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Abstract In String Gas Cosmology, the simplest shape
modulus fields are naturally stabilized by taking into account
the presence of string winding and momentum modes. We
determine the resulting effective potential for these fields and
show that it obeys the de Sitter conjecture, one of the swamp-
land criteria for effective field theories to be consistent with
superstring theory.

1 Introduction

In recent years there has been a lot of interest in constraints
on low energy effective field theories which can emerge from
superstring theory. These constraints pick out a small sub-
space (the string landscape) of the huge space of possible
effective field theories. Effective field theories which are not
embeddable in string theory are said to lie in the swampland
(see e.g. [1,2] for reviews). Two key criteria are the distance
conjecture and the de Sitter constraint. The distance conjec-
ture [3] states that an effective field theory of a canonically
normalized scalar field φ is only consistent with string the-
ory if the field range �φ is smaller than c1mpl , where mpl

is the four space-time dimensional Planck mass, and c1 is a
constant of order one. The de Sitter condition [4] states that
the potential V (φ) of such a field has to be sufficiently steep,
i.e.

|V
′

V
| >

c2

mpl
, (1)

where c2 is another constant of the order one, and a prime
denotes the derivative with respect to the field. In the case
that the potential has a local extremum, then the condition
(1) is may not be met, but in that case an extended version of
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the criterion applies which states that [5,6]

V ′′

V
< − c3

m2
pl

, (2)

where c3 is a positive constant of the order one.
The swampland conjectures have been formulated based

on well-motivated ideas from string theory, but they have not
yet been rigorously established. Assuming string theory, all
scalar fields appearing in a low energy effective action are
moduli fields of the string compactification, e.g. the radii and
shape parameters of extra dimensions. Hence, their poten-
tials are determined by string theory. In a recent paper [7]
the effective potential of the scalar field corresponding to
the radius of an extra dimension was studied. The starting
point was the String Gas Cosmology model [8] (see also [9]
for earlier work, and [10] for reviews), in which matter is
described by a gas of strings including both momentum and
winding modes, and is coupled to a background space-time.
It is known [11–14] that the radion modulus is stabilized
by the presence of both winding and momentum modes. The
momentum modes prevent the radion from decreasing to zero
while the winding modes prevent it from expanding without
limits. The resulting effective potential for the radion has
vanishing potential energy at its minimum. We found that
the effective potential is quadratic about the minimum and
hence satisfies the de Sitter criteria (1, 2).

In this paper, we will focus on the shape moduli. We fol-
low [15] and consider two internal toroidal dimensions with
radius R and angle θ . From the work of [15] it is known that
string effects stabilize the shape modulus field. Here we will
consider the effective potential for θ and show that it is also
consistent with the conditions (1, 2).

In the following section we give a brief review of SGC. In
Sect. 3 we derive the effective potential for our shape modulus
field θ and show that it obeys the swampland criteria. We
conclude with a discussion of our results. We work in natural
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units in which the speed of light and Planck’s constant are
set to 1. We also set the string length equal to 1 in our units.

2 Brief review of string gas cosmology

String gas cosmology is based upon coupling a classical
background (including the graviton and dilaton fields) to a
gas of strings. Strings have three types of states: momentum
modes, oscillatory modes, and winding modes. These string
states, as well as the T-duality symmetry, are the key features
of string theory that are used to develop string gas cosmology.
String theory requires six extra spatial dimensions, which we
take to be compactified and toroidal. Namely, the space-time
metric is:

ds2 = gμνdx
μdxν + γabdx

adxb (3)

where the Latin indices label the compactified dimensions,
and the Greek indices label the four dimensional FRW metric.
The torus is parametrized by shape and size moduli.

A major challenge in string cosmology is stabilizing the
string moduli, that is, stabilizing the sizes and shapes of the
extra dimensions, as well as the dilaton. Note that we are here
considering moduli stabilization at late times when the back-
ground can be described by dilaton gravity.1 The basic prin-
ciple of size modulus stabilization is that the winding modes
prevent expansion because their energies increase with R,
whereas the momentum modes prevent contraction because
their energies increase with 1

R [11–14]. As we will review
here, the coupling of the string gas to the background also
provides a stabilization mechanism for a simple shape mod-
ulus field [15]. It can be shown [18] that nonperturbative
effects due to gaugino condensation can stabilize the dilaton
without interfering with size and shape modulus stabilization,
and the same mechanism leads to high scale supersymmetry
breaking [19].

3 Shape modulus potential

In the following we consider our space-time dimensions to
be non-compact, and add a number of compact dimensions
which we take to be toroidal. Strings have momentum and
winding numbers about the extra dimensions.

The matter action for a mas of strings at temperature β−1

in D space-time dimensions is given by

1 In the initial high temperature Hagedorn phase of strings, dilaton grav-
ity is inapplicable since it is not consistent with the basic symmetries of
string theory. For a recent attempt to construct a background which is
consistent with the T-duality symmetry of string theory see e.g. [16,17].

S =
∫

dDx
√−G

×
∑

na ,wa ,N ,Ñ ,pnc

μna ,wa ,N ,Ñ ,pnc
εna ,wa ,N ,Ñ ,pnc

, (4)

where G is the determinant of the full metric, and the sum
runs over all free string states. These states are labelled by
their momentum numbers na , winding numbers wa , num-
bers N and Ñ of right- and left-moving oscillatory modes,
and momentumpnc in the non-compact directions. The quan-
tity μna ,wa ,N ,Ñ ,pnc

is the number density of a state with the
specified quantum numbers, and εna ,wa ,N ,Ñ ,pnc

is its energy,
given by

εna ,wa ,N ,Ñ ,pnc
=

√
p2
nc + M2

na ,wa ,N ,Ñ
, (5)

where Mna ,wa ,N ,Ñ is the mass of such a state. In the absence
of string interactions, the number density of states is constant
in comoving coordinates. We denote the comoving number
density by nna ,wa ,N ,Ñ . In thermal equilibrium, the number
density of excited states is suppressed by the thermal Boltz-
mann factor. Hence, we can restrict the summation to run
over the lowest mass states which are the massless states
(the tachyon which appears in bosonic string theory does
not appear in the spectrum of superstring theory). Since the
determinant of the metric reduced to our expanding spatial
dimensions cancels out between

√
G and μ, the matter action

becomes

S =
∫

dDx
√−G00

∑
restricted

nna ,wa ,N ,Ñ ,pnc
εna ,wa ,N ,Ñ ,pnc

(6)

where the sum is restricted to the lowest mass states, and G00

is the time component of the metric (the scale factor depen-
dence in the spatial dimensions has been cancelled against
the corresponding factor appearing in the number densities
μ).

In [11–15], the equations of motion for the size and shape
moduli were derived by deriving the energy-momentum ten-
sor of the higher dimensional theory with matter action (6),
and inserting the resulting expressions into the higher dimen-
sional Einstein action. Here, following [7], we obtain the
equations of motion for the moduli fields by inserting the
ansatz for the metric into the matter action (6) (more specifi-
cally, by inserting the ansatz into the mass formula), viewing
the resulting action as an action for the moduli fields, and
taking the resulting variational equations.

The string mass for a toroidal compactification depends
on the three sets of string quantum numbers, and is given by:

M2
n,n,N = 1

R2 γ abnanb + R2

α′2 γabw
awb

+ 2

α′
(
2N + nawa − 2

)
, (7)
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where na , wa , and N are the momentum, winding, and oscil-
latory quantum numbers, respectively,2 and γab is the space-
time metric. In the string units which we are using, α′ = 1.
The indices a and b run over all compact dimensions. Later
in this note we will be considering a two dimensional torus
representing two of the internal dimensions.

In SGC, the universe begins in a thermal state of strings3

The string partition function is then dominated by the string
states with lowest mass. These states satisfy N = 1 and
na = wa = ±1. Note that for each such state, there are
momenta and windings in only one of the directions.

If matter is treated as a gas of strings, then the dynamics is
governed by the following d space-time dimensional full low
energy effective action (the action for matter and geometry):

S = 1

2κ2
0

∫
dd X

√−Ge−2�d

×
[
R̂d + 4∂μ�d∂

μ�d − 1

4
∂μγac∂

μγ ab − 2κ2
0 e

−2�d n〈E1〉
]

,

(8)

where κ−1
0 is the reduced gravitational constant, n is the num-

ber density of the strings, G is the determinant of the metric,
� is the dimensionless dilaton field, R̂ is the Ricci scalar, and
〈E1〉 is the thermal average of the energy of a single string.
We consider this as the action for the moduli fields.

The final term in (8) contains no derivatives of the moduli
fields and hence acts as a potential for these fields, i.e.

V (φ) = e2�d n〈E(φ)〉. (9)

Since the partition function is dominated by the lowest mass
string states, the potential energy can be expressed in terms
of the mass of these states, i.e.

V (φ) ∼ e2�d n
√
p2
nc + M2

1,−1,1. (10)

We will now review how this potential stabilizes the moduli
fields, and extract the shape of the potential for a canonical
shape modulus field.

4 Moduli stabilization on a 2-dimensional torus

To be specific, we shall here consider the case of an internal
two dimensional torus. Thus, the metric we will be using is

2 More precisely, N is the number of right-moving modes, and we
have made use of the level matching condition to take into account the
left-moving modes.
3 Thermal fluctuations of strings in the early phase provide the ori-
gin for the cosmological fluctuations [20] and gravitational waves [21]
observed today.

that of Eq. (3) where γab is the metric for the torus:

γab =
[

R2 R2sinθ

R2sinθ R2,

]
(11)

where R gives the radius of the torus, and θ is the shape
parameter. For θ = 0, it is easy to see that the square mass
function (7) has a minimum at the self-dual radius R = 1,
and hence leads to stablization of the radial modulus field
R, as has been considered in [11–14]. The resulting modulus
potential was shown [7] to be consistent with the de Sitter
conjecture. Here, we focus on the shape modulus and its
potential.

The metric γab generally involves scalar fields φ I called
moduli fields. The kinetic terms of the moduli fields are:

−1

4
∂μγac∂

μγ ab = −gI J ∂μφ I ∂μφ J (12)

In our case, we fix R and hence consider only one moduli
field. It corresponds to the shape modulus θ . The correspond-
ing canonically normalized field is

φ ≡ Mpl

R
θ, (13)

which leads to the internal space metric

gI J =
[ 1

4 0
0 1

4

]
(14)

in the limit of small φ. Note that φ = 0 corresponds to a
rectangular torus, the enhanced symmetry point.

The stable fixed point is the rectangular torus where the
complex structure modulus θ is zero, and R is set to unity. We
can explicitly find the string mass for the metric γab defined in
(11). Expanding equation (7) about small field values gives:

M2
1,−1,1 ∼

(
φ2 + O(1)

φ4

M2
pl

)
. (15)

Using (10), we see that the resulting potential for the modulus
field φ is (dropping the quartic term in φ)

V (φ) = e−2�d n
√
p2
nc + φ2 (16)

and that hence

V ′

V
= 1√

2

φ

p2
nc + φ2 ∼ 1√

2φ
, (17)

where in the last step we have evaluated the result at late
times when the momentumpnc in the non-compact directions
is negligible (since these dimensions are expanding and the
momentum hence redshifts).
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Let us now make contact with the swampland criteria.
First, we note from (13) that, since |θ | < π/2, the range of the
modulus field does not exceed the Planck scale, in agreement
with the distance conjecture [3]. Next, we see from (17) that,
since the field is confined to values |φ| < (π/2)Mpl , the de
Sitter conjecture (1) is automatically satisfied, with a constant
c2 which (making use of the maximal value of |φ|), is given
by c2 = √

2/π .
There is a caveat to our conclusions regarding the de Sitter

conjecture. As originally formulated [4], the de Sitter con-
jecture applies to a bare potential in the four-dimensional
effective field theory. Our potential, however, is an effective
potential which in fact changes its amplitude as our three
dimensional spatial sections expand.4 On the other hand,
the derivation of the de Sitter conjecture in [6] based on the
covariant entropy bound of Bousso [22] concerns the poten-
tial function which enters the Friedmann equations, which is
the effective potential. Hence, when considering applications
of the de Sitter conjecture to cosmology it is reasonable to
consider the effective potential, as we are doing.

5 Conclusions

We have studied shape modulus stabilization using in the con-
text of string gas cosmology, and have seen that the effective
potential for this modulus field is consistent with the swamp-
land constraints (specifically, the distance and the de Sitter
constraint). Note that the string gas yields a potential that sta-
bilizes both the radial and the shape modulus fields, the radial
field being stablized at the self dual radius R = 1 of the extra
dimensions, and the shape modulus θ at the value θ = 0
which corresponds to a square torus. Our analysis showed
that the de Sitter conjecture is satisfied, and the value of the
constant c was found to be π

4 .
Our analysis was done in the context of the simplest model

for the extra dimensions, but the physics which yields the
effective potentials which are consistent with the swamp-
land constraints should be generalizable to more complicated
compactifications. It is also important to point out the the ori-
gin of the potentials which we are considering are stringy. In
a pure effective point particle field theory approach the wind-
ing modes which are responsible for modulus stabilization
and the shape of the potentials are not present, and the effects
we have discussed could not be seen.

In summary, our study provides further support for the
swampland conjectures.

4 As shown in [12], such a time-dependent effective potential is con-
sistent with constraints from late time cosmology. The analysis in that
paper was performed for the volume modulus field, but the conclusions
will carry over to the shape modulus field which we are considering in
the present paper.
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