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Abstract In this article, a framework for hadronic re-
scattering in the general-purpose Pythia event generator
is introduced. The starting point is the recently presented
space–time picture of the hadronization process. It is now
extended with a tracing of the subsequent motion of the
primary hadrons, including both subsequent scattering pro-
cesses among them and decays of them. The major new com-
ponent is cross-section parameterizations for a range of possi-
ble hadron–hadron combinations, applicable from threshold
energies upwards. The production dynamics in these colli-
sions has also been extended to cope with different kinds
of low-energy processes. The properties of the model are
studied, and some first comparisons with LHC pp data are
presented. Whereas it turns out that approximately half of
all final particles participated in rescatterings, the net effects
in pp events are still rather limited, and only striking in a
few distributions. The new code opens up for several future
studies, however, such as effects in pA and AA collisions.

1 Introduction

One of the most unexpected discoveries at the LHC is that
high-multiplicity pp events bear a striking resemblance to
heavy-ion AA events. The first example was the obser-
vation of a “ridge”, i.e. an enhanced particle production
around the azimuthal angle of a trigger jet, stretching away
in (pseudo)rapidity [1–3]. Even more spectacular is the
smoothly increasing fraction of strange baryon production
with increasing charged multiplicity, a trend that lines up
with pA data before levelling out at the AA results [4,5].
Further examples include non-vanishing v2 azimuthal flow
coefficients [2,3,6], strong peaks in hadron ratios such as
Λ0/K0

S at around p⊥ ≈ 2 GeV [7], and an 〈p⊥〉 strongly
increasing with particle mass [8], all suggesting some form
of collective flow. A recent overview of relevant observations
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and related theoretical ideas and challenges can be found in
Ref. [9].

One possible explanation for these phenomena is that a
quark–gluon plasma (QGP) can be created in pp collisions.
This runs counter to the conventional wisdom that, unlike in
AA collisions, the pp environment does not offer sufficiently
large volumes and long time scales for a QGP to form, see
e.g. [10–12]. Nevertheless, such models have been devel-
oped, for instance the core–corona model implemented in
EPOS [13]. In it a lower-density corona of colour strings can
hadronize independently, whereas in a higher-density core
the strings can melt into a QGP that hadronizes collectively.
In its simplest form, a string here represents the colour con-
finement field between a separated colour triplet–antitriplet
pair, typically formed in the collision and thereafter expand-
ing mainly along the collision axis. More central pp collisions
correlate both with a higher core fraction and a higher multi-
plicity, thus offering a mechanism for multiplicity-dependent
event properties that can be continued on to AA collisions.

Alternatively, the similarity between pp and AA could
be viewed as incentive to explore what phenomena could
be explained without recourse to QGP formation. As exam-
ples, the formation of ropes with a higher colour charge than
the string may explain a changed particle composition [14],
while the shoving of overlapping strings can give collec-
tive flow [15,16]. Strings squeezed into a smaller transverse
area could also offer a higher string tension and thereby a
changed particle composition [17]. Theoretical calculations
have also been performed using Colour Glass Condensate
[18,19] initial states on its own, e.g. [20,21], or combined
with subsequent partonic transport, e.g. [22], that suggest
how collective effects can arise in pp collisions.

Whatever approach is taken, one issue is that both strings
and particles are produced very closely packed, in fact physi-
cally overlapping to a large extent. This is nothing new, but is
already a consequence e.g. of thePythiamodel for MultiPar-
ton Interactions (MPIs) [23,24] and the Lund string model
view of particle production [25]. The former assumes that
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several strings are drawn out from a collision area of a typical
proton size, and the latter that each of these strings individ-
ually has about the same transverse size. Even allowing for
the transverse expansion of the string systems, the overlap
of fragmenting strings and of primary produced hadrons in
pp collisions is alarmingly high [26]. This opens up for the
above-mentioned modifications of the string properties, and
would also suggest that hadrons can interact with each other
(elastically or inelastically) on the way out from the pro-
duction region surrounding the primary “scattering”. This is
what is referred to as hadronic rescattering.

So why has this overlap not attracted attention in tradi-
tional high-energy pp generators, such as Herwig [27,28],
Pythia [29,30] or Sherpa [31,32]? One practical reason
is that close-packing corrections did not seem necessary to
describe pp/pp data up to Tevatron energies, either because
they were not there or (more likely) because nobody looked.
Concerning rescattering in particular, another is that hadrons
produced in a given space–time region of an event also tend
to move in the same direction. The most obvious example
of this is the ordering in rapidity with respect to the colli-
sion axis. This implies that hadronic rescattering tends to
occur between pairs of rather low invariant mass and there-
fore should not upset the overall structure of the event, in par-
ticular if hadrons of different species are not distinguished.
Furthermore, in high-p⊥ jets the parton-shower evolution
spreads out the colour strings, such that overlaps are far less
frequent than in the low-p⊥ region [17]. As we will see,
rescattering indeed only appears to have a noticeable impact
on a select few distributions in pp collisions.

The situation is different in heavy-ion physics, where the
hadronic densities could be even higher, and the density drops
slower per unit time for a larger expanding system, so there
are more opportunities for rescattering on the way out. Sev-
eral rescattering frameworks have been developed as part of
the description of AA collisions, see e.g. the overview and
comparison in Ref. [33]. The best known probably is UrQMD
[34], which much of our current work is based upon. Another
early example is JAM [35]. SMASH [36] is a recent addition
still being actively developed. Luciae [37]/Paciae [38] has
its roots in Lund, even if now disconnected. Many of these
programs make use of Lund string fragmentation.

With the recent implementation of an explicit space–time
picture for the hadronization in Pythia [26], it becomes pos-
sible to use e.g. UrQMD to simulate rescattering on Pythia
generated events. This was recently done [39], with inter-
esting results. Unavoidably it is a kludge, however: while
Pythia 8 is written in C++, information has to be trans-
ferred to the UrQMD Fortran code, and then UrQMD in turn
relies on the older Pythia 6 Fortran version for some tasks.
Interfacing SMASH would have the advantage of being able
to stay with C++, but again SMASH in its turn makes use of
Pythia.

We therefore believe it would be worthwhile to develop
and provide a purely internal implementation of hadronic
rescattering. In this article we will present such a new frame-
work, and show some of the first results obtained when apply-
ing it to pp collisions. This does not preclude the usage of
and comparison with other packages, but rather that inter-
facing with such packages could be simplified. For instance,
one could imagine implementing alternative cross section
parameterizations while still retaining the underlying space–
time tracing. As part of developing this framework, our
work includes implementations of non-perturbative hadron–
hadron interactions below 10 GeV. This means event gener-
ation in Pythia becomes available for beam energies all the
way down to the mass threshold, a feature which may have
other applications not related to rescattering. The framework
will be published in Pythia version 8.303, which at the time
of writing is scheduled to be released within a few months.

The outline of this article is as follows. Section 2 reviews
the space–time hadron production picture that provides the
starting point for the subsequent rescattering. It also describes
the algorithm for finding hadronic rescattering vertices and
the evolution of the event through the rescattering phase.
Section 3 describes the dynamics of low energy processes.
This includes how such processes are implemented, and how
total, partial and differential cross sections are modelled for
the different processes. It represents the bulk of the new fea-
tures that have been included into Pythia as a result of this
work. Then Sect. 4 presents some model tests and model
features, while Sect. 5 shows some comparisons with exper-
imental data of relevance for the model. Finally Sect. 6 gives
a summary and outlook.

Natural units are assumed throughout the article, i.e. c =
h̄ = 1. Energy, momentum and mass are given in GeV, space
and time in fm, and cross sections in mb.

2 The space–time model

In this section we will review and extend the space–time
picture for hadron production, and present how this picture is
used as a starting point to trace collision vertices throughout
the time evolution of the event.

2.1 Hadronization

The Lund string model is based on the assumption of linear
confinement, i.e. a string potential of V = κr , where the
string tension κ ≈ 1 GeV/fm and r is the separation between
a colour triplet–antitriplet pair. For simplicity we may con-
sider the process e+e− → γ ∗/Z0 → qq, where the quark–
antiquark pair moves out along the ±z axis, see Fig. 1a. The
linearity leads to a straightforward relationship between the
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(a) (b)

Fig. 1 a String breakup in a qq event. The points denote the location of quarks and antiquarks at snapshots in time, and the yellow regions the
string pieces then stretched out between them. b String drawing in the plane of a qqg event
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It is necessary to keep track of signs: as the q-to-q sepa-
ration increases their energies decrease, with more and more
of the energy instead stored in the intermediary string. At
the maximal separation there would be no energy left for the
quarks, and the string tension would then start to pull them
together again, so that they would perform an oscillatory
motion often referred to as a “yo-yo” motion.

If there is enough energy, the string between an original
q0q0 pair may break by producing new qiqi pairs, where
the intermediate qi (qi ) are pulled towards the q0 (q0) end,
such that the original colour field is screened. This way the
system breaks up into a set of n colour singlets q0q1 −q1q2 −
q2q3 − · · · − qn−1q0, that we can associate with the primary
hadrons. Each qiqi pair is produced with zero energy and
momentum at its common vertex, since the string does not
contain any local concentrations of energy. The energy and
momentum of a hadron hi = qiqi+1 therefore is provided by
the string intermediate to the qiqi and qi+1qi+1 breaks. This
gives Ehi = κ(zi − zi+1) and pz,hi = κ(ti − ti+1). Note that
zi > zi+1 since q0 is moving in the +z direction. If boosted
to a frame where t ′i = t ′i+1, i.e. where the hadron is at rest,
one obtains mhi = E ′

hi
= κ(z′i − z′i+1).

Unlike the intermediate vertices, the q0q0 pair starts with
non-vanishing energy at the origin. The equivalent vertex for
the q0 instead is where it has lost its energy, which (in the
massless approximation) occurs at t = z = Eq0(t = 0)/κ .
This vertex can be used as the starting point for a recur-
sive procedure, where the location of each consecutive vertex
can be reconstructed from the E and pz of the intermediate
hadron. Knowing the momenta of all hadrons it is therefore
possible to reconstruct all qiqi production vertices, or the

other way around. Hadrons do not have a unique definition
of a production “vertex”, being extended objects, but a con-
venient choice is the average of the qiqi ones on either side
of it [26]. Alternatives include an early or late choice, where
the backward or forward light cones of the two qiqi vertices
cross.

Several issues have here been swept under the carpet, since
they do not directly affect the key relationship between the
energy–momentum and the space–time pictures. One issue
is that quarks with non-vanishing mass or p⊥ should move
along hyperbolae E2 − p2

z = m2 + p2⊥ = m2⊥. When pro-
duced inside a string they have to tunnel out a distance before
they can end up on mass shell. This tunnelling process gives a
suppression of heavier quarks, like s relative to u and d ones,
and an (approximately) Gaussian distribution of the trans-
verse momenta. Effective equivalent massless-case produc-
tion vertices can be defined, e.g. by replacing m by m⊥ in
relations between E and pz . Another issue is that the above
notation only allows for meson production. Baryons can be
introduced e.g. by considering diquark–antidiquark pair pro-
duction, where a diquark is a colour antitriplet and thus can
replace an antiquark in the flavour chain.

Having simultaneous knowledge of both the energy–
momentum and the space–time picture of hadron production
violates the Heisenberg uncertainty relations. In this sense the
string model should be viewed as a semiclassical one, and
there is no perfect way around that. Smearing factors will be
introduced to largely remove the tension for the transverse
degrees of freedom, and somewhat reduce it for the other
ones. Either way, this semiclassical model does not introduce
any clear systematic biases. Hence, there is no big problem in
practice, since we are interested in average effects obtained
by Monte Carlo sampling over a wide range of possible early
histories.

The real practical hurdle is to go on from a simple straight
string to a larger string system. Consider e.g. e+e− →
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γ ∗/Z0 → qqg. In the limit where the number of colours
is large, the NC → ∞ approximation [40], a string will be
stretched from the colour of the q to the anticolour of the g,
and then on from the colour of the g to the anticolour of the
q, Fig. 1b. To first approximation the two string pieces each
could be viewed as a boosted copy of a simple qq system.
The problems arise around the gluon kink, as follows. We
already noted that a q/q turns around when it has lost its
energy. When the same thing happens for a gluon, however,
it is instead replaced by a new expanding string region made
out of inflowing momentum from the q and q. Therefore there
are actually three string regions in which breaks can occur,
and the third one is especially important in the limit of a low-
energy gluon. Note that QCD favours the emission of soft
gluons, and that additionally a gluon is pulling out two string
pieces and therefore loses energy twice as fast as a quark, so
such third regions contribute a fair fraction of all hadron pro-
duction. For systems with more than one intermediate gluon
the string motion becomes even more complicated.

A framework to handle energy and momentum sharing
in such complicated topologies was developed in Ref. [41],
and was then extended to reconstruct matching space–time
production vertices in [26]. (An earlier extension in [42]
included several of the same main features, but could not
handle as complicated systems as required for LHC appli-
cations.) Again it can be described as a recursive procedure,
starting from one end of the string system, but now with addi-
tional rules how to pass from one string region to the next.
The reader is referred to Ref. [26] for details.

In addition to the main group of open strings stretched
between qq endpoints, there are two other common string
topologies. One is a closed gluon loop, which can be viewed
as an open string (with at least one intermediate gluon) where
the q and q endpoints are fused into a single gluon, which
closes the colour flow. Once an initial q0q0 breakup has been
picked somewhere along the string, at random (within given
rules), the further handling devolves back into the open string
framework. The other is the junction topology, represented
by three quarks moving out in a different directions, each
pulling out a string behind itself. These strings meet at a
common junction vertex, to form a Y-shaped topology. The
junction moves by the net pull of the string, and is at rest
only in a frame where the opening angle between each quark
pair is 120◦. Also in this case there may be gluons on the
string between a quark and the junction. Each of the three
legs may be hadronized according to the same basic rules as
above, with some special care needed where they meet at the
junction, around which a baryon is formed to carry the net
baryon number of the system.

There is one further aspect added to the framework pre-
sented so far. For the energy–momentum picture in a qq sys-
tem we started out with a pure two-dimensional representa-
tion in (E, pz) space, but then added random Gaussian p⊥

kicks motivated by the tunnelling mechanism. Alternatively
we could have motivated such fluctuations by the uncer-
tainty relationship: a string could be expected to have a radius
roughly

√
2/3 that of the proton, since if r2

p = 〈x2 + y2 + z2〉
then 〈x2 + y2〉 = (2/3)r2

p . Either argument gives p⊥ kicks of
the order 0.3 GeV for each qiqi pair, consistent with data. By
contrast, the basic machinery sets all qiqi production vertices
to have x = y = 0, which gives an unreasonably perfect
lineup of the hadrons. For the studies in [26] we therefore
introduced a Gaussian (x, y) smearing with a width accord-
ing to the expressions above, and will continue to do so. By
the additional smearing to be introduced in the next section,
which partially might overlap, some reduction of the width
would be motivated, however.

Unfortunately, complications may arise in multiparton
systems, notably for those hadrons that have their two defin-
ing qiqi vertices in two different string regions, meaning there
is no unique separation between transverse and longitudinal
degrees of freedom. Occasionally this may give unreason-
ably large positive or negative τ 2 = t2 − x2 − y2 − z2. A
few safety checks have been introduced to catch and correct
such mishaps as well as possible.

2.2 Multiparton interaction vertices

The framework described above assumes that all partons start
out from the same space–time production vertex, as would
be the case e.g. in e+e− → Z0 → qq. In pp the collid-
ing hadrons are extended objects, however. The Lorentz-
contracted hadrons pass through each other at a fairly well-
defined time, conventionally t = 0, but over a transverse
region of hadronic sizes. In the overlap region several parton-
parton interactions can occur, as described by the MPI frame-
work in Pythia [23,24].

The probability for an interaction at a given transverse
coordinate (x, y) can be assumed related to the time-
integrated overlap of the parton densities of the colliding
hadrons in that area element. Let the partons be described by
a Lorentz contracted probability distribution PLC(x, y, z),
which in its rest frame reduces to a spherically symmetric
P(r) with r2 = x2 + y2 + z2. Setting the two incoming
beam particles A and B to move along the z axis with veloc-
ity ±v, separated by ±b/2 in the x direction, where b is the
impact parameter, this overlap (“eikonal”) reads

O(x, y; b) ∝
∫ ∫

PLC,A

(

x − b

2
, y, z − vt

)

× PLC,B

(

x + b

2
, y, z + vt

)

dz dt

∝
∫

PA

(

x − b

2
, y, zA

)

dzA

×
∫

PB

(

x + b

2
, y, zB

)

dzB, (2)
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the latter by suitable variable transformation. The outcome
is a Lorentz invariant expression depending on b [23,24].
The answer can be further simplified in case of a Gaussian
distribution P(r) ∝ exp(−r2/r2

0 ):

O(x, y; b) ∝
∫

exp

(

(x − b/2)2 + y2 + z2
A)

r2
0

)

dzA

×
∫

exp

(

(x + b/2)2 + y2 + z2
B)

r2
0

)

dzB

∝ exp

(

−2r2⊥
r2

0

)

exp

(

− b2

2r2
0

)

, (3)

where r2⊥ = x2 + y2. That is, for a Gaussian proton the
overlap region is an azimuthally symmetric Gaussian, with
no memory of the collision plane, and the total overlap is a
Gaussian in b. The r0 parameter can be approximately related
to the proton radius rp by 〈r2〉 = 〈x2 + y2 + z2〉 = 3r2

0 /2 =
r2

p . The default in Pythia is a constant proton radius value
rp ≈ 0.85 fm for the distribution of partons. With increasing
energy, and a related increase in the number of MPIs per
collision, the effective edge of interacting partons is pushed
outwards and thus collision cross sections can go up.

The shape of the probability distribution P(r) for the pro-
ton is not well known, and a Gaussian ansatz is only one of
several reasonable model choices. It is a special case in that
it gives an azimuthally symmetric overlap region. For other
shapes, the collision region may be elongated either out of
or in to the collision plane. The former typically occurs for a
distribution with a sharper proton edge, e.g. a uniform ball,
P(r) ∝ Θ(r0 −r), where Θ is the step function, which gives
rise to the almond-shaped collision region so often depicted
for heavy-ion collisions. The latter shape instead occurs for
distributions with a less pronounced edge, such as an expo-
nential, P(r) ∝ exp(−r/r0).

In the Pythia MPI machinery the overlap distribution
O(b) = ∫ ∫ O(x, y; b) dx dy can be chosen and tuned
according to a few different forms. The current default is
O(b) ∝ exp((b/b0)

p) with p = 1.85, i.e. close to but not
quite Gaussian. A similar shape and tune is obtained with a
double Gaussian P(r), where a smaller-radius second Gaus-
sian can be viewed as representing hot spots inside the proton.
In both cases a stronger-than-Gaussian peaking of O(b) at
b = 0 is required to get a sufficiently long tail out to largest
charged multiplicities in LHC and Tevatron minimum-bias
events.

The P(r) and O(b) distributions as described so far are
likely to be significant simplifications, however. If one views
the evolution from a simple original parton configuration via
initial-state cascades into a set of interacting partons, then
there are likely to arise complicated patterns and correla-
tions. One such framework is presented in Ref. [43], where
an implementation of Mueller’s dipole model [44,45] for the

two colliding hadrons are used to assign MPI production ver-
tices. These then turn out to give clearly non-isotropic distri-
butions. In the future the relevant code for these assignments
will be made available, but using it comes at a cost in terms
of a considerably slower event generation.

For now, we have therefore settled for a simplified frame-
work with enough flexibility for our purposes. In it the MPIs
locations by default are selected according to the Gaussian
exp(−2r2⊥/r2

0 ), but optionally this can be modified in either
of two ways. Either the x coordinates are scaled by a factor
rε and the y ones by 1/rε , or else the Gaussian is multiplied
by a ϕ modulation factor

dN

dϕ
∝ 1 + ε cos(2ϕ). (4)

Here rε > 1 or ε > 0 means an enhancement in the collision
plane and rε < 1 or ε < 0 out of it. Asymmetries in the
spatial distribution also arise from the Monte Carlo sampling
of a finite number of MPIs, and these may be even more
important.

This machinery is used to select the (x, y) coordinates
of the MPI vertices at t = z = 0. Only a fraction of
the full beam-particle momentum is carried away by the
MPIs, leaving behind one or more beam remnants [46]. These
are initially distributed according to the basic exp(−r2⊥/r2

0 )

shape around the center of the respective beam. By the ran-
dom fluctuations, and by the interacting partons primarily
being selected on the side leaning towards the other beam
particle, the “center of gravity” will not be located at the
x = ±b/2, y = 0 positions originally assumed. All the
beam remnants will therefore be shifted so as to ensure that
the energy-weighted sum of colliding and remnant parton
locations is where it should be. As a small improvement on
a uniform shift, remnants located closer to the other remnant
are shifted more, so as to deplete the overlap region more.
This is achieved by assigning each remnant a weight

(

1 + b

rp
exp

(±x

rp

))−1

(5)

proportional to its eventual shift, where x is relative to the
respective beam center with the other beam displaced ∓b
in the x direction. Shifts are capped to be at most a proton
radius, so as to avoid extreme spatial configurations, at the
expense of a perfectly aligned center of gravity.

Not all hadronizing partons are created in the collision
moment t = 0. Initial-state radiation (ISR) implies that some
partons have branched off already before this, and final-state
radiation (FSR) that others do it afterwards. These partons
then can travel some distance out before hadronization sets
in, thereby further complicating the space–time picture, even
if the average time of parton showers typically is a factor of
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five below that of string fragmentation [26]. We will not trace
the full shower evolution, but instead include a smearing of
the transverse location in the collision plane that a parton
points back to. Specifically, a radiated parton is assigned a
location at t = 0 that is smeared by Δr⊥ relative to its mother
parton according to a two-dimensional Gaussian with a width
inversely proportional to its p⊥. The constant of proportion-
ality can be set freely, but should obviously be such that
Δr⊥ p⊥ ∼ h̄. So as not to obtain unreasonable Δr⊥ shifts,
the p⊥ is set to be at least 0.5 GeV in this context, comparable
to the cut-off scale of the FSR showers. No attempt is made
to preserve the center of gravity during these fluctuations.

The partons produced in various stages of the collision
process (MPIs, ISR, FSR) are initially assigned colours
according to the NC → ∞ approximation, such that dif-
ferent MPI systems are decoupled from each other. By the
beam remnants, which have as one task to preserve total
colour, these systems typically become connected with each
other. Furthermore, colour reconnection (CR) is allowed to
swap colours, partly to compensate for finite-NC effects, but
mainly that it seems like nature prefers to reduce the total
string length drawn out when two nearby strings overlap each
other. When such effects have been taken into account, what
remains to hadronize is one or more separate colour singlet
systems of the character already described in Sect. 2.1.

There is one key difference, however, namely that the
strings now can be stretched between partons that do not
originate from the same vertex. Even in the simplest case, a
q connected with a q from a different MPI, there is a new
situation not studied previously, where the vertex separation
should be equivalent to a piece of string already at t = 0. For
the energy–momentum picture it is traditionally assumed that
its effects are sufficiently small that they can be neglected.
If the effects of a 1 fm ≈ 1 GeV special term is to be spread
over many hadrons, then the net effect on each hardly would
be noticeable.

For the space–time picture we do want to be more careful
about the effects of the transverse size of the original source.
The bulk of the effects determining the hadronic production
vertices do come from the framework of Sect. 2.1, and there-
fore we will be satisfied if we can introduce a relevant amount
of smearing on hadron production, without necessarily fully
describe effects for the individual hadron. This is achieved
as follows.

For a simple qq string, such as in Fig. 1a, the relevant
length of each hadron string piece is related to its energy. For
a given hadron, define Ehq (Ehq) as half the energy of the
hadron plus the full energy of all hadrons lying between it
and the q (q) end, and use this as a measure of how closely
associated a hadron is with the respective endpoint. Also let
r⊥q (r⊥q) be the (anti)quark transverse production coordi-

nates. Then define the hadron production vertex offset to be

Δr⊥h = Ehq r⊥q + Ehq r⊥q

Ehq + Ehq

= (Etot − Ehq) r⊥q + Ehq r⊥q

Etot
, (6)

relative to what a string motion started at the origin would
have given.

This procedure is then generalized to more complicated
string topologies. In a q − g1 − g2 − · · · − q string, one may
define Ehq as above. If Ehq < Eq + Eg1/2 the hadron is
viewed as produced between the q and g1, and the offset can
be found as above, only with Eq replaced by Eg1/2. If instead
Eq + Eg1/2 < Ehq < Eq + Eg1 + Eg2/2 then the excess
energy Ehq − Eq − Eg1/2 determines the admixture of r⊥g1

and r⊥g2 , and so on, stepping through region after region, for
hadron after hadron, until the q end is reached. For junction
topologies the same kind of approach can be used to iterate
from each leg towards the central junction. The two lowest-
energy legs are considered first, and an r⊥ towards which
the third string is iterated is formed by the relative unused
energy fractions of the first two. That way a junction baryon
can receive contributions from all three legs.

There are two obvious shortcomings. Firstly, the approach
does not take into account the higher regions, handled in the
complete string motion, e.g. made up out of q and g2 momen-
tum, where the hadron offset could be a more complex combi-
nation of three different parton offsets. Secondly the sharing
according to energy is not Lorentz covariant. Nevertheless,
we believe this approach to provide a sensible approximation
to the smearing effects one may expect. There is also a third,
less obvious problem, namely what to do with closed gluon
loops. There the hadronization is begun at a random point,
where the location of this point currently is not stored any-
where. The algorithm as presented so far will start at another
point and therefore give a mismatch. We have not consid-
ered this a big issue for now, since the default CR algorithm
will dissolve almost all such closed loops, and again the key
issue is to provide some relevant amount of smearing without
attaching too deep a meaning to each separate correction to
the dominant hadronization picture.

2.3 The space–time picture of hadronic rescattering

By the procedure outlined so far, each primary produced
hadron has been assigned a production vertex x0 = (t0, x0)

and a four-momentum p = (E,p). In our description, we
assume as a starting point that the latter defines its continued
motion along straight trajectories x(t) = x0 + (t − t0)p/E .

Consider now two particles produced at x1 and x2 with
momenta p1 and p2. Our objective is to determine whether
these particles will scatter and, if so, when and where. To
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this end, the collision candidate is studied in the center-of-
momentum frame of the two particles. We define the impact
parameter b to be the transverse distance and the interaction
time as the time of closest approach in this frame. The b is
equivalent with the covariant transverse distance used e.g. by
UrQMD, but we need to take into account how particles are
created in time and how that relates to the candidate interac-
tion time.

Specifically, if this interaction time is before the creation
time of either particle, i.e. if they are already on the way
apart from each other when the later particle is produced, we
assume that they cannot rescatter. Otherwise, the probability
P of an interaction is a function of the impact parameter
b, the center-of-mass energy, and the two particle species.
There is no solid theory for the b dependence of P , so we
will consider two different shapes.

The default model is a Gaussian dependency,

P(b) = P0e
−b2/b2

0 , (7)

where P0 is referred to as the opacity, a free parameter that
is 0.75 by default, and the characteristic length scale is

b0 =
√

σ

P0π
, (8)

where σ is the cross section. An opacity below unity and a
smooth fall-off is consistent with the interpretation of elastic
scattering data [47]. It is assumed that the only dependency
on the energy and the particle species is through σ , which
will be discussed in great detail in Sect. 3. Typical values of
b0 are around 1–2 fm for the most common processes.

An alternative model is a grey disk with interaction prob-
ability

P(b) = P0 Θ(b − b0), (9)

where Θ is the Heaviside step function. The P0 = 1 case
gives the black disk limit used in most other programs, such
as UrQMD and SMASH. b0 is chosen so that

∞∫

0

2πb P(b) db = σ. (10)

This normalization ensures that if b is chosen uniformly on a
large disk, the total probability of an interaction is the same
for both models. In reality, with a finite effective region, one
may expect the Gaussian shape to give fewer scatterings.

If it is determined that the particles will interact, the inter-
action time is defined as the time of closest approach in the
rest frame. The spatial component of the interaction vertex
depends on the character of the collision. Elastic and diffrac-
tive processes can be viewed as t-channel exchanges of a

pomeron (or reggeon), and then it is reasonable to let each
particle continue out from its respective location at the inter-
action time. For other processes, where either an interme-
diate s-channel resonance is formed or strings are stretched
between the remnants of the two incoming hadrons, an effec-
tive common interaction vertex is defined as the average of
the two hadron locations at the interaction time. In cases
where strings are created, be it by s-channel processes or by
diffraction, the hadronization starts around this vertex and is
described in space–time as already outlined. This means an
effective delay before the new hadrons are formed and can
begin to interact. For other processes such as elastic scat-
tering, this formation time is not inherent, but there is the
option to explicitly add an effective formation time before
new interactions are allowed. One reason for why one would
want this is that it takes some time for the new hadrons to
break free from the volume formerly occupied by the moth-
ers and form their own new (spatial) wave functions. Further
details are given in Sect. 4.6.

In actual events with many hadrons, each hadron pair is
checked to see if it fulfils the interaction criteria and, if it
does, the interaction time for that pair (in the CM frame of the
event) is recorded in a time-ordered list. During rescattering,
unstable particles can decay, with the fastest-decaying ones
having lifetimes comparable to the timescales of rescattering.
For these particles, an invariant lifetime τ is picked at random
according to an exponential exp(−τ/τ0), where τ0 = 1/Γ0

is the inverse of the nominal width. For simplicity, we use
this expression even for off-shell particles. This is done for
each short-lived hadron, and the resulting decay times are
inserted into the same list. Then the scattering or decay that
is first in time order is simulated unless the particles involved
have already interacted/decayed. This produces new hadrons
that are checked for decays and rescatterings against the other
particles, and any such potential interactions are inserted into
the time-ordered list. This process is repeated until there are
no more potential interactions. Note that if the new particles
are created from string fragmentation, they can in principle
rescatter against each other, even if they come from the same
string. There is an option to allow or disallow rescattering
between particles that are produced next to each other on the
same string, which is set to disallow by default since such
effects implicitly are already included in current tunes with-
out rescattering. Particles produced otherwise, for example
in elastic scatterings or particle decays, are ensured not to
rescatter against each other.

There are some obvious limitations to the approach as
outlined so far:

Firstly, the procedure is not Lorentz invariant, since the
time-ordering of interactions is defined on the lab frame of
the full collision, i.e. the CM frame for LHC events. We do
not expect this to be a major issue: even if the time order-
ing would change depending on the frame chosen, it would
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not matter in choosing between two potential interactions
with a spacelike separation, and only for a fraction of those
with a timelike one. This has been studied and confirmed
within existing rescattering approaches [34,36,48]. We will
also present a check in Sect. 4.4, where we confirm that the
effect on observable quantities is negligible. More consistent
time orderings have been proposed [49–51], but are nontriv-
ial to implement and have not been considered here.

Secondly, currently only collisions between two incom-
ing hadrons are considered, even though in a dense envi-
ronment one would also expect collisions involving three or
more hadrons. If one considers a closed system in thermal
equilibrium, where 2 → n processes are allowed, indeed
n → 2 at commensurate rates would be a natural ingredient
to maintain that balance. The system is rapidly expanding
in pp collisions, so for our current studies it should not be
a big issue. One place where it could make a difference is
in baryon rates, where pair annihilation outweighs pair cre-
ation within the current setup. In the future 3 → n collisions
could be identified by isolating cases where a hadron has two
very closely separated potential 2 → n interactions, which
then could be joined into one. This would also introduce an
alternative argument for a formation time, as the borderline
between separated and joined processes.

Thirdly, introducing rescattering will change the shape of
events, which of course is the point of the exercise, but it also
affects distributions we do not want to change. One example,
related to the second limitation above, is that the charged
multiplicity will increase, which has to be compensated by a
tuning of other parameters. In this article only a simple retune
is made specifically for pp. More properly one should go back
to e+e− annihilation events and retune the fragmentation of a
simple string there, with rescattering effects included, before
proceeding to pp. In e+e− → Z0 → qq events, however, the
bulk of rescattering should be related to nearest neighbours
in rank, i.e. in order along the string. So, if such rescatterings
are not simulated, then fragmentation parameters should not
have to be changed significantly. A shortcut to avoid a bigger
retune therefore is to forbid nearest-rank neighbours from
rescattering also in pp events, and this is one model variation
we will consider.

Fourthly, all possible subprocesses are assumed to share
the same impact-parameter profile. In a more detailed mod-
elling the t-channel elastic and diffractive processes should
be more peripheral than the rest, and display an approxi-
mately inverse relationship between the t and b values.

Finally, the model only considers the effect of had-
rons colliding with hadrons, not those of strings collid-
ing/overlapping with each other or with hadrons. The for-
mer is actively being studied within Pythia, as a shov-
ing/repulsion of strings [16,52]. Both shove and rescattering
act to correlate the spatial location of strings/hadrons with a
net push outwards, giving rise to a radial flow. In reality the

two could be combined, with shove acting before hadroniza-
tion and rescattering after. The two effects do not add linearly,
however, since an early shove leads to a more dilute system
of strings and primary hadrons, and thereby less rescattering.
Thus it will become a nontrivial task to distinguish the effects
of the two possible phenomena, not made any simpler if also
string–hadron interactions were to be included in the mix.

3 The hadronic rescattering model

A crucial input for deciding whether a scattering can occur is
the total cross section. Once a potential scattering is selected,
it also becomes necessary to subdivide the total cross section
into a sum of partial cross sections, one for each possible
process, as these are used to represent relative abundances
for each process to occur. In this section, we discuss the
possible processes we have implemented in our framework,
including how their partial cross sections are calculated, and
how those processes are simulated.

As we will see, a staggering amount of details enter in such
a description, owing to the multitude of incoming particle
combinations and collision processes. To wit, not only “long-
lived” hadrons can collide, i.e. π , K, η, η′, p, n, Λ, Σ , Ξ ,
Ω , and their antiparticles, but also a wide selection of short-
lived hadrons, starting with ρ, K∗, ω, φ, Δ, Σ∗ and Ξ∗.
The possible processes that can occur depend heavily on the
particle types involved. In our model, the following types of
processes are available:

– Elastic interactions are ones where the particles do not
change species, i.e. AB → AB. In our implementa-
tion, these are considered different from elastic scatter-
ing through a resonance, e.g. π+π− → ρ0 → π+π−
(in reality there are likely to be interference terms that
make this separation ambiguous). In experiments, usu-
ally all AB → AB events are called elastic because it
is not possible to tell which underlying mechanism was
involved. Therefore, when comparing with data for elas-
tic cross sections, we do include contributions from res-
onance formation.

– Resonance formation typically can be written as AB →
R → CD, where R is the intermediate resonance. This
can only occur when one or both of A and B are mesons. It
is the resonances that drive rapid and large cross-section
variations with energy, since each (well separated) reso-
nance should induce a Breit–Wigner peak.

– Annihilation is specifically aimed at baryon–antibaryon
collisions where the baryon numbers cancel out and gives
a mesonic final state. This is assumed to require the anni-
hilation of at least one qq pair. This is reminiscent of what
happens in resonance formation, but there the final state
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is a resonance particle, while annihilation forms strings
between the outgoing quarks.

– Diffraction of two kinds are modelled here: single AB →
XB or AB → AX and double AB → X1X2. Here
X represents a massive excited state of the respective
incoming hadron, and there is no net colour exchange
between the two sides of the event.

– Excitation can be viewed as the low-mass limit of diffrac-
tion, where either one or both incoming hadrons are
excited to a related higher resonance. It can be written
as AB → A∗B, AB → AB∗ or AB → A∗B∗. Here
A∗ and B∗ are modelled with Breit–Wigners, as opposed
to the smooth mass spectra of the X diffractive states.
In our description, this has only been implemented in
nucleon-nucleon interactions.

– Nondiffractive topologies are assumed to correspond to a
net colour exchange between the incoming hadrons, such
that colour strings are stretched out between them after
the interaction.

All total and partial cross sections have a nontrivial energy
dependence. Whereas we have made an effort to cover a fair
amount of detail, it is not feasible to give all processes full
attention in the first release of this framework, not even in
the proportionately few cases where experimental data exist.
Our hope is that since rescatterings will not be observable
on an individual basis and instead the average effects they
induce is what will be of interest, we can live with imperfec-
tions here and there so long as they do not generate non-
negligible systematic biases. Refinements could be intro-
duced over time without affecting the rescattering machinery
as such. In Sect. 4.5 we will study the rates of different parti-
cle types participating in rescattering and at which energies
most interactions occur, giving an indication of which cross
sections are the most important for future refinement.

In the continued discussion, some common simplifications
should be noted.

– Cross sections are invariant when all particles are
replaced by their antiparticles. Whenever we talk about
any particular cross section for two particles, it is always
implicit that the exact same procedure is used to calculate
the cross section for their antiparticles.

– Many measured cross sections approximately scale in
accordance with the Additive Quark Model (AQM)
[53,54], i.e. like the product of the number of valence
quarks in the two incoming hadrons. The contribution of
heavier quarks is scaled down relative to that of a u or
d quark, presumably by mass effects giving a narrower
wave function. Assuming that quarks contribute inversely
proportional to their constituent masses, this gives an
effective number of interacting quarks in a hadron of

Table 1 Summary of total cross section descriptions. Here, N is used
to denote a nucleon (p or n), B a baryon and M a meson

Case Method

NN, < 5 GeV Fit to data

NN, > 5 GeV HPR1R2 parameterization

Other BB AQM (UrQMD) parameterization

pp, < 5 GeV Ad hoc parameterization

pp, > 5 GeV HPR1R2 parameterization

Other BB AQM rescaling of pp

ππ and Kπ Parameterization based on [56–58]

NK−, NK
0

Resonances + ad hoc parameterization

NK+, NK0 Ad hoc parameterization

MB/MM with resonances Resonances + elastic

Other MB/MM HPR1R2 if available, otherwise AQM

approximately

nq,AQM = nu + nd + 0.6 ns + 0.2 nc + 0.07 nb. (11)

For lack of alternatives, many unmeasured cross sections
are assumed to scale in proportion to this.

– The neutral Kaon system is nontrivial, with strong inter-

actions described by the K0/K
0

states and weak decays
by the K0

S/K0
L ones. The oscillation time is of the order

of the K0
S lifetime, far above the rescattering scales

of interest in this article. Therefore an intermediate
“decay” invariant time of 109 fm has been introduced

for K0/K
0 → K0

S/K0
L, well above hadronization scales

but also well below decay ones. While the bulk of Kaon
production is into the strong eigenstates, a fraction is into
the weak ones, such as φ → K0

S K0
L. Cross sections for

K0
S/K0

L with a hadron are given by the mean of the cross

section for K0 and K
0

with that hadron. When the colli-
sion occurs, the KS,L is converted into either K0 or K

0
,

where the probability for each is proportional to the total
cross section for the interaction with that particle.

Finally, keep in mind that we here concern ourselves with
cross sections for collisions at low CM energies, with most
rescatterings occurring below 2 GeV, and very few above
5 GeV, as we will see.

3.1 Total cross sections

The total cross section is needed by the rescattering algorithm
to determine how close two hadrons need to be to interact. In
the rescattering algorithm, each hadron pair (including the
products of rescatterings) is checked for potential interac-
tions, and thus naively O(n2

primary) total cross sections must
be calculated. Quick checks that can exclude a fair fraction of
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Fig. 2 Total and elastic cross sections for some important processes. The elastic cross sections for pπ− and pK− include elastic scattering through
a resonance, AB → R → AB, which notably do not correspond to the elastic cross sections calculated in Sect. 3.2
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Table 2 Parameters for the HPR1R2 parameterization, for processes
used in our rescattering framework. All numbers are in units of mb. N

stands for either p or n and K stands for either K− or K
0

Process P R1 R2

pp/nn 34.41 13.07 − 7.394

pn 34.71 12.52 6.66

pp 34.41 13.07 7.394

Nπ∓ 18.75 9.56 ± 1.767

pK 16.36 4.29 3.408

nK 16.31 3.70 1.826

all pairs at an early stage are essential to keep time consump-
tion at a manageable level. In particular, we have made an
effort to ensure that total cross sections can be calculated effi-
ciently, and that partial cross sections are only calculated for
a hadron pair when it has been determined that they should
interact.

A brief summary of total cross sections is provided in
Table 1. Figure 2 shows the total and elastic cross sections
for some important processes where PDG data is available
[55].

3.1.1 Baryon–baryon

For NN collisions below 5 GeV, the total cross section is
found by an interpolation of experimental data [55]. The nn
cross section is taken to be the same as the pp one. Above
5 GeV, the cross section is found using the HPR1R2 param-
eterization [55],

σtot = P + H log2
(
s

s0

)

+ R1

(
s

s0

)η1

+ R2

(
s

s0

)η2

, (12)

where:

– P , R1 and R2 depend on the specific particle species, as
shown in Table 2.

– s0 depends on the masses of A and B and is given by
(mA+mB +M)2, where M = 2.1206 GeV is a constant.

– H = π(h̄c)2/M2 = 0.2720 mb, η1 = 0.4473 and η2 =
0.5486 are constants.

In other baryon–baryon cases, the cross section is found using
the AQM ansatz as

σAQM,AB = (40 mb)
nq,AQM,A

3

nq,AQM,B

3
, (13)

where the nq,AQM factors are defined in Eq. (11), and 40 mb
is the historically assumed energy-independent pp/pp total
cross section contribution from a critical pomeron. This

Table 3 Parameter values for the ππ and Kπ cross sections, as used
in Eq. (16). In the case of Kπ , I refers to the sum of the third isospin
components for the incoming particles. The two I = 1/2 cases are
equivalent, except for Clebsch–Gordan coefficients

Case βP βρ β2

π±π∓ 0.83 1.01 0.013

π±π0 0.83 0.267 − 0.0267

π0π0 0.83 0.267 0.053

π±π± 0.83 − 0.473 0.013

Kπ±, I = 1/2 6.9032 8.2126 0.0

Kπ0, I = 1/2 3.4516 4.1063 0.0

Kπ, I = 3/2 10.3548 − 5.76786 0.0

neglects reggeon and other low-energy contributions that are
process-specific and therefore not easily modelled.

3.1.2 Baryon–antibaryon

For BB, we parameterize the cross section as a function of
the absolute value of the center-of-mass momentum pCM of
the colliding hadrons. For pp at low energies, we use the
UrQMD parameterization [34], which for p < 6.5 GeV is
given by

σtot(pp)=
{

271.6e−1.1 p2
if p < 0.3,

75.0 + 43.1 p−1 + 2.6 p−2 − 3.9 p else.

(14)

For pCM > 6.5 GeV, we use HPR1R2. The boundary at
6.5 GeV has been chosen to give a smooth transition between
the two regions, and is slightly different from the boundary
at 5 GeV used by UrQMD. For all other baryon–antibaryon
interactions, the total cross section is found using the same
parameterization, but rescaling by an AQM factor,

σtot(BB) = σAQM,BB

σAQM,pp
σtot(pp), (15)

where σAQM is given in Eq. (13).
In some cases no quarks can annihilate, e.g. for Δ++(uuu)

+Δ
+
(ddd). In these cases, the annihilation cross section (see

Sect. 3.4) is subtracted from the total one.

3.1.3 Meson–hadron

The most common meson–meson interactions are ππ and
Kπ . In these two cases, the total cross sections are found
using the calculations of Peláez et al. [56–58]. Below
1.42 GeV for ππ and below 1.8 GeV for Kπ , values of
the total cross sections have been tabulated and are found
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Fig. 3 Total and elastic cross sections for ππ and Kπ interactions.
We see that resonances exist for π+π− and K+π−, but not for π+π+
and K+π+. The elastic cross sections include cross sections for elastic
scattering through a resonance. For π+π−, the elastic data comes from
Refs. [59,60], while total data comes from Ref. [61] in the 0.3–1.4 GeV
range and from Refs. [62,63] in the 1.25–2.5 GeV range. We see here
that the cross section in the energy range around 1.0–1.4 GeV does
not fit very well with the data from Ref. [61]. Other frameworks like

SMASH [36] use a different cross section that more closely matches
this data, and this discrepancy may be addressed in future work. Note
that in some theory calculations the concept of elastic is extended to
related processes, e.g. π+π− → π0π0 may count as part of a broader
ππ → ππ “elastic” process. If we had taken that viewpoint, the elastic
cross sections for π+π− and K+π− would have equalled the total cross
section at low energies

using interpolation, for the sake of efficiency. Above these
thresholds, the cross section is parameterized as

σtot(AB) = 4π2
(

βPs + βρsαρ + β2sαR2
)

√

(s − (mA − mB)2)(s − (mA + mB)2)
, (16)

where, αρ = 0.53, αR2 = 2αρ − 1 = 0.06, and the β

parameters depend on the exact process as given in Table 3.
Total and elastic cross sections for ππ and Kπ interactions
are shown in Fig. 3.

For some of the remaining meson–hadron interactions,
explicit resonances are implemented. In these cases, at low
energies (below ∼ 2 GeV, depending on the specific inter-

action), the total cross section is given by the elastic cross
section plus the sum of resonance cross sections,

σtot = σel +
∑

resonances

σres, (17)

where σel and σres will be described in the following sections.
There is an option in Pythia to also calculate the ππ and Kπ

cross sections this way instead of using the default methods
of Refs. [57,58], but there are two drawbacks of using this
approach. In terms of physics, it is less accurate because
it does not take into account interference effects between
resonances. And in terms of computational efficiency it is
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Table 4 Summary of elastic
cross section descriptions. Here,
N is used to denote a nucleon, B
a baryon and M a meson. For
Kπ below 1.8 GeV, I refers to
the sum of the third isospin
component of the incoming
particles

Case Method

pp/nn/pn, < 5 GeV Fit to data

pp/nn/pn, > 5 GeV CERN/HERA parameterization

Other BB AQM parameterization

pp UrQMD parameterization

Other BB Rescaling pp

ππ , < 1.42 GeV Parameterization by Peláez et al. [57]

ππ , > 1.42 GeV Constant 4 mb

Kπ , I = 1/2, < 1.8 GeV No scattering except through resonances

Kπ , I = 3/2, < 1.8 GeV Parameterization by Peláez et al. [58]

Kπ , > 1.8 GeV Constant 1.5 mb

Nπ , < 4 GeV Fit to data

Nπ , > 4 GeV CERN/HERA parameterization

NK Ad hoc parameterization

Other MB/MM AQM parameterization

slower, which can have a significant impact on performance
that is exacerbated by how common these interactions are.

One important case with a lot of data is p/n + K−/K
0
.

Summing resonances does not accurately match data at low
energies, so an additional contribution has been added, based
on formulae from UrQMD. Furthermore we add an explicit
elastic contribution not present in UrQMD in order to get
an even better fit. Above 2.16 GeV, we use the HPR1R2

parameterization. The case p/n + K+/K0 is also important
and much data exists, but in this case resonances cannot form
since there are no common quark–antiquark pairs to annihi-
late. We use an ad hoc parameterization to fit these cross
sections to data at low energies. Specifically, the total cross
section is given by 12.5 mb below 1.65 GeV and 17.5 mb
above 1.9 GeV, with a linear transition in the intermediate
range. The total and elastic cross sections for both these NK
cases are shown in Fig. 2.

The last special case is Nπ which uses the HPR1R2

parameterization above the resonance region. All other cases
use the AQM parameterization above the resonance region.
For those processes where resonances are not available, AQM
is instead used at all energies.

3.2 Elastic scattering

In this section we discuss the directly elastic processes
AB → AB, leaving aside scattering through a resonance,
AB → R → AB. A summary of σel descriptions is pro-
vided in Table 4.

For pp, nn, and pn, the elastic cross section is fitted to PDG
data below 5 GeV [55], which is assumed to be the same as
the total cross section up to 2.1 GeV. Above 5 GeV, σel is
parameterized as a function of laboratory momentum plab,
according to the CERN/HERA parameterization [64] with

Table 5 CERN/HERA parameters

Case a b n c d

NN 11.9 26.9 −1.21 0.169 −1.85

pp 10.2 52.7 −1.16 0.125 −1.28

Nπ 0 11.4 −0.4 0.079 0

the general form

σHERA(p) = a + b pn + c log2 p + d log p, (18)

with parameters given in Table 5. For all other BB cases,
the elastic cross section is given by an elastic AQM-style
parameterization [34],

σAQM,el = 0.039 σ
3/2
AQM,tot. (19)

The CERN/HERA parameterization is also used for pp for
plab > 5 GeV, albeit with different parameters. Below this
lab momentum, we use another ad hoc parameterization from
UrQMD [34],

σel(pp) =
{

78.6 if p < 0.3,

31.6 + 18.3 p−1 − 1.1 p−2 − 3.8p else.

(20)

For all other baryon–antibaryon cases, the elastic cross sec-
tion is found by rescaling the pp cross section, using an AQM
factor in the same way as for total cross sections.

For elastic cross sections involving mesons, there are sev-
eral special cases. For ππ , we separate our calculation into
two regions, below and above 1.42 GeV, as for the total cross
section. Below, the purely elastic cross section is found by
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parameterizing the d-wave contribution from Peláez et al.
[56,57]. This parameterization can be seen in Fig. 3, where
it is equal to the total π+π+ cross section since no resonances
can be formed in that case. The other ππ cases get the same
contribution, except with a scale factor that depends on the
exact case. Above 1.42 GeV, a constant elastic cross section
of 4 mb is consistent with the parameterization of Ref. [57]
when the contribution from resonances is taken into account.
For Kπ , we divide the region into below and above 1.8 GeV.
Below this threshold, for total isospin I = 1/2, the whole
elastic cross section is well described by scattering through
a resonance. For total isospin I = 3/2, resonances cannot
form, and we instead use a parameterization by Ref. [58].
Above 1.8 GeV, we use a constant 1.5 mb for all cases.

In Nπ interactions, the non-resonant elastic cross section
vanishes below around 1.8 GeV. Between this energy and up
to 4 GeV, we add a non-resonant contribution by interpolating
data. Above 4 GeV, we use the CERN/HERA parameteriza-
tion.

The last special case is NK+/NK0. This uses a simple
fit to data, using 12.5 mb below 1.7 GeV and 4.0 mb above
2.5 GeV, with a linear transition in between. In all remaining
cases, the AQM parameterization given in Eq. (19) is used.

The angular distribution for non-resonant elastic scatter-
ing is specified by the selection of the t value according to
an exponential exp(Belt), where the slope is given by

Bel = 2bA + 2bB + 2α′ ln

(
s

s0

)

. (21)

Here bA,B is 2.3 GeV−2 for unflavoured baryons and
1.4 GeV−2 for mesons, α′ = 0.25 GeV−2 is the slope of
the pomeron trajectory, and s0 = 1/α′ = 4 GeV2 [65,66].
The bA,B values are rescaled by AQM factors for strange or
heavier hadrons, while α′ is assumed universal.

Note that, strictly speaking, the σtot, σel, Bel and ρ (the
ratio of the real to imaginary parts of the forward scatter-
ing amplitude) should be connected by the optical theorem.
Here we make no attempt to model ρ or to exactly fulfil
the optical theorem, which would have been quite messy in
the low-energy resonance region. Note that an L = 0 res-
onance would decay isotropically, meaning a more compli-
cated overall angular distribution when interference between
elastic and resonance contributions is considered. We have
checked, however, that the optical theorem is approximately
obeyed above the resonance region, assuming that ρ is not
giving large effects.

3.3 Resonance formation

Explicit resonance formation has been implemented for ππ ,
Kπ , Nπ , Nη, Nω, Σπ , ΣK, Λπ , ΛK, and Ξπ . This includes
all isospin configurations of these particles where resonances

Table 6 Implemented meson resonances, including nominal mass
(GeV) and width (MeV), and branching ratios for some main decay
channels

Particle id m0 Γ0 ππ KK Other

ρ q13 0.775 149 1.00 – ∼ 0

ρ(1700) 30q13 1.720 250 0.18 0.09 0.73

f0(500) 9000221 0.475 550 0.99 – 0.01

f0(980) 9010221 1.000 50 0.78 0.22 –

f2 225 1.275 185 0.84 – 0.16

Particle id m0 Γ0 Kπ Other

K∗0 313 0.896 49 1.00 ∼ 0

K∗+ 323 0.892 51 1.00 ∼ 0

K∗(1410) 1003q3 1.414 232 0.09 0.91

K∗
0(1430) 103q1 1.430 270 1.00 –

K∗
2(1430)0 315 1.432 109 0.50 0.50

K∗
2(1430)+ 325 1.426 99 0.50 0.50

K∗(1680) 303q3 1.717 320 0.39 0.61

Table 7 Implemented nucleon and Delta resonances, including nomi-
nal mass (GeV) and width (MeV), and branching ratios for some main
decay channels

Particle id m0 Γ0 Nπ Nη Nω Other

N(1440) 202q12 1.440 350 0.66 – – 0.34

N(1520) 102q14 1.515 115 0.67 – – 0.33

N(1535) 102q12 1.530 150 0.42 0.42 – 0.18

N(1650) 122q12 1.650 125 0.45 0.19 – 0.36

N(1675) 102q16 1.675 150 0.53 – – 0.47

N(1680) 202q16 1.685 120 0.68 – – 0.32

N(1700) 112q14 1.720 200 0.11 – 0.19 0.70

N(1710) 212q12 1.710 100 0.12 0.30 0.03 0.55

N(1720) 212q14 1.720 250 0.09 0.02 0.21 0.68

Δ(1232) qqq4 1.232 117 1.00 – – ∼ 0

Δ(1600) 20qqq4 1.600 320 0.14 – – 0.86

Δ(1620) 11qqq2 1.630 140 0.31 – – 0.69

Δ(1700) 12qqq4 1.700 300 0.28 – – 0.72

Δ(1905) 21qqq6 1.880 330 0.10 – – 0.90

Δ(1910) 22qqq2 1.900 300 0.24 – – 0.76

Δ(1920) 22qqq4 1.920 260 0.13 – – 0.87

Δ(1950) 20qqq8 1.930 285 0.78 – – 0.22

exist (e.g. Σ+π−, but not Σ−π−). For the formation of a
particular resonance R the cross section is given by a non-
relativistic Breit–Wigner [55]

σAB→R = π

p2
CM

(2SR + 1)

(2SA + 1)(2SB + 1)

× ΓR→ABΓR

(mR − √
s)2 + 1

4Γ 2
R

, (22)
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Table 8 Implemented strange baryon resonances, including nominal
mass (GeV) and width (MeV), and branching ratios for some main
decay channels

Particle id m0 Γ0 NK Σπ Λπ Other

Λ(1405) 102132 1.405 50 – 1.00 – –

Λ(1520) 102134 1.520 16 0.46 0.43 – 0.11

Λ(1600) 203122 1.600 150 0.39 0.62 – –

Λ(1670) 103122 1.670 35 0.29 0.46 – 0.26

Λ(1690) 103124 1.690 60 0.25 0.30 – 0.45

Λ(1800) 123122 1.800 300 0.33 0.20 – 0.46

Λ(1810) 213122 1.810 150 0.33 0.24 – 0.43

Λ(1820) 203126 1.820 080 0.74 0.14 – 0.13

Λ(1830) 103126 1.830 95 0.06 0.48 – 0.46

Λ(1890) 213124 1.890 100 0.27 0.06 – 0.67

Λ(2100) 302138 2.100 200 0.52 0.09 – 0.39

Σ(1385)− 3114 1.387 39 – 0.12 0.88 –

Σ(1385)0 3214 1.384 36 – 0.12 0.87 0.01

Σ(1385)+ 3224 1.383 36 – 0.12 0.88 –

Σ(1660) 203qq2 1.660 100 0.20 0.40 0.40 –

Σ(1670) 103qq4 1.670 60 0.15 0.85 – –

Σ(1750) 113qq2 1.750 90 0.25 0.04 0.28 0.43

Σ(1775) 103qq6 1.775 120 0.44 0.03 0.19 0.33

Σ(1915) 203qq6 1.915 120 0.10 0.44 0.44 0.02

Σ(1940) 113qq4 1.940 220 0.10 0.15 0.15 0.60

Σ(2030) 203qq8 2.030 180 0.22 0.08 – 0.70

Particle id m0 Γ0 Ξπ ΛK ΣK Other

Ξ∗− 3314 1.535 9.9 1.00 – – –

Ξ∗0 3324 1.532 9.1 1.00 – – –

Ξ(1820) 1033q4 1.823 24 0.15 0.65 0.15 0.02

Ξ(2030) 2033q6 2.025 25 – 0.20 0.80 –

where S is the spin of each particle, pCM is the CM momen-
tum of the incoming particles, ΓR→AB is the mass-dependent
partial width, and ΓR is the total mass-dependent width of
R, found by summing the partial widths. The partial widths
of a particle at mass m are given by UrQMD as

ΓR→AB(m) = ΓR→AB(m0)
m0

m

〈

p2l+1(m)
〉

〈

p2l+1(m0)
〉

× 1.2

1.0 + 0.2 〈p2l (m)〉
〈p2l (m0)〉

, (23)

wherem0 is the nominal mass of the particle andΓR→AB(m0)

is the nominal width, both known from experiment, and l is
the angular momentum of the outgoing two-body system.
The final factor ensures that widths do not blow up at large
masses. The phase space factors are given by

〈

p2l+1(m)
〉

=
∫∫

p2l+1
CM A(mA) A(mB) dmA dmB, (24)

where

pCM =
√

(m2 − (mA + mB)2)(m2 − (mA − mB)2)

2m
(25)

and A(m) are the mass distribution functions, given by a
Breit–Wigner,

A(m) = 1

2π

Γ (m)

(m2 − m2
0)

2 + 1
4Γ 2(m)

, (26)

which reduces to A(m) = δ(m −m0) for particles with zero
width. Note that although the mass distribution depends on
mass-dependent widths, which again depend on the mass
distribution of other particles, there is no circular dependency
since particle widths can only depend on the widths of lighter
particles.

Implemented resonances are shown in Tables 6, 7 and 8.
All data has been taken from Ref. [55]. The tables show the
nominal mass, nominal width (in units of MeV), branching
ratios for channels where resonances can form, and the sum
of branching ratios of the other channels, as implemented in
Pythia. The resonance channel branching ratios are summed
over the possible isospin configurations of the outgoing par-
ticles, and should be multiplied by the relevant Clebsch–
Gordan coefficient to get the actual branching ratio for a
specific configuration. Particle IDs are also shown, with ‘q’
indicating either an up- or a down quark in a particle with
several isospin states. If the different isospin states have well-
known differing properties (e.g. for Σ∗+ vs. Σ∗0)), each state
is shown separately. The IDs are based on the numbering
scheme of Ref. [55, Section 43]. For the relevant particle
properties that determine the IDs of baryons, see Tables 15.5
and 15.6 of Ref. [55].

The choice of which resonances include is primarily based
on how well-established their existence is. However, when
detailed cross section data exists, especially for Nπ , the
choice of which resonances to include has been made to fit
our total cross section to data reasonably well. In particu-
lar, this means that some heavy resonances like N(2190) are
excluded, even though they have been established with high
confidence to exist. The reason for this is that the expression
for the cross section, Eq. (22), does not take into account
interference between resonances. This is valid at low energies
where resonances are relatively well separated, but breaks
down at higher energies where there is much overlap.

Several uncertainties enter these tables, and many parti-
cles are subject to change in the future. Firstly, many branch-
ing ratios are highly uncertain, and those values should be
taken as educated guesses. It is not clear at this point how
sensitive measured observables are to moderate changes in
branching ratios, but one may hope that effects largely can-
cel to give small effects overall. Secondly, particle IDs are
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assigned based on particle properties that are not always defi-
nitely established. Examples include Λ(1810), Ξ(1820) and
Ξ(2030), where Ref. [67] proposes different assignments.
Thirdly, the list of processes with explicit resonances could
be extended in future updates, e.g. to include πρ collisions.

Figure 4 shows the resonant cross sections for some impor-
tant cases. For the ππ cases there is a small elastic cross
section below 1.42 GeV, corresponding to a d-wave contri-
bution. For K+π− there is no direct elastic cross section
at low energies, but a significant fraction of the resonances
formed will decay back to the initial state particles, cf. Fig. 3.
We also observe a discontinuous behaviour at some points.
One reason for this is that resonance particles are assigned a
restricted mass range outside which they cannot be formed,
which is particularly noticeable for example for pπ0 → Δ+
at 2.0 GeV. Another reason for a non-smooth behaviour is
the fact that the total cross section is parameterized using the
more sophisticated machinery of [56–58] and the resonance
cross sections are scaled to sum to this value. This is espe-
cially noticeable for π+π− → ρ0, where the total cross sec-
tion is significantly larger than the sum of resonance cross
sections in the range around 1.0–1.2 GeV, and is why the
cross section for π+π− → ρ0 has a second peak in that
region instead of looking like a regular Breit–Wigner. Both
these kinds of discontinuities are visible in the K+π− cross
sections, at the K ∗ cutoff at 1.2 GeV.

One exceptional case is the formation of f0(500) reso-
nances in π+π− or π0π0 interactions. The nature of the
f0(500) meson is not fully understood and it has certain
exotic properties, notably its width is about the same as its
mass. For this reason, Eq. (22) does not describe its forma-
tion well. We find the relevant cross sections by interpolating
values calculated based on the work by Peláez et al. [56,57].
After the f0(500) has been produced, it is treated as any other
meson, including in its decay.

The formula for mass-dependent partial widths works only
for two-body decays. These are the dominant ones for most
resonances we consider, but some hadrons have three- or
four-body decays, for instance ρ0 → π+π−π+π−. Even
though we do not allow resonances to form from multibody
interactions, the partial widths of these decays are still rele-
vant since the total width appears in Eq. (22). For such parti-
cles, we calculate the mass-dependent partial widths for the
two-body channels according to Eq. (23), and assume that the
multibody channels have a constant width for the purposes
of calculating the total width.

In the space–time description, the resonance is created
at the average location of the two incoming hadrons at the
interaction time in the collision CM frame. The resonance
is then treated as any unstable particle with a mean lifetime
that is assumed to be τ = 1/Γ (m0), even if the resonance
is off-shell. If all decay channels of the resonance are two-
body decays, then Eq. (23) is used to calculate the branching

ratios. In this case, the masses of the outgoing particles are
picked according to

dΓR→AB ∼ p2l+1
CM A(mA) A(mB) dmA dmB . (27)

If there is one or more multibody decay channels, our descrip-
tion does not give reliable branching ratios. In this case, the
particle is decayed using the existing Pythia machinery, as
if it was an ordinary particle.

3.4 Annihilation

In BB collisions the baryon number can be annihilated, so
that only mesons remain in the final state. For pp, below
2.1 GeV, annihilation counts for all inelastic processes, so
below this threshold,

σann = σtot − σel. (28)

Above the threshold, it is given by a parameterization by
Koch and Dover [68],

σann = 120
s0

s

(
A2s0

(s − s0)2 + A2s0
+ 0.6

)

, (29)

where s0 = 4m2
p and A = 0.05 GeV. For other BB, this is

rescaled in the same way as for the total cross section. Note
that the cross section is taken to be the same regardless of
whether the baryons have one, two or three quarks in com-
mon, but if there are none then currently no annihilation is
assumed, even though in principle it would be possible to
decompose a BB system with no qq pairs in common into
three separate qq strings. Figure 5 shows the cross sections

for pp, Δ0Σ
0

and Δ++Σ
+

.
When an annihilation process occurs, one or two quark–

antiquark pairs are annihilated. If two or more pairs are avail-
able, the probability for a second annihilation is given by a
free parameter, by default 0.2, to represent a small but existing
rate. No complete annihilation of all three pairs is performed,
since the rate presumably is small and since it then would be
necessary to recreate a new pair, making little net difference.
The pair(s) to be annihilated is (are) chosen uniformly among
all possible combinations. If only one quark pair remains,
a single string is stretched between the q and q, along the
original collision axis. If two pairs remain, a random pair-
ing is done to form two separate strings. The procedure for
sharing momentum is similar to the one described below in
Sect. 3.6. The possibility of having a single string stretched
between a diquark–antidiquark pair is omitted, since then a
new baryon–antibaryon pair would be produced.
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Fig. 4 Resonant cross sections for some important cases, with partial cross sections for each resonance. For pπ0 and Σ+π− there are many
resonances, and we have divided them into groups for readability. The “other” cross sections include elastic, diffractive and non-diffractive
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Fig. 5 Partial cross sections for pp, Δ0Σ
0

and Δ++Σ
+

. We see that

Δ0Σ
0

is simply a rescaling of the pp case, except it gets different diffrac-
tive and non-diffractive contributions because pp implements explicit

resonances. For Δ++Σ
+

annihilation is not possible, so the annihila-
tion cross section is subtracted from the total, significantly changing its
shape

3.5 Diffractive processes

Diffractive cross sections in the continuous regime are calcu-
lated using the SaS (Schuler and Sjöstrand) ansatz [66,69],
as described further in the following. The basic version of
SaS is designed to deal only with processes involving p, p,
π , ρ, ω and φ (as needed for pp/γ p/γ γ collisions), and only
for collision energies above 10 GeV. It is here extended to
all baryons by applying an AQM rescaling factor to the cor-
responding p cross sections. For mesons a similar rescaling
to π (= ρ) cross sections is performed, except that here φ is
retained as the template for ss interactions. The η and η′ cross
sections thus are the appropriate mixes of π and φ ones.

The differential cross section for single diffraction AB →
XB is, in SaS, taken to be of the form

dσXB ∝ dM2
X

M2
X

(

1 − M2
X

s

)

exp(BXB t) dt, (30)

where

BXB(s) = 2bB + 2α′ ln

(

s

M2
X

)

, (31)

with bB and α′ as for elastic scattering. The constant of pro-
portionality involves hadron–pomeron and triple-pomeron
couplings, specified for the few template processes and then
multiplied by AQM factors. The diffractive mass spectrum
is taken to begin at MX,min = mA +2mπ = mA +0.28 GeV
and extend to the kinematical limit MX,max = ECM − mB ,
while t can take values within the full allowed range [29].
Above ECM,min = 10 GeV the integrated cross section has
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been parameterized. Below this scale, our studies show that
a shape like

σXB(ECM) = σXB(ECM,min)

×
(

ECM − MX,min − mB

ECM,min − MX,min − mB

)0.6

(32)

provides a good representation of the behaviour down to the
kinematic threshold. Note that mA and mB are the actual
masses of the colliding hadrons, not those of the correspond-
ing template process.

Single diffraction AB → AX is obtained by trivial anal-
ogy with AB → XB. For double diffraction AB → X1X2

the SaS ansatz cross section reads

dσXX ∝ dM2
1

M2
1

dM2
2

M2
2

(

1 − (M1 + M2)
2

s

)

×
(

s m2
p

s m2
p + M2

1 M2
2

)

exp(BXX t) dt, (33)

where

BXX (s) = 2α′ ln

(

e4 + s s0

M2
1 M2

2

)

, (34)

again with s0 = 1/α′. For the behaviour below 10 GeV, our
studies suggest that

σXX (ECM) = σXX (ECM,min)

×
(

ECM − MX1,min − MX2,min

ECM,min − MX1,min − MX2,min

)1.5

(35)

is a suitable form.
So far we only considered the continuum production,

which dominates for large diffractive masses. For small
masses, diffractive cross sections can also include the forma-
tion of explicit resonances, and the contribution from these
should be added to the continuum contribution. In our frame-
work, this can occur as NN → NN∗ or NN → NΔ∗ (sin-
gle diffractive), or NN → ΔN∗ or NN → ΔΔ∗ (double
diffractive), and similarly when one baryon is replaced by
its antibaryon. Higher excitations are implicitly part of the
continuum diffractive treatment and not considered here. The
cross section for AB → CD is given by Ref. [34]

σAB→CD = (2SC + 1) (2SD + 1)
1

s

〈pCD〉
〈pAB〉 |M|2, (36)

where S is the spin of each particle, M is the matrix element,
and

〈

pi j
〉

are phase space factors given by Eq. (24) (assuming
l = 0). In practice, this expression will sometimes lead to the
sum of partial cross sections being larger than the total one.
In those situations, we rescale the excitation cross sections
(leaving other partial cross sections unchanged) so that the
sum of partial cross sections is equal to the total.

For the matrix elements, we use the same as UrQMD [34].
For NN → NΔ it is given by

|M|2 = A
m2

ΔΓ 2
Δ

(s − m2
Δ)2 + m2

ΔΓ 2
Δ

, (37)

where mΔ = 1.232 GeV and ΓΔ = 0.115 GeV are the
nominal mass and width of Δ, and the coefficient is A =
40000. For NN → ΔΔ, the matrix element is a constant
|M|2 = 2.8. Finally, for the remaining classes, the matrix
element takes the form

|M|2 = A

(mC − mD)2(mC + mD)2 , (38)

where mC and mD are the nominal masses for the outgoing
particles (which will never be the same for these classes, so
the matrix element cannot diverge), and the coefficient A is
A = 6.3 for NN → NN∗, A = 12 for NN → NΔ∗, and
A = 3.5 for NN → ΔN∗ and NN → ΔΔ∗.

In Eq. (36), the only dependence on outgoing masses
comes from the phase space term. Thus, the masses of the
outgoing particles are distributed according to

dσAB→CD

dmCdmD
∼ pCM(ECM,mC ,mD) A(mC ) A(mD), (39)

from Eq. (24). The t behaviour is assumed to be given by
an exponential slope with the same BXB/BXX as in the
continuum single/double diffraction for the given diffractive
masses.

Calculating the integrals in Eq. (24) during event genera-
tion would be debilitatingly slow. Therefore, we tabulate the
cross sections for each process up to 8 GeV and use inter-
polation to get the total and partial excitation cross sections.
For energies above this threshold, the expansion

pCM = 1

2
ECM

(

1 − m2
C + m2

D

E2
CM

+ O(E−3
CM)

)

(40)

shows that pCM is approximately constant with respect to
mC and mD when ECM � m. At the same time, the mass
distributions A(m) vanish at large m. Thus, in this limit, the
phase factor can be approximated as

〈pCD〉 ≈ pCM(ECM,mC,0,mD,0)

×
∫

dmC A(mC )

∫

dmD A(mD). (41)

By integrating A ahead of time, the cross sections can be cal-
culated efficiently during run-time also above the tabulated
region.

For other incoming hadron combinations, we fall back
on the simpler smooth low-mass enhancement implemented
in SaS to compensate for the lack of explicit resonances.
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For AB → XB the differential cross section in Eq. (30) is
multiplied by a factor

cres
(mA + Mres,0)

2

(mA + Mres,0)2 + M2
X

. (42)

Here cres = 2 and Mres,0 = 2 GeV−mp have been chosen to
provide a decent description of the low-mass enhancement
in pp collisions at medium-high energies. For energies below
10 GeV this part of the cross section can be described in the
same spirit as the continuum part in Eq. (32), but the power is
changed from 0.6 to 0.3. Double diffraction can be handled
in the same spirit. Three terms contribute, where either side
A, side B or both are enhanced by a factor like Eq. (42). In
Eq. (35) the power is changed from 1.5 to 1.25 for the first
two and to 1.0 for the last one.

The kinematics of events is provided by the mass and t
selections outlined above. The decays of the explicit low-
mass resonances are assumed to be isotropic. In the other
cases a diffractive system is handled as a string stretched
between two parts of the incoming hadron. A baryon is split
into a diquark plus a quark at random, where the former/latter
is moving in the forwards/backwards direction in the rest
frame of the hadron. Here forwards is the direction the hadron
will be moving out along, once boosted to the collision CM
frame. A meson is correspondingly split into a quark plus an
antiquark, but here the choice of which is moving forwards is
taken to be random. The two string ends are given relative p⊥
kicks of nonperturbative size, however, such that the string
alignment along the collision axis is smeared.

Figure 6a shows all partial cross sections for pp collisions.
We see that the single diffractive cross section is very small
compared to other cross sections, and the double diffrac-
tive one almost vanishes. The excitation cross section is
here shown separately from the cross sections describing
diffraction in the continuous region. Note that below around
4.5 GeV, the excitation cross section is set equal to the dif-
ference σtot − σel instead of following the form given by
Eq. (36). The full shape of the excitation cross sections are
shown in Fig. 6b.

3.6 Nondiffractive processes

Nondiffractive cross sections are found by subtracting all
other partial cross sections from the total cross section,

σnondiff = σtot − σel − σdiff − σres − σann. (43)

At large energies the nondiffractive processes dominate the
total cross section, but at low energies they can have a small
or even vanishing cross section. Since it is defined as the dif-
ference between the total and the other partial cross sections,

it can sometimes have a fluctuating energy dependence with
no clear physics explanation.

A nondiffractive event is associated with the exchange of
a gluon between the two incoming hadrons, where the gluon
carries negligible momentum but leads to a rearranged colour
topology. To this end, each initial hadron is separated into a
colour (a quark or an antidiquark) part and an anticolour (an
antiquark or a diquark) part. For a baryon the selection of
the diquark part is done according to the SU (6) decompo-
sition (in three flavours times two spins), while the meson
subdivision is trivial. After the colour-octet gluon exchange,
the colour end of one hadron forms a colour singlet with the
anticolour end of the other hadron, and vice versa. (Cases
with more complicated colour-charge topologies are sup-
pressed and are neglected here.) This leads to two strings
being stretched out between the two octet-state “hadrons”.

Consider the collision in its rest frame, with hadron A (B)
moving in the +z (−z) direction. In that frame, the colour
and anticolour objects of each hadron are assumed to have
an opposite and compensating p⊥. This is chosen according
to a Gaussian with the same width as used to describe the p⊥
smearing in string breakup vertices. In the breakup context a
width of 〈p2⊥〉 ≈ (0.35 GeV)2 is motivated by a tunnelling
mechanism, but a number of that magnitude for the parton
motion inside a hadron could equally well be viewed as a
consequence of confinement in the transverse directions by
way of the Heisenberg uncertainty relations.

Including (di)quark masses, the transverse masses m⊥A1

and m⊥A2 of the two A hadron constituents are defined.
Next a zA value is picked that splits the A lightcone momen-
tum p+

A = EA + pzA between the two, p+
A1 = zA p

+
A and

p+
A2 = (1−zA)p+

A [46]. For a meson z = x1/(x1+x2), where
the xi are picked at random according to (1 − xi )0.8/

√
xi .

For a baryon first each of the three quarks are assigned
an xi according to (1 − xi )2.75/

√
xi . If zA is associated

with the diquark, made out of the first two quarks, then
zA = 2(x1+x2)/(2(x1+x2)+x3). Note that here the diquark
tend to take most of the momentum, not only because it con-
sists of two quarks, but also by an empirical enhancement
factor of 2. The p−

Ai can now be obtained from p+ p− = m2⊥,
and combined to give an effective mass m∗

A that the A beam
remnant is associated with: m∗2

A = m2⊥A1/z+m2⊥A2/(1− z).
The same procedure can be repeated for the B hadron, but
with p+ ↔ p−. Together, the criterion m∗

A + m∗
B < ECM

must be fulfilled, or the whole selection procedure has to
be restarted. (Technically, some impossible values can be
rejected already at earlier stages.) Once an acceptable pair
(m∗

A,m∗
B) has been found, it is straightforward first to con-

struct the kinematics of A∗ and B∗ in the collision rest frame,
and thereafter the kinematics of their two constituents.

Since the procedure has to work at very small energies,
some additional aspects should be mentioned. At energies
very near the threshold, the phase space for particle produc-
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(a) (b)

Fig. 6 a All partial cross sections for pp interactions. b Excitation cross sections, according to Eq. (36). Note the small jump at 8 GeV, at the
boundary between the tabulated and parameterized regions

tion is limited. If the lightest hadrons that can be formed
out of each of the two new singlets together leave less than
a pion mass margin up to the collision CM energy, then a
simple two-body production of those two lightest hadrons is
(most likely) the only option and is thus performed. There
is then a risk to end up with an unintentional elastic-style
scattering. For excesses up to two pion masses, instead an
isotropic three-body decay is attempted, where one of the
strings breaks up by the production of an intermediate uu or
dd pair. If that does not work, then two hadrons are picked
as in the two-body case and a π0 is added as third particle.

One reason why m∗
A+m∗

B < ECM might fail is if the con-
stituent transverse masses are too big. Thus, after a number
of failed attempts, their values are gradually scaled down to
increase the likelihood of success. This, on the other hand,
increases the risk of obtaining two strings with low invariant
masses. A further check is therefore made that each string
has a mass above that of the lightest hadron with the given
flavour content, and additionally that the mass excess is at
least a pion mass for one of the two strings.

The two strings can now be hadronized, but often one or
both have small masses. To this end the ministring frame-
work, used when at most two hadrons can be formed from
a string, has been extended to try harder. Several different
approaches are used in succession, until one of them works.
The order is as follows.

(1) Several attempts are made to produce two hadrons from
the string by a traditional string break in the middle.

(2) If not, a hadron is formed consistent with the endpoint
flavour content. Four-momentum is shuffled between it
and one of the partons of the other string, so as to put the
hadron on mass shell while conserving the overall four-

momentum. Since the string with lowest mass excess
is considered first, the two partons of the other string
should normally be available.

(3) If no allowed shuffling is found, then a renewed attempt
is made to produce two hadrons by a string break, but
this time the two lightest hadrons of the given flavour
content are chosen.

(4) If that does not work, one lightest hadron is formed from
the endpoint flavours and the other is set to be a π0.

(5) It still no success, then go back to forming one hadron,
but the lightest possible, and again shuffle momentum
to a parton.

(6) Finally, the problem may occur also for the string
with higher mass excess, i.e. after the first string was
hadronized, and possibly took some four-momentum in
the process. Then a collapse to one hadron (at random or
eventually the lightest) with the recoil taken by another
hadron is attempted.

3.7 The transition to high-energy processes

We have now described a framework for low energy hadron–
hadron interactions. Our motivation for doing this has been
to apply it to rescattering, but in principle, having this frame-
work means that it is now possible to generate events in
Pythia at these low energies. Despite all the technical details,
the structure of the resulting events is quite simple. At most
two objects (either hadrons or strings) are created in the first
step of the process. The strings are stretched out almost per-
fectly along the collision axis and fragment into hadrons with
only small nonperturbative p⊥ kicks.

This is in contrast to the high-energy framework used
to simulate the primary LHC pp collision, e.g. in inelastic
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nondiffractive processes. Here the multiparton interactions
machinery very much is based on perturbation theory, where
each interaction requires the use both of hard matrix elements
and parton distribution functions (PDFs), giving scattered
partons over a wide range of p⊥ scales, even if the lower
scales dominate. Many string pieces are stretched criss-cross
in the event, and fragment into the high-multiplicity initial
state that the rescattering framework will be applied to. If one
uses this perturbative framework at lower and lower energies
the average number of MPIs will decrease, as will their typ-
ical p⊥ scale. Gradually the idea of applying a perturbative
approach becomes less appealing. Technically the machin-
ery can be applied down to 10 GeV CM energy, but is then
highly questionable. Furthermore, many of the cross sections
described here do not scale correctly at higher energies. For
a high-energy pp/pp primary collision four different models
are available [70]. Only one of them explicitly covers some
more collision types, but extensions by AQM rescaling could
be possible.

Therefore it is tempting to interpolate between the two
descriptions. There is now such an option available. In it,
the fraction of perturbatively handled events rises from the
threshold energy Ethr = 10 GeV as

Ppert = 1 − exp

(

− ECM − Ethr

Ewid

)

, (44)

where Ewid = 10 GeV is a measure of the size of the tran-
sition region. This is actually the same form as already used
previously to transition between a nonperturbative and a per-
turbative description of diffraction, with the diffractive sys-
tem mass replaced by ECM [70,71].

How this transition works in practice is illustrated in
Fig. 7a, for the energy dependence of the charged multiplicity
in nondiffractive events. In this figure the difference between
the low-energy and high-energy model multiplicities is not
so large in the transition range 10–30 GeV, but the impor-
tance of the perturbative components obviously increases
with energy. Zooming in on the behaviour at the 10 GeV
threshold and at an energy above it, at 100 GeV, Fig. 7b–d
show some differential distributions. At 10 GeV the limited
phase space does not allow for high multiplicities, while a
longer perturbatively-induced tail is apparent at 100 GeV.
Nevertheless, the MPI activity is reflected in a shift towards
central rapidities and the presence of a high-p⊥ tail already
at 10 GeV.

The perturbative model results have been obtained with
the default Monash tune [72], which mainly is based on com-
parisons with LEP, Tevatron and LHC data. One should there-
fore be aware that the extrapolation to lower energies is not
without its problems. As an example, the key parameter of
the MPI framework is the p⊥0 one, that regularizes the diver-
gence of the perturbative 2 → 2 cross sections in the limit

p⊥ → 0. It is assumed to have an energy dependence that
scales like p⊥0 ∝ E p

CM (but more complicated forms could
be considered). The default values, with p = 0.215, gives
p⊥0 = 0.56 and 0.91 GeV, respectively, at 10 and 100 GeV. If
p is changed to 0.19, then instead p⊥0 = 0.66 and 1.02 GeV,
respectively, at the low energies, assuming a fixed p⊥0 value
at 7 TeV. The result of such a modest change is illustrated
in Fig. 7b–d. Qualitatively the difference to the low-energy
model remains, but quantitatively it is visibly reduced.

One may also note that the string drawing can be quite
different in the two cases. In the nonperturbative model the pp
events always are represented by two strings, each stretched
between a quark and a diquark. When MPIs are included, it
becomes frequent that two quarks are kicked out of the same
proton, more so at low energies where the high-x valence-
quark part of PDFs is probed. This leads to so-called junction
topologies, where the baryon number can wander more freely
in the event [73]. Technically, this makes the hadronization
of low-energy events more messy, and may require repeated
attempts to succeed.

In diffraction, the excited masses MX vary between events,
also for a fixed CM energy. To handle perturbative activ-
ity inside the diffractive system then would seem to require
a time-consuming re-initialization of the MPI framework
for each new diffractive system. Instead, at the beginning
of a run, an initialization is done for a set of logarithmi-
cally spaced diffractive masses, and numbers relevant for
the future generation are saved in arrays. By interpolation,
required numbers can then be found for any mass during the
subsequent event generation. This approach has now been
extended also to be available for nondiffractive processes, if
so desired. This means that pp collisions can be simulated
essentially from the threshold to LHC energies and beyond
without any need to re-initialize. The prize to pay is a some-
what longer initialization step at the beginning of a run, but
still in the range of seconds rather than minutes. One current
limitation is that it is numbers for the MPI generation that
are stored, so it is not now possible to pick a specific hard
process for handling in the same way.

Another limitation is that the perturbative framework
requires access to PDFs for the colliding hadrons, which
restricts us to p, n and (with big uncertainties) π . Additionally
PDFs are available for the photon and the pomeron, the lat-
ter used in diffraction, and in that sense they can be handled
on equal footing with hadrons. A further restriction is that
Pythia can only be set up for one combination of incoming
beams at a time, so as to handle the perturbative processes.
The simpler nonperturbative machinery used for rescatter-
ings has no such restriction, of course.
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(a) (b)

(c) (d)

Fig. 7 a Energy dependence of the average charged multiplicity in nondiffractive pp collisions. b–d Comparison of charged multiplicity, rapidity
and transverse momentum distributions for 10 and 100 GeV nondiffractive pp collisions

4 Model tests

In this section, we will study the properties of the rescattering
model. We start with studying how rescattering affects sim-
ple observables such as p⊥ spectra, charged multiplicity, jet
structure, and the potential for collective flow. We also look at
how event properties change when rescattering is performed
in a Lorentz boosted frame, in order to verify that the frame-
dependence described in Sect. 2.3 does not significantly alter
the final state.

Next, we look at the rates at which different particle types
participate in rescattering and the rates at which the different
types of processes occur. Finally, we consider the free param-
eters and model choices that have gone into the framework,
and study the effect of changing those.

4.1 Basic effects of rescattering

As the most basic check, Fig. 8 shows how charged multi-
plicity, rapidity spectra, transverse momentum spectra, and
invariant production times are affected by rescattering. We
see that rescattering increases charged multiplicity, which is
obviously expected when one considers the fact that we have
implemented 2 → n, n ≥ 3 interactions, but not interactions
involving multiple incoming particles. The rescatter-affected
hadrons have a broader multiplicity distribution than those
not involved: events that start out with a low number of pri-
mary hadrons have a smaller rescattering probability than
average, and vice versa.

In the same vein, the rescattered fraction is larger for cen-
tral rapidities, where there are more hadrons to begin with,
and this is also where inelastic rescatterings give a multi-
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(a) (b)

(c) (d)

Fig. 8 a Multiplicity, b rapidity, c transverse momentum, and d invari-
ant production time spectra of charged final-state hadrons, subdivided
into those that have been involved in rescatterings and those that have

not, in 13 TeV nondiffractive pp events. As reference a comparison is
also made with events without rescatterings

plicity increase. An interesting observation is that higher-p⊥
hadrons seldom participate in rescattering, Fig. 8c. The natu-
ral explanation is that these hadrons typically are produced at
larger transverse distances by (mini)jet fragmentation, where
the particle density is reduced by having fewer overlapping
MPI systems than at small r⊥. Notable is also the slight net
decrease at high p⊥ by rescattering, (over)compensated by
the increase at small p⊥. Finally, and quite logically, rescat-
tering kicks in with some delay in invariant time, since a
sufficient amount of primary hadrons have to be produced
first.

The point of introducing rescattering is to change some
event properties, but not all changes are relevant rescatter-

ing signals, since some could easily be compensated by a
retuning of many other parameters. In particular, the aver-
age (charged) event multiplicity is such a signal. Indeed, the
fact that it is changed by rescattering means that a retune is
necessary in order to restore it to the experimentally well-
known value. The MPI framework, which is the main driv-
ing force in generating the multiplicity spectrum, is suffi-
ciently uncertain to easily absorb the rescattering effects on
the multiplicity. More specifically, when we study the effects
of rescattering, the p⊥0 parameter of the MPI framework,
MultipartonInteractions:pT0Ref, is adjusted to
restore the average charged multiplicity in the η < 2.5 range
to the no-rescattering value. Its default value in Pythia is
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pT0Ref = 2.28 (GeV), and we have found that setting it
to pT0Ref = 2.345 restores charged multiplicity to the
correct value. Increasing pT0Ref also has the advantage
of partly restoring the 〈p⊥〉 decrease induced by the intro-
duction of 2 → 3 or more rescattering, without introducing
any spurious effects. We will use this value in all subsequent
studies, unless otherwise noted. In the future, a more detailed
retune would be desirable.

4.2 Jets

We have already argued that high-p⊥ particles are less
affected by rescattering than low-p⊥ ones, and hence jets
should remain essentially unchanged. This also turns out to
be the case. As an example, QCD two-jet production with
p⊥ > 200 GeV hard collisions at 13 TeV was studied, and
anti-k⊥ jets found for a 0.7 radius and a 25 GeV lower cut-off
[74]. We then find that the particle multiplicity inside a jet
with rescattering on is about 2% higher than with rescattering
off. This increase is almost uniformly spread from the cen-
ter to the periphery of the jet. The p⊥-weighted jet profile is
almost identical, however. Studying the jet rate itself, there is
a small net reduction in the number of jets when rescattering
is allowed, Fig. 9a. The difference is too small to be visible in
the jet p⊥ spectrum, Fig. 9b. A closer inspection shows that
the jet rate above 150 GeV, i.e. in the domain of the two hard
jets, is unchanged within statistics. Below that scale, how-
ever, i.e. mainly additional jets from parton showering, there
is a drop by about 2% in the rate. This is most likely related
to a slight leakage of hadrons out of the jet cone, shifting jet
energies ever so slightly downwards. Such tiny differences
could easily be tuned away, so in the end we conclude that
jet properties are not measurably affected.

4.3 Collective flow

One of the telltale signs of collective behaviour is an
anisotropy in the azimuthal angle of outgoing particle
momenta. Here we perform a preliminary study to see
whether rescattering can produce azimuthal flow at all.

In order to obtain a systematic flow, two things are
required: an initial spatial anisotropy and a mechanism
for collective behaviour. In this toy study an anisotropy is
obtained by selecting the primary pp collisions to have their
impact parameter aligned along the x axis, and choosing MPI
vertices according to a Gaussian distribution multiplied by
a ϕ modulation factor with ε = 0.5 (see Sect. 2.2). The
resulting x–y anisotropy of primary hadron production is
illustrated in Fig. 10a. This causes an elliptic flow, as shown
in Fig. 10b, where the ϕ angle of final particle momenta is
relative to the x axis (which we know to be our event plane).
By the symmetry of the initial anisotropy, the shape of the
spectrum should depend only on the acute angle to the event

plane, 0 < ϕ < π/2, and we reduce the spectrum to this
range to obtain better statistics.

The flow is aligned in the y-direction, consistent with the
higher density gradient in this direction. Results are binned
according to the charged multiplicity, which is correlated
with the impact parameter. A low multiplicity is associated
with peripheral events, for which the spatial anisotropy may
be strong, but collective behaviour is suppressed by the low
density. A high multiplicity, on the other hand, indicates a
central event with much rescattering, but a low impact param-
eter so a less strict azimuthal alignment. In our simple study
these two effects largely cancel to give comparable asymme-
tries independently of the multiplicity.

Unfortunately, the aforementioned study has been made
under the unrealistic advantage of a known event plane. In
practice one would rather study e.g. two-particle azimuthal
correlations. Furthermore, the initial anisotropy has been
made implausibly large for illustratory purposes. When the
simulation is repeated with more reasonable assumptions,
we no longer observe any signs of flow. Therefore this brief
study should be regarded as a proof of concept, and we hope
to return to flow studies in the context of heavy-ion collisions,
where a strong spatial anisotropy occurs naturally.

4.4 Lorentz frame dependence

The time ordering of rescatterings is not Lorentz invariant
but, we do not expect this to be a major issue, since most
potential rescatterings cannot influence each other. To con-
firm this more thoroughly, we boost the events by three units
of rapidity either along or transverse to the collision axis, per-
form rescattering in this boosted frame, then boost back after-
wards. Some results of performing this procedure, compared
with the ones in the normal CM frame, are shown in Fig. 11.
One may first note that the number of rescatterings and
their invariant mass distribution are essentially unchanged.
The rapidity spectrum of rescatterings however is somewhat
deformed by the forward boost, where rescatterings would
begin at around y = −3. Such rescatterings thus in part pre-
empt ones at larger times in that frame. The same applies for
the space–time pseudorapidity, η = (1/2) ln((t+z)/(t−z)).
If instead the boost is transverse, the effects on the y and
η spectra are even smaller. Here collisions on the −x side
of the event get an earlier start than those on the +x one,
giving a ±2% modulation in the azimuthal distributions of
rescatterings (not shown). These effects average out in other
distributions, however, so that the p⊥ and r⊥ = √

x2 + y2

rescattering spectra are almost unchanged by transverse and
longitudinal boost alike.

At the end of the day, the real test is whether observable
properties are affected or not. Figure 11e, f show that the
final-state charged-hadron rapidity and p⊥ spectra are almost
completely insensitive to the choice of rest frame. The same
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(a) (b)

Fig. 9 Production rates (a) and inclusive p⊥ spectra (b) of jets in 13 TeV pp collisions, as further described in the text. The uptick in the last bin
of b is because all jets with p⊥ > 500 GeV have been put there

(a) (b)

Fig. 10 a x and y coordinates of primary hadrons, showing an initial
anisotropy. b Azimuthal direction of momentum for outgoing hadrons,
binned according to charged multiplicity. The angle is the acute angle

to the event plane, ϕ ∈ [0, π/2]. The plot includes the spectrum for
the primary hadrons, which illustrates that there is no flow before a
collective behaviour has been induced by rescattering

also applies for other distributions we have studied, such as
the azimuthal dependence, or the separate π/K/p spectra.
The breach of Lorentz frame independence therefore is a
negligible issue for our studies.

4.5 Rescatter rates

In this section we study how common rescatterings are, both
overall and subdivided by hadron species and by process
types. The average number of rescatterings per (inelastic)
nondiffractive pp event is shown as a function of the col-
lision energy in Fig. 12a. It is compared to the primary

hadron multiplicity, i.e. the hadrons produced directly from
the fragmenting strings, and to the final charged multiplicity.
Note that these latter two are almost equal; the multiplic-
ity increase from the decays of primary hadrons is compen-
sated by the decrease from the exclusion of neutral parti-
cles. This largely holds also on an event-by-event level, so
we may use the observable charged multiplicity as a simple
measure of number of primary hadrons that may rescatter.
As an order-of-magnitude, the average number of rescat-
terings 〈nrescatter〉 is about half that of the primary multi-
plicity 〈nprimary〉. While the number of potentially colliding
pairs increases like n2

primary, the dashed line represents a fit
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Effects of modified time ordering on 13 TeV pp nondiffrac-
tive collisions, where ordering is either in the normal rest frame, or in
a frame boosted either longitudinally or transversely by three units of
rapidity. a Number of rescatterings. b Invariant mass distribution of

rescatterings. c Rapidity distribution of rescatterings. d Distribution in
η = (1/2) ln((t + z)/(t − z)) of rescatterings. e Rapidity distribution
of final charged hadrons. f Transverse momentum spectrum of final
charged hadrons
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(a) (b)

(c) (d)

Fig. 12 a Energy dependence of multiplicities in nondiffractive pp
collisions. b Primary hadron production in r⊥ = √

x2 + y2 at three
energies. c Distribution in the numbers of primary hadrons, charged

hadrons and rescatterings in the central |y| < 2.5 region of 13 TeV
nondiffractive pp collisions. d Multiplicity dependence of the number
of rescatterings in events as above

according to a much slower 〈nprimary〉1.2. The reason is that
the system size also increases with energy. Obviously so in
the longitudinal direction, but also in the transverse one, by
an increasing MPI perturbative activity spreading production
vertices over a larger transverse area, Fig. 12b.

Zooming in on the central rapidity region of 13 TeV non-
diffractive events, the different kinds of multiplicity distribu-
tions are displayed in Fig. 12c, and the rescattering rate as a
function of the primary or charged multiplicity in Fig. 12d. In
the latter, a simple fit 〈nrescatter〉 ∝ n1.3

primary has been inserted
to guide the eye, showing a similar scaling as for the energy
dependence. The power 1.3 also describes the dependence in
the event as a whole, without the |y| < 2.5 restriction.

With well over a hundred different hadron species that can
be produced, the number of different colliding hadron pairs
are in the thousands, even if most of them are quite rare. To
give some feel, Table 9 shows the most common groups of
hadron pairs. Here π represents all pions, K all Kaons (K±,

K0, K
0
, K0

S,L), N all nucleons (p, n, p, n), and so on. As
can be seen, ππ rescatterings dominate by far, constituting
about a third of all rescatterings, while π with anything else
constitutes another third. This highlights the importance of
accurate cross sections for processes involving pions.

Collisions are also characterized by which type of pro-
cess occurs, Table 10. The resonant, elastic and nondiffrac-
tive types dominate by far. Baryon–antibaryon annihilation
is small but not negligible for the baryon subclass of parti-
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Table 9 Number of collisions per 13 TeV nondiffractive pp event, of
different incoming particle combinations, where particles have been
grouped so as to avoid too fragmented a view. M represents other meson
species and B other baryon ones. All combinations with a rate below
0.1 have been summed into the “other” group

Incoming Rate Incoming Rate Incoming Rate

π + π 12.63 K + N 0.39 η/η′ + N 0.19

π + ρ 4.59 ρ + ρ 0.38 π + B 0.18

π + K 3.84 ρ + N 0.36 N + Δ 0.16

π + N 3.44 ρ + ω/φ 0.34 π + Σ∗ 0.15

π + ω/φ 2.08 ρ + η/η′ 0.30 ρ + Δ 0.14

π + η/η′ 1.80 π + f0(500) 0.29 η/η′ + ω/φ 0.14

π + K∗ 1.33 K + ω/φ 0.27 π + M 0.12

π + Δ 1.10 K + K 0.26 K + Δ 0.11

ρ + K 0.54 π + Λ 0.25 K∗ + N 0.11

π + Σ 0.46 ω/φ + N 0.24

N + N 0.46 K + η/η′ 0.23

K + K∗ 0.41 ρ + K∗ 0.20 Other 1.87

Table 10 Number of collisions of different types per 13 TeV non-
diffractive pp event

Process type Rate

Resonant 17.80

Elastic 14.08

Nondiffractive 6.92

Annihilation 0.49

Diffraction + excitation 0.05

cles. Diffraction and excitation require more phase space to
occur, and therefore become suppressed.

It is also interesting to study the invariant mass spectrum
of collisions, Fig. 13. There is a natural steep fall-off with
mass for two particles to come close to each other, because of
the way the fragmentation process correlates the space–time
and energy–momentum pictures. Near each mass threshold
there is also a phase-space suppression factor. On top of that
the individual cross sections can give a more serrated shape
for each collision type separately, mainly from resonance
contributions, but these largely average out in the overall
picture.

4.6 Model variations

As part of the new framework, several parameters and set-
tings have been introduced. In this section, we study how
changing these settings affects rescattering phenomenology.
In particular, as a simple and direct test, we present how each
main model setting impacts the average number of rescatter-
ings per event. In addition to these new settings, we also
study existing settings that could have an effect on rescatter-

ing. A summary of settings and their overall effects is given
in Table 11, with the average number of rescatterings for dif-
ferent variations shown in Table 12. In more detail, the effect
of the settings are as follows.

– Rescattering:impactModel describes how the
rescattering probability depends on the impact parameter
b. The default (1) is a Gaussian fall-off, while the alterna-
tive (0) is a sharp edge, see Eqs. (7) and (9). In a uniform
medium the two alternatives are normalized to result in
equal rescattering rates, as given by the cross section.
In practice we see that the Gaussian option gives more
long-range interactions, Fig. 14a, as expected, but over-
all a somewhat reduced rescattering rate. This is because
the particle density falls off from the central collision
axis, such that there are fewer pairs at large than at small
impact parameter to begin with. The fact that the Gaus-
sian option gives a lower rescattering rate means that
the loss of events in the important 0.3–0.7 fm region for
the Gaussian model is not compensated for by including
longer-range interactions.

– Rescattering:opacity is the rescattering proba-
bility at b = 0, i.e. P0 of Eqs. (7) and (9). A lower opacity
reduces the probability of close interactions, but increases
the range of interactions. This gives fewer rescatterings,
for the same reason as above.

– Rescattering:quickCheck enables a simple check
that tests whether two hadrons are moving away from
each other at their respective time of creation in the
CM frame of the event, and if so does not study further
whether a rescattering is possible. This is faster than the
more time-consuming full check, where the hadron pair is
boosted to their common rest frame and the earliest parti-
cle is offset to a common time of creation before checking
whether the hadrons move away from each other. Per-
forming the quick check first reduces the total execution
time by about a factor of two, since the number of hadron
pairs to consider in an LHC event may be of the order
of 10,000, whereof the vast majority are moving away
from each other by any criterion (note that the full check
is still performed on pairs that pass the simple check).
The simple check rejects about 5% of the collisions that
would have been accepted by the full check, but these
false rejections typically are close to the (unphysically
sharp) accept/reject border, and do not make a significant
impact on rescattering distributions. For these reasons the
quick check is on by default.

– Rescattering:nearestNeighbours allows
hadrons that are produced as nearest neighbours along
a string to rescatter against each other, see Sect. 2.3. The
number of rescatterings goes up when on, but net effects
do not change in proportion, since nearest-neighbour
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(a) (b)

Fig. 13 Invariant mass distributions of rescattering pairs in 13 TeV nondiffractive pp events. a Grouped by incoming hadron kinds. b Grouped
by process type. Line wobblings at low masses are caused by thresholds and the resonance structure, and only in the high-mass tails by limited
statistics

Table 11 List of model choices
and parameters used to study the
range of possible rescattering
effects, with their effect on the
rescattering rate. Parameter
names are as defined in the
Pythia user interface. See the
text for more detailed
information

Setting Default Effect on rescattering rate

Rescattering:impactModel 1 (Gaussian) Black disk gives more

Rescattering:opacity 0.9 Larger values give more

Rescattering:quickCheck On Turning it off gives more

Rescattering:nearestNeighbours On Turning it off gives less

Rescattering:tauRegeneration 1. Larger values give less

HadronVertex:mode 0 ±1 gives much more/less

HadronVertex:kappa 1. Larger values give more

HadronVertex:xySmear 0.5 No significant effect

PartonVertex:modeVertex 2 (Gaussian) Has a small effect

PartonVertex:ProtonRadius 0.85 Larger value gives less

PartonVertex:EmissionWidth 0.1 No significant effect

pairs are more likely to move in the same direction any-
way.

– Rescattering:delayRegeneration and
Rescattering:
tauRegeneration are based on the assumption that
it takes some formation time for a scattered hadron
to build up a new wave function, and that during that
time it has a reduced likelihood to scatter again. If
delayRegeneration is switched on, this time is
chosen at random according to an exponential distri-
bution with average proper time (in fm) given by the
tauRegeneration. Hadrons produced from string
fragmentation are not affected, since they get their time
offset from the hadronization process itself, roughly cor-
responding to an average τ of 1.5 fm. Setting τregen =
1 fm reduces the number of rescatterings by about 10%
relative to an instantaneous regeneration. The effect

seems to saturate however, and increasing it to 2 fm does
not make much further difference.

– HadronVertex:mode defines where the hadron ver-
tex is placed in string hadronization. By default, hadrons
are defined to be produced at the average location of
the two string breaks that define it (see Fig. 1). By set-
ting HadronVertex:mode = 1, the production ver-
tex is shifted forward in time to the point where the
two colour endpoints meet for the first time, and set-
ting it to −1 shifts it backwards in time by that same
amount. These variations have a significant effect on
the density of primary produced hadrons, changing the
number of rescatterings by about 50%. For this reason
we do not vary this setting in our studies, but instead
use HadronVertex:kappa, which gives similar but
milder effects, as explained below.
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– HadronVertex:kappa is the string tension, by default
κ ≈ 1 GeV/fm, Eq. (1). Increasing κ compresses the pro-
duction vertices and thus gives more rescattering. While
the concept of a string tension is central in the hadroniza-
tion framework, its exact value has not been relevant for
the energy–momentum-related properties of an event. We
allow for a generous ±20% variation to also cover some
uncertainty in how to define the hadron production ver-
tex, as described above.

– HadronVertex:xySmear is the width of a Gaussian
smearing of string breakup vertices in the plane per-
pendicular to the string, see Sect. 2.2. Increasing this
slightly increases the transverse offsets of the primary
produced hadron vertices, but does not have significant
overall effects on rescattering.

– PartonVertex:modeVertex picks the shape of the
overlap region between the two incoming protons, as used
to pick the location of MPI vertices, see Sect. 2.2. Differ-
ent shapes give some variation in rescattering features,
but they are small ones for most properties, and it is hard
to quantify the difference between the various shapes.
For this reason, we do not vary this setting in subse-
quent model tests. It is however a way to introduce spatial
anisotropy in the primary hadron distribution, which is
necessary for azimuthal flow.

– PartonVertex:ProtonRadius is the three-dimen-
sional proton radius, which then gets converted to a two-
dimensional one for the distribution of MPI production
vertices, Eq. (3). Increasing/reducing this by 0.15 fm will
increase/reduce the transverse radius of rescattering ver-
tices by about 0.10 fm, and higher values give a slightly
lower number of rescatterings.

– PartonVertex:EmissionWidth is the constant of
proportionality for smearing of the transverse produc-
tion vertices generated by partons showers, which are
assumed to be inversely proportional to the p⊥ of the
parton. Varying this within a reasonable range has no
significant effect on rescattering.

For comparison purposes, one nominal scenario is defined
as our best assumption on relevant settings, and in addition
two extremes with decreased or increased rescattering rate,
Table 13. For each case, pT0Ref has been tuned as shown
in the table in order to restore charged multiplicity.

The resulting variations of rescattering rates are shown
in Fig. 14b. The rate difference mainly arises around small
transverse radii, Fig. 14c (and early invariant times, not
shown). By contrast, in properties such as the transverse
momentum, Fig. 14d, or invariant mass of the collision sys-
tems (not shown), the variations more affect the normaliza-
tion than the shape of the distributions. Comparisons to data
will be given in Sect. 5.2.

Table 12 Average number of rescatterings per event,
when varying different settings individually. Events are
SoftQCD:nonDiffractive processes at 13 TeV, using
MultipartonInteractions:pT0Ref = 2.345

Setting nresc

Default 39.2

Rescattering:impactModel = 0 45.5

Rescattering:opacity = 0.8 37.3

Rescattering:opacity = 1.0 40.8

Rescattering:quickCheck = off 40.8

Rescattering:nearestNeighbours = off 25.4

Rescattering:tauRegeneration = 0.0 45.4

Rescattering:tauRegeneration = 2.0 38.4

HadronVertex:mode = -1 64.0

HadronVertex:mode = 1 21.7

HadronVertex:kappa = 0.8 32.8

HadronVertex:kappa = 1.2 44.4

HadronVertex:xySmear = 0.3 40.2

HadronVertex:xySmear = 0.7 39.1

PartonVertex:modeVertex = 1 39.6

PartonVertex:protonRadius = 0.7 39.3

PartonVertex:protonRadius = 1.0 39.1

PartonVertex:EmissionWidth = 0.0 39.6

PartonVertex:EmissionWidth = 0.2 39.2

5 Comparison with data

While the standard Pythia generally gives a good descrip-
tion of LHC pp data (and also of pp data at lower energies,
see e.g. Ref. [75]), there are some well-known discrepancies.
One such is the shape of low-p⊥ spectra of pions, Kaons and
protons. Especially the poor description of the pion spectrum
for p⊥ < 0.5 GeV has direct consequences for a number of
other distributions [76], e.g. when the pseudorapidity spec-
trum is studied either for p⊥ > 0.1 GeV or p⊥ > 0.5 GeV
charged particles. In this section, we study how these spec-
tra are changed by rescattering, using Rivet [77] to generate
plots and comparisons to data. Results are shown initially for
the default rescattering model, then for alternative parameter
choices within this model, and eventually for model varia-
tions of the primary hadron production. Finally, we briefly
consider the p⊥ spectrum for the Λ0/K0

S ratio. As before,
the pT0Ref parameter is retuned to ensure the same charged
multiplicity in all scenarios studied.

5.1 The effects of rescattering on transverse momentum
spectra

Figure 15 shows the p⊥ spectra for pions, Kaons and protons,
with and without rescattering. We see that rescattering gives
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(a) (b)

(c) (d)

Fig. 14 a The impact-parameter distribution of rescatterings for the different impact models. b Number of rescatterings per event. c, d Distribution
of rescatterings in r⊥ and p⊥. Results are for 13 TeV nondiffractive pp events

Table 13 List of model settings
used to explore the range of
possible rescattering effects.
Here “increase” and “decrease”
denote alternatives with more or
less amount of rescattering
relative to the default “nominal”
values

Setting Decrease Nominal Increase

Rescattering:impactModel 1 1 0

Rescattering:opacity 0.8 0.9 1.0

Rescattering:quickCheck On On Off

Rescattering:nearestNeighbours Off On On

Rescattering:tauRegeneration 2. 1. 0.

HadronVertex:kappa 0.8 1. 1.2

PartonVertex:ProtonRadius 1.0 0.85 0.7

MultipartonInteractions:pT0Ref 2.305 2.345 2.385
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Fig. 15 p⊥ spectra for π±, K± and p/p, compared with data from ALICE [4,8]

a better fit to data for pions and protons, especially at low
p⊥, while for Kaons rescattering seems to slightly move the
p⊥ spectrum away from data. The overall effects are more
clearly quantified in Fig. 16a, which shows the average p⊥
for various particle species. This figure confirms that there is
an improvement for π and p, and a slight deterioration for K.

If we consider only elastic collisions, one would expect
that rescattering should push lighter particles towards lower
p⊥ and heavier particles to higher p⊥. This is because lighter
particles generally move faster and will catch up with and
push the heavier ones outwards, a phenomenon sometimes
referred to as “pion wind”. The actual momentum shifts in
elastic rescatterings (including through resonances) is shown
in Fig. 17. Here we see a positive shift both for K and N. This

becomes more apparent if one considers only Kπ → Kπ and
Nπ → Nπ scatterings, Fig. 17b, where the heavier K/N
on the average gains p⊥ at the expense of the lighter π .
A closer study reveals that the strongest p⊥ shifts comes
from resonance production, i.e. K∗ and Δ intermediate states.
There are two reasons for this. Firstly, these resonances give
large cross sections in a mass range where the flux of colliding
pairs is large in the first place, and thus dominate over elastic
scattering (in the processes discussed here). Secondly, elastic
scattering is peaked in the forward direction, i.e. at small
momentum transfers, while an s-channel spin 0 resonance
decays isotropically in its rest frame.

In Fig. 16b, we look at 〈p⊥〉 shifts when only elastic scat-
tering is permitted. Specifically, this is done by calculating
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(a) (b)

Fig. 16 Average p⊥ for different particle species, ordered by mass,
with data from ALICE [4,8]. The included particles are π±, K±,
K∗(892)±, p, φ(1020), Ξ−, Σ∗(1385)±, Ξ∗(1530)0 and Ω−. a Com-
parison of rescattering to no rescattering.bComparison between the two

when all rescatterings are forced to be elastic. Here we use the default
pT0Ref = 2.28, since elastic scattering does not change charged
multiplicity

(a) (b)

Fig. 17 Shift of transverse momentum by 2 → 2 elastic or resonant processes, where positive numbers correspond to an increased p⊥ in the
collision. a Inclusive shifts for π , K and N (including antiparticles). b Shifts in Kπ → Kπ and Nπ → Nπ scatterings

each total cross section as before, but setting the elastic cross
section equal to the total one (thus excluding elastic scatter-
ing through a resonance). In this case, the 〈p⊥〉 increases for
all heavy particles except for Ω , which is so rare so this can
simply be explained by statistical fluctuations. For particles
such as p and Σ , the change in 〈p⊥〉 is less than before, high-
lighting the fact that elastic scattering through a resonance
gives the strongest momentum transfers. (As a side note, an

unexpected observation is that the average pion p⊥ actually
increases very slightly, which turns out to be a consequence
of the narrow rapidity window |y| < 0.5 used in the exper-
imental analysis; the average does decrease if all rapidities
are included.)

So why then is the mean p⊥ reduced for Kaons when
inelastic interactions are allowed? The answer is that in pro-
cesses classified as inelastic, especially non-diffractive pro-
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cesses, we make a significant effort to ensure that at least
three particles are produced, so as to avoid the elastic chan-
nel. Such interactions have to share the p⊥ between more
outgoing than incoming particles, which leads to a reduced
average. In principle, the opposite kind of interactions would
be possible, where three (or more) incoming particles could
fuse to give two outgoing ones, presumably then with an
increased p⊥. We have not implemented these kinds of pro-
cesses in the first version of our framework, but their potential
effect on the Kaon p⊥ spectrum should make them a priority
in future work.

Another observation from Fig. 16a is that the mean p⊥
of Σ∗ is also reduced. In addition to the aforementioned
effect of 2 → n scattering, we have also observed that res-
onances formed during rescattering tend to have a lower p⊥
than those produced directly from string fragmentation. From
phase space considerations, it is less likely for two random
high-p⊥ particles to have an invariant mass in the resonance
range than for two low-p⊥ ones. The effect is especially
large where the mass difference between the resonance and
the particles forming it is small, such as for the Σ∗ baryons.
These particles still tend to gain p⊥ when they themselves
participate in rescattering, as we see in Fig. 16b.

The total p⊥ spectrum for all charged particles is shown
in Fig. 18a, and is improved overall by rescattering. The
charged-particle pseudorapidity spectra in Figs. 18b and 19a
show that when a cut p⊥ > 500 MeV is used, rescattering
shifts the spectrum down by an approximately fixed amount,
to a better agreement with data. However, this improvement is
not visible in Fig. 18b, where the cut is p⊥ > 100 MeV. This
suggests that the “true” pseudorapidity spectra are mostly
unaffected by rescattering, but because of p⊥ shifts, rescat-
tering has an indirect effect on the observed spectrum. The
takeaway from this is that data affected by low-p⊥ particle
production are likely to be better described when rescattering
is included.

In summary, rescattering does what it is expected to in
elastic scattering, i.e. slows down lighter hadrons and speeds
up heavier ones. The disappointing aspect is that we have
observed other mechanisms that work in the other direction,
the most significant probably being the lack of 3 → 2 inter-
actions. Finding ways to compensate for these effects should
be addressed in future work.

5.2 Model dependence of transverse momentum spectra

Given the central role of the p⊥ spectra, it is highly relevant
to understand how sensitive they are to rescattering model
variations. To this end, we can compare the default rescat-

tering scenario with the two alternatives listed in Table 13.
These two are selected to minimize or maximize the number
of rescatterings, within reasonable extremes for each relevant
setting.

The results are shown in Fig. 20. What we observe is
that the effects on the p⊥ spectra tend to scale with the
amount of rescattering. This is especially clear for π and p,
where the minimum/maximum amount of rescattering give
smaller/larger effects than the default values, respectively. At
the same time, the maximum setup gives a relatively small
further improvement over the default rescattering one. It is
therefore meaningful to stay with the default scenario, rather
than trying to use more extreme choices to come closer to
data.

5.3 The thermal model alternative

The rate of qq string breaks is traditionally assumed to

involve a suppression factor e−πm2⊥q/κ : since the string does
not contain any local concentrations of mass, a quark needs to
tunnel out as a virtual particle until it has “eaten up” enough
string length to correspond to its transverse mass [25]. This
gives a Gaussian p⊥ spectrum to quarks and, by addition, to
hadrons. The derivation is done for a single string in isola-
tion, however, whereas the reality at hadron colliders is that
the typical event contains several more-or-less overlapping
strings. This may modify the primary particle production pro-
cesses, which set the starting stage for the continued rescat-
tering and decay processes we have considered in this arti-
cle. Empirically, an exponential spectrum exp(−m⊥had/T )

was early on proposed as a parameterization of hadron colli-
sion data, where m⊥had is the transverse hadron mass and T
could be associated with a temperature e.g. in the Hagedorn
approach [81–83]. Interestingly, an effectively exponential
fall-off could arise also starting from the Gaussian one, by
assuming that the string tension is fluctuating along the string
length, also in the absence of other strings [84].

Based on such ideas, a “thermal model” option has been
included as an alternative in Pythia [17]. Unlike purely sta-
tistical models, however, it is strictly based on the string
model, with local flavour and p⊥ conservation. To this end,
each qq breakup is associated with a (modified Bessel)
p⊥ distribution such that the two-dimensional convolution
results in an exp(−p⊥had/T ) spectrum. In each fragmenta-
tion step, an old q flavour is always known when the new
one is selected and a new hadron is formed out of the two.
Each new quark and hadron possibility is assigned a rela-
tive weight exp(−m⊥had/T ), times relevant spin and sym-
metry factors, and these weights are used to make the ran-
dom choice. The relative rate of diquark/baryon production
requires a free parameter, while an additional s-quark sup-
pression factor is needed to achieve better agreement with
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(a) (b)

Fig. 18 p⊥ and η spectra compared with data from CMS [78]. Charged particles with p⊥ > 500 MeV and |η| < 2.4 are considered

(a) (b)

Fig. 19 Charged particle η spectra compared with data from ATLAS [79,80], with cuts a p⊥ > 500 MeV, and b p⊥ > 100 MeV

observed production rates. The suppression of multistrange
hadrons is underestimated, however, whereas the standard
string model overestimates it, suggesting that “the truth” may
lie somewhere in between.

A key aspect of the exp(−m⊥had/T ) weight is that heav-
ier primary hadrons obtain a larger 〈p⊥〉 than lighter ones.
While it does enhance low-p⊥ pion production and deplete
ditto baryon one, relative to the traditional string model, the
effects are not large enough to explain the data [17]. It is there-
fore interesting to combine the thermal model with rescat-

tering, to check whether the two together give a larger com-
bined improvement than each individually. The results of this
comparison are shown in Fig. 21, where the Gaussian model
is compared to the thermal model, both with and without
rescattering. The effects of the thermal model are similar to
the effects of rescattering, with an improvement for the mean
p⊥ of pions and protons and a deterioration for Kaons. For
pions, the correction from the combination of the two in fact
overshoots the 〈p⊥〉 data, so that either of them individu-
ally gives a better result than the two combined, even if the
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Fig. 20 p⊥ spectra for π±, K± and p/p and average p⊥ for various particles, for different parameter configurations

pion p⊥ spectrum itself looks rather reasonable. We also see
that the p⊥ spectrum for protons is less accurate, especially at
higher p⊥s. For these reasons, the results of using the thermal
model are not particularly encouraging, at least not without
a more thorough retuning.

5.4 Close-packing

Apart from the possibility of a randomly fluctuating string
tension, one may also expect systematic effects on the ten-
sion in a denser string environment, which can be modelled
in different ways. One option implemented in Pythia is that
of colour ropes [14], wherein several more-or-less parallel
strings can fuse into a “rope”. The combined colour charge

of this rope, as given by the Casimir operator, then gives
a scaling-up factor applied to the string tension. When the
rope breaks, the difference in charge before and after the
break gives the effective charge involved in that qq produc-
tion step. The other option is based on the assumption that
a close-packing of strings gives them a smaller transverse
area each, but preserves their separate identities [17]. Also
in this option the string tension is increased, but in principle
as a smooth function of the amount of squeezing rather than
in the discrete steps of the rope. In practice, there need not
be any big difference between these two options, but in this
study we choose the second one for simplicity.

In this model, the creation of a new hadron is begun by an
exploratory step ahead, so that the number of strings over-
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Fig. 21 p⊥ spectra for π±, K± and p/p and average p⊥ for various particles, with comparing the Gaussian to the thermal model. When using the
thermal model, pT0Ref has been tuned to 2.47 without rescattering and 2.52 with rescattering on, in order to maintain the correct ncharged

lapping the rapidity range of the intended next hadron can
be estimated. This local string number is then raised to some
(tuned) power to give a rescaling factor for the string ten-
sion. To this basic picture some damping is introduced for
particle production at large p⊥, which typically occurs at
larger transverse radii, away from the denser region. Note
that the current implementation predates the introduction of
space–time coordinates for the hadronization process, such
that there now is room for improvements, but not ones that
are likely to give a qualitatively changed behaviour for the
properties studied here.

The close-packing modification can be used either for the
standard string model or for the thermal alternative, by a
rescaling either of κ or of T . In Fig. 22, we have used the

former one. The trend here is that close-packing tends to
increase p⊥ for all particles, which means an improvement
for all heavier hadrons, especially Kaons whose p⊥ spectrum
now follows data remarkably well above 1 GeV. However,
this also means that the spectrum is worsened pions, and
looking at their spectrum, the effect is quite severe. This dete-
rioration is partially compensated for by rescattering, but not
completely. This makes the close-packing option unsuited
as it stands. A retuning of fragmentation parameters might
ameliorate the situation, but that is beyond the scope of the
current study.
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Fig. 22 p⊥ spectra for π±, K± and p/p and average p⊥ for various particles, for the Gaussian model with and without close-packing corrections.
When using the close-packing corrections, pT0Ref has been tuned to 2.18 without rescattering and 2.25 with rescattering on, in order to restore
the correct ncharged

5.5 The role of vector mesons

One of the standard assumptions is that the p⊥ spectrum
in qq string breaks is the same, independent of the quark
species. This needs not be the case, and higher-order cor-
rections could well favour slightly different p⊥ values for
strange quarks [85,86], but for now we assume it to hold. Sim-
ilarly, primary pseudoscalar and vector mesons are assumed
to have the same p⊥ spectra. The correct relative fraction of
the two kinds of mesons is not known a priori, however, and
for many hadrons it is difficult to measure their production
rates, especially those with large widths. The prime example
is the ρ, which we have seen contributes non-negligibly to the

total rescattering rate. Since the ρ has a higher mass than the
Kaon, elastic ρK collisions would tend to reduce the Kaon
p⊥, partially counteracting the gain from Kπ collisions.

As a simple test of the significance of heavy primary
hadrons, we have studied a toy scenario where no vector
mesons at all are produced in the primary string fragmenta-
tion, but still can occur as intermediate states during rescatter-
ing. The resulting p⊥ spectra are shown in Fig. 23. No attempt
at a complete retune has been made, so it is the change by
rescattering that is most interesting, not the overall agree-
ment. Not unexpectedly, the 〈p⊥〉 is wildly off for K ∗(892)

and φ(1020), which now cannot be produced in the primary
process. The “pion wind” effect is still there, in that rescat-
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tering shifts pions to smaller p⊥ and protons to larger. For
Kaons the 〈p⊥〉 is still decreased by rescattering, providing
further support that the primary mechanism for the Kaon p⊥
loss is through 2 → n processes, rather than from Kaon
collisions with heavier particles.

It could have been informative also to go in the other direc-
tion, and include primary production of higher resonances,
with orbital or radial excitations. Measurements at LEP show
that such mesons are produced at a non-negligible rate [55].
And yet, their explicit inclusion tend to reduce the good-
ness of fit to many other properties, presumably because the
assumed isotropic decay distributions do not represent the
correct physics. Instead a higher-mass state could be viewed
as a longer-than-normal string piece, with a decay along this
string direction, just as if these products come directly from
the string. Therefore we do not expect primary production of
higher resonances to change p⊥ properties appreciably, but
currently do not have the full machinery necessary to test this
assumption.

5.6 Other transverse momentum spectra

So far we have focused on p⊥ spectra for pions, Kaons and
protons. However, another experimental observation that per-
tains to collective behaviour is the peak for example in the
Λ0/K0

S ratio around p⊥ ≈ 2 GeV. In Fig. 24, the ratios for
Λ0/K0

S and Ξ−/Λ0 are shown. Unfortunately rescattering
does not provide an improvement. If anything it causes a
deterioration, by reducing the relative number of Λ0 and Ξ−
baryons through the baryon–antibaryon annihilation mech-
anism. As before, an inclusion of 3 → 2 processes could
help alleviate the problem, but hardly give full agreement. In
general, baryon production has been one of the more compli-
cated and least successful aspects of the string fragmentation
framework, already in the simpler e+e− environment, and
remains so.

6 Summary and outlook

Hadronic rescattering is inevitable in the dense hadronic sys-
tems produced in high-energy pp collisions. What less under-
stood is the rate at which it happens, and the detailed mod-
elling of the processes involved is open to discussion.

In this article we have developed and studied a framework
for hadronic rescattering in pp collisions. This involves three
main aspects:

1. The space–time tracing of the motion of hadrons, with
interleaved scatterings and decays. The starting point here
is our picture for the space–time production of hadrons.
Thereafter the motion of these hadrons is traced and pos-
sible crossings identified. The technical challenge is the

fast growth of the number of hadron pairs to check, which
can make have a significant impact on computing speed,
even though most of these pairs never interact.

2. The cross section for different collision processes. This
is where most of the development effort has gone, and
most of the new code can be found. Much of the input has
been from external sources, such as UrQMD ansätze, the
calculations by Peláez et al., the HPR1R2, CERN/HERA
and SaS parameterizations, and experimental data. We
have tried to combine and extend these parts sensibly. For
hadron pairs not described in any other way, the Additive
Quark Model is invoked to provide order-of-magnitude
cross sections, also for charm and bottom hadrons.

3. The production of the new hadrons in these collisions.
This is done either through explicit few-body channels,
like elastic scattering or resonance formation, or through
the existing string fragmentation machinery. The typical
collisions energies are so small, however, that extra efforts
have to be made to translate these tiny strings into accept-
able final states.

Each of the three components are open to further refine-
ments, but the new framework presented here should offer
a good starting point for various studies as is. Other frame-
works overlapping with ours already exist. To the extent fea-
sible, one obvious future task would be to compare with other
rescattering implementations, starting from the same initial
hadron configuration.

Nevertheless, what we bring now is a cohesive implemen-
tation, where the full power of the traditional Pythia energy–
momentum description is extended by the recent matching
space–time picture and the new rescattering components,
with a step-by-step record of the whole rescattering sequence,
and without the need to bridge disparate codes. This frame-
work can then be applied to pp collisions of any kind, from
minimum-bias to high-p⊥ physics. As far as we know, no
other single program can offer as much.

The main emphasis in this study has been to develop and
test the framework, and to explore and understand how it
behaves in general terms. Some applications to LHC pp stud-
ies have also been presented. In particular we note that rescat-
tering contributes to some aspects of collective flow, notably
a “pion wind” that slows down pions and speeds up protons
and (most) other baryons. This helps remedy one of the glar-
ing discrepancies of the traditional Pythia setup in com-
parisons with data. Unfortunately, the effects are not large
enough to fully resolve the discrepancies. Worse, the Kaon
p⊥ spectrum is not modified appreciably, owing to a balance
between speedup from the pion wind and slowdown from
2 → n, n ≥ 3 processes. For this reason, one interesting
topic for future study is the modelling of 3 → 2 and related
processes. There are also other phenomena, like azimuthal
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Fig. 23 p⊥ spectra for π±, K± and p/p and average p⊥ for various particles, comparing rescattering to no rescattering, when no vector mesons
are produced in the primary hadronization

flow, where rescattering appears to give only a very small
contribution.

Thus it is obvious that further mechanisms will be needed
to reach agreement with a number of observables. We have
here briefly explored some potential options, such as a ran-
domly fluctuating string tension, i.e. the “thermal” model,
and a larger string tension in a dense-string environment.
Other ideas remain to be mixed in, such as string shoving. It
may be disappointing not to be in a situation where one sim-
ple model describes it all, but the reality is that any physical
process that can happen will also do so, at some level.

The framework and its individual components have a
higher applicability than the one presented in this article,
and we envisage several follow-up studies. The most obvi-

ous one is to step up from pp to pA and AA. This should be
straightforward, since Pythia already contains the Angantyr
framework for heavy-ion collisions [87]. In a first step, we
would study the effects of rescattering on its own, without
any other mechanisms for collective flow. In a second step,
one could combine it with other effects, such as shove and
rope formation, which also contribute to flow effects.

One relevant AA study has already been done [39], based
on Pythia/Angantyr and its space–time picture, but inter-
facing UrQMD to handle the rescattering. Physics compar-
isons between the two approaches will be useful on its own,
but additionally we hope that we can offer a more user-
friendly framework, thereby simplifying the future experi-
mental study of rescattering effects.
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(a) (b)

Fig. 24 p⊥ ratios of a Λ0 to KS and b Ξ− to Λ0 in non-single-diffractive events, compared with CMS data [7]

A topic not brought up so far is that the space–time
structure of hadronization can also be indirectly probed by
Hanbury Brown–Twiss interferometry [88], e.g. by correla-
tions among identical pions. Specifically, rescattering would
expand the size of the production volume, other aspects being
the same, so this would be interesting to probe. A problem is
that the modelling of HBT effects on a microscopic level is
nontrivial [89].

Although this article has mainly focused on rescattering,
it should not be overlooked that, as part of the underlying
framework, we have implemented collisions for different
beam particles and collision energies from the mass threshold
and upwards, where earlier Pythia set a hard lower bound
of 10 GeV on collision energies. This has other potential use
cases, such as the simulation of cosmic ray showers in the
atmosphere and of hadronic showers in detectors. Currently
this flexibility only works for soft collisions, however. In
order to fully include perturbative QCD aspects, such as jets
and MPIs, it is necessary to specify meaningful PDFs for all
colliding hadron species. Relevant combinations then have to
be stored such that it is easy to switch between them. A special
aspect is that, whereas collider physics mainly addresses par-
ticle production at central rapidities, the evolution of hadronic
showers is especially sensitive to the production of the most
forward hadrons, which therefore has to be carefully mod-
elled.

In the current article, there has been no effort at a detailed
retuning of all model parameters, but only a modest revision
of p⊥0 to retain the same total charged multiplicity as before
when rescattering is switched on. A future exercise would
be to do a full-fledged retuning. This could start with e+e−

annihilation events at LEP, where no big effects are expected.
Even small ones would be of interest, however, since they
could also add one more source of uncertainty in W mass
determinations [90], in addition to colour reconnection [91]
and Bose–Einstein [89].

In conclusion, we hope that the current article and the new
Pythia capabilities will be interesting for the experimental
community, and also open up for further developments and
studies. By experience we know that new generator capabil-
ities tend to inspire both expected and unexpected applica-
tions.
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