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Abstract In this paper, we expand on the previously pro-
posed concept of energy Mover’s distance. The resulting
observables are shown to provide a way of identifying rare
processes in proton–proton collider experiments. It is shown
that different processes are grouped together differently and
that this can contribute to the improvement of experimental
analyses. The t t̄ Z production at the Large Hadron Collider
is used as a benchmark to illustrate the applicability of the
method. Furthermore, we study the use of these observables
as new features which can be used in the training of deep
neural networks.

1 Energy Mover’s distance as a tool for event
classification at colliders

One of the main goals of the analysis of experimental data
in High Energy Physics is the classification of events, in an
attempt to identify rare events of interest for different Physics
studies. Such classification was a key aspect of the flagship
results obtained from Large Hadron Collider (LHC) data,
such as the Higgs boson discovery by the ATLAS and CMS
experiments in 2012 [1,2], the miriad of searches for new
phenomena at colliders or, more recently, the observation of
four top events [3] and the measurement of the t t̄ Z production
cross-section [4,5].

In hadronic collisions, a very large number of particles
are produced, which makes the classification of events par-
ticularly difficult. So, many of these classification tasks are
relying more and more on complex Machine Learning clas-
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sifiers, with the corresponding decision functions being diffi-
cult or impossible to interpret, and thus motivating the search
for new interpretable physical observables. For such tasks,
the complexity of final states can be treated by exploring
not only the kinematic properties of the particles detected
by the experiments, but also the overall flow of energy in
an event [6]. That is the purpose of the recently proposed
concept of a metric for the space of collider events based on
the energy Mover’s distance (EMD) [6,7], where the simi-
larity between two jets is quantified by computing the EMD
between the distributions of the kinematics of each jet, pro-
viding a statistically-based intuition on how two jets are more
or less similar.

In the current paper, we expand on the EMD definition
by using global event properties, contributing to a better
exploitation of the experimental information used in the
search for rare events, which typically have cross-sections
several orders of magnitude below the backgrounds affect-
ing their measurement. In such cases, good discrimination
between signal and background is a critical aspect to keep the
experimental uncertainties under control and new variables
contributing to correct classification of events can contribute
to this goal [8,9].

To generalise the EMD to full reconstructed events we
introduce a new factor encoding information on the identity
of the reconstructed physics objects present in each event.
This generalised distance d(I, J ) between events I and J is
then given by:

d(I, J ) = min
fij

⎛
⎝∑

i, j

fi j�Ri j × |pT,i − pT, j | × I D(i, j)

⎞
⎠

+ |EI − EJ | , (1)

where the indices i and j run over the reconstructed final
state objects in, respectively, events I and J . pT,i (pT, j ) is
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the transverse momentum1 of object i ( j) in event I (J ),

�Ri j =
√

�φ2
i j + �y2

i j is the rapidity-azimuth distance

between objects i (in event I ) and j (in event J ), and EI

(EJ ) is the total reconstructed energy of event I (J ). The
transport matrix elements fi j , over which d(I, J ) is min-
imised, encode the optimal pairing between objects in events
I and J and thus are such that:

fi j = {0, 1},∑
j

fi j = 1,
∑
i

fi j = 1 ,

where fi j = {0, 1} is set explicitly to prevent, e.g., the energy
of an electron in one event to be shared/associated to an elec-
tron and a muon on a second event to be considered as the
optimal solution.

For each event, the reconstructed final state objects are the
five leading small-R jets, the two large-R jets, the two lead-
ing electrons, the two leading muons and the missing trans-
verse energy (MET ). Jets are reconstructed from calorimeter
energy clusters grouped using the jet finder algorithm anti-kt
[10] as implemented in the FastJet package [11], with radius
parameter R=0.4 and R=0.8 for small- and large-R jets,
respectively. For events with fewer reconstructed objects, the
absent ones are taken as null four-momentum vectors, pro-
viding a proxy to the object multiplicity in the event.

Before computing d(I, J ) from the simulated Monte
Carlo samples, the events are first boosted to their centre-of-
mass frame and then rotated in the tridimensional space to
align the hardest object vertically in the (y, φ) plane. Since
physical laws are Lorentz invariant, this procedure simply
removes spurious information. Furthermore, as d(I, J ) are
to encode a notion of similarity between the distributions of
the kinematics of the objects between events, this procedure
ensures that we are performing this comparison in a natural
frame for each event.

The first term in Eq. (1) defines an overall distance
between events weighted by the pT difference of their
objects. The factor I D(i, j) is introduced to encode infor-
mation on the identity of the final state objects but implies
that Eq. (1) cannot be, in general, interpreted as a distance
in the geometric sense. While d(I, J ) is not a metric, it still
provides the edges of a graph where each node is an event,
i.e. the values d(I, J ) represent an adjancy matrix that can
be used for network analyses, such as clustering which we
will explore below. This is similar to the approach in [8].
For simplicity we still call it a distance throughout the paper.
I D(i, j) consists of a variable scale factor that penalises the
distance between two objects if they are of different type,
where small-R jets, large-R jets, electrons, muons and MET

1 The transverse plane is defined with respect to the proton colliding
beams.

are considered different types of objects:

I D(i, j) =
{

1 if I D(i) = I D( j)

I Dscale if I D(i) �= I D( j) (I Dscale ≥ 1) ,
(2)

Computing the minimal distance implies minimizing the
first term of the Eq. (1) with respect to the optimal transport,
fi j . We address this by using the Earth Mover’s Distance
algorithm implemented in the Python Optimal Transport ot
library [12]. Conceptually, the algorithm computes the mini-
mal cost to transform one event into another. In practice this
corresponds to finding fi j for which Eq. (1) is minimal.

The second term of the equation takes into account the
total energy E difference between the events I and J . We
study four variations of the distance between events, resulting
from the combination of two options: adding the energy term
or not and employing or not the I D(i, j) scaler, i.e. setting
I Dscale = {1, 2}:

• d(I, J ): |EI − EJ | not considered and I Dscale = 1
• d(I, J )I D : |EI − EJ | not considered and I Dscale = 2
• d(I, J )�E : |EI − EJ | considered and I Dscale = 1
• d(I, J )I D�E : |EI − EJ | considered and I Dscale = 2

Despite which of the aforementioned options is at hand,
distances between events of similar topology or kinemat-
ics will tend to be smaller while events yielding different
final states will, in general, have larger distance values. This
suggests that such an approach could help to differentiate
between physical processes, providing an additional tool in
tasks that demand high discrimination. Its impact could be
especially relevant in studies of rare signals, often the case
of searches for new physics, where the discriminative perfor-
mance plays a crucial role. We highlight the adaptable nature
of the constructed observables – distances can be defined
regardless of the event topology, the data filters employed
or channel to be analysed – and are therefore suitable for
generic and model-independent searches for new physics and
for anomaly detection.

In order to evaluate the impact of I Dscale �= 1 and opti-
mise this parameter, we also tested the values I Dscale =
{1.5, 3, 10}. We found the resulting variations to be negligible
with respect to the I Dscale = {1.5, 2, 3} scan but we observe
an improvement up to 20% in the discriminant power of the
distance calculated with I Dscale = 2 when compared to
I Dscale = 1 for rare processes. Moreover, in the limit where
I Dscale = 10 and the weight of particle flavour in Eq. (1) is
an order of magnitude greater than kinematics, we obtain an
improvement around 7% in fake identification. Since a choice
on the number of considered objects per event was made, we
also tested the impact of such choice. This number can always
be increased to adjust to specific physics scenarios with no
harm to applications where fewer final objects are present,
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since an absent object enters as a null vector in the EMD
calculation, therefore not contributing to the final distance.
For instance, in the physics case explored in this paper, we
observe no impact of increasing the number of small-R jets
to 10. Also, the possible overlap between large- and small-R
jets has no effect in our benchmark signal identification.

The time performance of the workflow is key to establish
its practicability in a real experimental environment where
billions of events need to be processed. In order to extract
discriminative information about the events in a sample with
N events, we would, in principle, need to compute the dis-
tances between all the pairwise combinations of events in
the sample, i.e. N !/(2(N − 2)!), which is not feasible even
when resourcing to parallel computing and attaining an aver-
age processing time of around 1 ms/distance with the Python
multiprocessing module. To overcome this drawback
we define event references per process sample, that can later
be used as the sample representatives to assess how far/near
a given event is from the represented process. For a sam-
ple of 3k events, we compute the distances between all its
events and then use a clustering technique to capture the
structures existent in the data such as different kinematic
regimes. We employ the k-Medoids clustering algorithm with
the pyclustering Python library [13] and identify the
medoid of each cluster, i.e., the central event according to
Eq. (1). The medoid approach was used in [6] to visualize
sub-categories of jets. Here we expand this idea and use the
medoids as the event references per process.

The number of clusters per sample is optimized using the
Silhouette technique implemented in pyclustering [13].
In this technique, the Silhouette score [14] – which measures
the cohesion of a cluster by contrasting the average distance
between elements of the same cluster and their distances to
the medoid – is used to assert the optimal number of clusters
by cutting-off when the average Silhouette scores in each
cluster suffer a sharp drop if one would to add another cluster.
Two clusters were found to be optimal.

Medoid events approximately correspond to the centre of
clusters within the multidimensional event space. Figure 1
illustrates this concept with bi-dimensional projections of
t t̄ Z and t t̄W event clusters and their respective medoids in
the (jet pT , HT ) and (MET ,HT ) planes. HT corresponds
to the scalar pT -sum of all the final state event objects. We
can see that the medoids are approximately centred in the
cluster bi-dimensional distributions.

Figure 2 shows the distribution of the event distances for
a sample of simulated t t̄ Z events for all pairwise combina-
tion of events in the sample, for the pairwise combination
of events belonging to the cluster, and between the cluster
events and its medoid. Events within the first cluster are closer
to each other as indicates the lower average and standard
deviation. The second cluster is composed of events farther
apart than in the first cluster but less scattered with respect

(a) t̄tZ events

(b) t̄tW events

Fig. 1 Distribution of a t t̄ Z event clusters in the (jet pT , HT ) plane
and b t t̄W events in the (MET ,HT ) plane, and respective medoids

to the original distribution, as seen from the lower standard
deviation. The distances between the events and the cluster’s
medoids are even shorter as expected from the k-Medoids
clustering. To understand how dependent these distributions
and the subsequent results are on the initial 3k sample choice,
we tested the use of statistically independent samples, also
with 3k events, for all processes. These tests revealed no dif-
ference in the cluster distributions of t t̄ Z , showing that 3k
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Fig. 2 Event Distances for a sample of 3 k t t̄ Z simulated events (up)
for all pairwise combination of events in the sample, (middle) for pair-
wise combination of events belonging to the same cluster and (bottom)
between the cluster events and its medoid

events constitute a suitable statistical description of the pro-
cess for the purpose of our study. Moreover, further results
presented throughout the paper show no dependence on the
initial sample.

2 Physics case and data simulation

We use simulated samples of proton–proton collision events
generated with MADGRAPH5_MCATNLO 2.6.5 [15] at
leading order with a centre-of-mass energy of 13 TeV. The
parton showering and hadronisation were performed with
Pythia 8.240 [16], using the CMS underlying event tune
CUETP8M1 [17] and the NNPDF 2.3 [18] parton distribu-
tion functions. The detector simulation employs the Delphes
3.4.1 [19] multipurpose detector simulator with the default
configuration, corresponding to the parameters of the CMS
detector.

The t t̄ Z process is used as benchmark, corresponding
to a typical measurement of a rare process at the LHC.
Both the ATLAS and CMS Collaborations have considered
trilepton final states for the measurement of the t t̄ Z cross-
sections [4,5] and, therefore, we focus on such topologies.
For this we select events with a final state composed of
at least three leptons (i.e. electrons or muons) compatible
with the Z → �� decay and a leptonic top decay. Our main
source of background is composed of t X (X = WZ , Z j),
t t̄Y (Y = W, Z , H ) and dibosons (WZ and Z Z ). In addi-
tion, fake leptons arising from the misidentification of jets
makes t t̄+jets and Z+jets an additional non-negligible source
of background.

In order to increase the efficiency of the trileptonic selec-
tion and obtain a good statistical representation of the dif-
ferent processes, the individual samples are generated with a
dileptonic decay filter. Particle decays are implemented with
MadSpin [20,21], a simulator of narrow resonances decays
that preserves spin and correctly implements its angular cor-
relation scheme in the decay products.

Around 22 M events were simulated in order to achieve a
statistical uncertainty which would be adequate to the anal-
ysis of 150 fb−1 of data produced by the LHC:

• 100 k for the t t̄ Z , t t̄W and t X (X = WZ , Z j) processes;
• 500 k for t t̄ H and for each diboson (WZ and Z Z ) sample;
• 8 M for the t t̄+jets process;
• 12 M for Z+jets events.

Each process was normalized to the expected yield for the
considered benchmark luminosity of 150 fb−1, assuming the
Standard Model cross-sections computed at leading order
with MADGRAPH5.

3 EMD as high-level features

In order to study the use of EMD as high-level features, we
compute the distances between the events of all generated
processes and the two medoids representing each process
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sample for each four distance options considered – d(I, J ),
d(I, J )I D , d(I, J )�E and d(I, J )I D�E – defined previously.

Figure 3 shows two example distributions of the event
distances to a t t̄ Z medoid and a WZ medoid. Both the aver-
age and the median distance to the t t̄ Z and WZ medoids are
lower for the t t̄ Z and WZ samples, respectively, as expected.
Moreover, Z Z and Z+jets events are in average close to the
WZ medoid, and the t t̄Y and t X processes exhibit a short
distance from the t t̄ Z medoid. This observation provides evi-
dence that the constructed set of distance observables has the
ability to discriminate between event topologies. This con-
clusion is valid across all distributions of the distance observ-
ables and even if definite conclusions would require detailed
detector simulation used by the LHC Collaborations [22,23],
the presented results look promising.

The potential of the proposed generalization of EMD to
distinguish physical processes is investigated by determining
the distances of events with respect to each sample medoids
and using it as a discriminant against the medoid event pro-
cess. The corresponding Receiver Operating Characteristic
(ROC) curves are shown in Fig. 4 for one example medoid
per process where average good performance is observed.
Distances computed with respect to the t t̄ Z , t t̄Y , t t̄+jets and
t X medoids allow to discriminate the diboson and Z+jets
processes. Conversely, distances to the diboson and Z+jets
medoids are sensitive to processes containing top quarks. It
is interesting to note that the constructed observable does
not allow to distinguish Z+jets from diboson events. With
the hardest jets originating from gluon splitting and the jet
system recoiling against a dileptonic Z , the Z+jets events
constitute indeed irreducible background against the dibo-
son signals.

In order to further explore how this technique can be
used in the context of high energy physics measurements
we selected a set of high-level reconstructed event variables,
from which we will derive a baseline to access its discrim-
inant power, as well as to assess how different distances
impact the corresponding separation performance. Following
a typical choice of information set used in dedicated analy-
sis at the LHC, the selected reconstructed variables used as
features are:

• (pT , η, φ) of the two leptons with the highest pT ;
• (pT , η, φ, m) of the two small-R jets with highest pT ;
• (b1, b2), being two binary variables indicating if the jets

were tagged as originated by a b-quark;
• (pT , η, φ,m, τ1, …, τ5) of the large-R jet with the highest

pT ;
• small-R jet, electron, muon and large-R multiplicities;
• scalar sum of all the reconstructed objects pT , HT ;
• missing transverse energy and corresponding φ;

with η being the pseudo-rapidity of the corresponding object
and τ1, …, τ5 being the N -subjettiness observables of the
large-R jets [24,25].

With both the event distances and the selected high-level
features, we performed an exploratory analysis by embed-
ding the events into a two-dimensional space using UMAP
[26], as implemented by [27]. For this, we standartized the
features by subtracting their mean and divided by their stan-
dard deviation as to guarantee that all features are numeri-
cally of the same order of magnitude and adimensional. The
embeddings for the selected features, for all the event dis-
tances, and for the combination of all event distances with
the selected features can be seen in Fig. 5. In this picture,
we notice how, in a completely unsupervised manner, the
embedding of the events through the selected features seems
to be able to isolate clusters of events from different sam-
ples. The fact that the diboson events appear to be quite sep-
arated from those with a t-quark suggests that these events
are the easiest to classify against the other classes, followed
by t t̄ Z events, which occupy mostly a single cluster. We also
notice that fakes seem to mostly spread throughout all the
clusters, highlighting the difficulty of isolating them. In the
middle figure, we show the resulting embedding if we use all
the event distances defined above. The 1st medoid of each
sample, according to the d(I, J )�E distance, is also repre-
sented in the embedding space and appears nearly centred on
the sample distribution. Here again, we confirm the conclu-
sion drawn in the previous section: these distances convey a
notion of continuity from diboson events to t X events. In the
third figure, we used all the event distances in addition to the
selected features. In this case, we notice that we can iden-
tify the same clusters as those appearing in the first picture,
but that the event distances brought in the notion of conti-
nuity between events, continuously connecting some of the
clusters.

4 Deep learning application

Since the event distances, either alone or combined with other
high-level features, present a good discriminating power
between physics processes, we went a step forward and
studied how such discrimination compares with the one
obtained through advanced machine learning techniques,
namely dense neural network (DNN). For this, we imple-
mented DNN discriminants to perform the multiclassification
task across the different sample classes (diboson, fakes, t X ,
t t̄Y and t t̄ Z ), corresponding to the physics process defined
above.

We use TensorFlow 2.0 [28] through its internal Keras
API and followed the same sequential general architecture:
input layer with width matching the number of input features,
and a Softmax layer with five units as the output layer. The
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Fig. 3 Distribution of the event distances d(I, J ) to the (left) 2nd t t̄ Z medoid and to the (right) 1st WZ medoid for each process sample. All
distributions are normalized to the unit area

(a) (b) (c)

(d)
(e) (f)

(g) (h) (i)

Fig. 4 Illustrative Receiver Operating Characteristic (ROC) curves,
corresponding to the Event Distances to a medoid of a t t̄ Z , b t t̄ H , c
t t̄W , d t t̄+jets, e t Z j , f tW Z , g WZ , h Z Z and i Z+jets, for each pro-

cess sample. For each case, the ROC evaluates the task of distinguishing
the process represented by the medoid reference from the remaining
processes and the corresponding area under the curve (AUC) is shown
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(a) Selected Reconstructed
Variables

(b) All Event Distances (c) All Event Distances and Selected
Reconstructed Variables

Fig. 5 UMAP projections of three combination of features. The triangles show the 1st medoid of each sample according to the d(I, J )�E distance.
Units of final embedding space are arbitrary

(a) Selected Reconstructed Variables.
Operating point of 0.2

(b) All Event Distances. Operating
point of 0.2

(c) All Event Distances and Selected
Reconstructed Variables. Operating

(d) Selected Reconstructed Variables.
Operating point of 0.6

(e) All Event Distances. Operating
point of 0.6

(f) All Event Distances and Selected
Reconstructed Variables. Operating

point of 0.6

Fig. 6 Normalised confusion matrices for all DNN, depending on the trained features

hyperparameters were fixed using HyperBand [29] as imple-
mented by Keras–Tuner [30] for each set of features. The
hyperparameteres tuned by the HyperBand algorithm were
the number of layers (from 1 to 10), the number of units per
layer (from 8 to 512 in steps of 8), dropout rate (from 0 to 0.5
in steps of 0.05), and the initial learning rate (from 10−5 to
10−2 over a log scale). We left fixed the activation function
to LeakyReLu [31] and used Nadam optimizer [32], and we
used batch normalization [33]. A 1:1:1 train-validation-test

split was performed for the whole process and the final results
presented here were derived from the test set.

In Fig. 6 we show the confusion matrices for the three
combinations of features of Fig. 5, for two operating points.
The first operating point (up) is defined by only accepting
predictions, where the most likely prediction is greater than
0.2. This excludes the cases where the DNN cannot differen-
tiate between any class and predicts 0.2 for all five classes.
The second operating point (down) is set to 0.6, which will
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Fig. 7 Areas under the ROC curves for all signals for all feature combinations. The left figure shows the obtained values for the areas under the
ROC curves while in the right one the values were normalized to the values obtained for the baseline of selected reconstructed features (last row)

Fig. 8 ROC curves for the (left) Fake and (right) t t̄ Z identification under different combination of features

only retain more confident predictions. In these confusion
matrices we notice that for low operation points, the inclu-
sion of event distances to the high-level features has little
performance impact. For a high operating point, we see that
the event distances seem to help retain a fair discriminative
power of fakes and improve t X identification. These oper-
ating points are only meant to illustrate the potential of the

proposed method since for each specific analysis they would
need to be optimized. A more realistic experimental analysis
would also need to take into account the effect of systematic
sources of uncertainty in such optimization.

Next, in Fig. 7, we present the values of the areas under
the ROCs for the multiclass discrimination using the dif-
ferent feature combinations on top, and how these compare
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to the baseline of using the selected reconstructed variables
when training a DNN below. We see that each distance has
discriminative power which depends slightly on the class we
are trying to isolate and the set of selected features encloses a
better discriminant power than the distance observables. The
latter is expected since the selected features contain informa-
tion, such as b−tagging, which is not present on the distance
observables. Despite of this, the distance variables reach a
competitive performance for diboson and t t̄ Z identification.
In addition, for example, the task of identifying fakes seems
to benefit from the inclusion of the distances that include
�E contribution to the distance, and even more from taking
all distances into account. Identifying the remainder of the
classes seem to benefit little or not at all from the inclusion
of different event distances as features.

Finally, in Fig. 8, we show how the ROC curves for the task
of discriminating fakes and the t t̄ Z signal from the remainder
of the classes. In this figure, we see how different event dis-
tances provide different discriminant power for these specific
cases. We also notice that the combination of all event dis-
tances without the selected features has better performance
than each distance separately. Finally, we observe that, in the
case of fake identification, the ROC curve for the combina-
tion of all event distances with the selected features is the
outermost curve for the large portion of the operating points.

5 Conclusions

In this paper, the energy Mover’s distance concept was used
to create a new set of observables that could be used in the
measurement of rare processes at proton–proton colliders,
using t t̄ Z as a study case. We have shown that such new
observables, which build on the previously proposed con-
cept of EMD, perform well in the task of grouping together
different processes based on their topologies, showing a fair
discrimination power by themselves. Namely, it can be seen
that the distances between t t̄ Z and t t̄Y are smaller than Z Z
and WZ . This indicates that the EMD based observables can
be useful in the classification of collider data.

Additionally, the use of these observables in the training
of a DNN was tested. Even if the overall performance of the
DNN is not, in general, significantly increased, such observ-
ables are interesting on themselves since they provide event-
level information which is beneficial for the classification of
processes with fake leptons in some scenarios. Furthermore,
such event-level observables might be affected differently
by systematic uncertainties – a study beyond the scope of the
current paper which deserves further investigation.
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