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Abstract In this work, we study possible hidden-bottom
molecular pentaquarks Pb from coupled-channel Σ(∗)

b B(∗)−
ΛbB(∗) interaction in the quasipotential Bethe-Salpeter equa-
tion approach. In isodoublet sector with I = 1/2, with the
same reasonable parameters the interaction produces seven
molecular states, a state near ΣbB threshold with spin par-
ity J P = 1/2−, a state near Σ∗

b B threshold with 3/2−, two
states near ΣbB∗ threshold with 1/2− and 3/2−, and three
states near Σ∗

b B
∗ threshold with 1/2−, 3/2−, and 5/2−. The

results suggest that three states near Σ∗
b B

∗ threshold and
two states near ΣbB∗ threshold are very close, respectively,
which may be difficult to distinguish in experiment with-
out partial wave analysis. Compared with the hidden-charm
pentaquark, the Pb states are relatively narrow with widths
at an order of magnitude of 1 MeV or smaller. The impor-
tance of each channel considered is also discussed, and it
is found that the ΛbB∗ channel provides important contri-
bution for the widths of those states. In isoquartet sector
with I = 3/2, cutoff should be considerably enlarged to
achieve bound states from the interaction, which makes the
existence of such states unreliable. The results in the current
work are helpful for searching for hidden-bottom molecular
pentaquarks in future experiments, such as the COMPASS,
J-PARC, and the Electron Ion Collider in China (EicC).

1 Introduction

It is one of the most important topic in hadron physics com-
munity to search for the hadronic exotic states beyond the
conventional quark model. Among the theoretical pictures in
the market, molecular state is a competitive one to explain
existing candidates of exotic states, such as the XY Z par-
ticles and Pc states [1]. A molecular state is analogous to a
nucleus, especially the deuteron, that is, a loosely bound state
of two or more hadrons. It immediately leads to a conclusion
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that a molecular state is close to the threshold of constituent
hadrons. In practice, the study of the molecular state also
focuses on resonance structures near thresholds. Vise versa,
if we can find more structures near thresholds, especially
those with corresponding relationship, it will strongly sup-
port existence of molecular states. In the current work, we
will provide predictions of hidden-charm pentaquarks Pb,
which are partners of the hidden-charm Pc states.

The observation of hidden-charm pentaquarks at LHCb
is a great breakthrough of the study of exotic states [2,3]. It
is also an important support on the molecular state picture.
Three narrow resonance structures were reported at LHCb
in an update measurement as Pc(4457) and Pc(4440) states
near Σc D̄∗ threshold and a Pc(4312) state near Σc D̄ thresh-
old [2]. Combined with Pc(4380) near Σ∗

c D̄ threshold sug-
gested in the first observation [3], it exhibits a good pattern of
the S-wave molecular states from interactions corresponding
to the thresholds. Such observation confirms the prediction
of existence of the hidden-charm pentaquark in some mod-
els [4–8]

A lot of theoretical interpretations of these structures
emerged after the experimental observation. Due to the strong
correlation between these structures and the thresholds, the
molecular state is the most popular picture to explain the
Pc states[9–18], though other interpretations can not be
excluded [19–22]. In Ref. [23], authors even proposed exis-
tence of seven hidden-charm molecular states as a com-
plete heavy-quark spin symmetry multiplet. In our previ-
ous works [24,25], we systematically investigate coupled-
channel Σ

(∗)
c D̄(∗) − Λc D̄(∗) interaction. Three isodoublet

states with I = 1/2 are produced near Σc D̄ threshold with
spin parity J P = 1/2− and Σc D̄∗ threshold with 1/2− and
3/2−. Their masses and widths fall well in the ranges of
experimental values of the Pc(4312), Pc(4440) and Pc(4457)

observed at LHCb. A state almost on the Σ∗
c D̄

∗ thresh-
old with 3/2− is also produced and can be related to the
Pc(4380). Two another states near Σ∗

c D̄
∗ threshold with
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1/2− and 3/2− were also produced with the same param-
eters, but the result suggests that their effects on the experi-
mental observable may be small. Besides, the decay pattern
was also discussed, and the ΛD̄∗ channel is found dominant
in the decays of these states.

Now that experimentally observed Pc states were well
interpreted in the molecular state picture, we can predict
hidden-bottom states above 11 GeV. Though there are a large
amount of works about Pc states reported in the literature, the
studies about the hidden-bottom pentaquark are still inade-
quate. There are a few incidental studies about Pb states in
the works to interprete the Pc states in the molecular picture,
such as within constituent quark model [17,26], the chiral
effective field theory [9,27], and the Bethe-Salpeter Eq. [28].
The width and decay pattern of the Pb states were also dis-
cussed in Refs. [17,28–31]. Due to very large mass of the
hidden-bottom pentaquark, it is relatively difficult to search
for the Pb state in experiment compared with the Pc state. In
Ref. [32], pion and photon induced productions of hidden-
bottom pentaquarks were studied, the calculation suggests
that it is possible to search for these states at COMPASS,
J-PARC and EicC. Hence, it is interesting to perform a sys-
tematical study about the hidden-charm pentaquarks based
on experimental information and theoretical analysis about
the Pc states.

In this work, we will investigate coupled-channelΣ(∗)
b B(∗)

− ΛbB(∗) interaction in the quasipotential Bethe-Salpeter
equation (qBSE) approach to find possible hidden-bottom
molecular states. The interaction was described in the
one-boson-exchange model with the help of the effective
Lagrangians within the heavy quark symmetry and chiral
limit as in Refs. [24,25], where the Pc states were interpreted.
The masses and widths of molecular states are predicted by
finding poles in complex energy plane. The decay channels
of predicted states will be discussed also.

This article is organized as follows. After introduction, the
details of theoretical frame of coupled-channel Σ

(∗)
b B(∗) −

ΛbB(∗) interactions is presented in Sect. 2. In Sect. 3, the
single-channel results of the states with isospin I = 1/2
and I = 3/2 are given first. Then, coupled-channel results
are presented, and the importance of the channels considered
are discussed. Finally, summary and discussion will be given
in Sect. 4.

2 Theoretical frame

In the qBSE approach, we will use the one-boson-exchange
interaction of two bottom hadrons as dynamical kernel. In
the current work, we will adopt the Lagrangians with heavy
quark limit and chiral symmetry, and the channels with
hidden-charm mesons are ignored as in Ref. [24,25] to keep
the consistence. The peseudoscalar P, vector V and scalar σ

exchanges will be considered, and the effective Lagrangians
depicting the couplings of light mesons and bottom mesons
or bottom baryons are required and will be presented in the
below.

First, we consider the couplings of light mesons to heavy-
light bottom mesons P = (B0, B+, B+

s ). The Lagragians
were constructed in the literature as [33–36],

LP∗PP = i
2g

√
mPmP∗

fπ
(−P∗†

aλPb + P†
aP∗

bλ)∂
λ
Pab,

LP∗P∗P = − g

fπ
εαμνλP∗μ†

a
←→
∂ αP∗λ

b ∂ν
Pba,

LP∗PV = √
2λgV ελαβμ

(−P∗μ†
a

←→
∂ λPb + P†

a
←→
∂ λP∗μ

b )(∂α
V

β)ab,

LPPV = −i
βgV√

2
P†
a
←→
∂ μPbV

μ
ab,

LP∗P∗V = −i
βgV√

2
P∗†
a

←→
∂ μP∗

bV
μ
ab

− i2
√

2λgVmP∗P∗μ†
a P∗ν

b Vμνab,

LPPσ = −2gsmPP†
aPaσ,

LP∗P∗σ = 2gsmP∗P∗†
a P∗

aσ, (1)

where fπ = 132 MeV, Vμν = ∂μVν − ∂νVμ. The P and P∗
satisfy the normalization relations 〈0|P|Q̄q(0−)〉 = √

MP
and 〈0|P∗

μ|Q̄q(1−)〉 = εμ

√
MP∗ . The P and V are the pseu-

doscalar and vector matrices as

P =

⎛
⎜⎜⎝

√
3π0+η√

6
π+ K+

π− −√
3π0+η√

6
K 0

K− K̄ 0 − 2η√
6

⎞
⎟⎟⎠ ,V =

⎛
⎜⎜⎝

ρ0+ω√
2

ρ+ K ∗+

ρ− −ρ0+ω√
2

K ∗0

K ∗− K̄ ∗0 φ

⎞
⎟⎟⎠ .

(2)

The explicit forms of the Lagrangians for the couplings of
light mesons to bottom baryons can be written as [37],

LBBP = i
3g1

2 fπ
√
mB̄mB

εμνλκ∂ν
P

∑
i=0,1

B̄iμ
←→
∂ κ Bjλ,

LBBV = − βSgV√
2mB̄mB

V
ν

∑
i=0,1

B̄μ
i
←→
∂ νBjμ

− λSgV√
2

Vμν

∑
i=0,1

B̄μ
i Bν

j ,

LB3̄B3̄V
= − gVβB√

2mB̄3̄
mB3̄

V
μ B̄3̄

←→
∂ μB3̄,

LBB3̄P
= −i

g4

fπ

∑
i

B̄μ
i ∂μPB3̄ + H.c.,

LBB3̄V
=

√
2

mB̄mB3̄

gVλI ε
μνλκ∂λVκ

∑
i

B̄iν
←→
∂ μB3̄ + H.c..
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LBBσ = �Sσ
∑
i=0,1

B̄μ
i B jμ,

LB3̄B3̄σ
= i�Bσ B̄3̄B3̄, (3)

where Biμ is defined as

(
Bab

0μ, Bab
1μ

)
≡

(
−

√
1

3
(γμ + vμ)γ 5Bab, B∗ab

μ

)
, (4)

and the bottomed baryon matrices are defined as

B3̄ =
⎛
⎝

0 Λ+
b Ξ+

b−Λ+
b 0 Ξ0

b−Ξ+
b −Ξ0

b 0

⎞
⎠ , B =

⎛
⎜⎝

Σ++
b

1√
2
Σ+

b
1√
2
Ξ ′+

b
1√
2
Σ+

b Σ0
b

1√
2
Ξ ′0

b
1√
2
Ξ ′+

b
1√
2
Ξ ′0

b Ω0
b

⎞
⎟⎠ .

(5)

In the calculation, the masses of particles are chosen as
suggested central values in the Review of Particle Physics
(PDG) [38]. The mass of broad σ meson is chosen as 500
MeV. The coupling constants involved was cited from the
literature [15,37,39,40], and listed in Table 1,

With the vertices obtained from the above Lagrangians,
the potential of couple-channel interaction can be con-
structed. Because six channels are invovled in the current
work, it is tedious and fallible to give explicit 36 potential
elements and input them into code. Instead, in this work, we
input vertices Γ and propagators P into code directly, and
the potential can be obtained as

VP,σ = f IΓ1Γ2PP,σ f (q2), VV = f IΓ1μΓ2νP
μν

V
f (q2),

(6)

The propagators are defined as usual as

PP,σ = i

q2 − m2
P,σ

, Pμν

V
= i

−gμν + qμqν/m2
V

q2 − m2
V

, (7)

where the form factor f (q2) is adopted to compensate the off-
shell effect of exchanged meson as f (q2) = e−(m2

e−q2)2/Λ2
e

with me being the mP,V,σ and q being the momentum of
the exchanged meson. The cutoff is rewritten as a form of
Λe = m+αe 0.22 GeV. The f I is the flavor factor for certain
meson exchange of certain interaction, and the explicit values
are listed in Table 2.

With the potential kernel obtained, we use the qBSE
to solve the scattering amplitude [41–45]. After partial-
wave decomposition and spectator quasipotential approxi-
mation, the 4-dimensional Bethe-Saltpeter equation in the
Minkowski space can be reduced to a 1-dimensional equa-

tion with fixed spin-parity J P as [42],

iMJ P

λ′λ(p
′, p) = iV J P

λ′,λ(p
′, p) +

∑
λ′′

∫
p′′2dp′′

(2π)3

· iV J P

λ′λ′′(p′, p′′)G0(p
′′)iMJ P

λ′′λ(p
′′, p),

(8)

where the sum extends only over nonnegative helicity λ′′.
Here, the reduced propagator with the spectator approxima-
tion can be written as G0(p′′) = δ+(p′′ 2

h −m2
h)/(p

′′ 2
l −m2

l )

with p′′
h,l and mh,l being the momenta and masses of heavy

or light constituent particles. The partial wave potential is
defined with the potential of interaction obtained in the above
in Eq. (6) as

V J P

λ′λ(p′, p) = 2π

∫
d cos θ [d J

λλ′(θ)Vλ′λ( p
′, p)

+ ηd J
−λλ′(θ)Vλ′−λ( p

′, p)], (9)

where η = PP1P2(−1)J−J1−J2 with P and J being parity
and spin for system, B(∗) meson or Σ

(∗)
b baryon. The ini-

tial and final relative momenta are chosen as p = (0, 0, p)

and p′ = (p′ sin θ, 0, p′ cos θ). The d J
λλ′(θ) is the Wigner d-

matrix. we also adopt an exponential regularization by intro-
ducing a form factor into the propagator as [42]

G0(p
′′) → G0(p

′′)
[
e−(p′′2

l −m2
l )

2/Λ4
r

]2
. (10)

In the current work, the relation of the cutoff Λr = m +
αr 0.22 GeV with m being the mass of the exchanged meson
is also introduced into the regularization form factor to sup-
press large momentum, i.e., the short-range contribution of
the π exchange as warned in Ref. [46].

3 Numerical results

The 1-dimensional integral equation can be transformed into
a matrix equation as M = V + VG0M by Gauss discretiza-
tion. The molecular states can be found by searching for the
pole of scattering amplitude M in complex energy plane at
|1 − V (z)G(z)| = 0 with z = W + iΓ/2 equaling to sys-
tem energy W at real axis [42]. In addition, we take two free
parameters αe and αr as α for simplification.

3.1 Single-channel results

Each experimental observed Pc state is close to a threshold,
respectively [2,3]. It suggests that each of these states should
be mainly from a single-channel interaction in the molec-
ular state picture, which is confirmed by previous study in
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Table 1 The coupling constants adopted in our calculation. The λ and λS,I are in the unit of GeV−1

β g gV λ gs

0.9 0.59 5.9 0.56 0.76

βS �S g1 λS βB �B g4 λI

-1.74 6.2 -0.94 -3.31 −βS/2 −�S/2 3g1/(2
√

2) −λS/
√

8

Others are in the unit of 1

Table 2 The flavor factors f I for certain meson exchanges of certain interaction. The values in bracket are for the case of I = 3/2 if the values are
different from these of I = 1/2

π η ρ ω σ

B(∗)Σ
(∗)
b → B(∗)Σ

(∗)
b −1[ 1

2 ] 1
6 [ 1

6 ] −1[ 1
2 ] 1

2 [ 1
2 ] 1

B(∗)Λb → B(∗)Λb 0 0 0 1 2

B(∗)Λb → B(∗)Σ
(∗)
b

√
6

2 0
√

6
2 0 0

Ref. [25]. In this work, we present the single-channel results
first.

In the current work, we consider all states with spin parities
which can be produced from S-wave interaction, Σ∗

b B
∗ with

1/2−, 3/2−, 5/2−, ΣbB∗ with 1/2−, 3/2−, Σ∗
b B with 3/2−

and ΣbB with 1/2−. The results for isodoublet with I = 1/2
are illustrated in Fig. 1. The ΛbB(∗) with 1/2−, 3/2− and
ΛbB with 1/2− are also calculated, however, large α beyond
reasonable limit is required to produce bound states.

The results suggest that bound states can be produced in all
seven cases in a range of α from 0 to 3.5. All states appear at
α about 0.5, and binding becomes deeper with the increase of
α, and gradually reach to a binding energy about 20 MeV or
the next threshold at α = 2.5−3.5 . The binding energies will
continue to increase, but we no longer present such results.
The trends of curves for three states produced from the Σ∗

b B
∗

interaction with different spin parities are almost the same.
Such phenomenon can also be found for two curves for two
states from the ΣbB∗ interaction. Compared with the results
for Pc states [24,25], one can find that the values of parameter
α to produce the hidden-bottom molecular states is relatively
smaller.

In Fig 2, we present the results for isoquartet states with
I = 3/2. In the calculation, we also consider seven cases
as for isodoublet. No bound state is produced form ΣbB
interaction with (1/2−) and Σ∗

b B interaction from (3/2−)

even if α is taken to 9. Except these two states, left five states
can be produced from single-channel interaction as shown in
2, but with considerablly large α. The production of bound
states, Σ∗

b B
∗(1/2−), ΣbB∗(1/2−) and Σ∗

b B
∗(3/2−), needs

a value of α at least 4, which is larger than the maximum value
of α required for binding of isodoublet molecular states with
I = 1/2. It indicates that these three states are hardly to be
found if the isoboublet states have small binding energies.
The rest two states ΣbB∗(3/2−) and Σ∗

b B
∗(5/2−) appears

at α = 3 and 2.5, respectively. it implies that these two

Fig. 1 The α dependence of the mass M of isodoublet binding states
from single-channel interaction. The four solid lines from right to left
represent the thresholds of four channels Σ∗

b B
∗, Σb B∗, Σ∗

b B and Σb B
at 11155 MeV, 11135 MeV, 11110 MeV and 11090 MeV, respectively.
The curves are for the bound states from the interactions with corre-
sponding thresholds

molecular states may exist if the isoboublet states are deeply
bound. Generally speaking, if we assume that the Pb states
are also loosely bound states as Pc states, the possibility of
existence of isoquaret states is vey small. In Ref [26], within
the frame of constituent quark model, the molecular states
with I = 3/2 were also not found.
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Fig. 2 The mass M with the variation of the α for isoquartet bound
states. Other conventions are the same as in Fig. 1

3.2 Coupled-channel results

In the previous calculation, the bound states from single
channel calculation exhibit as poles at real axis of complex
energy plane, that is, the widths of these states are zero. In
the case of the Pc states, we found that the experimental
width can be well reproduced with inclusion of coupled-
channel effect [25]. In the above single-channel calculation,
seven bound states are produced. Those states can be cou-
pled to each other by exchanges of light mesons. Besides,
the ΛD̄∗ channel is also found important for the width of Pc
states [25,30,31]. In the following, coupled-channel results
for the Σ

(∗)
b B(∗) − ΛbB(∗) interaction will be given.

Here, we first give an example to show a general picture of
coupled-channel results. Since there is no experimental data
about the Pb states, we should choose a parameter to present
the results. The only free parameter in our model is α, and
in the single-channel calculation the α dependences of the
masses of seven bound states exhibit a similar trend. Hence,
we choose α as 1.5 to illustrate the poles from coupled-
channel Σ

(∗)
b B(∗) −ΛbB(∗) interaction in Fig. 3. The values

of log |1 − V (z)G0(z)| with variation of complex energy z
is adopted to show the positions of poles of coupled-channel
scattering amplitude because M = (1 − VG0)

−1V . And we
present the results for spin parities 5/2−, 3/2−, and 1/2− in
a range from 11.06 to 11.16 GeV for real part of complex
energy Re(z) and -2 to 2 MeV for imaginary part Im(z).

−2

−1

 0

 1

 2

5/2− −8
−4
 0
 4
 8

−2

−1

 0

 1

 2

5/2−

−2

−1

 0

 1

3/2−
−2

−1

 0

 1

3/2−Im
(z

) (
M

eV
)

−2

−1

 0

 1

11.06 11.08 11.10 11.12 11.14 11.16

1/2−
−2

−1

 0

 1

11.06 11.08 11.10 11.12 11.14 11.16

1/2−

Re(z) (GeV)

Fig. 3 The log |1 − V (z)G0(z)| with the variation of z for coupled-
channel Σ

(∗)
b B(∗) − Λb B(∗) interaction with J P = 1/2−, 3/2−and

5/2− at α = 1.5. The color means the value of log |1 − V (z)G0(z)| as
shown in the color box

One can find that there are still seven poles produced as
in the single-channel calculation. It suggests that only states
with an S-wave interaction can be produced for three spin
parities considered. In the case with J P = 1/2−, there exist
three poles near the ΣbB (S wave), ΣbB∗ (S and D waves)
and Σ∗

b B
∗ (S, D and G waves) thresholds, respectively. No

pole appears near Σ∗B (P wave) threshold for 1/2−. In the
case with J P = 3/2−, we also have three poles near the
Σ∗

b B (S and D waves), ΣbB∗ (S and D waves) and Σ∗
b B

∗
(S, D and G waves) thresholds, respectively. And no pole
appears near ΣbB (P wave) threshold. For spin parity 5/2−
there is only one pole near the Σ∗

b B
∗ thresholds, and only

this channel can produce a pole with 5/2− in S wave.
The Pc(4457) and Pc(4440) is close to each other near

Σc D̄∗ threshold, which was even taken as one resonance
structure in the first observation of the Pc states [2]. In the Pb
case, our results exhibit a more serious overlapping between
two states near ΣbB∗ as in the single channel calculation. A
shown in Fig. 3, these two poles with 1/2− and 3/2− have
almost the same mass and width. Furthermore, the masses of
three poles near the Σ∗

b B
∗ threshold are also close very much,

which are 11149.2 MeV, 11149.7 MeV and 11150.1 MeV
corresponding to the two molecular states with 1/2−, 3/2−
and 5/2−, respectively. Different from the Pc states [25],
here, the state with 5/2− stands out background obviously
while other two poles with J P = 1/2− and 3/2− are very
dimly, and may be difficult to be found at experiment.

As shown in the figure, the poles acquire imaginary parts
after coupled-channel effects are included in the calcula-
tion. However, these states are generally very narrow, with
imaginary parts smaller than 0.5 MeV. By using the rela-
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Table 3 The masses and widths of molecular states at different values
of α. The “CC” means full coupled-channel calculation. The values
of the complex position means mass of corresponding threshold sub-
tracted by the position of a pole, Mth − z, in the unit of MeV. The two

short line “−−” means the coupling does not exist. The imaginary part
of some poles are shown as “0.00”, which means too small value under
the current precision chosen

αr CC Σb B∗ Σ∗
b B Σb B Λb B∗ Λb B

Σ∗
b B

∗(1/2−)

Mth = 11155 MeV
0.6 0.6 + 0.02i 0.6 + 0.01i 0.6 + 0.01i 0.6 + 0.01i 0.6 + 0.00i 0.6 + 0.00i

1.0 2.4 + 0.09i 2.5 + 0.03i 2.5 + 0.03i 2.5 + 0.04i 2.5 + 0.02i 2.5 + 0.00i

1.5 5.8 + 0.28i 6.1 + 0.07i 6.0 + 0.10i 6.0 + 0.16i 6.0 + 0.16i 6.1 + 0.00i

2.0 9.6 + 0.40i 10.3 + 0.24i 10.4 + 0.25i 9.9 + 0.31i 10.3 + 0.63i 10.5 + 0.00i

Σ∗
b B

∗(3/2−)

Mth = 11155MeV
0.6 0.5 + 0.03i 0.5 + 0.02i 0.5 + 0.01i 0.5 + 0.00i 0.5 + 0.00i 0.5 + 0.00i

1.0 2.2 + 0.10i 2.3 + 0.04i 2.3 + 0.03i 2.3 + 0.02i 2.3 + 0.01i 2.3 + 0.00i

1.5 5.3 + 0.36i 5.5 + 0.07i 5.7 + 0.03i 5.6 + 0.08i 5.6 + 0.12i 5.6 + 0.03i

2.0 8.6 + 1.38i 9.3 + 0.19i 9.8 + 0.09i 9.8 + 0.16i 9.4 + 0.48i 9.7 + 0.17i

Σ∗
b B

∗(5/2−)

Mth = 11155 MeV
0.6 0.4 + 0.04i 0.4 + 0.01i 0.4 + 0.01i 0.4 + 0.01i 0.4 + 0.00i 0.4 + 0.00i

1.0 2.1 + 0.15i 2.4 + 0.01i 2.1 + 0.05i 2.0 + 0.01i 2.1 + 0.01i 2.1 + 0.00i

1.5 4.9 + 0.52i 5.3 + 0.01i 5.1 + 0.02i 5.0 + 0.27i 4.9 + 0.25i 5.0 + 0.07i

2.0 8.6 + 1.38i 9.3 + 0.19i 9.8 + 0.09i 9.8 + 0.16i 9.4 + 0.48i 9.7 + 0.17i

Σb B∗(1/2−)

Mth = 11135 MeV
0.5 1.4 + 0.01i −− 1.2 + 0.00i 1.2 + 0.00i 1.2 + 0.00i 1.2 + 0.00i

1.0 5.7 + 0.05i −− 5.0 + 0.01i 5.0 + 0.02i 5.0 + 0.01i 5.0 + 0.00i

1.5 11.4 + 0.26i −− 10.0 + 0.05i 10.1 + 0.05i 10.0 + 0.07i 10.1 + 0.03i

2.0 17.6 + 0.70i −− 15.7 + 0.25i 16.1 + 0.09i 15.7 + 0.22i 15.9 + 0.03i

Σb B∗(3/2−)

Mth = 11135 MeV
0.5 1.4 + 0.02i −− 1.2 + 0.00i 1.2 + 0.00i 1.2 + 0.00i 1.2 + 0.00i

1.0 5.7 + 0.17i −− 5.1 + 0.01i 5.1 + 0.14i 5.1 + 0.02i 5.1 + 0.00i

1.5 11.2 + 0.28i −− 10.1 + 0.02i 10.3 + 0.22i 10.0 + 0.20i 10.1 + 0.05i

2.0 17.2 + 0.45i −− 15.7 + 0.03i 16.2 + 0.33i 15.0 + 0.81i 15.5 + 0.31i

Σ∗
b B(3/2−)

Mth = 11110 MeV
1.0 2.4 + 0.08i −− −− 2.4 + 0.00i 2.4 + 0.07i 2.4 + 0.00i

1.5 5.5 + 0.57i −− −− 5.7 + 0.00i 5.4 + 0.49i 5.7 + 0.00i

2.0 8.4 + 2.05i −− −− 9.6 + 0.00i 8.8 + 1.56i 9.6 + 0.00i

Σb B(1/2−)

Mth = 11090 MeV
0.5 1.6 + 0.00i −− −− −− 1.4 + 0.00i 1.4 + 0.00i

1.0 6.0 + 0.04i −− −− −− 5.3 + 0.04i 5.3 + 0.00i

1.5 11.8 + 0.33i −− −− −− 10.2 + 0.25i 10.4 + 0.00i

2.0 17.9 + 1.60i −− −− −− 15.4 + 1.17i 16.1 + 0.00i

tion Γ = −2 Im(z), it means a small width about 1 MeV or
smaller, which is much smaller than the Pc states with similar
binding energy. It is worth mentioning that at α = 1.5, except
for Σ∗

b B
∗(5/2−), the masses of six molecular states after

inclusion of coupled-channel effect are in good agreement
with the results obtained under the frame of the constituent
quark model in Ref [17].

In the above, we only present the poles of molecular states
obtained by the coupled-channels calculation at a value of
α = 1.5. Because there is no experimental data, in the fol-
lowing, we will present the results with different vales of

α from 0.5 to 2.0 to show the dependence of results on the
parameter in second and third columns of Table 3. The two-
channel calculation results are also listed in the fourth to
eighth columns to show the role of each channel on widths
of molecular states. Here, to emphasize the nearest threshold,
we replace the real part of pole by z → Mth − z with Mth

being the mass of nearest higher threshold.
In the first column, we list thresholds with certain spin par-

ity, and the result of pole under the corresponding threshold
with different α is given in the second and third columns with
full coupled-channel Σ(∗)

b B(∗)−ΛbB(∗) interaction. One can
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find, except a small width is acquired, the results are similar
to those from the single-channel calculation. Hence, we take
such channel as production channel of this pole. All poles
appear on threshold at about α = 0.5 and leave the thresh-
old with the increasing of α. If we choose a binding energy
about 10 MeV, the widths of most states are very small, about
1 MeV or smaller.

In the fourth to eighth columns, we consider two-channel
result with the coupling between the production channel and
a channel below it. The imaginary part reflects the strength
of couplings between two channels. Since the pole is mainly
from the production channel, the effect of a channel on the
pole can be also estimated from the two-channel resutls.
Because the width with smaller α is very small, in the fol-
lowings, we focus on the results at larger α, 1.5 and 2.0.

Three states near Σ∗
b B

∗ threshold, which is the highest
threshold of channels considered in the current work, can
decay into five channels. Among these decay channels, the
ΛbB∗ channel has strongest couplings to this three states.
For the two states near ΣbB∗ threshold, there are four decay
channels, the ΛbB∗ channel is much stronger than other
channels for 3/2−. For 1/2 state, both Σ∗

b B and ΛbB∗ chan-
nels couples strongly to the ΣbB∗ channel. Among three
possible decay channels of the state near Σ∗

b B thresholds,
only ΛbB∗ channel provides large width, and other chan-
nels only give very small imaginary part of the position. For
the ΣbB(1/2−) case, only ΛbB(∗) channels involves, among
which, the ΛbB∗ channel is still dominant one. Hence, for all
seven states, the ΛbB∗ channel is the most important one in
all channels considered, which is consistent with the results
of the hidden-charm pentaquarks in Refs. [25,30,31].

4 Summary and discussion

In this work, the masses and widths of hidden-bottom
molecular pentaquarks are predicted from coupled-channel
Σ

(∗)
b B(∗) − ΛbB(∗) interaction in the qBSE approach with

the help of effective Lagrangians with heavy quark and chiral
symmetries. The results suggest that seven molecular states
can be produced from the interactions. All states appear at
α about 1, which corresponds to reasonable radii of the con-
stituent hadrons, about 0.5 fm.

Among the seven states, three of them are near the Σ∗
b B

∗
threshold, and the masses of these three states are very close.
The two sates with 1/2− and 3/2− are very weak compared
with the state with 5/2−. Hence, these three states should
exhibit as one resonance structure without partial wave anal-
ysis. Even with partial wave analysis, the states with 1/2−
and 3/2− are difficult to be distinguished from the one with
5/2−. The two states near ΣbB∗ are also mixing together but
a partial-wave analysis will be helpful to distinguish them.
Hence, the results suggest that four resonance structures may

be observed in experiment, though there exist seven molec-
ular states from coupled-channel Σ

(∗)
b B(∗) − ΛbB(∗) inter-

action.
Compared with hidden-charm Pc states, the widths of Pb

states are much smaller, about 1 MeV or smaller. And the
calculation suggests that the ΛbB∗ channel has strong cou-
plings to the molecular states, which is due to the strong
couplings of vertex ΛbΣ

(∗)
b π . The small width have both

advantage and disadvantage in experimental observation of
such states. The small width makes the production possibility
small, which needs high luminosity of experimental facility.
However, a small width also makes the peak of state stand out
obviously from background in experiment. In Ref. [32], we
study the possibility to search for such states in pion and pho-
ton induced productions. The results suggest that with small
widths the measurement of the Pb states is promising at the
such as the COMPASS J-PARC, especially the Electron Ion
Collider (EicC) in China.
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