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Abstract A cosmological model having matter field as
(non) interacting dark energy (DE) and baryonic matter and
minimally coupled to gravity is considered in the present
work with flat FLRW space time. The DE is chosen in the
form of a three-form field while radiation and dust (i.e;
cold dark matter) are the baryonic part. The cosmic evo-
lution is studied through dynamical system analysis of the
autonomous system so formed from the evolution equations
by suitable choice of the dimensionless variables. The sta-
bility of the non-hyperbolic critical points are examined by
Center manifold theory and possible bifurcation scenarios
have been examined.

1 Introduction

The cosmologists for the last 2 decades are tirelessly search-
ing for a theory which shows the present accelerated expan-
sion of the universe as predicted by a series of observational
results [1]. Cosmologists are not unanimous over this issue
rather they have two distinct opinions – one group is in favour
of standard cosmology and they introduce some exotic matter
(known as DE having large negative pressure) to explain this
accelerated expansion while the other group prefers some
modified gravity theory instead of Einstein gravity and they
speculate that the extra geometric terms may responsible for
this accelerated expansion [2].

In the context of the opinion of the first group the best
candidate so far for DE is the cosmological constant which
is simple in nature and observationally most favourable. But
unfortunately, it has two severe drawbacks namely cosmo-
logical constant problem and cosmic coincidence problem
[3]. As a result, several dynamic DE models in the form
of perfect fluid with variable equation of state parameter
(of various forms) come into picture (namely quintessence,
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tachyon, phantom [4] and chameleon [5,6] etc). Also some
complicated fields namely spinors [7], vectors [8], higher
order spin field and three-form field [9,10] are considered as
DE (also one may refer [11–14] on the p-form and their sta-
bility properties, the three-form inflation and the center man-
ifold). Also other positive aspects of the three-form fields in
the context of cosmology are to obtain dynamically the late-
time acceleration, to describe the phantom like behaviour
[15] and to produce non-Gaussianities [16].

In the present work the three-form field is chosen as DE
candidate. It has been shown that the dual of the three-
form field is a scalar field which has an equivalence with
K -inflation model [17] if the potential is non-quadratic in
form. The present cosmological model contains this three-
form field with (interacting, non-interacting) baryonic matter
in the form of dust and radiation. Due to complicated form
of the Einstein field Equations, the evolution equations are
converted into an autonomous system by suitable choice of
the dimensionless variables and non-hyperbolic equilibrium
points are analyzed by Center manifold theory on the Hilbert
space [18–20]. Bifurcation analysis [21] has been done to
find the qualitative changes of global behavior due to dif-
ferent parameter values. The plan of the paper is as follows:
Sect. 2 deals with basic equations for the three form field,
Einstein field equations and energy conservation equations
of both types of fluids. Autonomous system is formed and
critical points are determined in Sect. 3. Also stability anal-
ysis and possible bifurcation scenarios have been examined
in this section. Finally, the summary of the present work is
proposed in Sect. 4.

2 The model and basic equations

For a three-form field Aμνρ , the field strength tensor is given
by
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Fμνρσ = 4 �[μ Aνρσ ] (1)

where square bracket indicates anti-symmetrization of the
indices. The action of this three-form field is given by

SA =
∫

d4x
√−g

[
F2

48
+ V (A2)

]
(2)

where V (A2) is the potential of the field with A2 =
Aμνρ Aμνρ . The energy–momentum tensor corresponding to
this action is given by

Tμν = 1

6
Fμαβγ F

αβγ
ν + 6V ′(A2)Aμαβ A

αβ
ν

−gμν

(
1

48
FαβγρF

αβγρ + V (A2)

)
(3)

and the evolution equation of the three form field is obtained
by varying the above action (2) with respect to Aμνρ as

�α Fαμνρ = 12V ′(A2)Aμνρ (4)

where an over dash denotes differentiation with respect to
the argument. The present cosmological model is consid-
ered in the background of homogeneous and isotropic flat
Friedmann–Lemaître–Robertson–Walker (FLRW)
space-time manifold having line element (choosing c = 1)

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2θdφ2

)]
. (5)

So the three form field has only time dependence and the
above evolution Eq. (4) results A0μν = 0. Thus the spatial
components of the three-form field can be written as

Ai jk = a3(t)εi jk X (t), (6)

where εi jk is the three dimensional Levi-Civita symbol (with
ε123=1). So the scalars A2 and X are related as A2 = 6X2

and the equation of motion (4) of the three-form field gives
the evolution of the scalar field X (t) as

Ẍ − 3H Ẋ − 3Ḣ X = −V,X (7)

where differentiation with respect to the cosmic time ‘t’ is
denoted by over dot in the above equation. Now from the
expression (3) of the energy–momentum tensor for the three-
form field, the explicit form of the energy–density and the
pressure of the scalar field X are given by

ρX = 1

2

(
Ẋ + 3HX

)2 + V (X) (8)

pX = −1

2

(
Ẋ + 3HX

)2 − V (X) + XV,X (9)

having equation of state parameter

ωX = pX

ρX

= −1 + XV,X

ρX

. (10)

Thus if V,X (= dV
dX ) is positive then the three-form field

behaves as DE (i.e; non-phantom) while the field behaves as
phantom field if V,X < 0.

Now for the present cosmological model the action inte-
gral for the whole system (assuming the three-form field to
be minimally coupled to gravity) is given by

ST = −
∫

d4x
√−g

[
1

2κ2 R − F2

48
− V (A2)

]
+ SB, (11)

where κ2 = 8πG, R is the usual Ricci scalar and SB , the
standard action integral for the baryonic matter (in the form
of dust and radiation) is given by

SB = −
∫

d4x
√−g ρB =

∫
d4x

√−g pB . (12)

The last equality in the above expression for SB holds upto a
total derivative [22]. Here ρB and pB are the energy density
and thermodynamic pressure of the baryonic matter respec-
tively. Now varying the action with respect to the metric ten-
sor gives the usual Friedmann equations as

3H2 = κ2 (
ρA + ρr + ρd

)
, (13)

2Ḣ = −κ2[(ρA + pA

) + ρr (1 + ωr ) + ρd ], (14)

where ρr , ρd are respectively the energy density of radiation
and dust part of the matter and ωr = 1

3 is the equation of
state parameter for radiation. Also the energy conservation
equations are [assuming three form field interacts with dust,
the cold dark matter (CDM)]

ρ̇A + 3H(ρA + pA) = −Q, (15)

ρ̇r + 4Hρr = 0, (16)

ρ̇d + 3Hρd = Q. (17)

Now due to this interaction, the evolution of the scalar field
X (i.e., Eq. (7)) modifies to

Ẍ + 3H Ẋ + 3Ḣ X + dV

dX
= − Q

Ẋ + 3HX
. (18)

In the present work, two possible choices for Q are taken
as (i) Q = αρd (Ẋ + 3HX) and (ii) Q = αρd H , where α is
the coupling parameter. Note that the above choices of Q are
purely phenomenological and the only motivation of choos-
ing such Q is the formation of the autonomous system (in
Sect. 3 below) with the choices of the dimensionless variables
[in Eq. (20)]. Further, in order to derive the evolution Eqs.
(15) and (17) for the three-form field and dust, the interaction
Lagrangian is of the form [22]

Lint = −√−g f
(
X, Ẋ , ρm , H

)
, (19)

where ‘ f ’ is an arbitrary function which will specify the
particular model. Also ‘ f ’ depends only on the dynamical
degrees of freedom of the fluids.

123



Eur. Phys. J. C (2020) 80 :852 Page 3 of 17 852

3 Formation of autonomous system: critical point and
stability analysis

We now define a set of dimensionless variables as [23]

x ≡ κX, y ≡ κ√
6
(X ′ + 3X), z2 ≡ κ2V

3H2 ,

u2 ≡ κ2ρr

3H2 , v2 ≡ κ2ρd

3H2 , λ(x) ≡ − 1

κ

V,X

V
, (20)

the equation of state parameter can be written in the form

ωtot = −y2 − z2(1 + λ(x)x) + u2 (21)

and the cosmic evolution equations (in the last section) can
be written in an autonomous system as

x ′ = 3

(√
2

3
y − x

)
, (22)

y′ = −3

2
λ(x)z2

(
xy −

√
2

3

)
+ 3

2

(
4

3
u2 + v2

)
y, (23)

v′ = −3

2
v

[
1 + λ(x)xz2 − 4

3
u2 − v2

]
, (24)

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − 4

3
u2 − v2

]
, (25)

where ‘dash’ over a variable denotes differentiation with
respect to N = ln a. Note that all the above dimensionless
variables are not independent, rather due to first Friedmann
equation (i.e; Eq. (13)) they are constrained by the relation

y2 + z2 + u2 + v2 = 1 (26)

and we have 4D phase space for the dynamical system.
In the present work for simplicity of calculation the poten-

tial of the scalar field X (i.e; V (X)) is chosen as

V (X) = V0e
−μx (27)

where V0(> 0) and μ are constant parameters, so that λ(X)

is a non-zero constant. Also μ can be interpreted as the rate of
decrease of the logarithm of the potential function. The prop-
erties of the critical points of the above autonomous system
(22–25) are represented in the following lemmas.

Lemma 1 Critical points can be located either on u-
nullcline or on v-nullcline.

Proof Let us prove this by contradiction. We assume that
both v and u �= 0. Then from Eqs. (24) and (25) we have

1 + R = 0 and
4

3
+ R = 0

where R = λ(x)xz2 − 4
3u

2 − v2. But it is not possible to
exist any such R. ��

Lemma 2 If v = 0 and u �= 0, then either y = 0 or√
2
3λ(x)y �= −2

√
2 and λ(x)y < 0.

Proof Ifv = 0, then eitheru = 0 or 4
3 (1−u2)+λ(x)xz2 = 0.

From Eq. (22) we have x =
√

2
3 y. This implies

4

3
(1 − u2) +

√
2

3
λ(x)yz2 = 0. (28)

So either y = 0 or z2 = −2
√

2(1−u2)√
3λ(x)y

. For v = 0, we also have

the condition u2 + y2 + z2 = 1. If
√

2
3λ(x)y = −2

√
2, then

z2 = 1 − u2 which implies y = 0. This proves
√

2
3λ(x)y �=

−2
√

2 and λ(x)y < 0. ��
Lemma 3 If v = 0, u �= 0 and y �= 0, then (u2 − 1)(y2 −
1) = u2y2.

Proof From Eqs. (22) and (23) we have

−3

2
λ(x)z2(y2 − 1) + 2u2y = 0

Multiplying both side by y and using Eq. (28) we get (u2 −
1)(y2 − 1) = u2y2. ��
Lemma 4 If u = 0 and v �= 0, then either y = 0 or y =
−

√
2
3λ(x)z2.

Proof From Eq. (23) we have√
3

2
v2y = λ(x)z2(y2 − 1). (29)

On the other hand, for y �= 0, from Eq. (24) we have

v2y = y +
√

2

3
λ(x)y2z2 (30)

Equating v2y in Eqs. (29) and (30) we can derive y =
−

√
2
3λ(x)z2. ��

Theorem 1 1. x = ±
√

2
3 are the critical points of the

autonomous system (22–25).
2. There is no critical point for which u �= 0 and v �= 0.
3. If v = 0 and u �= 0, then u = ±1.
4. If u = 0 and v �= 0, then v = ±1.

Proof (1) Follows form Eqs. (22) and (23) when u and v are
both 0.

(2) Follows from Lemma 1.
(3) If we consider the hypothesis of Lemma 3, then from

Lemma 2 we can derive
√

2
3λ(x)y = −2

√
2 which

is a contradiction to our hypothesis. So y must be 0.
Then from the relation u2 + y2 + z2 = 1, we have
z = ±√

1 − u2. But due to Eq. (23), z = 0 which yields
u = ±1.
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Table 1 Table shows the set of
critical points, existence of
critical points and the value of
cosmological parameters
corresponding to autonomous
system (22–25)

Critical points Existence x y z v u ωtot q

C0 All μ 0 0 0 0 ±1 1 2

C1 All μ 0 0 0 ±1 0 0 1
2

C2 All μ

√
2
3 1 0 0 0 −1 −1

C3 All μ −
√

2
3 −1 0 0 0 −1 −1

C4 μ = 0
√

2
3 yc 0 ≤ yc ≤ 1

√
1 − y2

c 0 0 −1 −1

Table 2 Table shows the eigenvalues (λ1, λ2, λ3, λ4) of the Jacobian
matrix corresponding to the critical points and the nature of all critical
points for this non-interacting model:

Critical points λ1 λ2 λ3 λ4 Nature of critical points

C0 −3 2 1
2 4 Hyperbolic

C1 −3 3
2 3 − 1

2 Hyperbolic

C2 −3 0 − 3
2 −2 Non-hyperbolic

C3 −3 0 − 3
2 −2 Non-hyperbolic

C4 −3 0 − 3
2 −2 Non-hyperbolic

(4) If y = 0, then x = 0. And Eq. (23) implies z = 0. Then
the relation y2 + z2 + v2 = 1 yields v = ±1.

If y �= 0, then by Lemma 4 we have v = ±√
1 − 2

3λ2(x)z4 − z2. But y2 + z2 + v2 = 1 and Eq. (23)
yield z = 0. So v = ±1. ��

3.1 Non-interacting three-form field

The vector fields of the autonomous system (22–25) for non-
interacting three-form field for exponential potential can be
analyzed as follows. By taking exponential potential we will
get λ(x) = μ. The set of critical points, existence of critical
points and the value of cosmological parameters are shown
in Table 1 and the eigenvalues and the nature of critical points
are shown in Table 2.

The first two critical points (i.e.,C0,C1) represent the evo-
lution of the universe with barotropic matter and vanishing
DE. In fact, the critical pointC0 describes the relativistic radi-
ation era of evolution while C1 represents the dust phase of
evolution. The remaining three critical points namelyC2−C4

are fully dominated by DE and they correspond to de-Sitter
phase.

Stability analysis

Critical point C0

The Jacobian matrix at the critical point C0 can be put as

J (C0) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 2 0 ∓√

6μ

0 0 1
2 0

0 0 0 4

⎤
⎥⎥⎦ . (31)

The eigenvalues of J (C0) are −3, 2, 1
2 and 4 (hyperbolic

in character) with eigenvectors [1, 0, 0, 0]T ,
[√

6
5 , 1, 0, 0

]T
,

[0, 0, 1, 0]T and

[
∓ 3μ

7 ,∓
√

3
2μ, 0, 1

]T

respectively. So, we

can use Hartman–Grobman theorem for analyzing the sta-
bility of this critical point. As three eigenvalues are positive
and one is negative, so the critical point C0 is a saddle node
and unstable in nature. For μ > 0 the phase portrait in all
possible 3D coordinate system near the origin are shown as
in Fig. 1.

Critical point C1

The Jacobian matrix at the critical point C1 can be put as

J (C1) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 3

2 ∓√
6μ 0

0 0 3 0
0 0 0 − 1

2

⎤
⎥⎥⎦ . (32)

The eigenvalues of J (C1) are −3, 3
2 , 3 and − 1

2 (hyperbolic

in character) with eigenvectors [1, 0, 0, 0]T ,

[
2
3

√
2
3 , 1, 0, 0

]T

,
[
∓ 2μ

3 ,∓2
√

2
3μ, 1, 0

]T

and [0, 0, 0, 1]T respectively. So,

we can use Hartman–Grobman theorem for analyzing the
stability of this critical point. Since two eigenvalues are pos-
itive and another two eigenvalues are negative, hence the
critical point C1 is unstable due to its saddle nature.

Critical point C2

The Jacobian matrix at the critical point C2 can be put as

J (C2) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 0 0 0
0 0 − 3

2 0
0 0 0 −2

⎤
⎥⎥⎦ . (33)
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Fig. 1 All possible 3 dimensional phase plots corresponding to the
critical point C0(0, 0, 0, 1) for μ > 0; a represents phase plot in
xyv-coordinate system (saddle node), b represents phase plot in yvu-
coordinate system (unstable node), c represents phase plot in xyu-

coordinate system (saddle node), d represents phase plot in xvu-
coordinate system (saddle node). We refer the interested readers to
Appendix A for corresponding Mathematica code

The eigenvalues of J (C2) are −3, 0, − 3
2 and −2 (non-

hyperbolic in character) with eigenvectors [1, 0, 0, 0]T ,[√
2
3 , 1, 0, 0

]T

, [0, 0, 1, 0]T , [0, 0, 0, 1, 0]T and [0, 0, 0, 1]T
respectively. To apply Center Manifold Theory, we first trans-

form the coordinate system

(
x = X +

√
2
3 , y = Y + 1,

v = V, u = U ) so that C2 moves to the origin. As a result,
the autonomous system (22–25) changes to

X ′ = −3X + √
6Y, (34)

Y ′ = √
6μY 2 + 3μXY + 3

2
V 2 + 2U 2 +

√
3

2
μY 3

+9

2
μXY 2 + 3

2
μXU 2

+3

2
μXV 2 + 3

2
μXY 3

+3

2
μXYU 2 + 3

2
μXYV 2

+
√

3

2
μU 2Y +

√
3

2
μV 2Y + 2U 2Y + 3

2
V 2Y, (35)

V ′ = −3

2
V + √

6μVY + 3μV XY + 3

2
μV XU 2

+
√

3

2
μVU 2 + 3

2
μXV 3 +

√
3

2
μV 3 + 3

2
μV XY 2

+
√

3

2
μVY 2 + 2U 2V + 3

2
V 3, (36)

U ′ = −2U + √
6μUY + 2U 3 + 3

2
UV 2 + 3μUXY

+
√

3

2
μU 3 + 3

2
μUXY 2 +

√
3

2
μUY 2 + 3

2
μXU 3

+3

2
μUXV 2 +

√
3

2
μUV 2. (37)

Now, we can see that there is a linear term ofY in the R.H.S. of
(34), so we have to introduce another set of new coordinates
so that the Jacobian matrix (33) transforms into the diagonal
form. By using the eigenvectors of the Jacobian matrix (33),
we introduce the following coordinate system

⎡
⎢⎢⎣
XT

YT
VT
UT

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 −
√

2
3 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
X
Y
V
U

⎤
⎥⎥⎦ (38)

and in these new coordinates the equations are transformed
into⎡
⎢⎢⎣
X ′
T

Y ′
T

V ′
T

U ′
T

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−3 0 0 0
0 0 0 0
0 0 − 3

2 0
0 0 0 −2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
XT

YT
VT
UT

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

non
lin
ear

terms

⎤
⎥⎥⎦ . (39)

So by center manifold theory there exists a continuously dif-
ferentiable function h : R → R

3 such that

h(YT ) =
⎡
⎣XT

VT
UT

⎤
⎦ =

⎡
⎣a1Y 2

T + a2Y 3
T + O (

Y 4
T

)
b1Y 2

T + b2Y 3
T + O (

Y 4
T

)
c1Y 2

T + c2Y 3
T + O (

Y 4
T

)
⎤
⎦ . (40)

Differentiating both sides with respect to N , we get

X ′
T = (2a1YT + 3a2Y

2
T )Y ′

T + O
(
Y 3
T

)
, (41)

V ′
T = (2b1YT + 3b2Y

2
T )Y ′

T + O
(
Y 3
T

)
, (42)

U ′
T = (2c1YT + 3c2Y

2
T )Y ′

T + O
(
Y 3
T

)
, (43)

where ai , bi , ci ε R. We only concern about the non-zero
coefficients of the lowest power terms in Center Manifold
Theory as we analyze arbitrary small neighborhood of the
origin. Comparing coefficients of the corresponding power

123
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Fig. 2 Vector field near the origin for the critical point C2 in (XT YT )-plane. L.H.S. is for μ < 0 and R.H.S. is for μ > 0

of YT , we get the following center manifold

XT = −4μ

3
Y 2
T +

(
−4μ

3
+ 20

3

√
2

3
μ2

)
Y 3
T + O

(
Y 4
T

)
,(44)

VT = 0, (45)

UT = 0. (46)

This implies that one dimensional center manifold lies on the
(XT YT )-plane and tangent to the center subspace (YT axis)
at the origin. The flow on the center manifold near the origin
is determined by

dYT
dN

= 2
√

6μY 2
T + (2

√
6μ − 4μ2)Y 3

T + O
(
Y 4
T

)
. (47)

The flow on the center manifold depends on the sign of μ.
For both the cases μ > 0 and μ < 0, the origin is a saddle
node and unstable in nature (Fig. 2). As the new coordinate
system (XT , YT , VT , UT ) is topologically equivalent to the
old one, hence the origin in the new coordinate system, i.e.,
the critical pointC2 in the old coordinate system (x, y, u, v)

is a saddle node and unstable in nature.

Critical point C3

The Jacobian matrix at the critical point C3 and the corre-
sponding eigenvalues and eigenvectors are same as for the
critical point C2. If we put forward similar argument as we
have mentioned for the analysis of C2 then we get the fol-
lowing center manifold

XT = −4μ

3
Y 2
T +

(
4μ

3
+ 20

3

√
2

3
μ2

)
Y 3
T , (48)

VT = 0, (49)

UT = 0 (50)

and the flow on the center manifold is determined by

dYT
dN

= 2
√

6μY 2
T − (2

√
6μ + 4μ2)Y 3

T + O
(
Y 4
T

)
. (51)

Since our interest only on the coefficient of the lowest power
term of YT in the expression of the center manifold and also
the flow on the center manifold, so the vector field near the
origin is same as for the critical point C2 (Fig. 2). Hence, the
critical point C3 is unstable due to its saddle nature in the old
coordinate system.

Critical point C4

The critical point C4 exists only for μ = 0. The Jacobian
matrix at the critical point C4 is same as (33), so the eigen-
values and corresponding eigenvectors are same as for (33).
Since, the critical point C4 is non-hyperbolic in nature so we
can use center manifold theory. But here the center manifold
is determined by

XT = 0, (52)

VT = 0, (53)

UT = 0 (54)

and the flow on the center manifold is determined by

dYT
dN

= 0. (55)

Since, from this information we can not determine the nature
of the vector field near the origin. So, we only try to define
stability of the vector field near the origin on each plane.
The stability of the vector field on each plane are shown in
Table 3.
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Table 3 Stability of the vector field on every coordinate plane for the
critical point C4

Coordinate plane Stability

XT YT -plane Vector field is stable about YT axis

XT VT -plane Vector field near the origin is stable star

XTUT -plane Vector field near the origin is stable star

YTUT -plane Vector field is stable about YT axis

YT VT -plane Vector field is stable about YT axis

UT VT -plane Vector field near the origin is stable star

3.2 Coupling three-form field with dark matter

The existence of the coupling can be represented by the mod-
ified continuity equations (15) and (17), where ρd stands for
energy density of dust, ρA is the energy density of three-form
field and Q is the energy transfer between dark energy and
dark matter.

Then the autonomous system changes due to Eqs. (15) and
(17) as follows

x ′ = 3

(√
2

3
y − x

)
, (56)

y′ = I − 3

2
λ(x)z2

(
xy −

√
2

3

)
+ 3

2

(
4

3
u2 + v2

)
y, (57)

v′ = − I y

v
− 3

2
v

[
1 + λ(x)xz2 − 4

3
u2 − v2

]
, (58)

u′ = −3

2
u

[
4

3
+ λ(x)xz2 − 4

3
u2 − v2

]
, (59)

where I = κQ√
6(Ẋ+3HX)H2 and ‘prime’ denotes derivative

w.r.t N = ln a.
The properties of the critical points of the above autonomous

system (depending on the choices of I ) are presented in the
form of lemmas as follows (we shall consider the relation

x =
√

2
3 y due to Eq. (56)).

Lemma 5 If u, v and y are non-zero, then z = 0 and the
following relations must hold together

1. I = v2

2y ,

2. y2 + u2 + v2 = 1,
3. 4u2 + 3v2 = 4.

Proof (1) From Eq. (59), it is to be noted that R = − 4
3 . Then

from Eq. (58), we have I = v2

2y .
(2) The Eq. (57) and I yield

√
6λ(x)z2(y2 − 1)y = 4u2y2 + 3v2y2 + v2. (60)

On the other hand, R = − 4
3 yields

√
6λ(x)yz2 = 4u2 + 3v2 − 4 (61)

So from Eqs. (60) and (61) we have y2 + u2 + v2 = 1.
(3) The result of (2) implies z = 0 due to relation (26). So

from Eq. (61) we have 4u2 + 3v2 = 4.
��

Lemma 6 If only u = 0, then the following conditions must
hold together

1. λ(x) =
√

3
2

v2

z2y
,

2. I = − 3
2

v2

y ,

3. y2 + v2 + z2 = 1.

Proof (1) From Eq. (58) , we have

I y = −3v2

2

[
1 +

√
2

3
λ(x)yz2 − v2

]
(62)

From Eq. (57), we have

I y =
√

3

2
λ(x)yz2(y2 − 1) − 3

2
y2. (63)

Eliminating I y from (62) and (63) and using (26), we

have λ(x) =
√

3
2

v2

z2y
.

(2) Put the expression of λ(x) in (58), we have I = − 3
2

v2

y .

(3) Due to relation (26), we get y2 + v2 + z2 = 1.
��

Corollary 1 If only u = 0 and I = v
yα, then α = − 3v

2 and

critical points contain any real y,v and z with y2 +v2 +z2 =
1.

Lemma 7 If only u and z = 0, then I = − 3
2v2y and critical

points contain any real v and y with v2 + y2 = 1.

Proof From (57), we have

I = −3

2
v2y. (64)

From (58), we have

I = −3

2

v2(1 − v2)

y
. (65)

From (64) and (65) we get v2 + y2 = 1 which also satisfies
(26). ��
Corollary 2 If only u, z = 0 and I = v

yα, then α = − 3
2vy2

and critical points contain any real v and y with v2+ y2 = 1.
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Lemma 8 If v = 0 and I = vα, then y must be 0 and
u = ±1.

Proof From (58). we have y = 0. Then from (59), we have
u = ±1 which satisfies (57) due to (26). ��
Lemma 9 Consider I = v2α. Then if v = 0, then z = 0 and
critical points contain any real u and y with u2 + y2 = 1.

Proof We consider y �= 0. So from (57), we have
√

6λ(x)yz2(y2 − 1) = 4u2y2. (66)

From (59), we have
√

6λ(x)yz2 = 4u2 − 4. (67)

So eliminating
√

6λ(x)yz2 from (66) and (67) we get u2 +
y2 = 1 and (26) yield z = 0. ��
Corollary 3 Consider I = v2α. If v, u = 0 and y �= 0, then
z = 0 which implies y = ±1. If v, y = 0 and u �= 0, then
z = 0 which implies u = ±1 and if v, u, y = 0, then z = ±1.

Lemma 10 If y = 0, then either u = ±1 or v = ±1 and
I = 0 at the critical points.

Proof From (58) and (59) we get at least one of u and v is
0. If u = 0 then v = ±1 and if v = 0 then u = ±1. For the
both cases, (26) yields z = 0. The Eq. (57) implies I = 0 at
the critical points. ��
Remark 1 If y, u and v are 0, then z = ±1. In this case,

I = −
√

3
2λ(x).

Lemma 11 If z �= 0 and y �= 0, then u = 0 and v �= 0, so
lemma 6 can be applied.

Proof Let us assume v and u �= 0. From (58), we have I =
v2

2y . From (59), we have
√

6λ(x)yz2 = 4u2 + 3v2 − 4. Then

from (57) we get u2 + v2 + y2 = 1. So by (26), z = 0 which
contradicts to our hypothesis.

Now we consider only v = 0. Then by Lemmas 8 and 9,
z = 0 which contradicts to our hypothesis. So u = 0 and
Lemma 6 can be applied. ��
Theorem 2 1. There is no critical point with all non-zero

coordinates for any I and λ(x).
2. Any critical point can not contain both u and v non-zero

coordinates.
3. critical points on the u-nullcline satisfy z2λ(x) = −

√
2
3 I .

4. On the v-nullcline the critical points form a right cylinder

of height 2
√

2
3 with circular base for I = vnα, (n > 1).

5. Origin is the only critical point on zy-plane.

Proof (1) If any critical point contains all non-zero coordi-
nates then Lemma 5 contradicts.

(2) If both u and v are non-zero, then y has to be non zero.
Otherwise, Theorem 1 contradicts. Now by Lemma 5 z

turns out to be 0 and I = v2

2y . On the other hand, if we

put the expression of I and 4u2 + 3v2 = 4 in (57) we
derive that v2 + 4y2 = 0 which implies both v and y are
0. But this contradicts our hypothesis.

(3) For u-nullcline, by Lemma 6, we have λ(x) =
√

3
2

v2

z2 y
.

So z2λ(x) = −
√

2
3 I .

(4) For n = 1, by Lemma 8, we have u = ±1. Now the result
true for n = 2 by Lemma 9. It is also should be note that
the result is true for n > 2 with exactly same argument
as of n = 2 in Lemma 9

(5) Origin is a critical point. Now by Lemma 11 we can derive
that both u and v cant not be 0 in this case.

��

For two choices of Q, i.e., (a) Q = αρd (Ẋ + 3HX),

(b) Q = αρd H ; I becomes α
2 v2, αv2

2y respectively. Now for
these two choices of Q we analyze the stability of the vector
field near the origin for the autonomous system (56–59).

Q = αρd (Ẋ + 3HX)

For this choice of interaction the autonomous system (56–59)
changes to

x ′ = 3

(√
2

3
y − x

)
, (68)

y′ = α

2
v2 − 3

2
μz2

(
xy −

√
2

3

)
+ 3

2

(
4

3
u2 + v2

)
y, (69)

v′ = −αvy

2
− 3

2
v

[
1 + μxz2 − 4

3
u2 − v2

]
, (70)

u′ = −3

2
u

[
4

3
+ μxz2 − 4

3
u2 − v2

]
. (71)

The critical points, existence of critical points and the value
of cosmological parameters are shown in Table 4 and the
eigenvalues and the nature of critical points are shown in
Table 5.

In Table 4 there are six critical points of which the first four
namely P0–P3 are equivalent to the critical pointsC0,C2–
C4 respectively in Table 1 from cosmological view point.
The critical point P4 describes the cosmic evolution due to
interacting DE and CDM for α �= ±3. For α = ±3; the
matter is purely in the form of cosmological constant. So this
critical point corresponds to scaling solution in cosmology.
As long as the coupling parameter ‘α’ is restricted as α2 < 3
then CDM dominates over DE otherwise there is accelerated
expansion. For critical point P5 the DE in the form of a scalar
field interacting with CDM. But here cosmic evolution is
dominated by DE and is in the de-Sitter era of evolution.
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Table 4 Table shows the set of critical points, existence of critical points and the value of cosmological parameters corresponding to autonomous
system (68–71)

CPs Existence x y z v u ωtot q

P0 For allμ and α 0 0 0 0 ±1 1 2

P1 For allμ and α

√
2
3 1 0 0 0 −1 −1

P2 For allμ and α −
√

2
3 −1 0 0 0 −1 −1

P3 For μ = 0 and all α

√
2
3 yc 0 ≤ yc ≤ 1

√
1 − y2

c 0 0 −1 −1

P4

For all μ

and
f or all αε[−3, 0) ∪ (0, 3]

− α
3

√
2
3 − α

3 0 ±
√

1 − α2

9 0 − α2

9
1
2 (1 − α2

3 )

P5

α ≤ −3 and α√
6

< μ < 0

or,
−3 ≤ α < 0 and μ < α√

6

− 3
α

√
2
3 − 3

α
±

√
1− 9

α2

1−
√

6μ
α

±
√(

1− 9
α2

)√
6μ√

6μ−α
0 −1 −1

Table 5 Table shows the eigenvalues (λ1, λ2, λ3, λ4) of the Jacobian matrix for the autonomous system (68–71) corresponding to the critical
points (P0–P4) and the nature of the critical points (P0–P4)

CPs λ1 λ2 λ3 λ4 Nature of critical points

P0 −3 2 1
2 4 Hyperbolic

P1 −3 0 − (3+α)
2 −2 Always non-hyperbolic for any α

P2 −3 0 (α−3)
2 −2 Always non-hyperbolic for any α

P3 −3 0 − (3+αyc)
2 −2 Always non-hyperbolic for any α

P4 −3 3
(

1 − α2

9

)
3
2

(
1 − α2

9

)
− 1

2

(
1 + α2

3

)
Non-hyperbolic for α = ±3 and hyper-
bolic for all αε(−3, 0) ∪ (0, 3)

Stability analysis

Critical point P0

The Jacobian matrix at P0 is same as (31). So the eigenvalues
and the corresponding eigenvectors are also same. Since, the
critical point is hyperbolic, we can analyze the stability of this
critical point by Hartman–Grobman theorem. The stability of
this critical point is same as the stability for C0 (Fig. 1).

Critical point P1

The Jacobian matrix at the critical point P1 can be put as

J (P1) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 0 0 0
0 0 − (3+α)

2 0
0 0 0 −2

⎤
⎥⎥⎦ . (72)

Here we will take four choices of α for analyzing the
stability of this critical point :

(i) α �= −3, 1, 3;
(ii) α = −3;

(iii) α = 1;

(iv) α = 3.

Case (i): α �= −3, 1, 3

For this case the eigenvalues of the above Jacobian matrix
are −3, 0, − (3+α)

2 , −2 (non-hyperbolic in nature) and

[1, 0, 0, 0]T ,

[
1,

√
3
2 , 0, 0

]T

, [0, 0, 1, 0]T , [0, 0, 0, 1]T are

the corresponding eigenvectors. We put forward similar argu-
ment as we have mentioned for the analysis of C2 then the
center manifold is given by (44–46) and the flow on the cen-
ter manifold is determined by (47). So, the origin is a saddle
node and unstable in nature (Fig. 2). Hence, in this case the
origin in the new coordinate system, i.e., the critical point P1

in the old coordinate system is a saddle node and unstable in
nature.

Case (ii): α = −3

In this case the Jacobian matrix at the critical point P1 can
be put as
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J (P1) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⎤
⎥⎥⎦ . (73)

The eigenvalues of the above Jacobian matrix are −3, 0, 0,
−2 (non-hyperbolic in nature). [1, 0, 0, 0]T and [0, 0, 0, 1]T
are the eigenvectors corresponding to the eigenvalues −3

and −2 respectively,

[
1,

√
3
2 , 0, 0

]T

and [0, 0, 1, 0]T are the

eigenvectors corresponding to the eigenvalue 0. Since the
algebraic multiplicity and the geometric multiplicity corre-
sponding to each eigenvalues are equal so we can transform
(73) to the diagonal form. Similarly as above we will take the
same transformations so that P1 moves to the origin and then
introduce another transformation (38) (by using the eigen-
vectors of (73)) to make the Jacobian matrix (73) into the
diagonal form. In these coordinates, our system of equations
are transformed into⎡
⎢⎢⎢⎣

X ′
T

Y ′
T

V ′
T

U ′
T

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

XT

YT
VT
UT

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

non

lin

ear

terms

⎤
⎥⎥⎥⎦ . (74)

So by center manifold theory there exists two continuously
differentiable functions χ :R2 → R and φ:R2 → R such that

XT =χ(YT , VT ) = a1Y
2
T + a2YT VT + a3V

2
T

+ higher order terms, (75)

UT =φ(YT , VT ) = b1Y
2
T + b2YT VT + b3V

2
T

+ higher order terms. (76)

Now differentiating both sides with respect to N , we get

dXT

dN
= [2a1YT + a2VT a2UT + 2a3VT ]

⎡
⎣

dYT
dN

dVT
dN

⎤
⎦ , (77)

dUT

dN
= [2b1YT + b2VT b2UT + 2b3VT ]

⎡
⎣

dYT
dN

dVT
dN

⎤
⎦ . (78)

Comparing L.H.S. and R.H.S. of (77) and (78), we get a1 =
− 4λ

3 , a2 = 0, a3 = 0 and bi = 0 for all i . Then the center
manifold is given by

XT = −4μ

3
Y 2
T + higher order terms, (79)

UT = 0. (80)

The flow on the center manifold is determined by

dYT
dN

= 2
√

6μY 2
T +

(
2
√

6μ − 4μ2
)
Y 3
T

+
(

3

2
+ √

6μ

)
V 2
T YT + higher order terms, (81)

dVT
dN

=
(

3

2
+ √

6μ

)
VT YT + 3

√
3

2
μVT Y

2
T

+
(

3

2
+

√
3

2
μ

)
V 3
T + higher order terms. (82)

Case (ii)(a): μ > 0
Then the coefficient of lowest power terms of (81) and (82)
both are positive. Now divide both sides of (81) and (82) by
2
√

6 and ( 3
2 +√

6μ) respectively and since by dividing both
sides any positive number there will no effect on the flow of
the vector field, we take r2 = Y 2

T + V 2
T , in arbitrary small

neighborhood of the origin. Differentiating both sides with
respect to N , we get r ′ = YT r . For YT < 0 one has r ′ < 0
while r ′ > 0 for YT > 0. So, for μ > 0 the origin is a saddle
node and unstable in nature (vector field near the origin is
same as Fig. 2b).

Case (ii)(b): μ < − 1
2

√
3
2

Then the coefficient of lowest power terms of (81) and (82)
both are negative. We assume 2

√
6μ=-σ 2 and ( 3

2 +√
6μ) =

−γ 2 and divide (81) by σ 2 and (82) by γ 2 and we take
r2 = Y 2

T +V 2
T , in arbitrary small neighborhood of the origin.

Differentiating both sides with respect to N , we get r ′ =
−YT r . For YT < 0 one has r ′ > 0 while r ′ < 0 for YT > 0.

So, for μ < − 1
2

√
3
2 the origin is a saddle node and unstable

in nature (vector field near the origin is same as Fig. 2a).
As for both of the subcases in this case the origin is unsta-

ble due to its saddle nature. Hence, in the old coordinate
system (x, y, v, u) the critical point P1 is a saddle node,
i.e., unstable in nature.

Case (iii): α = 1

In this case the eigenvalues of the Jacobian matrix are −3,

0, −2, −2 and [1, 0, 0, 0]T ,

[
1,

√
3
2 , 0, 0

]T

are the eigen-

vectors corresponding to the eigenvalues −3 and 0 respec-
tively, [0, 0, 1, 0]T and [0, 0, 0, 1]T are the eigenvectors cor-
responding to the eigenvalue −2. But for this case we will
get the same vector field as Case-(i).

Case (iv): α = 3

Then the eigenvalues of the Jacobian matrix are −3, 0,
−3 and −2. [1, 0, 0, 0]T and [0, 0, 1, 0]T are the eigenvec-

tors corresponding to the eigenvalue −3 and

[
1,

√
3
2 , 0, 0

]T

and[0, 0, 0, 1]T are the eigenvectors corresponding to the
eigenvalues 0 and −2 respectively. But for this case also
we will get the same vector field as Case (i).
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Critical point P2

The Jacobian matrix at the critical point P2 can be put as

J (P2) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 0 0 0
0 0 (α−3)

2 0
0 0 0 −2

⎤
⎥⎥⎦ (83)

For avoiding similar calculation, we only state the expression
of the center manifold and the flow on the center manifold.
Here we also take four choices of α for analyzing the stability
of this critical point :

(i) α �= −3,−1, 3;
(ii) α = 3;

(iii) α = −1;
(iv) α = −3.

Case (i): α �= −3,−1, 3

The eigenvalues of the Jacobian matrix are −3, 0, (α−3)
2 , −2

and [1, 0, 0, 0]T ,

[
1,

√
3
2 , 0, 0

]T

, [0, 0, 1, 0]T and [0, 0, 0, 1]T
are the corresponding eigenvectors. In this case the center
manifold is same as (48–50) and the flow on the center man-
ifold is determined by (51). So, the origin is a saddle node
and unstable in nature (Fig. 2). Hence in the new coordinate
system due to saddle nature of the origin, the critical point
P2 is a saddle node and unstable in nature.

Case (ii): α = 3

In this case, the center manifold is given by

XT = −4μ

3
Y 2
T + higher order terms, (84)

UT = 0. (85)

The flow on the center manifold is determined by

dYT
dN

= 2
√

6μY 2
T −

(
2
√

6μ + 4μ2
)
Y 3
T

+
(

3

2
− √

6μ

)
V 2
T YT + higher order terms, (86)

dVT
dN

=
(

−3

2
+ √

6μ

)
VT YT − 3

√
3

2
μVT Y

2
T

+
(

3

2
−

√
3

2
μ

)
V 3
T + higher order terms. (87)

Case (ii)(a): μ > 1
2

√
3
2

In this case as above, divide both sides of (86) and (87)
by 2

√
6μ and (− 3

2 + √
6μ) respectively and by taking r2 =

Y 2
T + V 2

T , we can get r ′ = YT r . If YT > 0 then r ′ > 0 and
r ′ < 0 while YT < 0. So, the origin is a saddle node and
unstable in nature (same as Fig. 2b).

Case (ii)(b): μ < 0
In this case also by taking r2 = Y 2

T + V 2
T , we can get

r ′ = −YT r and as above we can determine that the origin is
a saddle node and unstable in nature (same as Fig. 2a).

As for both of the subcases in this case also the origin is a
saddle node, hence in the old coordinate system (x, y, v, u)

the critical point P2 is a saddle node and unstable in nature.

Case (iii) α = −1

In this case we will get the same eigenvalues and eigenvectors
as in Case (iii) of the critical point P1 and the center manifold
is given by (48–50) and the flow on the vector field near the
origin is determined by (51).

Case (iv) α = −3

In this case we will get the same eigenvalues and eigenvectors
as in Case (iv) of the critical point P1 and the center manifold
is given by (48–50) and the flow on the vector field near the
origin is determined by (51).

Critical point P3

The Jacobian matrix at the critical point P3 can be put as

J (P3) =

⎡
⎢⎢⎣

−3
√

6 0 0
0 0 0 0
0 0 − (3+αyc)

2 0
0 0 0 −2

⎤
⎥⎥⎦ . (88)

and the center manifold is same as (52–54) and the flow on
the center manifold is determined by (55). So, here we only
define the stability near the origin on each coordinate plane
which is shown in Table 6.
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Table 6 Stability of the vector
field on every coordinate plane
for the critical point P3

Coordinate plane Stability

XT YT -plane Vector field is stable about YT axis

XT VT -plane Vector field near the origin is stable star (if yc = 0
or α > − 3

yc
), vector field near the origin is a saddle

node (if α < − 3
yc

), vector field is stable about VT

axis (α = − 3
yc

)

XTUT -plane Vector field near the origin is stable star

YT VT -plane Vector field is stable about YT axis (if yc = 0 or α >

− 3
yc

), vector field is unstable about YT axis (if α <

− 3
yc

), vector field near the origin for α = − 3
yc

is
parallel to VT axis and the direction of the vector field
is from negative VT axis to positive VT axis

YTUT -plane Vector field is stable about YT axis

UT VT -plane Vector field near the origin is stable star (if yc = 0 or
α > − 3

yc
), vector field near the origin is a saddle node

(if α < − 3
yc

), vector field is stable about VT axis (for

α = − 3
yc

)

Critical point P4

The Jacobian matrix at the critical point P4 can be put as

J (P4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3
√

6 0 0

0
(

1 − α2

9

)(
3
2 + αμ

√
2
3

)
∓√

6μ
(

1 − α2

9

) 3
2

0

0 ∓
√(

1 − α2

9

)(
α2μ

3

√
2
3 − α

2

)
3
(

1 − α2

9

) (
1 − αμ

3

√
2
3

)
0

0 0 0 − 1
2

(
1 + α2

3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (89)

The eigenvalues of J (P4) are −3, 3
(

1 − α2

9

)
, 3

2

(
1 − α2

9

)

and − 1
2

(
1 + α2

3

)
and the corresponding eigenvectors are

[1, 0, 0, 0]T ,
[
±

√
6(k−n+p)

m(6+k+n+p) ,± k−n+p
2m , 1, 0

]T
,[

±
√

6(k−n−p)
m(6+k+n−p) ,± k−n+p

2m , 1, 0
]T

, [0, 0, 0, 1]T respectively;

where k =
(

1 − α2

9

) (
3
2 + αμ

√
2
3

)
, l = −√

6μ
(

1 − α2

9

) 3
2
,

m = −
√(

1 − α2

9

) (
α2μ

3

√
2
3 − α

2

)
, n = 3

(
1 − α2

9

)
(

1 − αμ
3

√
2
3

)
, p = 3

2

(
1 − α2

9

)
. The critical point P4 is

non-hyperbolic for α = ±3 and for α = −3 the critical
point is same as P1 and we have already analyzed the sta-
bility of this critical point and for α = 3 the critical point is
same as P2 and we have also analyzed the stability of this
critical point. So we have to analyze the stability of the crit-
ical point P4 only when this is hyperbolic in nature and by
Hartman–Grobman theorem we shall analyze the stability
of this critical point. All eigenvalues of the above Jacobian

matrix are negative only when α > 3 or α < −3 but this
contradicts the existence of this critical point. So we have

two positive and two negative eigenvalues and by Hartman–
Grobman theorem we can say that the critical point P4 is
unstable due to its saddle nature.

If we try to analyze the stability of the critical point P5 then
we see that the values of ∂ f1

∂x , ∂ f1
∂y , ∂ f2

∂x , ∂ f2
∂y , ∂ f2

∂v
, ∂ f3

∂x , ∂ f3
∂y , ∂ f3

∂v
,

∂ f4
∂u are non-zero and without ∂ f1

∂x , ∂ f1
∂y all other elements at

this critical point contain complicated terms and this is very
difficult to find the eigenvalues and corresponding eigenvec-
tors of the Jacobian matrix. For this complicated calculation,
we skip the stability analysis of this critical point.

Q = αρd H

For this choice of interaction with exponential potential the
autonomous system (56–59) changes to

x ′ = 3

(√
2

3
y − x

)
, (90)

y′ = α

2y
v2 − 3

2
μz2

(
xy −

√
2

3

)
+ 3

2

(
4

3
u2 + v2

)
y, (91)
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Table 7 The set of critical points, existence of critical points and the value of cosmological parameters corresponding to the critical points for the
autonomous system (90–93)

CPs Existence x y z v u ωtot q

B1 For all μ and α

√
2
3 1 0 0 0 −1 −1

B2 For all μ and α −
√

2
3 −1 0 0 0 −1 −1

B3 μ = 0 and f or all α

√
2
3 yc 0 < yc ≤ 1

√
1 − y2

c 0 0 −1 −1

B4 For all μ and f or all αε[−3, 0) ±
√

− α
3

√
2
3 ±

√
− α

3 0 ±
√

1 + α
3 0 α

3
1
2 (1 + α)

Table 8 Table shows the
eigenvalues (λ1, λ2, λ3, λ4) of
the Jacobian matrix for the
autonomous system (90–93)
corresponding to the above
critical points and the nature of
the critical points:

Critical points λ1 λ2 λ3 λ4 Nature of critical point

B1 −3 0 − (3+α)
2 −2 Non-hyperbolic

B2 −3 0 (α−3)
2 −2 Non-hyperbolic

B3 −3 0 − (3+αyc)
2 −2 Non-hyperbolic

B4 −3 α + 3 α + 3 − 1
2 (1 − α) Non-hyperbolic for α = −3 and

hyperbolic when αε(−3, 0)

v′ = −αv

2
− 3

2
v

[
1 + μxz2 − 4

3
u2 − v2

]
, (92)

u′ = −3

2
u

[
4

3
+ μxz2 − 4

3
u2 − v2

]
. (93)

The critical points, existence of critical points and the value
of cosmological parameters are shown in Table 7 and the
eigenvalues and the nature of critical points are shown in
Table 8.

The first three critical points B1–B3 in Table 7 are cosmo-
logically equivalent to the critical points C2–C4 in Table 1.
The critical point B4 represents a scaling cosmological solu-
tion where DE is interacting with CDM. The CDM dominates
the evolution for −1 < α < 0, otherwise there is accelerated
expansion due to dominance of DE. For α = −3 the matter
is purely in the form of cosmological constant.

Stability analysis

Critical point B1

The Jacobian matrix at the critical point B1 is same as (72).
So here we also take four choices of α (same as P1) for
analyzing the stability of this critical point.

Case (i): α �= −3, 1, 3

In this case we have the same eigenvalues and corresponding
eigenvectors of the Jacobian matrix. We put forward similar
argument as we have mentioned for the stability analysis of
P1 in case (i), then the center manifold is given by (44–46)

and the flow on the vector field near the origin is determined
by (47) (Fig. 2).

Case (ii): α = −3

In this case we also get the same Jacobian matrix (73), so
have the same eigenvalues and corresponding eigenvectors.
We put forward similar argument as we have mentioned for
the analysis of P1 in case (ii), then we get the center mani-
fold same as (79–80) and the flow on the center manifold is
determined by

dYT
dN

= 2
√

6μY 2
T +

(
2
√

6μ − 4μ2
)
Y 3
T

+
(

3

2
+ √

6μ

)
V 2
T YT + higher order terms, (94)

dVT
dN

= √
6μVT YT + 3

√
3

2
μVT Y

2
T

+
(

3

2
+

√
3

2
μ

)
V 3
T + higher order terms. (95)

Case (ii)(a): μ > 0
Divide (94) and (95) by 2

√
6μ and

√
6μ respectively and

as the flow on the vector field is not changed due to divide by
positive number on the flow equation, we take r2 = Y 2

T +V 2
T ,

then we get r ′ = YT r . If YT > 0 then r ′ > 0 and r ′ < 0
while YT < 0. So, the origin is a saddle node and unstable
in nature (Fig. 2b).

Case (ii)(b): μ < 0
We put forward similar argument as we have mentioned

above then we also obtain that the origin is a saddle node and
unstable in nature (same as Fig. 2a).
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Table 9 Center manifold, flow on the CM and the stability near the origin corresponding to the critical point B2

Case Center manifold Flow on the center manifold Stability

α �= −3, 1, 3
XT = − 4λ

3 Y 2
T + O (

Y 4
T

)
,

VT = 0,

UT = 0

dYT
dN = 2

√
6μY 2

T + O (
Y 3
T

)
Origin is a saddle node for both

of the cases μ > 0 and μ < 0

α = −3 XT = − 4μ
3 Y 2

T + O (
Y 3
T

)
,

UT = 0.

dYT
dN = 2

√
6μY 2

T + higher order terms
dVT
dN = √

6μVT YT + higher order terms
Origin is a saddle node for both of

the cases μ > 0 and μ < 0.

α = 1, 3
XT = − 4μ

3 Y 2
T + O (

Y 4
T

)
,

VT = 0,

UT = 0.

dYT
dN = 2

√
6μY 2

T + O (
Y 3
T

)
Origin is a saddle node for both

of the cases λ > 0 and λ < 0

Table 10 Stability of the vector
field on every coordinate plane
for the critical point B3

Coordinate plane Stability

XT YT -plane Vector field is stable about YT axis

XT VT -plane Vector field near the origin is stable star (if α > −3), vector field near
the origin a saddle node (if α < −3 ), vector field is unstable about VT
axis(if α = −3)

XTUT -plane Vector field near the origin stable star

YT VT -plane Vector field is stable about YT axis (if α > −3), vector field is unstable
about YT axis (if α < −3 ), vector field for α = −3 is shown in Fig. 3

YTUT -plane Vector field is stable about YT axis

UT VT -plane Vector field near the origin is stable star (if α > −3), vector field near
the origin is a saddle node (if α < −3 )

As for both of the subcases in this case the origin is unsta-
ble due to its saddle nature. Hence, in the old coordinate
system (x, y, v, u) the critical point B1 is a saddle node,
i.e., unstable in nature.

Case (iii): α = 1

In this case the eigenvalues of the Jacobian matrix are −3,

0, −2, −2 and [1, 0, 0, 0]T ,

[
1,

√
3
2 , 0, 0

]T

are the eigen-

vectors corresponding to the eigenvalues −3 and 0 respec-
tively, [0, 0, 1, 0]T and [0, 0, 0, 1]T are the eigenvectors cor-
responding to the eigenvalue −2. But for this case we will
get the same vector field as Case (i).

Case (iv): α = 3

Then the eigenvalues of the Jacobian matrix are −3, 0, −3
and −2. [1, 0, 0, 0]T and [0, 0, 1, 0]T are the eigenvectors

corresponding to the eigenvalues −3,

[
1,

√
3
2 , 0, 0

]T

and

[0, 0, 0, 1]T are the eigenvectors corresponding to the eigen-
values 0 and −2 respectively. But for this case also we will
get the same vector field as Case (i).

Critical point B2

The Jacobian matrix at this critical points is also same as (72).
Here also arises four cases. The center manifold and the flow
on the center manifold are shown in the Table 9. As for all pos-
sible cases in the new coordinate system (XT , YT , VT , UT )

the origin is a saddle node, i.e., unstable in nature. Hence, in
the old coordinate system (x, y, v, u) the critical point B2

is a saddle node and unstable in nature.

Critical point B3

The Jacobian matrix at the critical point B3 is same as (72).
Here, we will get the center manifold same as (52–54) and
the flow on the center manifold is same as (55). So, here we
only define the stability of the vector field near the origin on
each coordinate plane, shown in Table 10.

Critical point B4

The Jacobian matrix at B4 can be put as
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J (B4) =⎡
⎢⎢⎢⎢⎣

−3
√

6 0 0

0
(
1 + α

3

)
(3 ∓ √−2αμ) ∓√

6μ
(
1 + α

3

) 3
2 0

0 ∓
√

2
3 μα

√(
1 + α

3

) (
1 + α

3

)
(3 ± √−2αμ) 0

0 0 0 − 1
2 (1 − α)

⎤
⎥⎥⎥⎥⎦ .

(96)

The eigenvalues of the above Jacobian matrix are −3,
α + 3, α + 3 and − 1

2 (1 − α). [1, 0, 0, 0]T , [0, 0, 0, 1]T are
the eigenvectors corresponding to the eigenvalues −3 and

− 1
2 (1 − α) respectively and [

√
6(k−n)

m(6+k+n)
, k−n

2m , 1, 0]T be the
eigenvector corresponding to the eigenvalue α + 3; where

k = (
1 + α

3

)
(3 ∓ √−2αμ), m = ∓

√
2
3μα

√(
1 + α

3

)
and

n = (
1 + α

3

)
(3±√−2αμ)). We clearly see that this critical

point is non-hyperbolic only when α = −3 and the stability
analysis for this case already studied for B1. So here we ana-
lyze the stability of this critical point only when αε(−3, 0).
For this case the two eigenvalues are positive and another two
are negative. So by Hartman–Grobman theorem we can say
that the critical point B4 is unstable due to its saddle nature.

Global behavior and bifurcation analysis

For non-interacting model with exponential potential, we
have five critical points (C0–C4) for various choices of μ. It is
to be noted from matrix (32), thatC0 is saddle with one stable
and three unstable eigen-directions. On the other hand, C1

is saddle with two stable and two unstable eigen-directions.
The stability of C0 and C1 do not depend on the parame-
ter μ. At C2 and C3 the effective potential [10] reaches its
extreme point in the dark energy dominated period. We can
have global behavior of phase space and the main property of
bifurcations on different nullclines. On the Y -nullcline, the
vector field does not depend on μ. But on the center man-
ifold of C2 and C3 the flow reverses its direction when μ

passes through the value μ = 0. But the vector fields remain
topologically equivalent even after μ changes its sign. At
μ = 0, the stability is classified by considering the flow of
the remaining eigen-directions. At μ = 0, new non-isolated
critical point C4 appears to exist. C4 is normally hyperbolic
and stable in nature. It is to be noted that, for μ �= 0, C2 and
C3 are saddle-node in nature. So there exists a non-generic
de-Sitter evolution of the universe through only one trajec-
tory (i.e; invariant manifold) from past (C2 or C3) to future
(C3 or C2). For μ > 0, if the trajectory starts near C2 and
ends asymptotically to C3, then the three form field transit
from phantom field to non-phantom field and reverse transi-
tion happens for μ < 0. As C4 is stable with de-Sitter phase,
so there is a generic evolution near C2 or C3 towards C4 at
μ = 0.

Next, we have considered the interaction Q = α(ρd )(Ẋ+
3HX). For exponential potential there exists three critical
points (P0–P5) for various choices to μ. At α = ±3, P1 and
P2 change its stability. On the other hand, at μ = 0, new
non-isolated critical point P3 appears to exist. P3 is normally
hyperbolic and on the Y -nullcline P3 becomes stable node
to saddle node when α becomes smaller than − 3

yc
, (yc �= 0)

for any fixed yc (0 < yc � 1). When α touches ±3 and lies
in [−3, 0) ∪ (0, 3], a new critical point P4 appears to exist.
P1 and P2 are the special case of P4 at α = ±3.

For interaction Q = α(ρd )yH , at α �= 3,−3, both P1 and
P2 are saddle node in nature. So there exists a non-generic de-
Sitter evolution of the universe through the invariant manifold
(86) from past P2 to future P3.

For the interaction αρd H , a new critical point B4 appears
to exist for α ∈ [−3, 0). This critical point changes its sta-
bility at −3 and μ = 0. For μ �= 0, B4 is saddle node in
nature. So the evolution of the universe through the invariant
manifold is performed as in the previous case.

Now, it is to be noted that at μ = 0, the system associ-
ated with non-interacting model becomes structurally unsta-
ble. On the other hand, two new bifurcation values appear
for the interacting model, namely α = −3, 3. Moreover,
at μ = 0, the system associated with interacting model
becomes structurally unstable. Also one may note that the
potential becomes runaway to non-runaway through bifur-
cation value μ = 0 [23]. On the other hand, if we neglect
the contribution of matter and radiation, the fixed points at
the extremum point of the effective potential [10] are same
as in our non-interacting dynamical equation i.e., C2 and C3

which trigger non-generic evolution of the universe.

4 Summary

The present work is an example where without making any
attempt of solving the complicated coupled cosmic evolution
equations (Einstein field equations), the cosmological inter-
ferences have been done using the technique of dynamical
system analysis. The cosmic matter is chosen as three-form
field (DE) interacting/non-interacting with baryonic matter
(radiation with CDM). By suitable choice of the dimension-
less variables the evolution equations are converted into an
autonomous system for non-interacting case and for two suit-
able choices of the interaction. Out of total fifteen equilib-
rium points (presented in Tables 1, 4 and 7) the following
sets of critical points (C0, P0), (C2, P1, B1), (C3, P2, B2),
(C4, P3, B3) are equivalent both cosmologically as well as
from dynamical system analysis. It is to be noted that the
set of critical points (C4, P3.B3) are essentially a line of
critical points. The first set describes the radiation era of
evolution while the remaining three sets correspond to accel-
erated expansion at the de-Sitter phase. The critical point
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C1 describes the CDM dominated decelerated expansion.
Although the critical point P5 represents interacting DE and
CDM but it also corresponds to de-Sitter phase. The most
interesting critical points are P4 and B4 which are represent-
ing scaling cosmological solutions. Also the cosmic evolu-
tion representing these two critical points are observation-
ally important as by choosing the coupling parameter α to be
closed to ±3 (for critical point P4) / −3 (for B4) the equation
of state parameter agrees (within confidence limit) with the
latest plank data [24].

The stability of the critical points are analysed by studying
the eigenvalues of the Jacobian matrix for hyperbolic critical
points while center manifold theory has been employed for
non-hyperbolic critical points. The two parameters μ (in the
potential) and α (coupling) on the system are found to be
important for bifurcation analysis. Usually, it is speculated
that at the bifurcation point there may be a cosmic phase
transition.

Finally, the general nature of the critical points both for
non-interacting and interacting cases have been presented in
the form of lemmas and theorems. Lastly, one may note that
the present work does not depend effectively on the choice
of V (X).
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Appendix A: Mathematica code for Fig. 1 (choose µ = 1)

Mathematica code for Fig. 1a:
PhasePlot[{−3x+√

6y, 2y, 1
2v}, {x,−1, 1}, {y,−1, 1},

{v,−1, 1}, {−10, 10},Grid Points → 5, Plot Style →
RGBColor, Axes → True]
Mathematica code for Fig. 1b:

PhasePlot[{2y − √
6u, 1

2v, 4u}, {y,−1, 1},
{v,−1, 1}, {u,−1, 1}, {−10, 10},Grid Points → 5,

Plot Style → RGBColor, Axes → True]
Mathematica code for Fig. 1c:

PhasePlot[{−3x + √
6y, 2y − √

6u, 4u}, {x,−1, 1},
{y,−1, 1}, {u,−1, 1}, {−10, 10},Grid Points → 5,

Plot Style → RGBColor, Axes → True]
Mathematica code for Fig. 1d:

PhasePlot[{−3x, 1
2v, 4u}, {x,−1, 1},

{v,−1, 1}, {u,−1, 1}, {−10, 10},Grid Points → 5,

Plot Style → RGBColor, Axes → True]

Appendix B: Matlab code for Fig. 3

[x1, x2] = meshgrid(-.00005:0.000005:
0.00005, -.00005:.000005:.00005);
x1dot = -(9/4)*x2.ˆ2+(15/2)*x1*
x2.ˆ2-12*x1.ˆ2*x2.ˆ2;
x2dot =(3/2)*x2.ˆ3;
quiver(x1,x2,x1dot, x2dot, ’blue’)
hold on;
plot(0,0,’.b’,’MarkerSize’,1)
r = linspace(-.00005,.00005);
q=r*0;
plot(r,q,’k’,q,r,’k’)
xlabel(’Y_T axis’,’fontweight’,’bold’,
’fontsize’,20)
ylabel(’V_T axis’,’fontweight’,’bold’,
’fontsize’,20)
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Fig. 3 Vector field near the origin in YT VT -plane for α = −3. After
shifting and matrix transformation, the line of critical points B3 (in the
old coordinate system (x, y, v, u)) is completely lying on the YT axis
in the new coordinate system. For determining this vector field we have

taken yc = 1
2 . So, in the new coordinate system the origin in YT VT -

plane is corresponding to
(
0, 1

2 , 0, 0
)

in old coordinate system. We refer
the interested readers to Appendix B for corresponding Matlab code
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