4

tr �M1�M2�M3�M4

+ 1

4! N λ
(2)
M1M2M3M4

tr �M1�M2 tr �M3�M4

]
,

T Y
i j = 2

g2
YM

tr
[
−δi j

√
2μML1L2�

M ψ̄ L1ψ L2
]
. (5.2)

In particular, T�
i j represents the energy-momentum tensor for

a generic non-minimal scalar �M , (M = 1, . . . ,N�), which
reduces to the minimal case if ξM = 0 or to the conformally
coupled case if ξM = (d − 2)/(4(d − 1)). For instance, in
three dimensions the conformal scalar is characterised by
ξM = 1/8.

In [28], the cancellation between the gauge-fixing and the
ghost contributions in correlation functions of the energy-
momentum tensor has been proven on general grounds. As
such, it is sufficient to consider only T A

i j in the gauge sec-
tor. We have explicitly checked that this property is actually
realised in the 〈T T 〉 correlator up to 2-loop order in pertur-
bation theory.

General covariance fixes the structure of the 2-point func-
tion of the energy-momentum tensor in the following form

〈〈Ti j (q)Tkl(−q)〉〉 = A(q)�
(d)
i jkl + B(q)πi jπkl , (5.3)

where the transverse and transverse traceless projection ten-
sors are defined respectively as

πi j = δi j − qiq j

q2 ,

�
(d)
i jkl = 1

2

(
πikπ jl + πilπ jk − 2

d − 1
πi jπkl

)
. (5.4)

The double bracket notation is used to remove the momentum
conserving delta function, i.e.,

〈Ti j (�q1)Tkl(�q2)〉 = (2π)3δ(�q1 + �q2)〈〈Ti j (q1)Tkl(−q1)〉〉 .

(5.5)

and q1 is the magnitude of �q1. In the following sections we
provide the contribution to the 〈T T 〉 correlation function,
namely to the A and B coefficients, from each of the individ-
ual sector of the model, the gauge, the fermion, the scalar and
the Yukawa one. We present the results in arbitrary dimen-
sions and we finally specify them to the particular cases of
d = 3, 4, 5.

5.1 Form factors: results in arbitrary dimensions

The only topology appearing at 1-loop order is the one
depicted in Fig. 3. From an explicit computation we obtain

Fig. 3 1-Loop contribution to
the 〈T T 〉

A(1)
A = d(G)

2d2 − 3d − 8

4(d2 − 1)

qd

(4π)d/2 G1, (5.6)

B(1)
A = d(G)

(d − 4)2(d − 2)

8(d − 1)2

qd

(4π)d/2 G1, (5.7)

A(1)
ψ = Nψ d(G)

1

4(d + 1)

qd

(4π)d/2 G1, (5.8)

B(1)
ψ = 0, (5.9)

A(1)
� = N� d(G)

1

4(d2 − 1)

qd

(4π)d/2 G1, (5.10)

B(1)
� =

N�∑
M=1

2d(G)

[
ξM − d − 2

4(d − 1)

]2 qd

(4π)d/2 G1, (5.11)

where d(G) is the dimension of the adjoint representation,
namely d(G) = N 2 − 1, while G1 is the loop function
defined in Eq. (3.6). Notice that, at 1-loop order, neither the
Yukawa nor the quartic-scalar interactions contribute to the A
and B coefficients. The B coefficient describes the departure
from conformality. In particular, it identically vanishes in the
fermion sector in arbitrary dimensions while for the gauge
field it is only true in d = 4. On the other hand, the scalars
need to be conformally coupled, ξM = (d − 2)/(4(d − 1)).

At 2-loop order, the topologies of the diagrams appearing
in perturbative expansion of the 〈T T 〉 are shown in Fig. 4.
The 2-loop corrections are suppressed, with respect to the
leading order, by g2

YM N and can be organised, as usual, as
the sum of different contributions: the gauge, the fermion and
the scalar sectors, and are expressed in terms of the two loop
functions G1 and G2 given in Eqs. (3.6) and (3.9).

In the gauge sector we obtain

A(2)
A = λ

2d(G)

3(d − 4)2(d − 2)(d2 − 1)

[
3(d − 4)

(
d4 − 8d3

+16d2 + 20d − 68
)
G2

1 + (− 13d5 + 129d4 − 462d3

+572d2 + 376d − 1088
)
G2

] qd

(4π)d
,

(5.12)

B(2)
A = −λ

d(G)

24(d − 1)2

[
3(d − 4)(d3 − 16d2 + 68d − 88)G2

1

+16(4d3 − 33d2 + 94d − 92)G2

] qd

(4π)d
, (5.13)

while the contribution of the fermions is

123
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Fig. 4 2-Loop contribution to the 〈T T 〉. The blob in the fourth diagram represents an insertion of a 1-loop self-energy

A(2)
ψ = λ

Nψ d(G)

12(d − 4)2(d − 2)(d2 − 1)[
9(d − 4)

(
3d3 − 23d2 + 54d − 32

)
G2

1 + 4
(− 10d5

+95d4 − 289d3 + 182d2 + 464d − 496
)
G2

2

] qd

(4π)d
,

(5.14)

B(2)
ψ = −λ

Nψ d(G)

3(d − 1)2

[
(d − 4)(d − 2)2G2

] qd

(4π)d
. (5.15)

The results for the scalar contributions are

A(2)
� = λ

2N� d(G)

3(d − 4)2(d − 2)(d2 − 1)

×
[
3(d − 4)

(
d2 − 7d + 13

)
G2

1

+
(

176 − 30d − 73d2 + 33d3 − 4d4
)
G2

] qd

(4π)d
,

(5.16)

B(2)
� = λ

N�∑
M=1

d(G)

24(d − 4)2(d − 1)2

[
− 3(d − 4)(d − 2

−4(d − 1)ξM ) (16(−9 + 2ξM ) + d(110 − 44ξM

+ d(−27 + 2d + 12ξM )))G2
1

+16
(
−272 + 370d − 189d2 + 44d3 − 4d4

+24(d − 3)(d − 1)(8 + (−5 + d)d)ξM

−12(d − 2)(d − 1)2(3d − 8)ξ2
M

)
G2

] qd

(4π)d

−λ

N�∑
M1,M2=1

d(G)

6

[
2N 2 − 3

N 2 λ
(1)
M1M1M2M2

+1 + N 2

N 2 λ
(2)
M1M1M2M2

]

×
(

ξM1 − d − 2

4(d − 1)

)(
ξM2 − d − 2

4(d − 1)

)
G2

1
qd

(4π)d
.

(5.17)

Notice that the quartic scalar contribution only originates
from the last diagram of Fig. 4 which is simply the product
of the two 1-loop topology graphs. This term is identically
vanishing if at least one of the two scalars running in the two
loops is conformally coupled.

Finally we present the contribution of the Yukawa inter-
actions

A(2)
Y = λ

μ2
Y d(G)

24(d − 4)(d − 2)(d − 1)

[
−3(d − 4)G2

1

+ 4(−2 + (d − 2)d)G2

] qd

(4π)d
, (5.18)

B(2)
Y = λ

N�∑
M=1

d(G) μML1L2 μML2L1

6(d − 4)(d − 1)2

×
[

8 + d(−3 + (d − 3)d) − 12d(d − 3)(d − 1)ξM

+12(d − 1)2(3d − 8)ξ2
M

]
G2

qd

(4π)d
, (5.19)

where we have defined μ2
Y = μML1L2 μML2L1 as the square

of the Yukawa coupling. The sum over all the three flavour
indices, where not explicitly stated, is always implicitly
understood. In particular, notice that in B(2)

Y the sum of the
scalar flavour has been shown explicitly because the square
of the Yukawa coupling is weighted by ξM and ξ2

M .

6 The form factors A and B in d = 3, 4, and 5
dimensions and renormalisation of the TT

In this section we will discuss the structure of the correlator
in various dimensions, focusing on the d = 3, 4 and 5 cases.

6.1 Form factors: renormalised results in d = 3

In d = 3 dimensions the coefficients defined above take the
form

A(1)
A = B(1)

A = d(G)

256
q3, (6.1)

A(1)
ψ = d(G)

128
Nψq

3, B(1)
ψ = 0, (6.2)

A(1)
� = d(G)

256
N�q

3 ,

B(1)
� = d(G)

256

N�∑
M=1

(1 − 8ξM )2 q3 (6.3)
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and thus in total we have

A(1) = d(G)

256
N(A)q

3,

B(1) = d(G)

256
N(B)q

3, (6.4)

with

N(A) = 1 + 2Nψ + N�, N(B) = 1 +
N�∑
M=1

(1 − 8ξM )2 .

(6.5)

Notice that in d = 3 dimensions the 〈T T 〉 is both UV and
IR finite. In the large N limit we recover the results obtained
in [18,19].

Concerning the 2-loop results, it is possible to recognise,
simply by naive dimensional analysis, that the 〈T T 〉 may
develop UV and IR divergences ind = 3 dimensions. Indeed,
while G1 is finite, the loop function G2 has a single pole in
ε, for d = 3 − ε

G2 =
d→3−ε

2π

(
1

ε
+ 3 − γE

)
+ O(ε), (6.6)

where γE is Euler-Mascheroni constant.
By a closer inspection of every contribution in the dia-

grammatic expansion of the 〈T T 〉, we find that all the topolo-
gies give rise to UV divergences, with the only exception of
the last one depicted in Fig. 4 which is indeed finite. For the
UV divergence of the 〈T T 〉 at 2-loop order we find

A(2)|UV sing.

= −2B(2)|UV sing. = λ q3 d(G)

192π2

[
(2 − Nψ − 2N�) − 1

2
μ2
Y

]
1

ε̄
,

(6.7)

which gives

〈〈Ti j (q)Tkl (−q)〉〉|UV sing.

= λ q3 d(G)

192π2

[
(2 − Nψ − 2N�) − 1

2
μ2
Y

]
1

ε̄

(
�i jkl − 1

2
πi jπkl

)
.

(6.8)

This divergence can be removed by a suitable counterterm
defined as the double variation, with respect to the metric
tensor, of

√
g R, namely

F.T.

[
δ2

δgi jδgkl

∫
d3x δCT

√
g R

]

= −δCT
q3

2

(
�

(3)
i jkl − 1

2
πi jπkl

)
,

(6.9)

where F.T. denotes the Fourier transform and the coefficient
δCT , in the MS scheme, is given by,

δCT = λ
d(G)

96π2

[
(2 − Nψ − 2N�) − 1

2
μ2
Y

]
1

ε̄
. (6.10)

The IR divergent contribution emerges only in the scalar
and Yukawa sectors from the fourth topology in Fig. 4, char-
acterised by an insertion of the scalar 1-loop self-energy.
All the other diagrams have enough integration momenta in
the numerator to avoid any IR singular behaviour. In par-
ticular, the IR singularity arises only from the improvement
term in the scalar energy-momentum tensor and, therefore,
is proportional to ξ2

M . Indeed the first and the last topologies
in Fig. 4 do not have enough propagators to develop an IR
divergence in d = 3: when the two integration momenta k1

and k2 go to zero, such that k1 ∼ k2 → 0, their denomina-
tors behave at most as k4 while the numerators goes a k6.
For the diagrams with the remaining topologies in Fig. 4,
power counting suggests that there are possible IR logarith-
mic singularities, but in all cases these are avoided because
the energy-momentum tensor provides an additional integra-
tion momentum in the numerator of the Feynman diagram.
The only exception to that is if we consider the ξ -dependent
part of the energy-momentum tensor which does not depend
on any of the momenta of the two internal lines but only the
external momentum q, thus allowing the IR singularity to
appear.

We find

〈〈Ti j (q)Tkl(−q)〉〉|IR sing. = 〈〈T�,ξ
i j (q)T�,ξ

kl (−q)〉〉

=
N�∑
M=1

4 g2
YM ξ2

Mq4πi jπkl ×
∫

ddk

(2π)d

�
(1)
�

aa

MM (k)

k4(k + q)2 ,

(6.11)

where T�,ξ
i j is the ξ -dependent part of the scalar energy-

momentum tensor and �
(1)
�

ab

M1M2
(k) is the 1-loop self-energy

of a massless scalar field given in Eq. (4.11). By naive power
counting arguments we find that this contribution is logarith-
mic IR divergent but UV finite. In dimensional regularisation
with d = 3 + ω, with ω > 0, we obtain

〈〈Ti j (q)Tkl(−q)〉〉|IR sing. = λ q3 d(G)

8π2 � I R
�

×
[

1

ω̄
+ 1 + 2 log

q

μIR

]
πi jπkl ,

(6.12)

where, as usual, 1/ω̄ = 1/ω + γE − log 4π and

� I R
� =

N�∑
M=1

ξ2
M

(
2 + 1

2
μML1L2 μML2L1

)
(6.13)

represents the contribution of all the scalars to the IR diver-
gence.

The same result can be obtained using a mass regulator
which amounts to replace k2 with k2 + m2 in the integral in
Eq. (6.11). In this case the singularity appears as a logm, in
the form
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〈〈Ti j (q)Tkl(−q)〉〉|IR sing.

= λ d(G)
q3

8π2 � I R
�

2 arcsinh(
√
q2/m2)√

1 + m2/q2
πi jπkl

∼
m2→0

λ d(G)
q3

8π2 � I R
�

(
2 log

2q

m

)
πi jπkl . (6.14)

The two renormalised form factors in d = 3 are

A(2) = λ d(G)
q3

1536π2

[
40 + 52Nψ − 8N� + 2μ2

Y

−3π2
(

2 + 3Nψ + 2N� + 1

2
μ2
Y

)

+ 16(−2 + Nψ + 2N� + 1

2
μ2
Y ) log

q

μUV

]
, (6.15)

B(2) = −λ d(G)
q3

6144π2

[
16 − 56Nψ − 4μ2

Y + 3π2

+32

(
−2 + Nψ + 2N� + 1

2
μ2
Y

)
log

q

μUV

+
N�∑
M=1

3(8ξM − 1)
(

8
(
π2 − 16

)
ξM − 3π2 + 112

+ 2μML1L2 μML2L1

)]

+λ d(G)
q3

8π2 � I R
�

[
1

ω̄
+ 1 + 2 log

q

μIR

]

−
N�∑

M1,M2=1

λ
q3

24576
d(G)

[
2N 2 − 3

N 2 λ
(1)
M1M1M2M2

+1 + N 2

N 2 λ
(2)
M1M1M2M2

] (
8ξM1 − 1

) (
8ξM2 − 1

)
,

(6.16)

where μUV is the renormalisation scale. In the B(2) form fac-
tor we have isolated the contribution affected by the IR diver-
gence which is proportional, as we have already discussed,
to ξ2

M . The singularity has been regularised in dimensional
regularisation with d = 3 + ω, with ω > 0, and it is charac-
terised by the IR scale μIR. Notice that this term is absent in
the minimal coupled scalar case, where ξM = 0.

6.2 Form factors: renormalised results in d = 4

In d = 4 〈T T 〉 develops a UV singularity in both the coef-
ficients A and B and a renormalisation of the correlator is
necessary already at 1-loop level. For the conformal fields,
namely the gauge field, the fermion field and the confor-
mally coupled scalar, the divergence can be removed by the
square of the 4-dimensional Weyl tensor F = Ri jkl Ri jkl −
2Ri j Ri j + 1/3R2, while a non-conformally coupled scalar
requires an extra R2. In particular, the second order variation

with respect to the metric tensor gives

F.T.

[
δ2

δgi jδgkl

∫
d4x

√
g
(
δCT F + δ′

CT R2
)]

= δCT q4 �
(4)
i jkl + 2 δ′

CT q4 πi jπkl , (6.17)

where F.T. denotes Fourier transform and the coefficients of
the counterterms in the MS scheme at 1-loop order are

δ
(1)
CT = − 1

q4 A
(1)|UV sing.

= −d(G)

(
1

40π2 + Nψ

160π2 + N�

480π2

)
1

ε
,

δ
(1)′
CT = − 1

2q4 B
(1)

∣∣∣∣
UV sing.

= −
N�∑
M=1

d(G)
1

288π2 (1 − 6ξM )2 1

ε
. (6.18)

The renormalised results are

A(1)
A = d(G)

q4

800π2

(
9 − 20 log

q

μUV

)
,

B(1)
A = −d(G)

q4

360π2 ,

A(1)
ψ = Nψ d(G)

q4

800π2

(
6 − 5 log

q

μUV

)
,

B(1)
ψ = −Nψ d(G)

q4

1440π2 ,

A(1)
� = N� d(G)

q4

7200π2

(
23 − 15 log

q

μUV

)
,

B(1)
� =

N�∑
M=1

d(G)
q4

432π2 (1 − 6ξM )

×
(

2 − 18ξM − 3(1 − 6ξM ) log
q

μUV

)

−N� d(G)
q4

4320π2 . (6.19)

Notice that the B(1) factors in the gauge and fermion sec-
tors and the last term in B(1)

� are generated from the sin-
gular part of the corresponding A(1) coefficients due to the
d-dependence in �

(d)
i jkl . In particular, in d = 4 − ε,

�
(d)
i jkl = �

(4)
i jkl − ε

9
πi jπkl (6.20)

has a finite projection onto the B(1) coefficients. These con-
tributions are local and they may be set to zero by adding a

finite part in δ
(1)′
CT .

Before discussing the UV behaviour of the 2-loop 〈T T 〉
correlator, we complete the renormalisation program at 1-
loop order in perturbation theory by analysing the improve-
ment term ξM R(�M )2. This is necessary for the renormalisa-
tion of the 2-point function of the energy-momentum tensor
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Fig. 5 1-Loop perturbative
expansion of the 〈T��〉
correlator

at higher orders. The improvement term undergoes an addi-
tive renormalisation, ξM1δM1M2 → ξM1δM1M2 + δξM1M2 ,
when the scalar is not conformally coupled, namely, away
from the ξM = 1/6 case. The definition of the δξM1M2 coun-
terterm is encoded in the UV singularity of the 〈T��〉 cor-
relator which we study at 1-loop order in perturbation theory.
The different topologies contributing to the 3-point function
are depicted in Fig. 5 and amount to triangles and bubbles
diagrams with gauge, scalar and fermion fields running in
the internal lines. The computation is checked using the con-
servation Ward identity originating from the diffeomorphism
invariance of the theory,

ki 〈〈Ti j (k̄)�a
M1

(q1)�
b
M2

(q2)〉〉 = q1i ��
ab
M1M2

(q2)

+q2i ��
ab
M1M2

(q1) (6.21)

where ��
ab
M1M2

is the unrenormalised scalar field self energy
defined in Eq. (4.5). As stated above, the 〈T��〉 develops
a UV divergence which is cancelled by the wave-function
renormalisation of the scalar field and by the counterterm
δξM1M2 . The counterterm of 〈T��〉 is extracted from the
quadratic part of the renormalised energy-momentum tensor
T�
i j and it is given by

T� c.t.
i j = δ� M1M2

2

g2
YM

tr

[
∂i�M1∂ j�M2 − δi j

2
∂k�M1∂k�M2

+ (ξM1 + δξM1M2)
(
δi j∂

2 − ∂i∂ j
)
�M1�M2

]

+δξM1M2

2

g2
YM

tr
[(

δi j∂
2 − ∂i∂ j

)
�M1�M2

]+ . . .

(6.22)

where the dots represent cubic and quartic terms in the fields
which are unnecessary for our purpose. The counterterm
δ� M1M2 is fixed by the renormalisation of the scalar 2-point
function and it is explicitly given in Eq. (4.25) at 1-loop order
in perturbation theory, while δξM1M2 is determined here by
the cancellation of the singularity in 〈T��〉 which is given
by

ξ
(1)
M1M2

= g2
YMN

96π2ε

[
(6 δM1M2 + μ

(0)
M1M2

)(1 − 6ξM1 )

− 1

6

(
2N2 − 3

N2 λ
(1)
M1M2M3M3

+ 1 + N2

N2 λ
(2)
M1M2M3M3

)

× (1 − 6ξM3)
]

. (6.23)

Notice that there is no need of renormalisation of the
improvement term if the scalars are conformally coupled as

the remnant singularity of the 3-point function 〈T��〉, after
the subtraction of the scalar wave-function contribution, van-
ishes for ξ = 1/6.

Having completed the renormalisation at 1-loop order
of the 〈T T 〉 and 〈T��〉 correlators we can come back to
the analysis of the 2-loop 2-point function of the energy-
momentum tensor in d = 4 which also appears to be diver-
gent in the UV. Being the 4 dimensional theory already
plagued by infinities at 1-loop level, the 2-loop perturba-
tive expansion of the correlator is characterised by contri-
butions of countertems inserted in the 1-loop topology dia-
grams, both in the T vertices and in the internal propagators.
With the only exception of δξ contribution, these counterterm
insertions are proportional to the wave-function renormali-
sation constants of the elementary fields and exactly cancel
each other. The only remaining sub-divergence is related to
the non-minimal scalar coupling and can be removed by δξ

which is extracted from the renormalisation of 〈T��〉. This
is necessary to cancel a 1/ε log q singularity which otherwise
could not be absorbed into a local counterterm. As such, one
is left with a UV singularity entirely arising from genuine
2-loop topologies. The divergence is removed by the same
local counterterms, F and R2, introduced in the 1-loop anal-
ysis with coefficients given by

δ
(2)
CT = − 1

q4 A(2)|UV sing. = −λ
d(G)

36864π4

(−64 + 28Nψ

+16N� + 3μ2
Y

) 1

ε
,

δ
(2)′
CT = − 1

2q4 B(2)

∣∣∣∣
UV sing.

= λ
d(G)

4608π4

⎡
⎣ N�∑
M=1

(1 − 6ξM )2

× (6 + μML1L2μML2L1

)

−
N�∑

M1,M2=1

1

6

(
2N2 − 3

N2 λ
(1)
M1M1M2M2

+1 + N2

N2 λ
(2)
M1M1M2M2

)
(1 − 6ξM1 )(1 − 6ξM2 )

⎤
⎦ 1

ε2

−λ
d(G)

4608π4

N�∑
M=1

(1−6ξM )2
(

4+ 1

2
μML1L2μML2L1

)
1

ε
.

(6.24)

We present below the renormalised expressions of the 2-
loop contributions for the A and B form factors due to the
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gauge and fermion sectors. They are given by

A(2)
A = λ d(G)

q4

17280π4

(
−1 + 60 log

q

μUV
− 162 ζ3

)
,

B(2)
A = λ d(G)

37q4

20736π4 ,

A(2)
ψ = −λNψ d(G)

q4

552960π4

×
(

−1367 + 840 log
q

μUV
+ 1296 ζ3

)
,

B(2)
ψ = −λNψ d(G)

31q4

82944π4 .

(6.25)

and as in the 1-loop case, the B(2) form factors for the gauge
fields and scalars may be set to zero by adding suitable finite

terms in δ
(2)′
CT . The remaining contributions can be found in

“Appendix A.5”.

6.3 Form factors: renormalised results in d = 5

We now turn to the case of d = 5. At 1-loop order we obtain

A(1)
A = −d(G)

9

4096π
q5 B(1)

A = −d(G)
3

16384π
q5

A(1)
ψ = −Nψd(G)

1

3072π
q5 ,

B(1)
ψ = 0 , A(1)

� = −N�d(G)
1

12288π
q5 ,

B(1)
� = −

N�∑
M=1

d(G)
1

16384π
(3 − 16ξM )2 q5 . (6.26)

At 2-loop order in perturbation theory a UV diver-
gence appears in both coefficients. The singularities can be
removed, as usual, by local counterterms constructed from
Ri jkl , Ri j and R. The corresponding second order variation
with respect to the metric tensor is

F.T.

[
δ2

δgi j gkl

∫
d5x

√
g
(
δCT (Ri jkl�Ri jkl − 2Ri j�Ri j

+3

8
R �R) + δ′

CT R �R

)]

= −δCT q5 �
(5)
i jkl − 2δ′

CT q5 πi jπkl , (6.27)

where the counterterms are given by

δ
(2)
CT = 1

q5
A|UV sing. = λ

d(G)

1935360π4

[
−443 − 271

2
Nψ

−29N� + 13

4
μ2
Y

]
1

ε
,

δ
′(2)
CT = 1

2q5
B|UV sing. = λ

d(G)

1146880π4

[
− 106

9
− Nψ

+
N�∑
M=1

[
2

3
(−49 + 64(8 − 21ξM )ξM )

+ 1

18
(43 + 96ξM (−5 + 14ξM ))μML1L2μML2L1

]]
1

ε
.

(6.28)

The renormalised results due to the gauge and fermion sectors
are

A(2)
A = λ d(G)

q5

6502809600π4

(
− 6725288 + 628425π2

+2976960 log
q

μUV

)
,

B(2)
A = λ d(G)

q5

69363302400π4

(
− 3026624 + 760725π2

+2849280 log
q

μUV

)
,

A(2)
ψ = λNψ d(G)

q5

8670412800π4

(
− 2638704 + 209475π2

+1214080 log
q

μUV

)
,

B(2)
ψ = λNψ d(G)

q5

2167603200π4

×
(

557 + 7560 log
q

μUV

)
. (6.29)

The remaining contributions can be found in “Appendix A.6”.

7 Connection with holographic cosmology

One of the motivations for the current work was the need for
the d = 3 results in the context of holographic cosmology. In
particular, the form factors A and B of the 2-point function of
the energy-momentum tensor is related to the cosmological
power spectra P and PT , respectively [18,19],

P(q) = − q3

16π2

1

ImB(q)
, PT (q) = −2q3

π2

1

ImA(q)
,

(7.1)

where the imaginary part is taken after the analytic continu-
ation,

q → −iq, N → −i N , (7.2)

The generalised conformal structure and the large N limit
imply

A(q, N ) = q3N 2 f T (λ), B(q, N ) = 1

4
q3N 2 f S(λ)

(7.3)
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This is the analogue of (1.2) for the 2-point function of the
energy-momentum tensor (the factor of 1/4 in B is conven-
tional). In particular, factorq3 reflects the fact that the energy-
momentum tensor has dimension 3 in three dimensions (and
(2�− d) = 3) and the factor of N 2 is due to the fact that we
are considering the leading term in the large N limit. Under
the analytic continuation (7.2)

q3N 2 → −iq3N 2, λ → λ (7.4)

so for this class of theories one may readily perform the
analytic continuation and (7.1) becomes

P(q) = q3

4π2N 2 f S(λ)
, PT (q) = 2q3

π2N 2 f T (λ)
. (7.5)

We have thus now arrived in a relation between cosmological
observables and correlators of standard QFT.

In perturbation theory, the functions f (S,T )(λ) can be
expanded as

f (λ) = f0
(

1 − f1 λ log λ + f2 λ + O(λ2)
)

. (7.6)

where we use the conventions (names of coefficients and
relative signs) of [20]. The leading order contribution, f0,
can be extracted from the 1-loop computation of the 〈T T 〉
and, in particular, from (6.4) thus obtaining

f S0 = 1

64
N(B) , f T0 = 1

256
N(A) . (7.7)

The coefficient f1 of the logarithm term is computed from
the 2-loop corrections given in (6.16). Using the definition
of the effective coupling we can exploit the relation

λ log(q/μ) = −λ log λ + λ log(g2
YMN/μ), (7.8)

which can be used to recast the coefficients A(2) and B(2) in
the form

A(2) = −λ N 2 q3

96π2 (−2 + Nψ + 2N� + 1

2
μ2
Y ) log λ + · · · ,

B(2) = λ N 2 q3
[

1

192π2

(
−2 + Nψ + 2N� + 1

2
μ2
Y

)

− 1

4π2 � I R
�

]
log λ + · · · . (7.9)

Notice that, contrary to the 1-loop case, the two functions
acquire contributions from all fields, even fermions and con-
formal scalars. Finally, the f1 function is given by

f S1 = − 4

3π2

1

N(B)

⎡
⎣− 2 + Nψ + 2N� + 1

2
μ2
Y

−48
N�∑
M=1

ξ2
M

(
2 + 1

2
μML1L2μML2L1

)⎤
⎦ ,

f T1 = 8

3π2

1

N(A)

[
−2 + Nψ + 2N� + 1

2
μ2
Y

]
. (7.10)

We also have

f S2 = − 1

24N(B) π2

[
16 − 56Nψ − 4μ2

Y + 3π2

+32(−2 + Nψ + 2N� + 1

2
μ2
Y ) log

g2
YM N

μ

−3
N�∑
M=1

(1 − 8ξM )
(

112 − 3π2 + 8(π2 − 16)ξM

+24μML1L2μML2L1

) ]

+ 32

N(B) π2

N�∑
M=1

ξ2
M

(
2 + 1

2
μML1L2 μML2L1

)

×
[

1

ω̄
+ 1 + 2 log

g2
YMN

μ∗

]

− 1

48N(B)

N�∑
M1,M2=1

(1 − 8ξM1)(1 − 8ξM2)

×
[
λ

(1)
M1M1M2M2

+ 1

2
λ

(2)
M1M1M2M2

]
,

f T2 = 1

6N(A) π2

[
40 + 52Nψ − 8N� + 2μ2

Y − 3π2

×
(

2 + 3Nψ + 2N� + 1

2
μ2
Y

)

+16(−2 + Nψ + 2N� + 1

2
μ2
Y ) log

g2
YM N

μ

]
.

(7.11)

(Recall that μ is a UV scale and μ∗ is an IR scale). These
results (with λ

(2)
M1M1M2M2

= 0) were used in [21], where the
predictions of these holographic models were compared with
Planck data.

These results were instrumental in the comparison between
the predictions of holographic cosmology and Planck data in
[21]. In particular, the precise 2-loop results were needed in
order to analyse whether there are models within this class
that realise the best fit values obtained from the fit to data,
and to check that the effective coupling constant is indeed
small enough to justify the use of perturbation theory, for the
momentum scales seen by Planck. It was found that gauge
theory coupled to fermions only is ruled out by the data, but
gauge theory coupled to sufficient number of scalars is ruled
in, and it was further confirmed that this theory is indeed
perturbative for almost all but the very low momenta (the
theory becomes non-perturbative in the region correspond-
ing to CMB multipoles less than 30).
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Holographic formulae for a model with no gauge fields

We also quote here the results for a holographic model with
no gauge fields. In this case the holographic coefficients read
as

f S0 = 1

64

N�∑
M=1

(1 − 8ξM )2 ,

f S1 = −
N�∑
M=1

2

3π2N(B)

(1 − 48ξ2
M )μML1L2μML2L1 ,

f S2 = − 1

6N(B)π2

(
−1 + 4 log

g2
YMN

μ

)
μ2
Y

+ 1

N(B)π2

N�∑
M=1

[3(1 − 8ξM )

+16ξ2
M

(
1

ω
+ 1 + 2 log

g2
YMN

μ∗

)]
μML1L2μML2L1

−
N�∑

M1,M2=1

1

48N(B)

(1 − 8ξM1)(1 − 8ξM2)

×
[
λ

(1)
M1M1M2M2

+ 1

2
λ

(2)
M1M1M2M2

]
, (7.12)

for the scalar perturbations whereN(B) = ∑N�

M=1(1−8ξM )2

and

f T0 = 1

256

(
2Nψ + N�

)
,

f T1 = 4

3π2

1

N(A)

μ2
Y ,

f T2 = 1

6N(A) π2

[
2 − 3

2
π2 + 8 log

g2
YM N

μ

]
μ2
Y , (7.13)

for the tensor perturbations with N(A) = 2Nψ + N�.
Notice that if we consider only scalars (or slightly more

generally if we keep fermions but turn off the Yukawa cou-
plings), then f S1 = f T1 = f S2 = 0, and there are also no
infinities. Ordinarily, f1 is computable in perturbation the-
ory but f2 is ambiguous due to UV and/or IR divergences.
In this case f1 = 0 and f2 is unambiguous. In particular, the
2-loop result is UV finite because it is the square of an 1-
loop diagram, and odd loops in odd dimensions are finite. If
we keep only a single non-minimal scalar then the non-zero
coefficients are

f S0 = 1

64
(1 − 8ξ)2, f S2 = − 1

48

(
λ(1) + 1

2
λ(2)

)
,

f T0 = 1

256
. (7.14)

It turns that this model still provides a good fit to Planck data,
though now the model becomes non-perturbative for a large

portion of the Planck data. The non-perturbative evaluation of
the 2-point function of the energy-momentum for this theory
using lattice method is currently in progress (see [42] for
preliminary results).

8 Irrelevant deformation: �6 coupling

In the Wilsonian approach to renormalisation, operators
are classified as irrelevant, (exactly) marginal and relevant
depending on their effect under renormalisation group flow.
Irrelevant operators modify the UV of the theory but are irrel-
evant in the IR, and vice versa for relevant ones. One may
wonder whether there is a similar classification holds relative
to the generalised conformal structure.

This question is also relevant in the context of holographic
cosmology, where inverse RG flow is connected with time
evolution. In this context if we want to exit from the non-
geometric phase we would need to change the UV of the
theory. In this section we will discuss the impact of a �6

operator to the theory defined by Eq. (2.1). While this oper-
ator is marginal in the usual sense, it is irrelevant from the
perspective of the generalised conformal structure.

In particular we consider its leading contribution to the
〈T T 〉 and the 2-point functions of the elementary fields,
focusing on the 3 dimensional case, and we compute its effect
on the renormalisation group running of the coupling con-
stants. The new action is defined by

Snew = S + 2

g2
YM

∫
d3x

1

6!cM1···M6 tr[�M1 · · · �M6 ] , (8.1)

where S is the action Eq. (2.1). The sum over the flavour
indices M is implicitly understood. The coupling c are sym-
metric in the flavour indices and thus selects the following
gauge structure

StrT a1T a2T a3T a4T a5T a6

= 1

6!
∑
π

tr T aπ(1)T aπ(2)T aπ(3)T aπ(4)T aπ(5)T aπ(6) . (8.2)

The coefficients c are completely symmetric in flavour space
and are dimensionful with mass dimension -2. We would like
to understand the effect of the new term in perturbation the-
ory where λ is a small parameter and also perturbatively in c,
where c denotes any of the components of cM1···M6 . All fac-
tors of g2

YM may be converted into λ and then on dimensional
grounds any factor of c will appear in the dimensionless com-
bination cq2. It follows that if we want to treat c perturbative
we need

cq2 � 1 ⇒ q2 � 1

c
. (8.3)

In other words, this is a low energy limit relative to the new
scale introduced by c. For perturbation theory to be valid we
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also need

λ � 1 ⇒ g2
YM N � q . (8.4)

Altogether we will be working in the range

g2
YM N � q � 1√

c
. (8.5)

Note that (8.3) implies

c(g2
YM N )2 � λ2 , (8.6)

which upon use of (8.4) implies c(g2
YM N )2 � 1, or

cλ2q2 � 1. (8.7)

We will use this equation below.
Using power counting (see Sect. 3, Eqs. (3.1) and (3.3))

one may identify the relevant diagrams that are linear in c and
require renormalisation. Up to 2-loops, the new �6 interac-
tion does not provide any new contribution to the 2-point
functions of the elementary fields. One could write down
diagrams, which are linear in c, and contribute to the 〈��〉
correlator, but they are proportional to the square of 1-loop
massless tadpoles and as such they vanish. One may check
that the first time the �6 coupling contributes at 2-loops is in
the 4-point vertex of the scalar fields, thus potentially affect-
ing the running of the quartic couplings λ. The RG behaviour
of the gauge and Yukawa couplings remains unchanged at
2-loop as the UV divergent corrections induced by �6 are
introduced only at higher orders.

Here we focus on the 2-loop corrections to the 4-point
function of the scalar fields which represent the first source of
UV divergences proportional to the c parameter 3. We depict
in Fig. 6 the relevant diagrams. The second one trivially van-
ishes due to the contraction of the antisymmetric f abc, arising
from the internal gauge-scalar vertex, with the fully symmet-
ric gauge structure from the �6 coupling. (There are addi-
tional diagrams but they all contain 1-loop massless tadpoles
as such they vanish).

The 4-point function is given by

G(2)
4 (q1, q2, q3, q4) = 2

3
g2

YM
G2

(4π)d

[
Ca1a2a3a4
M1M2M3M4

q2d−6
1

+Ca2a1a3a4
M2M1M3M4

q2d−6
2 + Ca3a1a2a4

M3M1M2M4
q2d−6

3

+Ca4a1a2a3
M4M1M2M3

q2d−6
4

]
+ . . . (8.8)

3 There are non-vanishing 1- and 2-loop 4-point diagrams constructed
from vertices coming from (2.1) only but these diagrams are finite
(reflecting the fact that the theory is super-renormalisable) and they
will not be discussed here.

Fig. 6 2-Loop corrections to the quartic scalar vertex linear in the c
coefficient

where the dots represent c-independent terms and
∑ �qi = 0.

The coupling C is given by the sum of the two contributions
proportional to λ(1) and λ(2), namely,

Ca1a2a3a4
M1M2M3M4

= Ca1a2a3a4
(1) (λ(1) · c)M1M2M3M4

+ 1

N
Ca1a2a3a4

(2) (λ(2) · c)M1M2M3M4 , (8.9)

where the coefficients (λ(n) · c)M1M2M3M4 = λ
(n)
M1M5M6M7

cM5M6M7M2M3M4 whileC(n) are the gauge contractions given
by

Ca1a2a3a4
(1) = Str[T a1T a5T a6T a7 ] Str[T a5T a6T a7T a2T a3T a4 ]

= C1
(1) Str(1,3)[T a1T (a2T a3T a4)]

+C2
(1) Str[T a1T a2 ][T a3T a4 ] ,

Ca1a2a3a4
(2) = Str[T a1T a2 ][T a3T a4 ] Str[T a5T a6T a7T a2T a3T a4 ]

= C1
(2) Str(1,3)[T a1T (a2T a3T a4)]

+C2
(2) Str[T a1T a2 ][T a3T a4 ] . (8.10)

Notice that, due to the contraction of λ and c, the 4-point
function G(2)

4 is not completely symmetric in the flavour and
gauge indices, separately, but it is, obviously, still symmetric
under any exchange of any (ai , Mi ) pair.

The gauge factors are C1
(1) = (N 4 −5N 2 +60)/(160N 2),

C2
(1) = (2N 2 − 15)/(160N ), C1

(2) = (2N 2 − 5)/(40N )

and C2
(2) = 1/40. The first gauge structure appearing in the

decomposition of the two terms of Eq. (8.10) is given by
the symmetrisation of the double trT aT b trT cT d over all the
permutations of the four gauge indices a1, . . . , a4 while the
last one is obtained from the symmetrisation of a single trace
over the last three indices a2, . . . , a4

Str(1,3) T
a1T (a2T a3T a4) = 1

3!
∑
π

tr T a1T aπ(2)T aπ(3)T aπ(4) .

(8.11)

As such, the first gauge structure projects the 4-point function
on a tr[�2]2 operator, thus introducing an operator mixing
with tr[�4] under renormalisation.

The UV divergence in Eq. (8.8) can be removed with the
counterterm obtained, as usual, by a rescaling of the fields
and the quartic coupling constants. The counterterm action

123



Eur. Phys. J. C (2021) 81 :174 Page 21 of 33 174

involved in the renormalisation of Eq. (8.8) is

Sc.t = 2

g2
YM

∫
dd x

δλ(1)

4! tr[�4] + 1

N

δλ(2)

4! tr[�2]2 (8.12)

where we have used that at 2-loops, δZ� = δZgYM = 0. This
follows from the absence of UV divergences in the theory
other than the ones cancelled by the mass counterterm, and
in particular the finiteness of the q2 dependent part of scalar
propagator. In d = 3 − ε we find

δλ
(1)
M1M2M3M4

= g4
YM

24π2

[
C1

(1)(λ
(1) · c)M1M2M3M4

+ 1

N
C1

(2)(λ
(2) · c)M1M2M3M4

]
1

ε
,

1

N
δλ

(2)
M1M2M3M4

= g4
YM

24π2

[
C2

(1)(λ
(1) · c)M1M2M3M4

+ 1

N
C2

(2)(λ
(2) · c)M1M2M3M4

]
1

ε
. (8.13)

From the counterterms given in Eq. (8.13) we can extract the
β functions, βλ = μ∂λ/∂μ, controlling the running of the
quartic scalar couplings

β
λ

(1)
M1M2M3M4

= g4
YM

12π2

[
C1

(1)(λ
(1) · c)M1M2M3M4

+ 1

N
C1

(2)(λ
(2) · c)M1M2M3M4

]
, (8.14)

1

N
β

λ
(2)
M1M2M3M4

= g4
YM

12π2

[
C2

(1)(λ
(1) · c)M1M2M3M4

+ 1

N
C2

(2)(λ
(2) · c)M1M2M3M4

]
. (8.15)

In order to highlight the behaviour of the scalar coupling with
the renormalisation scale μ, we can solve the RG equation
in the simple case where both λ and c are proportional to the
identity matrix in the flavour space. In the large N limit, the
running of the quartic couplings is driven by λ(1) and the two
β functions simplify to

βλ(1) � g4
YM

12π2C
1
(1)λ

(1)c � (g2
YM N )2

1920π2 λ(1)c ,

βλ(2) � g4
YM

12π2 N C2
(1)λ

(1)c � (g2
YM N )2

960π2 λ(1)c . (8.16)

The corresponding RG solutions are

λ(1)(μ) � λ(1)(μ0)

(
μ

μ0

)k

,

λ(2)(μ) � λ(2)(μ0) + 2λ(1)(μ0)

[(
μ

μ0

)k

− 1

]
,

k = (g2
YM N )2

1920π2 c. (8.17)

Notice that in the regime (8.3), k � 1.

In the following we present the analysis of the leading
contribution in the limit (8.3) (i.e. linear in c) of the �6 oper-
ator to the 〈T T 〉 correlation function. The contributions to
the energy-momentum tensor from the quartic couplings and
the �6 term in the action of Eq. (8.1) are

Ti j =− 2

g2
YM

δi j

[
λ(1)

4! tr[�4]+ 1

N

λ(2)

4! tr[�2]2+ c

6! tr[�6]
]

.

(8.18)

The leading contributions in c to 〈T T 〉 appear first at 4-loop
order in perturbation theory and correspond to the diagrams
depicted in Fig. 7. Here, we focus only on these corrections,
neglecting all the other contributions of higher order in or
independent of c.

The explicit results for the first two diagrams of Fig. 7 in
arbitrary d dimensions are

A(4)
1+2 = 0,

B(4)
1+2 = g6

YM Ca1a1a2a2
M1M1M2M2

�
(
4 − 3d

2

)
�
(
2 − d

2

)
�
( d

2 − 1
)6

�(d − 2)�(2d − 4)

×
(

ξM2 − d − 2

4(d − 1)

)

× (8(2d − 5)ξM1 − 3d + 8)

3(d − 3)

1

(4π)2d q(4d−10),

(8.19)

where the gauge factor is given by the same contraction of
the c and λ couplings appearing in the first diagram of Fig. 6
and it is simply obtained from Eq. (8.9) by summing over
pairs of indices. The two gauge structures must necessarily
have a common origin in order to guarantee the cancellation
of the UV divergence in the 〈T T 〉 by the counterterm in the
third diagram of Fig. 7, as we will explicitly show below. In
particular, we have

Ca1a1a2a2
M1M1M2M2

= c1 (λ(1) · c)M1M1M2M2

+c2 (λ(2) · c)M1M1M2M2 , (8.20)

with

c1 = N 5

480
− N 3

64
+ 73N

960
− 5

32N
+ 3

32N 3 ,

c2 = N 3

96
− N

24
+ 1

16N
− 1

32N 3 . (8.21)

Notice that the B(4)
1+2 function vanishes identically if the scalar

fields are conformally coupled in d dimensions, namely,
ξM = (d − 2)/(4(d − 1)).

By closer inspection of the structure of the topologies in
Fig. 7, one can realise that the first diagram is finite in d = 3
dimensions, both in the UV and in the IR, while the second
one is UV divergent. This singularity appears in the d = 3
pole in Eq. (8.19). In dimensional regularisation, with d =
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Fig. 7 Leading contributions to the 〈T T 〉 from the �6 interaction

3 − ε, one obtains

B(4)
1+2 = g6

YM Ca1a1a2a2
M1M1M2M2

q2

12(64π)2

[
(1 − 8ξM1)(1 − 8ξM2)

×
(

1

ε
− 4 log

q

μ
+ log 4

)
+ 3

2

−16ξM2 − 20ξM1 + 192ξM1ξM2

]
. (8.22)

The divergence in Eq. (8.22) is cancelled by the third dia-
gram in Fig. 7 which is characterised by the insertion of the
counterterms δλ(1) and δλ(2). From an explicit computation
in d = 3 dimensions, we find A(4)

3 = 0 and

B(4)
3 = −g6

YM Ca1a1a2a2
M1M1M2M2

q2

12(64π)2

[
(1 − 8ξM1)(1 − 8ξM2)

×
(

1

ε
− 2 log

q

μ
+ log 4

)
− 1 + 4ξM1 + 4ξM2

]
,

(8.23)

where we have exploited the explicit expressions of the
couterterms defined in Eq. (8.13) and re-expressed them in
terms of Ca1a1a2a2

M1M1M2M2
. The complete result, given by the sum

of Eqs. (8.22) and (8.23), is clearly UV finite and in the large
N limit reads as

A(4) = 0,

B(4) = N 2 q3

10(1536π)2 λ3
[
q2(λ(1) · c)M1M1M2M2

]
(1 − 8ξM2)

×
[
−2(1 − 8ξM1) log

q

μ
+ 1

2
(5 − 48ξM1)

]
. (8.24)

The A(4) coefficient originating from each of the three dia-
grams in Fig. 7 identically vanishes due to the peculiar struc-
ture of the 2-loop corrections. These are all given by the
product of two one-loop bubbles, each of them contains a sin-
gle energy-momentum tensor and as such each proportional
to the transverse tensor πi j (defined in Eq. (5.4)). Therefore,
the complete diagram naturally gives vanishing contributions
onto the transverse and traceless part.

The condition (8.7) implies

λ3cq2 � λ (8.25)

and the contribution (8.24) is indeed subleading to the 2-
loop contribution we considered earlier in Sect. 7. If the
CMB scales lie within this regime then the holographic model
based on (8.1) would fit the data equally well as the model
without the �6 term, but the new model would start to deviate

at higher energies (later times from the bulk perspective) trig-
gering an exit from this period. For this model to describe the
right physics, the (inverse) RG flow should drive us to strong
coupling at higher energies describing the transition to Ein-
stein gravity. Analysing this interesting question is beyond
the scope of this paper.

We finish this section with a few comments about a Wilso-
nian view of the generalised conformal structure. The coef-
ficient of terms with generalised dimension � will appear
in perturbation theory in the dimensionless combination
c�q�−4. Therefore if � > 4 their effect will be washed
out in the IR (relative to the scale set by c�) and they dom-
inate in the UV, as such are they are the analogue of the
irrelevant terms of the usual Wilsonian picture. In our case
the �6 operator has � = 6 so it is indeed irrelevant.4 In the
opposite case, � < 4, the operators dominate in the IR and
are washed out in the UV. An example would be the operator
�2 which is relevant.

9 Conclusions and perspectives

We presented in this paper the perturbative computation of
the two-point function of the energy-momentum tensor to
2-loop order in a class of theories that has generalised con-
formal structure, namely SU (N ) gauge theory coupled to
massless fermions and scalars with Yukawa and quartic inter-
actions, with all fields in the adjoint of SU (N ). The computa-
tion was done for general d using dimensional regularisation.
Generalised conformal structure implies that the momentum
dependence of the perturbative correlators is a Laurent series
in the magnitude of momenta with coefficients that have
poles as d approaches integer values. When d is odd the
first poles appear at 2-loop order while for d even they are
already present at 1-loop. The poles may be associated with
either IR and/or UV infinities. We discussed renormalisation
when d = 3, 4, 5.

When d = 3 the theory is super-renormalisable. The 2-
point function of the energy-momentum tensor has UV diver-
gences at 2-loops, which may be cancelled using a countert-
erm proportional to the scalar curvature, and an IR singularity
if the theory contains non-minimally coupled scalars. Such
super-renormalisable theories are expected to be IR finite,

4 Note that in standard Wilsonian approach (with dimensions assigned
using the Gaussian UV fixed point) the �6 coupling in d = 3 is
marginal.
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with the Yang-Mill coupling constant acting as an IR regu-
lator [43,44].

When d = 4 the coupling constant is dimensionless, so
this theory does not have generalised conformal structure.
Instead the theory is classically scale invariant. The 2-point
function of the energy-momentum tensor has UV infinities
both at 1- and 2-loop order, which may be cancelled using
a Weyl squared and curvature squared countertrems. The
renormalised 2-point function has the form dictated by scale
invariance, modulo the logarithms originating from the UV
subtractions.

When d = 5 the theory is non-renormalisable and renor-
malisation of elementary fields induces higher dimension
terms in the action, spoiling the generalised conformal struc-
ture. The generalised conformal structure is then only present
at low enough energies so that the higher dimension operators
are suppressed. Using the same Lagrangian as in the d = 3
and d = 4 cases we find the 2-point function of the energy-
momentum tensor has UV divergences at 2-loops, which may
be removed using local counterterms of the schematic form
of D’Alembertian operator acting on squares of curvatures.

It would be interesting to extend the computation described
here to the maximally supersymmetric theories in the corre-
sponding dimensions. In d = 4 the result is well-known as
the corresponding theory is N = 4 SYM, but we are not
aware of such result in different dimensions. To do this com-
putation we would need to relax the condition that the quartic
self-coupling λ(1) is completely symmetric in flavour space
and consider appropriate Yukawa couplings. It would also
be interesting to analyse the lower dimensional cases d < 3,
and in particular understand the fate of the IR singularities.

One of the main motivations of this work was the applica-
tion of the d = 3 results to holographic cosmology. Indeed,
the detailed form of the results relevant for the scalar power
spectrum was already used in [21] when analysing the fit of
these models to CMB data. Here we present the derivation of
this result as well as the corresponding result for the tensor
power spectrum.

Another important issue in holographic cosmology is to
understand how to exit from the non-geometric phase and
develop a theory of holographic reheating. A general expec-
tation is that this should involve turning-on irrelevant opera-
tors. Here we made a first step in this direction by analysing
the effects of turning-on a �6 term, to leading order at low
energies. This operator, while marginal in the usual sense,
is the leading irrelevant operator from the perspective of the
generalised conformal structure, and indeed we confirmed
that its effects are washed out in the IR. It would be interest-
ing to further develop this model.

In terms of the complexity of correlators, theories with
generalised conformal structure sit between CFTs and
generic QFTs. Here we analysed 2-point functions, and it

would be interesting to extend such analysis to higher point
functions.
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A 2-Loop results for counterterms, coupling coefficients
and A, B form factors in various dimensions

In this appendix we present the result for some of the coef-
ficients defined in main text. We start from the 2-loop self
energies in “Appendix A.1”, moving to the counterterms of
the gauge sector in A.2 and the generalised conformal struc-
ture constants in A.3 and A.4. Appendices A.5 and A.6 con-
tain the part of the expressions of the A and B form factors
at 2-loops not given in the main text.

A.1 2-Loop self energies

The 2-loop corrections are expressed in terms of the coeffi-
cients αψi , α�k defined in Eqs. (4.14), (4.15)

αA0 = 1

2(d − 6)(d − 4)2(d − 1)

αA1 = −(d − 6)(d − 4)(d − 2)((d − 9)d + 24)Nψ

+(d − 6)(d − 4)(2d − 9)N�

−(d − 6)(d − 4)((d − 4)d − 2) (A.1)

αA2 = 3d5 − 59d4 + 376d3 − 1084d2 + 1648d − 1248

+
(

6d5 − 106d4 + 796d3 − 3096d2

+5968d − 4416)Nψ

+
(

3d4 − 53d3 + 366d2 − 1112d + 1200
)
N�

(A.2)

αψ0 = − (d − 2)

4(d − 6)(d − 4)2
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αψ1 = (d − 6)(d − 4)(d − 2)2

αψ2 = −4(d − 2)(d − 4)2Nψ − 2(d − 4)2N�

+2d(d((29 − 2d)d − 150) + 352) − 640

αψ3 = (d − 4)(2 + (d − 4)d)

αψ4 = −4(−32 + d(29 + (d − 9)d)) (A.3)

α�0 = 1

2(d − 6)(d − 4)2

α�1 = −(d − 6)(d − 4)(3d − 14)

α�2 = 8(d − 4)(d − 2)2Nψ + 4(d − 4)(d − 2)N�

+d(d(d(3d − 41) + 94) + 344) − 992

α�3 = (d − 4)(20 + (d − 8)d)

α�4 = 2(192 + d(−140 + (34 − 3d)d)). (A.4)

The contraction of the quartic and Yukawa couplings,
which generalise the expressions given in (4.16) are defined
as follows

μ
(2)
L1L2

= μM1L1L3 μM2L3L2 μM1L4L5 μM2L5L4 ,

μ
(3)
L1L2

= μM1L1L3 μM2L3L4 μM2L4L5 μM1L5L2 ,

μ
(4)
L1L2

= μM1L1L3 μM1L3L4 μM2L4L5 μM2L5L2 ,

μ
(5)
M1M2

= μM1L1L2 μML2L3 μM2L3L4 μML4L1 ,

μ
(6)
M1M2

= μM1L1L2 μML2L3 μML3L4 μM2L4L1 ,

μ
(7)
M1M2

= μM1L1L2 μML2L1 μML3L4 μM2L4L3 . (A.5)

A.2 Counterterms at 2-loop order in d = 4

For the counterterms of the 2-point functions of the gauge,
scalar and fermion fields, extending at 2-loops the results
given in (4.25), we obtain

δ
(12)
A = − 1

2048π4 (−46 + 36Nψ + 15N� + 4μ2
Y ) ,

δ
(2)
A = 5

1536π4 (−10 + 4Nψ + N�) ,

δ
(12)
ψ L1L2

= 1

8192π4

(
(−224 + 32Nψ + 8N�)δL1L2

+40 μ
(0)
L1L2

+ 6μ
(2)
L1L2

+ μ
(3)
L1L2

)
,

δ
(2)
ψ L1L2

= − 1

2048π4

(
− 48 δL1L2 + 32 μ

(0)
L1L2

+ 2μ
(1)
L1L2

+2μ
(2)
L1L2

+ μ
(3)
L1L2

)
,

δ
(12)
� M1M2

= 1

6144π4

(
(190 − 40Nψ − 22N�)δM1M2

+60μ
(0)
M1M2

+ 3μ
(5)
M1M2

+ 9μ
(6)
M1M2

− 1

12
λ
(0)
M1M2

)
,

δ
(2)
� M1M2

= − 1

512π4

(
(20 − 8Nψ − 2N�)δM1M2

+4μ
(0)
M1M2

+ μ
(5)
M1M2

+ μ
(6)
M1M2

)
, (A.6)

A.3 GCSC of scalars and fermions at 2-loop order in d = 4

They are given by

cψ,(2,0)
L1L2

= 1

32768π4

(
(224Nψ + 72N� + 768ζ3

−2208)δL1L2 + 8(127 − 24ζ3)μ
(0)
L1L2

+32μ
(1)
L1L2

+ 114μ
(2)
L1L2

+ 31μ
(3)
L1L2

)

+cψ,(1,0)
L1L3

cψ,(1,0)
L3L2

,

cψ,(2,1)
L1L2

= − 1

4096π4 ((32Nψ + 8N� − 320)δL1L2

+160μ
(0)
L1L2

+8μ
(1)
L1L2

+ 14μ
(2)
L1L2

+ 5μ
(3)
L1L2

)

+2 cψ,(1,0)
L1L3

cψ,(1,1)
L3L2

,

cψ,(2,2)
L1L2

= cψ,(1,1)
L1L3

cψ,(1,1)
L3L2

− δ
(2)
ψ L1L2

,

c�,(2,0)
M1M2

= 1

24576π4

(
(−760Nψ − 298N� − 288ζ3

+3070)δM1M2 + 87μ
(5)
M1M2

+ 171μ
(6)
M1M2

+ 12(91 − 24ζ3)μ
(0)
M1M2

− 13

12
λ

(0)
M1M2

)

+c�,(1,0)
M1M3

c�,(1,0)
M3M2

,

c�,(2,1)
M1M2

= 1

3072π4

(
(104Nψ + 38N� − 350)δM1M2

−108μ
(0)
M1M2

− 15μ
(5)
M1M2

− 21μ
(6)
M1M2

+ 1

12
λ

(0)
M1M2

)
+ 2 c�,(1,0)

M1M3
c�,(1,1)
M3M2

,

c�,(2,2)
M1M2

= c�,(1,1)
M1M3

c�,(1,1)
M3M2

− δ
(2)
� M1M2

. (A.7)

A.4 GCSC of scalars and fermions in d = 5

They are given by

cψ1 L1L2
= 1

512π

[
6 δL1L2 − μ

(0)
L1L2

]
,

c̃ψ2 UV L1L2
= 1

215040π4

[ (−390 + 36Nψ + 6N�

)
δL1L2

+52μ
(0)
L1L2

− 3μ
(2)
L1L2

− 2μ
(3)
L1L2

]
,

cψ2 L1L2
= −c̃ψ2 UV L1L2

log
(
g2

YMNμUV

)
+ 1

3675 × 218π4[
− 32((−103190 + 4692Nψ + 922N�)δL1L2

+16204μ
(0)
L1L2

−881μ
(2)
L1L2

−564μ
(3)
L1L2

) + 3675π2

(
−72δL1L2 + 16μ

(0)
L1L2

+ μ
(4)
L1L2

+ μ
(1)
L1L2

)]
,
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(A.8)

c�1 M1M2
= − 1

256π

[
4 δM1M2 + μ

(0)
M1M2

]
,

c�2 UV M1M2
= 1

215040π4

[
(−344 + 144Nψ + 24N�)δM1M2

+66μ
(0)
M1M2

+ μ
(5)
M1M2

− 6μ
(6)
M1M2

− 1

9
λ
(0)
M1M2

]
,

c�2 M1M2
= −c̃�2 UV L1L2

log
(
g2

YMNμUV

)
− 1

3675 × 213π4

×
[
(−68308 + 28848Nψ + 5368N�)δM1M2

+22042μ
(0)
M1M2

+ 247μ
(5)
M1M2

−1762μ
(6)
M1M2

− 247

9
λ
(0)
M1M2

]

+ 1

217π2

[
28δM1M2 + 26μ

(0)
M1M2

+μ
(5)
M1M2

+ 2μ
(7)
M1M2

]
(A.9)

where we have used the same notation introduced in
Eq. (4.17) for the d = 3 case.

A.5 A and B form factors at 2-loop order in d = 4

For the scalar sector we obtain

A(2)
� = −λN� d(G)

q4

138240π4

×
(

−251 + 120 log
q

μUV
+ 108 ζ3

)
,

B(2)
� = λ

N�∑
M=1

d(G)
q4

10368π4

(
61 + 9ξM (−101 + 360ξM )

−27(1 − 6ξM )2ζ3 − 27(1 − 6ξM )(3 − 20ξM ) log
q

μUV

+27(1 − 6ξM )2 log2 q

μUV

)
,

−λ

N�∑
M1,M2=1

q4

497664π4 d(G)

[
2N 2 − 3

N 2 λ
(1)
M1M1M2M2

+1 + N 2

N 2 λ
(2)
M1M1M2M2

](
(−5 + 36ξM1)(−5 + 36ξM2)

+6((1 − 6ξM1) + (1 − 6ξM2)

−12(1 − 6ξM1)(1 − 6ξM2)) log
q

μUV

+36(1 − 6ξM1)(1 − 6ξM2) log2 q

μUV

)
, (A.10)

while the Yukawa sector gives

A(2)
Y = λ d(G)

q4

49152π4

(
21 − 8 log

q

μUV

)
μ2
Y ,

B(2)
Y = λ

N�∑
M=1

d(G)
q4

331776π4

(
289 + 216ξM (−19 + 66ξM )

−48(1 − 6ξM )(8 − 54ξM ) log
q

μUV

+144(1 − 6ξM )2 log2 q

μUV

)
μML1L2μML2L1 .

(A.11)

A.6 A and B form factors at 2-loop order in d = 5

They are given by

A(2)
� = λN� d(G)

q5

2167603200π4

(
− 150728 + 11025π2

+64960 log
q

μUV

)
,

B(2)
� = λ

N�∑
M=1

d(G)
q5

69363302400π4

(
− 64(278789

+1152ξM (−2606 + 7007ξM ))

+33075π2(−3 + 16ξM )(−19 + 112ξM )

+161280(49 + 64ξM (−8 + 21ξM )) log
q

μUV

)

−λ

N�∑
M1,M2=1

q5

25165824π4 d(G)

[
2N 2 − 3

N 2 λ
(1)
M1M1M2M2

+1 + N 2

N 2 λ
(2)
M1M1M2M2

]
(16ξM1 − 3)(16ξM2 − 3) ,

A(2)
Y = −λμ2

Y d(G)
q5

52022476800π4

×
(

−392816 + 33075π2 + 174720 log
q

μUV

)
,

B(2)
Y = λ

N�∑
M=1

d(G)
q5

4335206400π4

(
72721

+288ξM (−2855 + 8036ξM )

−840(43 + 96ξM (−5 + 14ξM )) log
q

μUV

)

×μML1L2μML2L1 . (A.12)

B Tensor reductions: technical details

The 1-loop tensor reduction of the 2-point functions is com-
pletely solved by the following decompositions

Ii =
∫

ddk

(2π)d

ki
k2 (k + p)2 = pi B1 ,

Ii j =
∫

ddk

(2π)d

ki k j
k2 (k + p)2 = δi j B00 + pi p j B11 ,

Ii jk =
∫

ddk

(2π)d

ki k j kk
k2 (k + p)2

= δ{i j pk } B001 + pi p j pk B111 ,
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Ii jkl =
∫

ddk

(2π)d

ki k j kkkl
k2 (k + p)2 = δ{ i j δkl } B0000

+δ{ i j pk pl } B0011 + pi p j pk pl B1111 , (B.1)

where the curly brackets denote fully symmetrisation of the
indices5. The scalar coefficients are then reduced by algebraic
manipulations to the main integral B0 and are explicitly given
by

B1 = −1

2
B0 ,

B00 = − p2

4(d − 1)
B0 , B11 = d

4(d − 1)
B0 ,

B001 = p2

8(d − 1)
B0 , B111 = − (d + 2)

8(d − 1)
B0 ,

B0000 = p4

16
(
d2 − 1

) B0 , B0011 = − (d + 2)p2

16
(
d2 − 1

) B0 ,

B1111 =
(
d2 + 6d + 8

)
16
(
d2 − 1

) B0 . (B.2)

As stated above, the tensor reduction of the 2-loop dia-
grams is much more involved. For example, among the tech-
nical complications of the reduction, the presence of two inte-
gration momenta provides different tensor expansions for a
give rank. Indeed, even in the simplest rank-1 case we have

J (n)
i =

∫
ddk1

(2π)d

ddk2

(2π)d

kn i
den(k1, k2, p; {νi }) = pi J

(n)
1 ,

(B.3)

with n = 1, 2 and den(k1, k2, p; νi ) = k2ν1
1 k2ν2

2 (k1 +
p)2ν3(k2 + p)2ν4(k1 − k2)

2ν5 , in which the two coefficients
J (1)

1 and J (2)
1 may differ depending on the specific choice

of the νi exponents. Following the same reasoning, it is not
difficult to identify, for example, three different tensor expan-
sions for the rank-2 integrals and four for the rank-3. The lat-
ter manifests another source of complication. Indeed, while
in the tensor decomposition of J (111)

i jk or J (222)
i jk we can fully

exploit the symmetrisation of the indices (as in the 1-loop
case), namely

J (111)
i jk =

∫
ddk1

(2π)d

ddk2

(2π)d

k1 i k1 j k1 k

den(k1, k2, p; {νi })
= δ{ i j pk } J (111)

001 + pi p j pk J
(111)
111 , (B.4)

and similarly for the (222), the tensor integrals J (112)
i jk and

J (122)
i jk can only be expanded onto a partially symmetrised

tensor basis as

J (112)
i jk =

∫
ddk1

(2π)d

ddk2

(2π)d

k1 i k1 j k2 k

den(k1, k2, p; {νi })

5 Notice that the symmetrisation is not weighted, therefore, as an exam-
ple, δ{ i j pk } = δi j pk + δik p j + δk j pi .

= δi j pk J
(112)
001 + (δik p j + δ jk pi )J

(112)
010

+pi p j pk J
(112)
111 , (B.5)

where an extra scalar coefficient appears with respect to the
J (111)
i jk and J (222)

i jk cases.
Here we present the tensor decomposition of the 2-loop

integrals needed in the present work. For the rank-1 and rank-
2 tensor integrals, the tensorial structure is simply given by

∫
ddk1

(2π)d

ddk2

(2π)d

(kα)i

den(k1, k2, p; {ν}) = pi C(α)
1 ,

∫
ddk1

(2π)d

ddk2

(2π)d

(kα)i (kβ) j

den(k1, k2, p; {ν}) = δi j C(αβ)
00 + pi p j C(αβ)

11 ,

(B.6)

where the coefficients C depend on the topology of the inte-
grals, namely on the form of the denominators.

For higher ranks, the symmetries of the integral must be
explicitly exploited. For the rank-3 we get
∫

ddk1

(2π)d

ddk2

(2π)d

(kα)i (kβ) j (kγ )l

den(k1, k2, p; {ν})
=
∑
n

[S](αβγ )

i jl;n (1δ, 1p) C(αβγ )

001;n + pi p j pl C(αβγ )
111 , (B.7)

where n runs over all the tensors of the basis [S](αβγ )

i jl (1δ, 1p)
which is built with one Kronecker δ and one momentum
p. The symmetries of the tensors in the Lorentz indices
i, j, l are defined by the combination of (αβγ ). For instance,
[S](111)

i jl (1δ, 1p) and [S](222)
i jl (1δ, 1p) contain tensor struc-

tures that are fully symmetric under the indices i, j, l,

[S](111)
i jl (1δ, 1p) = [S](222)

i jl (1δ, 1p)

= {
δi j pl + δil p j + δl j pi

}
, (B.8)

while [S](112)
i jl (1δ, 1p) and [S](221)

i jl (1δ, 1p) denote tensors
that are symmetric only under exchange of the first two
indices i, j ,

[S](112)
i jl (1δ, 1p) = [S](221)

i jl (1δ, 1p)

= {
δi j pl , δil p j + δl j pi

}
. (B.9)

The integrals with higher ranks, from 4 to 6, are given by
∫

ddk1

(2π)d

ddk2

(2π)d

(kα)i (kβ) j (kγ )l(kη)m

den(k1, k2, p; {ν})
=
∑
n

[S](αβγ η)

i jlm;n (2δ, 0p) C(αβγ η)

0000;n

+
∑
n

[S](αβγ η)

i jlm;n (1δ, 2p) C(αβγ η)

0011;n + pi p j pl pm C(αβγ η)
1111 ,

∫
ddk1

(2π)d

ddk2

(2π)d

(kα)i (kβ) j (kγ )l(kη)m(kφ)r

den(k1, k2, p; {ν})
=
∑
n

[S](αβγ ηφ)

i jlmr;n (2δ, 1p) C(αβγ ηφ)

00001;n
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+
∑
n

[S](αβγ ηφ)

i jlmr;n (1δ, 3p) C(αβγ ηφ)

00111;n

+pi p j pl pm pr C(αβγ ηφ)
11111 ,∫

ddk1

(2π)d

ddk2

(2π)d

(kα)i (kβ) j (kγ )l(kη)m(kφ)r (kξ )s

den(k1, k2, p; {ν})
=
∑
n

[S](αβγ ηφξ)

i jlmrs;n (3δ, 0p) C(αβγ ηφξ)

000000;n

+
∑
n

[S](αβγ ηφξ)

i jlmrs;n (2δ, 2p) C(αβγ ηφξ)

000011;n

+
∑
n

[S](αβγ ηφξ)

i jlmrs;n (1δ, 4p) C(αβγ ηφξ)

001111;n

+ pi p j pl pm pr ps C(αβγ ηφξ)
111111 , (B.10)

where, as usual, [S](αβγ η)

i jlm (2δ, 0p) denotes a tensor basis built

with 2 Kronecker’s deltas and no momenta, [S](αβγ η)

i jlm (1δ, 2p)
contains only one Kronecker’s delta and 2 momenta, and sim-
ilarly for all the others basis. The tensor structures are deter-
mined according to the symmetries of the original integrals,
as discussed above, and are given by

[S](αβγ η)
i jlm (2δ, 0p) = {

δi j δlm + δilδ jm + δimδ jl
}

, for

(αβγ η) = (1111), (1112), (2221), (2222)

[S](αβγ η)
i jlm (2δ, 0p) = {

δi j δlm , δilδ jm + δimδ jl
}

, for

(αβγ η) = (1122)

[S](αβγ η)
i jlm (1δ, 2p) = {

δ{i j pl pm}
}

, for

(αβγ η) = (1111), (2222)

[S](αβγ η)
i jlm (1δ, 2p) = {

δ{i j pl} pm , δm{i p j pl}
}

, for

(αβγ η) = (1112), (2221)

[S](αβγ η)
i jlm (1δ, 2p) = {

δi j pl pm , δlm pi p j , p{i δ j}{l pm}
}

, for

(αβγ η) = (1122) (B.11)

for the rank-4 integrals,

[S](αβγ ηφ)

i jlmr (2δ, 1p) = {
δ{i j δlm pr}

}
, for

(αβγ ηφ) = (11111), (22222)

[S](αβγ ηφ)

i jlmr (2δ, 1p) = {
δ{i j δlm} pr , δr{i δ jl pm}

}
, for

(αβγ ηφ) = (11112), (22221)

[S](αβγ ηφ)

i jlmr (2δ, 1p) = {
δ{i j pl}δmr , p{mδr}{iδ jl}, δl}{mδr}{i p j

}
, for

(αβγ ηφ) = (11122), (22211)

[S](αβγ ηφ)

i jlmr (1δ, 3p) = {
δ{i j pl pm pr}

}
, for

(αβγ ηφ) = (11111), (22222)

[S](αβγ ηφ)

i jlmr (1δ, 3p) = {
δ{i j pl pm} pr , δr{i p j pl pm}

}
, for

(αβγ ηφ) = (11112), (22221)

[S](αβγ ηφ)

i jlmr (1δ, 3p) = {
pi p j plδmr , p{i δ jl} pm pr ,

p{mδr}{i p j pl}
}

, for

(αβγ ηφ) = (11122), (22211) (B.12)

for the rank-5 and, finally,

[S](αβγ ηφξ)

i jlmrs (3δ, 0p) = {
δ{i j δlmδrs}

}
, for

(αβγ ηφξ) = (111111), (111112), (222221), (222222)

[S](αβγ ηφξ)

i jlmrs (3δ, 0p) = {
δm}{r δs}{i δ jl , δ{i j δlm}δrs

}
, for

(αβγ ηφξ) = (111122), (222211)

[S](αβγ ηφξ)

i jlmrs (3δ, 0p) =
{
δ
{i
{mδ

j
r δ

l}
s} , δ{i j δl}{mδrs}

}
, for

(αβγ ηφξ) = (111222)

[S](αβγ ηφξ)

i jlmrs (2δ, 2p) = {
δ{i j δlm pr ps}

}
, for

(αβγ ηφξ) = (111111), (222222)

[S](αβγ ηφξ)

i jlmrs (2δ, 2p) = {
δ{i j δlm pr} ps , δs{i δ jl pm pr}

}
, for

(αβγ ηφξ) = (111112), (222221)

[S](αβγ ηφξ)

i jlmrs (2δ, 2p) = {
δ{i j δlm} pr ps , δ jlδm}{r ps}
p{i , δm}{r δs}{i p j pl , δrsδ{i j pl pm}

}
, for

(αβγ ηφξ) = (111122), (222211)

[S](αβγ ηφξ)

i jlmrs (2δ, 2p) = {
δ{i j δl}{m pr ps} , δl}{m pr δs}{i p j ,

δ{mr δs}{i p j pl} , δ jl}δ{mr ps} p{i
}
, for

(αβγ ηφξ) = (111222)

[S](αβγ ηφξ)

i jlmrs (1δ, 4p) = {
δ{i j pl pm pr ps}

}
, for

(αβγ ηφξ) = (111111), (222222)

[S](αβγ ηφξ)

i jlmrs (1δ, 4p) = {
δ{i j pl pm pr} ps , δs{i p j pl pm pr}

}
, for

(αβγ ηφξ) = (111112), (222221)

[S](αβγ ηφξ)

i jlmrs (1δ, 4p) = {
δ{i j pl pm} pr ps ,

δm}{r ps} p{i p j pl , δrs pi p j pl pm
}

, for

(αβγ ηφξ) = (111122), (222211)

[S](αβγ ηφξ)

i jlmrs (1δ, 4p) = {
δ{i j pl} pm pr ps ,

δl}{m pr ps} p{i p j , δ{mr ps} pi p j pk
}

, for

(αβγ ηφξ) = (111222) (B.13)

for the rank-6. Notice that the indices of the Kronecker deltas
in [S](αβγ ηφξ)

i jlmrs (3δ, 0p) have been raised only to make man-
ifest their symmetric properties.

For the coefficients C of the tensor expansions we use the
following notation

C ≡ J for den(k1, k2, p; {ν}) = k2
1(k1 − k2)

2(k2 + p)2

C ≡ Y for den(k1, k2, p; {ν}) = k2
1k

2
2(k1 − k2)

2(k2 + p)2

C ≡ K for den(k1, k2, p; {ν})
= k2

1k
2
2(k1 − k2)

2(k1 + p)2(k2 + p)2 (B.14)

where J,Y, K appear, respectively, in the first three diagrams
of Fig. 4. The explicit expressions of such coefficients is given
as a linear combination of the scalar integrals J0 and B2

0 and
are provided in the tables below.

den1 = (d − 4)(3d − 4)(3d − 2) ,

den2 = (d − 4)(3d − 4) ,

den3 = (d − 4)(d − 1) ,

den4 = (d − 4)2(d − 2)(d + 3)(3d − 2)(d − 1)(d + 1)

×(3d − 4) ,
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den5 = (d − 4)2(d − 2)(d + 1)(d + 3)(3d − 4)(3d − 2) ,

den6 = (d − 4)2(d − 2)(d − 1)(d + 3)(3d − 4)(3d − 2) ,

den7 = (d − 4)(d − 1)(d + 1)(d − 2)(d + 3) ,

den8 = (d − 4)2(d − 1)(d + 3)(3d − 4)(3d − 2) ,

den9 = (d − 4)2(d + 1)(3d − 4) ,

den10 = (d − 4)2(d − 1)(d + 1)(3d − 4) ,

den11 = (d − 4)(d − 1)(d + 1)(d + 3) ,

den12 = (d − 4)(d − 1) ,

den13 = (d − 4)(d − 2)(d − 1)2(d + 3) ,

den14 = (d − 4)2(d + 3)(3d − 4)(3d − 2) ,

den15 = (d − 4)(d − 1)(d − 2)(d + 1) ,

den16 = (d − 4)(d − 1)(d − 2)(d + 3) ,

den17 = (d − 4)2(d − 1) ,

den18 = (d − 4)(d − 1)2(d + 3) ,

den19 = (d − 4)2(d − 1)(3d − 4) ,

den20 = (d − 4)(d − 2)(d + 1) ,

den21 = (d − 4)(d − 1)(d + 1) . (B.15)

J (1)
1 J (2)

1 J (11)
00 J (11)

11 J (22)
00 J (22)

11 J (12)
00 J (12)

11

J0 − 1
3 − 2

3 − p2

3(3d−4)
d

3(3d−4)
− p2

3(3d−4)
4(d−1)

3(3d−4)
− p2

6(3d−4)
2(d−1)
3(3d−4)

B2
0 0 0 0 0 0 0 0 0

Y (1)
1 Y (2)

1 Y (11)
00 Y (11)

11 Y (22)
00 Y (22)

11 Y (12)
00 Y (12)

11 Y (111)
001 Y (111)

111

J0 − d−3
(d−4)p2 − 2(d−3)

(d−4)p2 − d−3
3den3

(d−3)d
3p2den3

− 1
3(d−4)

4(d−3)

3(d−4)p2 − 1
6(d−4)

2(d−3)

3(d−4)p2
d−3

3den2
− (d−3)(d+2)

3p2den2

B2
0 0 0 0 0 0 0 0 0 0 0

Y (222)
001 Y (222)

111 Y (112)
001;1 Y (112)

001;2 Y (112)
111 Y (221)

001;1 Y (221)
001;2 Y (221)

111 Y (1111)
0000 Y (1111)

0011

J0
2(d−2)
3den2

− 8(d−3)(d−1)

3p2den2

2d2−9d+8
3(d−1)den2

(d−2)d
6(d−1)den2

− 2(d−3)d
3p2den2

d−2
3den2

d−2
3den2

− 4(d−3)(d−1)

3p2den2

(d−3)dp2

3(d+1)den1
− (d−3)d(d+2)

3(d+1)den1

B2
0 0 0 0 0 0 0 0 0 0 0

Y (1111)
1111 Y (2222)

0000 Y (2222)
0011 Y (2222)

1111 Y (1112)
0000 Y (1112)

0011;1 Y (1112)
0011;2 Y (1112)

1111 Y (2221)
0000 Y (2221)

0011;1

J0
(d−3)d(d+2)(d+4)

3(d+1)p2den1

dp2

3den1
− 4(d−2)(d−1)

3den1

16(d−3)(d−1)d
3p2den1

(d−2)p2

6den1
− 2d2−7d+2

3den1
− (d−2)(d+2)

6den1

2(d−3)d(d+2)

3p2den1

dp2

6den1
− 2(d−2)(d−1)

3den1

B2
0 0 0 0 0 0 0 0 0 0 0
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Y (2221)
0011;2 Y (2221)

1111 Y (1122)
0000;1 Y (1122)

0000;2 Y (1122)
0011;1 Y (1122)

0011;2 Y (1122)
0011;3 Y (1122)

1111

J0 − 2(d−2)(d−1)
3den1

8(d−3)(d−1)d
3p2den1

(
2d2−7d+4

)
p2

6(d−1)den1

d2 p2

12(d−1)den1
− 4

(
d2−4d+2

)
3den1

− (d−2)d
3den1

− (d−2)d
3den1

4(d−3)d2

3p2den1

B2
0 0 0 0 0 0 0 0 0

K (1)
1 K (2)

1 K (11)
00 K (11)

11 K (22)
00 K (22)

11 K (12)
00 K (12)

11

J0 − (3d−10)(3d−8)

(d−4)2 p4 − (3d−10)(3d−8)

(d−4)2 p4 − 2(d−3)(d−2)

p2den17

5d3−33d2+64d−32
p4den17

− 2(d−3)(d−2)

p2den17

5d3−33d2+64d−32
p4den17

− (d−3)d
p2den17

2(d−2)
(
2d2−9+8

)
p4den17

B2
0

d−3
(d−4)p2

d−3
(d−4)p2

d−3
2den12

− (d−3)d
2p2den12

d−3
2den12

− (d−3)d
2p2den12

1
2den12

− (d−2)2

2p2den12

K (111)
001 K (111)

111 K (222)
001 K (222)

111 K (112)
001;1 K (112)

001;2 K (112)
111 K (221)

001;1

J0
(d−3)(d−2)

p2den17
− 3d3−18d2+29d−8

p4den17

(d−3)(d−2)

p2den17
− 3d3−18d2+29d−8

p4den17

(d−3)(d−2)

p2den17

(d−3)d
2p2den17

− 2d2−9d+8
(d−4)2 p4

(d−3)(d−2)

p2den17

B2
0 − d−3

4den12

(d−3)(d+2)

4p2den12
− d−3

4den12

(d−3)(d+2)

4p2den12
− d−3

4den12
− 1

4den12

d−2
4(d−4)p2 − d−3

4den12

K (221)
001;2 K (221)

111 K (1111)
0000 K (1111)

0011 K (1111)
1111 K (2222)

0000 K (2222)
0011

J0
(d−3)d

2p2den17
− 2d2−9d+8

(d−4)2 p4
2(d−3)d

3den9
− (d−3)

(
5d3−11d2−4d+16

)
3p2den10

(d−2)
(
17d4−60d3−21d2+88d+48

)
3p4den10

2(d−3)d
3den9

− (d−3)
(
5d3−11d2−4d+16

)
3p2den10

B2
0 − 1

4den12

d−2
4(d−4)p2 − (d−3)p2

8den21

(d−3)(d+2)
8den21

− (d−3)(d+2)(d+4)

8p2den21
− (d−3)p2

8den21

(d−3)(d+2)
8den21

K (2222)
1111 K (1112)

0000 K (1112)
0011;1 K (1112)

0011;2 K (1112)
1111 K (2221)

0000 K (2221)
0011;1

J0
(d−2)

(
17d4−60d3−21d2+88d+48

)
3p4den10

d2−d−4
3den9

− (d−3)
(
4d3−7d2−2d+8

)
3p2den10

− (d−3)d(5d+4)

6p2den9

d
(
10d4−47d3+39d2+44d−64

)
3p4den10

d2−d−4
3den9

− (d−3)
(
4d3−7d2−2d+8

)
3p2den10

B2
0 − (d−3)(d+2)(d+4)

8p2den21
− p2

8den21

d2−2d−2
8den21

d+2
8den21

− (d−2)d(d+2)

8p2den21
− p2

8den21

d2−2d−2
8den21

K (2221)
0011;2 K 2221)

1111 K (1122)
0000;1 K (1122)

0000;2 K (1122)
0011;1 K (1122)

0011;2

J0 − (d−3)d(5d+4)

6p2den9

d
(
10d4−47d3+39d2+44d−64

)
3p4den10

2d4−13d3+23d2+6d−24
3(d−2)den10

d4−d3−6d2−4d+16
6(d−2)den10

− (d−3)
(
5d3−14d2−4d+16

)
3(d−2)p2den9

− (d−3)
(
5d3−14d2−4d+16

)
3(d−2)p2den9

B2
0

d+2
8den21

− (d−2)d(d+2)

8p2den21
−
(
d2−3d−2

)
p2

8den15
− p2

4den15

d2−2d−4
8den20

d2−2d−4
8den20
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K (1122)
0011;3 K 1122)

1111 K (11111)
00001 K (11111)

00111 K (11111)
11111 K (22222)

00001 K (22222)
00111

J0 − (d−3)d
(
2d2−d−4

)
3(d−2)p2den9

4d
(
2d3−6d2−3d+4

)
3p4den9

− (d−3)d
3den9

(d−3)
(
d3−2d2−d+4

)
p2den10

− 11d5−49d4−3d3+169d2−8d−240
3p4den10

− (d−3)d
3den9

(d−3)
(
d3−2d2−d+4

)
p2den10

B2
0

d
8den20

− d2

8(d−4)(d+1)p2
(d−3)p2

16den21
− (d−3)(d+4)

16den21

(d−3)(d+4)(d+6)

16p2den21

(d−3)p2

16den21
− (d−3)(d+4)

16den21

K (22222)
11111 K 11112)

00001;1 K (11112)
00001;2 K (11112)
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