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Abstract We obtain well behaved interior solutions describ-
ing hydrostatic equilibrium of anisotropic relativistic stars in
scale-dependent gravity, where Newton’s constant is allowed
to vary with the radial coordinate throughout the star. Assum-
ing (1) a linear equation-of-state in the MIT bag model for
quark matter, and (2) a certain profile for the energy den-
sity, we integrate numerically the generalized structure equa-
tions, and we compute the basic properties of the strange
quark stars, such as mass, radius and compactness. Finally,
we demonstrate that stability criteria as well as the energy
conditions are fulfilled. Our results show that a decreasing
Newton’s constant throughout the objects leads to slightly
more massive and more compact stars.

1 Introduction

Einstein’s theory of General Relativity (GR) [1] is a rela-
tivistic theory of gravitation, which not only is beautiful but
also very successful [2,3]. The classical tests and solar sys-
tem tests [4], and recently the direct detection of gravita-
tional waves by the LIGO/VIRGO collaborations [5] have
confirmed a series of remarkable predictions of GR.
Despite its success, however, it has been known for a long
time that GR is a classical theory of gravitation, not compat-
ible with quantum physics. Formulating a theory of gravity
that incorporates quantum mechanics in a consistent way
is still one of the major challenges in modern theoretical
physics. Although as of today several approaches to the prob-
lem do exist in the literature (for a partial list see e.g. [6—14]
and references therein), there is one property in particular
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that all of those have in common, i.e. the basic quantities
that enter into the action defining our favorite model, such as
the cosmological constant, gravitational and electromagnetic
couplings etc, become scale dependent (SD) quantities. This
was to be expected of course, since scale dependence at the
level of the effective action is a generic feature of ordinary
quantum field theory.

As far as black hole physics is concerned, the impact of
the SD scenario on properties of black holes, such as ther-
modynamics or quasinormal spectra, has been studied over
the last years, and it has been found that SD modifies the
horizon, thermodynamic properties and the quasinormal fre-
quencies of classical black hole backgrounds [15-21]. More-
over, a scale dependent gravitational coupling is expected to
have significant cosmological and astrophysical implications
as well. In particular, since compact objects are character-
ized by ultra dense matter and strong gravitational fields, a
fully relativistic treatment is required. Naturally, it would be
interesting to investigate the impact of the SD scenario on
properties of relativistic stars.

In the present work we propose to obtain for the first time
interior solutions of relativistic stars with anisotropic mat-
ter in the SD scenario, extending a previous work of ours
where we studied isotropic compact objects [22]. In partic-
ular, here we shall focus on strange quark stars, which com-
prise a less conventional class of compact stars. Although
as of today they remain hypothetical astronomical objects,
strange quarks stars cannot conclusively be ruled out yet. As
a matter of fact, there are some claims in the literature that
there are currently some observed compact objects exhibit-
ing peculiar features (such as small radii for instance) that
cannot be explained assuming the known hadronic equations-
of-state for neutron stars, see e.g. [23-25], and also Table 5
of [26] and references therein. This study is also relevant for
the possible implications to understand the nature of com-
pact stars. Recently, a few authors suggested that strange
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matter could exist in the core of NS-hybrid stars [27-29],
while others claim such stars are almost indistinguishable
from NS [30].

Celestial bodies are not always made of isotropic matter,
since relativistic particle interactions in a very dense nuclear
matter medium could lead to the formation of anisotropies
[31]. The investigation of properties of anisotropic relativis-
tic stars has received a boost by the subsequent work of [32].
Indeed, anisotropies can arise in many scenarios of a dense
matter medium, such as phase transitions [33], pion conden-
sation [34], or in presence of type 3A super-fluid [35]. See
also [36-39] as well as [40-42] for more recent works on
the topic, and references therein. In the latter works rela-
tivistic models of anisotropic quark stars were studied, and
the energy conditions were shown to be fulfilled. In particu-
lar, in [40] an exact analytical solution was obtained, in [41]
an attempt was made to find a singularity free solution to
Einstein’s field equations, and in [42] the Homotopy Pertur-
bation Method was employed, which is a tool that facilitates
to tackle Einstein’s field equations.

Currently there is a rich literature on relativistic stars,
which indicates that it is an active and interesting field. For a
few partial lists see for instance: (1) for electrically charged
stars [43-51], (2) for anisotropic stars [37,52-60], and (3)
for objects with both net electric charge and anisotropic mat-
ter [61-68], and also compact stars with specific mass func-
tion [69].

The plan of our work is the following: In the next sec-
tion we briefly review the SD scenario. After that, in Sect. 3
we present the generalized structure equations that describe
hydrostatic equilibrium of relativistic stars. Then, in the
fourth section we introduce the equation-of-state, we obtain
the interior solutions integrating the structure equations
numerically, and we also show that the solutions obtained
here are realistic, well behaved solutions. Finally, we sum-
marize our work and finish with some concluding remarks in
the final section. We adopt the mostly positive metric signa-
ture, (—, +, +, +), and we work in geometrical units where
the speed of light in vacuum as well as the classical Newton’s
constant are set to unity, c = 1 = Gy.

2 Scale-dependent gravity

The aim of this section is to briefly introduce the formalism.

The asymptotic safety program is one of the variety
of approach of quantum gravity an this is, precisely, the
inspiration of our formalism. Also, close-related approaches
share the similar foundations, for instance the well-known
Renormalization group improvement method [70-73] (usu-
ally applied to black hole physics) or the running vacuum
approach [74-79] (usually implemented in cosmological
models). Following the same philosophy, recently the scale-
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dependent gravity have provided non-trivial black holes solu-
tions as well as cosmological solutions, investigating differ-
ent conceptual aspects of such novel results (see, for instance
[80-96] and references therein). Roughly speaking, scale-
dependent gravity extend classical general relativity solu-
tions after treat the classical coupling as scale-dependent
functions, which can be symbolically represented as follows

{Ao, Bo, (---)o} = {Ax, Bi, (- )i} ey

Notice that the sub-index & is an arbitrary renormalization
scale which should be connected with one of the coordinates
of the system. To account the relevant interactions, we start
by considering a effective action written as

S[guv, k1= Sgn + Sm + Ssp ()

where the terms above mentioned have he usual meaning,
namely: (1) the Einstein Hilbert action Sgy, (2) the mat-
ter contribution Sy, and finally (3) the scale-dependent term
Ssp. Moreover, notice that the contribution Sy; could account
isotropic or anisotropic matter. For our concrete case, the
parameter allowed to vary is Newton’s coupling Gy (or,
equivalently, Einstein’s coupling kx = 8w Gi). Thre are two
independent fields, i.e., (1) the metric tensor, g,,, (x), and (2)
the scale field k(x). To obtain the effective Einstein’s field
equations, we take the variation of (2) with respect to g, (x):

1
R;w - ERg;w = Klengec 3)

In scale-dependent gravity the effective energy-momentum
tensor Tﬁlf,tec is defined by

~ 1
ffec __

TN = T — Aty 4)

Aty = Gk(g,wD _ VMVV)G,;I (5)

where the last tensor is obtained after an integration by parts.

The conventional energy-momentum tensor, 7}, corre-
sponds to matter fields, whereas Aty carries the informa-
tion regarding the running of the gravitational coupling Gy.
In this sense, when the scale-dependent effect is absent, the
aforementioned tensor clearly vanishes.

In this work, since we are interested in stars with
anisotropic matter content, we shall consider an energy-
momentum tensor of the form

T} = diag(—p. pr. pi» pr) (6)

with two different pressures, radial p,, and tangential, p;. Let
us comment in passing that in principle one could include
the shear as well. It turns out, however, that shear is present
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only in cases where the metric components depend both on
the radial coordinate, » and the time, ¢. This is the case for
instance in gravitational collapse, see e.g. [97]. Since here
we are looking for static, spherically symmetric solutions,
shear does not contribute and therefore we shall ignore it.
Now, it is essential to improve our comprehension about
the running of Newton’s coupling and how such a feature
is affected by setting a certain renormalization scale k. In
this respect, it is well known that General Relativity can be
treated as a low energy effective theory and, therefore, it
may be viewed as a quantum field theory with an ultraviolet
cut-off (see [98,99] and references therein). That cut-off is
parameterized by the renormalization scale k, which allows
us to surf between a classical and a quantum regime. In order
to make progress, the external scale k is usually connected
with the radial coordinate. In the scenario where Gog — Gy,
the corresponding gap equations are not constant any more.
The latter means that non-constant k = k(x) implies that the
set of equations of motion does not close consistently. Also,
the energy-momentum tensor could be not conserved for a
concrete choice of the functional dependence k = k(x). This
pathology has been analyzed in detail in the context of renor-
malization group improvement of black holes in asymptotic
safety scenarios. The source of the problem is that a consis-
tency equation is missing, and it can be computed varying
the corresponding action with respect to the field k(- - - ), i.e.,

d
as[g;wak] =0 (7)

usually considered to be a variational scale setting proce-
dure [73,100]. The combination of Eq. (7) with the equa-
tions of motion ensures the conservation of the energy-
momentum tensor, although an unavoidable problem appears
in this approach, i.e., we should know the corresponding 8-
functions of the theory. Given that they are not unique, we
circumvent the above mentioned computation and, instead
of that, we supplement our problem with a auxiliary con-
dition. The energy conditions are four restrictions usually
demanded in General Relativity, being the Null Energy Con-
dition (NEC hereafter) the less restrictive of them. We take
advantage of this, and we promote the classical coupling to
radial-dependent couplings to solve the functions involved.

Thus, this philosophy of assuring the consistency of the
equations by imposing a null energy condition will also be
applied for the first time in the following study on interior
(anisotropic) solutions of relativistic stars.

3 Hydrostatic equilibrium of relativistic stars

In this section we briefly review relativistic anisotropic stars
in General Relativity and, after that, we will generalize the

structure equations in the scale-dependent scenario. Clearly,
this work is a natural continuation of our previous work where
isotropic relativistic star in the scale-dependent scenario were
studied [22].

The starting point is Einstein’s field equations without a
cosmological constant

Gl = 8 TH @®)

where G, is Einstein’s tensor, and T}, is the matter stress-
energy tensor, which for anisotropic matter takes the form
[36,38]

Tv”':dlag(_pa Pr> Pt Pt) (9)

where p is the energy density, p, is the radial pressure and
p; is the transverse pressure.

Considering a non-rotating, static and spherically sym-
metric relativistic star in Schwarzschild coordinates, (¢, r,
0, ¢), the most general metric tensor has the form:

ds? = —e"d* + dr? + r2dQ? (10)

1—=2m(r)/r

where we introduce for convenience the mass function m (),
and dQ? is the line element of the unit two-dimensional
sphere. One obtains the Tolman—Oppenheimer—Volkoff equa-
tions for a relativistic star with anisotropic matter [36,38]

m'(r) = 4r?p(r) (1)
by m(r) ~|—471r3pr(r)
V) = iy /) (12)
, m(r) +4nr3pr(r) 2A(r)
Pr) ==+ P O) a0 Y
(13)

where we define the anisotropic factor A = p; — p,, and
the prime denotes differentiation with respect to the radial
coordinate r. The special case in which p, = p, (ie.,
when A = 0) one recovers the usual Tolman—Oppenheimer—
Volkoff equations for isotropic stars [101,102].

The exterior solutions is given by the well-known Sch-
warzschild geometry [103]

ds® = = f(r)dr* + f(r) " dr? + r2dQ? (14)
where f(r) = 1 — 2M/r, with M being the mass of the

object. Matching the solutions at the surface of the star, the
following conditions must be satisfied

| _ =0 (16)

@ Springer
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N =1 (17)

r=R R

The second condition allows us to compute the radius of the
star, the first one allows us to compute the mass of the object,
while the last condition allows us to determine the initial
condition for v(r). Finally, depending on the physics of the
matter content the appropriate equation-of-state should be
also incorporated, see next section.

Next, we shall now generalize the standard structure equa-
tions (valid in General Relativity) in the scale-dependent sce-
nario which accounts for quantum effects. As we already
mentioned before, Newton’s constant is promoted to a func-
tion of the radial coordinate, G (r), and therefore the effective
field equations now take the form

1
R = 5 Ry = 8T G (r) TS (18)

where the effective stress-energy tensor has two contribu-
tions, namely one from the ordinary matter, 7},,, and another
due to the G-varying part, At

1
ff
T:vec =Ty — _SnG Aty (19)

where the G-varying part was introduced in 5 (see e.g. [104]
and references therein for additional details).

Similarly to the classical case, the structure equations valid
in the scale-dependent scenario are found to be

(G(rym) = 4x G (r)r’pcT (20)
m+ 4]Tr3pfff

=260 50= 2G(rym/r)

v'(r) 2D
and we spare the details for the last equation, since it is
too long to be shown here. Notice also that when G'(r) =
0 = G”(r) (classical case), the previous set of equations is
reduced to the usual TOV equations.

Finally, there is an additional differential equation of sec-
ond order for G (), which is the following [104]

G0, GOY [m <e“<” ;)} 22)
G@r) G(r) 1-2m(r)/r

and which must be supplemented by two initial conditions at
the center of the star,

G(r)

o = Ge (23)

r=

G(r)

=G. (24)

r=0

@ Springer

4 Interior solutions

From the formulation of the problem it it clear that there
are four equations, namely the three Einstein’s field equa-
tions plus the additional one for Newton’s constant, and six
unknown quantities, namely two metric potentials, the r-
varying gravitational coupling, and the energy density and
the pressures of anisotropic matter. Therefore one is allowed
to start by assuming two conditions. As usual in studies of
relativistic stars with anisotropic matter, we shall assume a
given density profile with a reasonable behavior as well as
a certain equation-of-state (EoS). Therefore, before we pro-
ceed to integrate the structure equations, we must specify the
matter source first.

4.1 Equation-of-state and density profile

Matter inside the stars is modelled as a relativistic gas of de-
confined quarks described by the MIT bag model [105, 106],
where there is a simple analytic function, relating the energy
density to the pressure of the fluid, that is

pr=k(p — pys) (25)

where k is a dimensionless numerical factor, while py is the
surface energy density. The MIT bag model is characterized
by 3 parameters, namely (1) the QCD coupling constant,
oc, (2) the mass of the strange quark, mg, and (3) the bag
constant, B. The numerical values of k£ and p; depend on
the choice of my, a., B. In this work we shall consider the
extreme model SQSB40, where my; = 100 MeV, o, = 0.6
and B = 40 MeV fm=3. In this model k = 0.324 and Ps =
3.0563 x 10" g cm™3 [107].

What is more, given that the number of unknown quan-
tities exceeds the number of equations, we may assume a
particular density profile p(r) as was done for instance in
[36,38]. In our case, we have selected the following density
profile:

3+ ar?

I Tar)? 20

p:

which is a monotonically decreasing function of the radial
coordinate r, the central value of which is p. = p(0) = 3b.
The two free parameters a, b have dimensions [L]72, and
they will be taken to be

a

“= @52 @7
b

b= Gmy 28

where now a, b are dimensionless numbers.
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4.2 Initial and matching conditions

Next, since the energy density and the radial pressure are
known, we obtain a closed system for m(r), v(r), G (r) using
the tt and the rr field equations combined with the equa-
tion for G (r). Once these are determined, the last field equa-
tion allows us to compute the transverse pressure p; and the
anisotropic factor A.

Since in this work we assume a vanishing cosmological
constant, the exterior solutions is still given by the well-
known Schwarzschild geometry, and therefore the matching
conditions remains the same as in GR. In the SD scenario
there is an additional condition, which requires that New-
ton’s constant must take precisely the classical value at the
surface of the star. Therefore, in the SD scenario, the match-
ing conditions are the following:

m)| =M (29)
p)| =0 (0)
o0 1o 2?1” G1)
G| _ =1 (32)

To integrate the structure equations for m(r), G(r), v(r) we
impose the initial conditions at the center of the star

m(ir=0)=0 (33)
v(r =0) = v, (34
G(r=0) =G, (35)
, 0.0002
G(r=0==+ (36)
km

where we consider two distinct cases, namely that G (r) can
be either a decreasing or an increasing function of r, and
we fix the absolute value of G'(r = 0). The central values
G, v¢, in principle unknown, are determined demanding that
the matching conditions for G(R), v(r), i.e.

2M
R

Gr=R =1 =R =] (37)
are satisfied. It should be emphasized here that if G, and v,
are picked up at random, the above matching conditions are
not satisfied. Instead, they are satisfied only for the specific
initial conditions shown in Tables 1 and 2.

4.3 Numerical results

Our main numerical results are summarized in the tables and
in the figures below. In particular, first we present in detail five
representative solutions for G'(r = 0) < 0, and five more
for G'(r = 0) > 0. The numerical values of @, b are shown

Table 1 Initial conditions for five interior solutions for G'(r = 0) =
—0.0002/km

No. of solution G Ve

1 1.00422 —2.00721
2 1.00375 —1.69046
3 1.00341 —1.46346
4 1.00467 —2.36200
5 1.00400 —1.89206

Table 2 Initial conditions for five interior solutions for G'(r = 0) =
0.0002/km

No. of solution G, Ve

1 0.99577 —1.97771
2 0.99624 —1.67030
3 0.99658 —1.44859
4 0.99533 —2.32040
5 0.99599 —1.86682

Table3 Properties of five interior solutions assuming a positive G’ (r =

0)

No.of solution R [km] M[My] C=M/R a b

1 13.67 2.783 0.303 18 07
2 12.97 2377 0.273 20 0.7
3 12.37 2.060 0.248 2 07
4 13.75 2.995 0.324 22 0.85
5 13.13 2.544 0.288 22 078

Table 4 Properties of five interior solutions assuming a negative
G'(r=0)

No. of solution R [km] M[Mg] C=M/R a b

1 13.67 2.825 0.307 18 0.7
2 12.97 2.412 0.277 20 0.7
3 12.37 2.090 0.251 22 0.7
4 13.75 3.042 0.329 22 0.85
5 13.13 2.582 0.293 22 0.78

as well. In Tables 1 and 2 we show the initial conditions
for G(r) and v(r) for a negative and a positive G'(r = 0),
respectively, while in Tables 3 and 4 we show the properties
(i.e. mass, radius and compactness) of strange quark stars for
positive and negative G’(r = 0), respectively. Our results
show that for a given density profile (given pair a, b and given
radius), a decreasing Newton’s constant (Table 4) implies a
more massive star and consequently a higher compactness
factor in comparison with an increasing Newton’s constant
(Table 3). The mass-to-radius profiles as well as the factor
of compactness versus the mass, and the surface red-shift,

@ Springer
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25}

Metric Potentials
.

1R

Fig. 1 Metric potentials ¢” and e* vs dimensionless radial coordinate
r/R for the five plus five interior solutions obtained here, see Tables
1 and 2 for the initial conditions, and Tables 3 and 4 for the prop-
erties of the stars. They exhibit the usual behaviour of interior solu-
tions of relativistic stars, i.e. they are increasing functions of r, and e”
always remains below e*. Since m (r = 0) = 0, the metric potential e*

5= ~ ]
S
4 r \ 7
i N

<;><? 3 N ]

[ ~N
2F \ 7]
~ - ]
1 a - w "}\F«.\,. . ——y, ;
0.0 0.2 0.4 0.6 0.8 1.0

r'R

Fig. 2 Dimensionless energy density and pressures (both radial and
tangential) X; = (p, pr, pt)/ps vs dimensionless radial coordinate

r/R for the Sth solution obtained here. Left: Solution for the case
G'(r = 0) = —0.0002/km (5th solution in Table 1). Right: Solu-
tion for the case G'(r = 0) = +0.0002/km (5th solution in Table 2).
Shown are: (i) dimensionless radial pressure p,/ps (solid blue line),
(ii) dimensionless transverse pressure p;/ps (short dashed orange line),

Zs, versus the radius of the objects are shown in the three
panels of Fig. 6. The surface red-shift, an important quantity
to astronomers, is given by [37,108,109]

M\ —1/2
zs=—1+<1—2E)

Figure 1 shows the metric potentials ¢’ and ¢*") as a
function of the dimensionless radial coordinate r/R. Figure
2 shows the (normalized) energy density as well as the radial
and transverse pressure versus »/ R for the five plus five cases
considered here, while Fig. 3 shows the anisotropic factor
A /ps vs r/R. Figure 4 shows the scale-dependent gravita-

(38)
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Metric Potentials

0.0 0.2 0.4 0.6 0.8 1.0
1R

always starts from unity. Left: Solutions 1-5 corresponding to the case
G'(r = 0) = —0.0002/km (Table 1). Shown are: (i) Solution 1 (solid
red line), (ii) Solution 2 (short dashed blue line), (iii) Solution 3 (dotted
brown line), (iv) Solution 4 (dot-dashed magenta line), (v) Solution 5
(long dashed orange line). Right: Same as left panel, but for solutions
1-5 corresponding to the case G’ (r = 0) = +0.0002/km (Table 2)

5}- ~ ]
N
4; \ B
i N
S 8¢ N 1
[ ~N
2r ~ - 4
1 b — ri\'\'r _ — — ]
0.0 0.2 0.4 0.6 0.8 1.0
r/R

(iii) dimensionless density p/ps (long dashed green line). The energy
density starts from its central value, p., and it monotonically decreases
until it reaches its surface value, ps. The pressures start from the same
value at the centre of the stars (which implies that the anisotropy factor
vanishes there, see next figure), and they monotonically decrease until
pr vanishes at the surface, whereas p; does not have to vanish

tional coupling as a function of radial coordinate. Both posi-
tive and negative values of G’ (r) lead to realistic interior solu-
tions. All our numerical solutions tend to G(r = R) = 1 at
the surface of the star, which was imposed right from the start.

4.4 Stability and energy conditions

The interior solutions obtained here must be able to describe
realistic astrophysical configurations. In this subsection we
check if stability criteria as well as the energy conditions
are fulfilled or not. First, regarding stability, we impose the
condition I' > 4/3 [110-112], where the adiabatic index I"
is defined by
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0.20}
0.15}

0.10}

A (r)lps

0.05}

0.00f

_0.05L
r'R

Fig. 3 Normalized anisotropic factor A /ps vs dimensionless radial
coordinate r/R for the five plus five interior solutions obtained here.
It starts from zero at the centre of the stars, but it does not have to
vanish at the surface. Left: Solutions 1-5 corresponding to the case
G'(r = 0) = —0.0002/km (Table 1). Shown are: (i) Solution 1 (solid

1 005 [T T T T T T T T T T T T T T T T T T T T T
1.004F

1.003F

G(r)

1.002f

1.001F

1.000F . o o ]
0.0 0.2 0.4 0.6 0.8 1.0

/R

Fig. 4 Running (r-varying) Newton’s constant vs dimensionless radial
coordinate r/R for the five plus five interior solutions obtained
here. Left: Solutions 1-5 corresponding to the case G'(r = 0) =
—0.0002/km (Table 1). Shown are: (i) Solution 1 (solid red line), (ii)

151 X
10+ 1
= |
I_ L
5 [ 4
| e——— S
0.0 0.2 0.4 0.6 0.8

/R

Fig. 5 Adiabatic index I" versus dimensionless radial coordinate /R
for the five plus five interior solutions obtained here. The horizontal
dashed line corresponds to the Newtonian limit 4/3. Left: Solutions
1-5 corresponding to the case G'(r = 0) = —0.0002/km (Table 1).
Shown are: (i) Solution 1 (solid red line), (ii) Solution 2 (short dashed

—r 77T 7T

0.20} PO T TN .

r + * '~l ]

L 04 ~, |

[ o ~ ]

0.15} o ]

[ 4 ]
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0.00F ]

_0_05'1 PRI R .‘".‘""1"""“‘.“.‘ T BT ""'14

0.0 0.2 0.4 0.6 0.8 1.0

'R

red line), (ii) Solution 2 (short dashed blue line), (iii) Solution 3 (dotted
brown line), (iv) Solution 4 (dot-dashed magenta line), (v) Solution 5
(long dashed orange line). Right: Same as left panel, but for solutions
1-5 corresponding to the case G'(r = 0) = 4+0.0002/km (Table 2)

1.0007
0.9995
S 0.998§
o.997f

0.996

r/R

Solution 2 (short dashed blue line), (iii) Solution 3 (dotted brown line),
(iv) Solution 4 (dot-dashed magenta line), (v) Solution 5 (long dashed
orange line). Right: Same as left panel, but for solutions 1-5 corre-
sponding to the case G'(r = 0) = +0.0002/km (Table 2)

15¢ X
10+ 4
S | |
I_ L
5k .
| e———— S
0.0 0.2 0.4 0.6 0.8

r'R

blue line), (iii) Solution 3 (dotted brown line), (iv) Solution 4 (dot-
dashed magenta line), (v) Solution 5 (long dashed orange line). Right:
Same as left panel, but for the solutions 1-5 corresponding to the case
G'(r = 0) = +0.0002/km (Table 2)
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Fig. 6 Top: Factor of compactness, C, versus mass, M (in solar
masses). Solid red line corresponds to the case G'(r = 0) =
—0.0002/km, while dashed cyan line corresponds to the case G'(r =
0) = 4+0.0002/km. Middle: Mass-to-radio profiles for the two cases
regarding the sign of G’(r = 0). The color code is the same as in the
top panel. Bottom: Surface red-shift, z,, (see text) versus radius R (in
km). The color code is the same as in the top panel

r=c [1 + ﬁ] (39)

(40)

@ Springer

For the linear EoS considered here, the speed of sound is a

constant, c? =k.

Figure 5 shows that I > 4/3 for all the models considered
here, both for positive (left panel) and negative G'(r = 0)

(right panel).
Next, regarding energy conditions, we require that [40—

42,113,114]
WEC: p >0, p+pr >0, 41)
NEC: p+ pry >0, (42)
DEC 1Y 2 |pr,t| ) (43)
SEC: p+pri =0, p+p+2p >0. (44)

According to the interior solution shown in Fig. 2, we observe
that (1) all three quantities p, p,, p; are positive throughout
the star, and (2) the energy density always remains larger
that both p,, p;. Clearly all energy conditions are fulfilled.
We thus conclude that the interior solutions obtained in the
present work are realistic solutions within the framework
adopted here, and as such they are able to describe realistic
astrophysical configurations.

As a final remark it should be stated here that in the
present article we took a modest step towards the investi-
gation of spherically symmetric, anisotropic strange quark
stars in the scale-dependent scenario assuming the MIT bag
model equation-of-state. Clearly, there is still a lot of work to
be done. For instance, one may study (1) more sophisticated
equations-of-state for quark matter [115-117], (2) rotating
stars, or (3) other compact objects, such as neutron stars or
white dwarfs. We hope to be able to address some of those
interesting issues in future works.

5 Conclusions

Summarizing our work, in the present article we have
obtained well behaved interior solutions for relativistic stars
with anisotropic matter in the scale-dependence scenario. In
particular, we have studied strange quark stars assuming for
quark matter a linear EoS adopting the extreme SQSB40 MIT
bag model. First we presented the new structure equations
describing the hydrostatic equilibrium of the stars for a non-
vanishing anisotropic factor. The new equations generalize
the usual TOV equations valid in GR, and they boil down
to those when Newton’s constant is taken to be a constant,
G'(r) =0 = G”(r). Then assuming a certain profile for the
energy density, we numerically integrated the structure equa-
tions for the system m(r), v(r), G(r), and we computed the
radius, the mass as well as the compactness of the stars for a
varying Newton’s constant, both increasing and decreasing
throughout the objects. Moreover, we have shown that the
energy conditions are fulfilled, and that the Bondi’s stabil-
ity condition, I' > 4/3, is satisfied as well. In both cases,
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G'(r =0) > 0and G'(r = 0) < 0, we obtained well
behaved solutions describing realistic astrophysical configu-
rations, although a decreasing Newton’s constant throughout
the objects leads to slightly more massive and more compact
stars.
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