Eur. Phys. J. C (2020) 80:938
https://doi.org/10.1140/epjc/s10052-020-8392-x

THE EUROPEAN ®
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Characters and group invariant polynomials of (super)fields: road

to “Lagrangian”

Upalaparna Banerjee?, Joydeep Chakrabortty’®, Suraj Prakash®, Shakeel Ur Rahaman?

Indian Institute of Technology Kanpur, Kalyanpur, Kanpur 208016, India

Received: 16 June 2020 / Accepted: 22 August 2020 / Published online: 10 October 2020

© The Author(s) 2020

Abstract The dynamics of the subatomic fundamental par-
ticles, represented by quantum fields, and their interac-
tions are determined uniquely by the assigned transforma-
tion properties, i.e., the quantum numbers associated with
the underlying symmetry of the model under consideration.
These fields constitute a finite number of group invariant
operators which are assembled to build a polynomial, known
as the Lagrangian of that particular model. The order of the
polynomial is determined by the mass dimension. In this
paper, we have introduced an automated Mathematica®
package, GrIP, that computes the complete set of opera-
tors that form a basis at each such order for a model con-
taining any number of fields transforming under connected
compact groups. The spacetime symmetry is restricted to
the Lorentz group. The first part of the paper is dedicated
to formulating the algorithm of GrlIP. In this context, the
detailed and explicit construction of the characters of dif-
ferent representations corresponding to connected compact
groups and respective Haar measures have been discussed
in terms of the coordinates of their respective maximal
torus. In the second part, we have documented the user
manual of GrIP that captures the generic features of the
main program and guides to prepare the input file. We have
attached a sub-program CHaar to compute characters and
Haar measures for SU(N), SO(2N), SO2N+1), Sp(2N).
This program works very efficiently to find out the higher
mass (non-supersymmetric) and canonical (supersymmetric)
dimensional operators relevant to the effective field theory
(EFT). We have demonstrated the working principles with
two examples: the standard model (SM) and the minimal
supersymmetric standard model (MSSM). We have further
highlighted important features of GrIP, e.g., identification of
effective operators leading to specific rare processes linked
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with the violation of baryon and lepton numbers, using sev-
eral beyond standard model (BSM) scenarios. We have also
tabulated a complete set of dimension-6 operators for each
such model. Some of the operators possess rich flavour struc-
tures which are discussed in detail. This work paves the way
towards BSM-EFT.
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1 Introduction

Particle physics, an intricate medley between theory and
experiment, aims to provide an accurate description of the
dynamics and interactions of the subatomic particles. The
experimental results are quantified by a set of observables,
e.g., decay widths and the scattering cross-sections. The sym-
biotic relationship between theory and experiment implies
that each measurement lends credence to some theoretically
calculated number. To calculate the theoretical values of these
observables we need to rely on Feynman vertices which are
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derived from the expanded form of the Lagrangian density.
Therefore, it is the Lagrangian density' that is the fons et
origo of any justifiable or falsifiable claim that we can attempt
to make based on the theory.

Now, this begs a couple of questions, the first being which
terms are allowed in the Lagrangian that would ultimately
determine the characteristics of the interactions and the struc-
ture of the Feynman vertices. The second is whether we can
backtrack further, i.e., are there more rudimentary aspects
below the level of the Lagrangian from which the com-
plete theory can be built procedurally. One can ask if the
Lagrangian is the true genesis of the theory or if we can probe
its anatomy further. The answers to these questions are affir-
mative. There are well-defined, mathematically sound guide-
lines that determine what interactions are allowed and which
ones are not and in a nutshell, these are the interplay of the
conservation and violation of certain symmetries. Also, it is
quite evident that the minimum information that we require
for building a Lagrangian and in turn constructing a model is
the quantum fields representing the particles and their trans-
formation properties guided by the underlying symmetries
of the model. The concept that we endeavour to forge an
understanding of is how to build a full-fledged theoretical
model, whose predictions could be corroborated using inge-
niously designed high energy experiments, using nothing but
this minimal piece of information.

We need to do meticulous scrutiny of the eccentric features
of a general Lagrangian. For the sake of our analysis, we will
treat the Lagrangian as a polynomial of certain spurion vari-
ables which are nothing but the quantum fields representing
the actual particles. Just as we can define the order of a poly-
nomial in terms of the powers of the variables, analogously
we can define the order of the Lagrangian density in terms of
certain parameters associated to the fields. The mass dimen-
sion of the terms of the Lagrangian in natural units (where
¢ = 1,7 =1 and consequently [L] = [T] = [M]_l) is cus-
tomarily used to define this order. We restrict ourselves to
d = 3+ 1 space-time dimensions. Here, the action is defined
as:

(yszuz. 1)

Since . is dimensionless ([.’] = 0) and the integration
measure possesses a mass dimension of “—4” ([d*x] = —4),
the Lagrangian density (.Z’) must have a mass dimension
“+4” ([£] = 4). This has two significant consequences.
First, this fixes the mass dimensions of bosonic (¢, A,) and
fermionic (y) fields in 3 4+ 1 dimensions based on their
kinetic terms. We can also obtain the mass dimension for field

! In what follows we will use the terms Lagrangian and Lagrangian
density interchangeably even though their specific usage depends on
whether we are working with discrete or continuum theories.
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strength tensors F},,, using the gauge kinetic terms. Thus to
summarize,

(Z1=4 ] =1 = [pl=[A=1, [¥]

= E [Fu]l=2. 2)

2

The second major consequence is that even though we may
add terms of any mass dimension to the Lagrangian density,
they all must be suitably multiplied by coefficients of suitable
mass dimensions to be successfully accommodated in .Z.
Thus, a schematic form of the Lagrangian density can be
written as:

2 — Do £ @60 1 (B ed L (@54
+a®0® +a®6® ... 3)

where ¢!)’s are operators of mass dimension i and a)’s are
the coefficients of mass dimension (4 — i). Now, since we
can have operators of mass dimension > 4, this implies that
certain coupling constants will have negative mass dimen-
sions. Then from power counting arguments and taking into
account the issue of superficial renormalizability we divide
the full Lagrangian density into two parts: the renormalizable
Lagrangian and the effective Lagrangian:

n N @)

L = z‘enorm + Z Z _Aij—4 ﬁ](»i). (4)
i=5 j=1

Here, i denotes the mass dimension of the operators and
since there can be more than one operator at a particular
mass dimension, therefore we have a sum over all such oper-
ators () j). The total number of operators at a given mass
dimension has been denoted by N;. A has dimensions of
mass and €")"s are dimensionless coefficients known as the
Wilson coefficients. The second term on the RHS is called
the effective Lagrangian (Zgrr) [1-4].

Having established the form of the Lagrangian density the
next question is given some quantum fields, can we include
all possible combinations of these fields in the Lagrangian
density or are there certain restrictions. In other words, how
does one fix N; for a specific theory?

Again, the answer comes from looking at Eq. (1), since .
is invariant w.r.t. spacetime symmetry as well as any internal
symmetry (and so does d*x), the Lagrangian density .# must
be invariant as well under the same set of symmetries. We
further demand that the operators must form a complete and
independent set. Below we shall illustrate the role of sym-
metry in restricting the inclusion of arbitrary operators with
a few examples. For a theory consisting only of a real scalar
field ¢, the renormalizable Lagrangian is given as:

1
Ly = 5(3u¢>)(3“¢) —V($), V(@) =4

L oo 3 Ay
—§m¢ +§¢ +I¢~ )
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Table 1 Operator classification

for the renormalizable Category

Constitution Operators (for SM)

Lagrangian composed of
scalars, spinors, gauge field
strength tensors, and covariant
derivatives

Scalar Potential
Scalar Kinetic Term
Fermion Kinetic Term
Gauge Kinetic Term

Yukawa Interaction Term

", n<4 @'0). (@7¢)?

* 7 (Zu$) (2" 9)

V29 LYoLY, QY 9QF ik puly, dbpdh, ek Dek
(Fu)? B"' By, G GY,,, Wi W

Ve Ly pey, Qf ¢dy, O pu'y

Now, for a theory consisting of a scalar field p which
possesses a discrete symmetry p — —p, the Lagrangian
becomes:

1
Z, = E(aup)(a“p) — 7 (p),

V/(p)——zmp taP (6)
It is evident that this discrete symmetry (Z;) rules out the
linear and cubic terms as these are no longer invariant. As
a second example, we consider the case of a complex scalar
field and its conjugate which transform under a global U (1)
symmetry:

d=¢1+igy, ¢*=¢1—igy; ¢ — e,
¢* _ ¢*e—i9. (7)

Even in this case, we see that if the Lagrangian has to be
invariant w.r.t the U (1) symmetry we cannot have terms lin-
ear, quadratic or trilinear in only one of the fields. Hence, the
permissible Lagrangian looks like:

Ly o = B,0") 0 D) — ¥ (¢),
= —m?($*p) + r(P*$)>. (8)

The situation becomes more involved if we have a gauge sym-
metry and when the number of degrees of freedom (DOF) is
large. For most cases constructing an independent set of oper-
ators is a painstaking task not only for higher dimensions but
even at the renormalizable level. Let us look at the most pop-
ular model, i.e., the Standard Model (SM) of particle physics
where in addition to spacetime symmetry we also have local
SUB)c @ SU), ® U(1)y symmetry, then the renormal-
izable Lagrangian is:

1 Ao

Lsm = (D) (2" ¢) + Emz(d)%) - 5<¢'¢>2
1 1 1
—ZB“”BW - ZG“‘“’GZU - ZW“”W,{U
i (LY 9Ly + 0L 901 + ik Duly + df Dl
+E£@e£)
= (v Ly ey + i O ddiy + vy O buy) + hec,
)

Here, A, ye, Y4, y, are dimensionless couplings while m
is the mass parameter. We can neatly categorize each of
these terms as in Table 1. Different terms, i.e., the opera-
tors in the Lagrangian can have diagrammatic representa-
tions. The operator classes corresponding to the renormal-
izable Lagrangian have been depicted in Fig. 12. We have
shown 2 more invariant operator structures (94, 7254 ) at
mass dimension-4 which are excluded from the Lagrangian
as they are total derivative terms and therefore do not affect
the dynamics. We have also displayed the Feynman dia-
grams representing processes encapsulated in operators of
dimensions-5 and -6 (Figs. 2 and 3). Here, in addition to the
operator classes in which the SM operators can be catego-
rized into, we have also identified the classes which appear
for general theories with fields having spins-0, -1/2, and -1.

The fields under consideration have a dynamical nature. This
is substantiated by the presence of the covariant derivative
(Z,). The &, is a singlet under the internal symmetries but
transforms non-trivially under the Lorentz group. As we go to
higher mass dimensions, we encounter operators with mul-
tiple derivatives. The presence of Z,, leads to redundancy
in the operator set, see [6,8—10,12]. Essentially, two opera-
tors containing the covariant derivative can be related to each
other through integration by parts (IBP) and removal of a total
derivative from the Lagrangian density. Also, two classes of
operators could be related through the equations of motion
(EOM) of one of the fields, e.g., the operators described by
Fig. 3 (ix) and (x) are related to those described by Fig. 3 (vi)
and (viii) respectively through the equation of motion of the
gauge fields. We need to ensure that the operators which
are a part of our set at a given dimension are invariant w.r.t.
spacetime as well as internal symmetries and also form a
complete and independent set, i.e., a basis at a given order of
the polynomial. To do so any IBP and EOM redundancies in
the operator set must be taken care of.

Now, the positive thing is that the guiding principle behind
this sequence of steps is not entirely an unfathomable,
esoteric mathematical artifact. In fact, it can be elegantly
described in terms familiar to a physicist [8—12]. The cen-
terpiece of this construction is the Hilbert Series [8—11,14—
16] which can be generated from group theoretic principles.

2 All these diagrams have been generated using JaxoDraw [5].
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Fig. 1 Diagrammatic representation of operator classes at mass
dimension-4 (for 3 4 1 space-time dimensions) or less constituted by
combining spin-0 (¢), spin-1/2 () and Field Strength Tensor (X) of
spin-1 fields and the covariant derivative (2). Of these, (i) does not

Before performing phenomenological analysis on any pro-
posed model, the most important task is to write down the
correct Lagrangian. Keeping that in mind we have developed
aMathematica®[17] based package, GrIP which autom-
atizes the myriad of steps involved in constructing Group
Invariant Polynomials, i.e., the Lagrangian for any given
model based on the very minimal input, the field content
of the model and their transformation properties. While the
auxiliary notebook given in [9] could compute the Hilbert
Series output of any mass dimension for the Standard Model,
it relied on a fixed set of predefined character functions
and the Haar measures corresponding only to the Standard
Model symmetry groups. With GrIP we have streamlined
and automatized the entire procedure so that the necessary
characters and Haar measures are automatically generated
within the program and there is no dependency on any pre-
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appear in the case of SM hence we have highlighted its caption in colour.
Also, the last two structures being total derivative terms are excluded
from the Lagrangian

defined quantities. This makes our code highly generalizable
and extends its utility to generate results for models where
the internal symmetry is described by the connected compact
groups — SU(N), SO(2N), SO2N + 1), Sp(2N). We are
sure that GrIP, will be an indispensable addition to the phe-
nomenologist’s EFT toolbox [18] along with other ingenious
computational packages, like CoDEx [19], DsixTools [20],
FlavorKit[21,22], FormFlavor [23], Wilson [24], SMEFT-FR
[25], SMEFTsim [26], SPheno [27,28], WCxf-python [29],
Sym2Int [30] and ECO [31].

We have divided this work into two broad parts. The
first part highlights the theoretical principles behind group
invariant polynomial construction and its necessity in parti-
cle physics model building. To start with, in Sect. 2, we have
outlined the detailed mathematics behind the computation of
the basic ingredients of the Hilbert Series, i.e., the characters
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Fig. 2 Diagrammatic representation of mass dimension-5 (for 3 4 1
space-time dimensions) operator classes constituted by combining spin-
0 (¢), spin-1/2 (¢) and Field Strength Tensor (X) of spin-1 fields and
the covariant derivative (). Only one of these (diagram (ii)) appears

corresponding to the representations under given groups and
the Haar measures of various groups. We have delineated
the explicit calculations for the connected compact groups
SU(N),SO(2N),SO(2N + 1) and Sp(2N). This is fol-
lowed by a brief discussion on the non-triviality associated
with the Lorentz group. Then in Sect. 3, we have employed
the Hilbert Series [8—11] approach to build the operator sets
for a few known models. We have revisited the Two Higgs
Doublet Model and unveiled the detailed intermediate steps.
Then we have introduced the Pati-Salam Model, etc. and per-
formed a comparative analysis with the existing literature to
underline the power of this method.

The second half of this work sheds light on the salient fea-
tures of GrIP. We start with Sect. 5 where we have described
the chronological steps to elaborate (i) the installation of the
package, (ii) preparation of a general input file and interfac-
ing it with the main program, and (iii) generating specific as
well as generic output in the form of operators of different
mass dimensions. We have provided specific illustrations in
Sect. 6 using two example models: the Standard Model and
the Minimal Supersymmetric Standard Model. We have also

in the case of SM. The other structures with red captions (i), (iii), (iv)
and (v) may appear for other models with different particle content and
symmetry

drawn attention towards certain GrIP functions that help us
to filter out the operators leading to rare processes.

In Sect. 7 we have discussed the bottom-up approach to
formulate Effective Field Theory [1-4] and further paved
the way to construct Beyond Standard Model Effective Field
Theory (BSM-EFT). We have demonstrated this idea through
a few examples where SM is extended by different choices
of infrared degrees of freedoms (IR-DOFs). For each such
scenario, we have computed the additional (beyond the SM-
EFT ones) operators of dimensions-5 and -6 using GrIP.
We have also outlined other possible features of this code
to generate unique effective operators based on the specific
phenomenological demands. Our program GrIP provides
the operators for arbitrary number of fermion flavours (N y)
keeping the provision to analyse the explicit flavour depen-
dence. In Sect. 8, we have reasoned the origin of different V s -
dependent factors that appear for similar structures across
various phenomenological models. We have also tabulated
the operator sets for a few more models and some necessary
group-theoretic information in the appendices.

@ Springer
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Fig. 3 Diagrammatic representation of mass dimension-6 (for 3 4 1
space-time dimensions) SM operators classes constituted by combining
spin-0 (¢), spin-1/2 (v) and Field Strength Tensor (X) of spin-1 fields
and the covariant derivative (2). Operators described by (ix) and (x) are
related to (vi) and (viii) respectively through the equation of motion
of the gauge fields. Based on which terms are included in the operator

2 Hilbert series: the underlying theoretical framework
for GrIP

The object of our inquiry in this section is the Hilbert Series
(HS) method [8-13,15,32,33] based on which GrIP has
been developed. In the context of particle physics models,
we can define a set of quantum fields representing particles
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set we have two popular operator bases. The Warsaw basis [6] includes
the operator classes (i) — (viii) and forms a complete set. While, the
SILH [7] basis trades off (ii), (vi) — (viii) (the operators composed of
fermionic fields) in favour of (ix) and (x), This forms an under-complete
set

that posses certain transformation properties under the sym-
metries of the model. The Hilbert Series is an infinite series
consisting of all possible symmetry group invariant clusters
of the quantum fields and is built on two necessary ingre-
dients: (i) the Plethystic Exponential (PE) and (ii) the Haar
measure. The relevant generic form of the Hilbert Series is
given as [8,9,11,13,15]:
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dp; PE[p.R] (10)
—— —

Haar Measure Plethystic Exponential

Hpl = /

where ¢ is a spurion variable that represents either a scalar
(¢) or afermion (1), or a gauge field (A, ). With the aid of the
Haar measure, the PEs are integrated on the symmetry group
space. The Plethystic Exponentials for fields having integer
and half-integer spins can be depicted as [8,9,11,13,15]:

PE[$, R] = exp [Z ¢X+(Z’)] , (11)
r=1
ad ¥ xr(")
_ _ 1+l J
PE[Y, R] = exp [2( Dy —— } : (12)

respectively. Here, R denotes the representation of the sym-
metry group ¢; under which the fields (¢, ¥) transform and
XR (z;) the corresponding “Weyl” character.

We are specifically interested in studying the represen-
tations of connected compact Lie groups which encapsu-
lates the internal symmetry of the particle physics models. In
addition, the non-compact Lorentz group which describes
the space-time transformations of the fields also attracts
our attention. We have summarized the complete scheme
of building the Hilbert Series through the explicit compu-
tation of characters and Haar measures in Fig. 4. We have
started by explicitly calculating the Haar measures of the
groups (SU(N), SO2N + 1), SO(2N), Sp(2N)) [34] for
small values of N and built characters of some example rep-
resentations in Sect. 2.1. Then we have briefly examined
the non-triviality associated with constructing characters and
Haar measure for the non-compact Lorentz group in Sect. 2.2.

2.1 Characters and Haar measures of connected compact
Lie groups

We are interested in both abelian and non-abelian Lie groups.
The procedures followed for computing the characters and
Haar measures for each of these groups have been described
below.

Abelian Group - U(1)

Characters
The U (1) characters depend on the associated charge of a
field. For a field having charge g the U (1) character is simply

Xway, @ =21 (13)

Haar Measure

The maximal torus of U(1) is simply the unit circle. So,
the group space integral is equivalent to the integral over
some 6 from 6 = 0 to 6 = 2xr. With the parametrization as
z = ¢'?, this turns into a contour integral over z. Thus, the

U (1) Haar measure can be written as:

2
1 d ,
/ df = — —Z, where 7z = €.
0 27 Jigj=1 2
) /d 1 dz (14)
. HUM = om0 =1 Z

Non-Abelian groups
1. SU(N)

Characters
For SU (N) the Weyl character formula [35-39] is given
as:

X(M(g)) _ |8r1,8r2, ...,8rN71, 1|
F13F2yeeny FN—-1 — — — )
1,12 N-1 |8N I’SN 2,...,8,1|

(15)

where M(e) = diag(eq, &2, ...,¢&y) identifies a partic-
ular representation of SU(N) with ]_[;v:l gq = 1 and
ri,7r2,...,ry—1 areintegers such thatry > ry > ---ry_; >
0 and these are obtained from the Dynkin labels of a partic-
ular representation. We can write the numerator in expanded
form as:

re n N—1
gy & g 1
I r N—1
€y &y v & 1

e, e, g™ = , (16)

ri r rN—1
ey ey ey 1

while the denominator is the Vandermonde determinant as
given below in Eq. (17):

N-1 N-2 2

e & ~-o-e7 el
Nl V=2 2 o
N1 N2 1] = 27 2
81]:,]_1 s%_z 812\, en 1
= J] Ea—en. (17)
1<a<b<N

The ¢,’s define coordinates on the maximal torus of
SU(N) which is the group TV~ = U ()@ U (1) ---®U (1)
[40]. It can be described by the matrix shown in Eq. (18):

e 0 0o -~ 0
0 ¢i02—061) 0 e 0
el3=02) .. 0 (18)

TV-1.1 0 0
Lo iON-1
0 0 0 e NxN
Here 6;’s parametrize the points on the torus. The co-
ordinates of these points on the torus can be reparametrized
in terms of the complex variables z;’s as z; = ¢'% . The g,’s

@ Springer
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Fig. 4 Flow chart outlining the mathematical steps followed for computing the Hilbert Series
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are functions of these z;’s, i.e., &, = &4 (21,22, ..., 2ZN—1)
and they follow the properties:

N

[[ea=1 leal=1. a=1.2.....N. (19)
a=1

This relationship between z;’s and ¢, is determined using
the weight tree [41] with respect to the lowest dimension fun-
damental (LDF) representation’ corresponding to the group.
The weight tree can be constructed starting from the respec-
tive Dynkin label (1,0, ..., 0) by successively subtracting
the rows («;) of the Cartan matrix shown below:

ey ——
ey ——
AsyNy = |
——ay_g——
——ay_——
2 —-10---0 0O
-1 2 -1 0O 0 O
=\ o - 20)
0O 0 0 -1 2 -1
0 0 0 0 —-12

(N=D)x(N—1)

The weight tree corresponding to the LDF representation of
SU(N) is shown below:

Ly=(1,0,0,...,0,0),
—_————
(N-1 tuple)
Ly=L;—o =(-1,1,0,...,0,0),

Ly=Ly1—a1=@,...,—1,1,...,0),
LN*] = LN*Z —ON-2 = (05 07 ceey _15 1)5
Ly=Ly-1—ay-1=(0,0,...,0,—-1). (21)

Then, if the (N — 1) tuple L; is denoted as (ll.(l), li(z), ll.(3),
e, li(Nfl)), a general formula for ¢, can be written in terms
of z;’s as:

Q) @ /® JV=1)
g =27{ XZy XZ3 X XZyn_|, (22)

3 For a particular group, the fundamental representations are those
whose Dynkin labels (N — 1 tuples for SU(N)) have a single entry
as unity while all other entries are Os. Among these the representations
denoted by (1,0,0,...,0,0) and (0,0,0, ..., 0, 1) (which are conju-
gate to each other) have the lowest dimension equal to N. For example,
for SU (3), the fundamental representations are (1, 0) and (0, 1) which
are conjugate to each other and each of them have dimension 3. While
for SU (4), the fundamental representations are (1, 0, 0), (0, 1, 0) and
(0,0, 1). Among these (1, 0, 0) and (0, 0, 1) have the lowest dimension
4 whereas (0, 1, 0) has dimension 6.

which enables us to write:

E1 =21 X 29 X 29X - X 2% | =21,
—1 —1
2 =2 X XXXy =17 2,
—1 1 -1
gkzz(l)x...zk_l XZkX"'XZS)V—l:Zk—le’

en X 2yt =2yt (23)

Calculating the r;’s

A particular representation of SU (N) of dimension d can
be uniquely identified by its Dynkin label (a1, a2, ..., an—1)
anditis represented by the Young diagram consisting of N —1
rows with boxes. To find the r;’s we first need to obtain the
Ai’s, which can be obtained as solutions of the following
equation in terms of the Dynkin label and the fundamental
weight tree of the LDF representation.

(@i, az,...,ay—_1) =Ar1(1,0,...,0,0) + Aa(=1,1,0,...,0)
4ot AN_1(0,...,0,—1,1) + Ay(0,0,...,0, —1).

Note that the equation contains N-unknowns in A1, A2, ...,
An while the Dynkin label and the fundamental weights are
(N — 1) tuples. Thus we are required to solve (N — 1) equa-
tions in N-unknowns but this difficulty is remedied by mak-
ing an association between the A; and the Young diagrams.
It turns out that A; equals the number of boxes in the i-th
row of the Young diagrams for the particular representation
of SU(N) and for non-trivial representations Ay = 0. Using
this we get (N — 1) equations in (N — 1) unknowns:

ar = Ak — M1, k=1,...,N—1 and Ay =0. (24)
Solving this we get:
Ay =0,

N-1 N—2
AN—1=aN-1 = (Z ai) - Zaj

i=1 j=1
Ak = ap + ag+1 + -+ an-1

N-1 k—1
=<Zai>_ Sai . 25)
j=1

i=1

The r;’s are related to the A;’s through the following equation:

r=A+p where o =N—-i, i=1,2,...,N. (26)

Since Ay = 0and py = N — N = 0, therefore ry = 0.
Now, having obtained ry, r2, ..., ry—1, the numerator can
be computed using Eq. (16) corresponding to the given rep-
resentation and subsequently the full character as well. We
must mention that the A;’s and hence the r;’s can be directly
obtained from the Young diagram corresponding to the rep-
resentation as shown in Fig. 5.
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Noop D2 e kK
=
h=k-1 2 k-1
W=l

Ay =0

Fig. 5 A schematic form of the Young diagram corresponding to an
arbitrary representation of SU(N). X; is equal to the number of boxes
in the i-th row of the diagram. From here one can immediately infer
that Ay =0

Haar measure
The general formula can be written as [8,16,42]:

1
d“’SU N) = —f
fSU(m M= Qi VTN Jen

H?A()A< ) 27)

=1

A (¢e) is the Vandermonde determinant as given in Eq. (17)
which can be evaluated in terms of the &,(z;)’s, A(e~!) can
similarly be computed by substituting &, ! in the place of &,
in the expression of A (¢). Finally, substituting for known
quantities in Eq. (27) the Haar measure for a given group can
be obtained.

Next, the characters for certain representations [43,44] of
SU(2), SU@3), SU4) and SU (5) have been computed and
the Haar measures of these groups have also been explicitly
calculated.

Haar measure
Using Eq. (23), we can obtain for SU(2), &1 = z1 and &,
= zl_l. The Vandermonde determinant for this case is:

A(e) =

I(Zj) 1
(81—8):>( ——). (28)
& 21

A(e~!) is obtained by replacing &; by & ' in the above

expression. Then using Eq. (27),

1 d
d A
HSUO) = 5 omn 2 2 (=)
1 dZ] 2 1
=— " (1- 1——=]. 29
2Q7i) 7 ( Zl)( Z%) (29
Characters

— The Singlet Representation: 1 = (0)

Il
(1]

@ Springer

For the singlet representation, we can directly get A =
(1, 1) from the Young diagram. Now, since p = (1, 0)
therefore, r = A + p = (2, 1) and the character is
obtained as:

€2, ¢ _ 1
le, 1] (e1 —&2)

&1 €l

s% &

x(e1,82) = =¢] - €,

1
= XxsUQE), @) =z1 % o =1

(30)

Now, this result is easily generalized for the case of gen-
eral SU(N), i.e., the character of the singlet representa-
tion for any SU (N) is simply

XSUN) = 1_[81 =71 x =
IN— 1
 ooox N =1 (31)
IN-2 IN—-1

— The (Anti-)Fundamental Representation: 2 = 2 = (1)
L]
Using Eq. (25), we get A = (1, 0). Now, since p = (1, 0)
therefore, r = A + p = (2,0) and the character is
obtained as:

PP | L G
£1,82) = = =g &,
A P T ) e 1 e
1
= XSU@),e (@1) =21+ . (32)

— The Adjoint Representation: 3 = (2) =
We obtain A = (2,0) and r = A + p = (3,0) and the
character is obtained as:

x (1, €2)
NES
Cole 1l (1 —e) |21
3.3
&1 — &
= ¥=£12+8182+£§.
&1 — &
1
L XsU@)s ) =Z%+1+Z—2. (33)

1

It must be noted that the character of the fundamen-
tal representation of any SU(N) is simply Z
71 + Zk AR Zlfkl + le - and the character of the anti-
fundamental representatio}l is obtained by making the sub-
stitution z; < % The character of adjoint representation

can be computed using those for the fundamental and anti-

=1& =
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fundamental representations:

fundamental ® anti-fundamental = adjoint @ singlet

= Xf X Xaf = Xadj + Xsingl- .. Xadj = Xf X Xaf — 1.

So, the true utility of the formalism outlined above lies
in the character computation of other representations of a
given group. Below, a few more examples of character com-
putation for irreducible representations of SU (2) have been
elucidated.

— The Quadruplet Representation: 4 = (3) =[ [ ]
We obtain A = (3,0) andr = A + p = (4,0) and the
character is obtained as:

G N
) = A = Er—e |2 1
_ -8
£ — &
=& 4+ e2ey 4 6163 + &3.
LXSU@).(21) = Z% +z1+ i + % (34)

g

— The Quintuplet Representation: 5= (4) =1 [ [ ]
We obtain A = (4,0) andr = A + p = (5,0) and the
character is obtained as:

S el
1) = T e a2 1
5_.5
= —2 :Z = s‘l‘ —}-8%82 —i—e%e%
te165 + &5
4., 2 P 1
Soxsveys@) =i+t +14+ 5+ . (35)

SRS

Haar measure

Using Eq. (23), we can obtain for SU3), &1 = 71, &2 =
zf] 72 and €3 =z, ! The Vandermonde determinant for this
case is:

ef e1 1
i (z))
Ae) = |e3 & 1| = l_[ (¢i — &) ==
8% &3 1 1<i<j<3

R CE
21 22 21 22

A(e™!) is obtained by replacing &; by & ' in the above
expression. Then using Eq. (27),

I dudz
312w 21 2

dpsu) = Ae)a(e™)

_ ! dudm
62ri) 21 2 =2

2
x<1—z—§)<—z—1>. 37)
Zl 22

Characters

— The Fundamental Representation: 3 = (1,0) =[]
Using Eq. (25), we get A = (1,0, 0). Now, since p =
(2,1, 0) therefore, r = A + p = (3, 1,0) and the char-
acter is obtained as:

( ) g3, &, 1]
£1,8,83) = —————
A PENRST
8% e 1
1 3 )
= & &
[Tizicj=s (ei — &) 3
g3 €3 1
=¢&1 + & + &3,
2 1
LXSUGH: (1, 22) =21+ — 4+ —. (38)
21 22

— The Anti-fundamental Representation: 3=(0,1 = H
We obtain A = (1,1,0) andr = A 4+ p = (3,2,0) and
the character is obtained as:

( ) &3, €2, 1]
£1,82,63) = ———
X (€1, €2, &3 2.6 1|
3.2
. e e 1
3 .2
= & &5 1
H1§i<j§3 (81'_81') 3 2
g3 &5 1
= &£1&2 + €183 + €283.
21 1
LXsUG)s(z,2) =+ —+ —. (39)
: 22 21

— The Adjoint Representation: 8 = (1, 1) =
We obtain A = (2,1,0)andr = A+ p = (4,2,0) and
the character is obtained as:

( ) e, &2, 1]
€1,82,83) = —
X 2, e, 1]
8‘11 8% 1
1
_ 4 2
= _ < |62 & 1
H]§i<j§3 (8,—81) 4 2
€3 &3 1

= 8%82 + s%sl + 8%83 + 8%81
+8%83 + 832,82 + 2¢e187¢€3.

1
XsUuG)s(21,22) = 2122 + ——
2122
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2 2
< < < Z

24+ S+ 422 @0
5 2 oz

— The Sextet Representation: 6 = (2, 0) =[] | We obtain
A=(2,0,0)andr = A+ p = (4, 1, 0) and the character
is obtained as:

¢ ) le%, &, 1]
x(€1,€2,€3) = ———
&2, ¢, 1]
8‘1‘ e 1
1 4
= : < |€7 €2 1
[li<icj<s(ei—ej) | 5
&3 &3 1

=8%4—8%4—8%4—51824—82834—8]83.
, 1 1 g
LXSUBYe (21, 22) = 21 + S+ + T +

1
=+

(41)

— The 27-dimensional Representation: 27 = (2,2)

We obtain A = (4,2,0) andr = A + p = (6,3,0) and
the character is obtained as:

( ) [e®, &, 1]
£1,62,83) = ———
X(&1,€2,¢€3 |32, T
8? 8:1; 1
1
6 .3
= = 82 82 1
Hl§i<j§3 (Ei_sj) 6 3
&3 &3 1
3.3 3.3 3.3
_ (e1 —&3) (e —&3) (5 —&3)
(61 —€2) (61 —&3) (2 —&3)
= (s% +e1e +8%) (3 + 163 +8§)
X(8%+8283—|—£%).
1 1 2
. X(SU(S))27(ZI,Z2)=3+Z?+*3+Z%+*3+%+%
Zl Zz Zz Zl

2z 2z 2z 2z
+L 4 2 22 Ty g2
22 ] 21 2
1 2
+ﬁ+2ZlZ2+7 (42)

7125 2122

Haar measure
Using Eq. (23), we can obtain for SU(4), &1 = 71, &2 =
Zf]zz, &3 = zglzg and &4 = z;l. The Vandermonde deter-

@ Springer

minant for this case is:
3.2
&) €] €
3 8% &
A(e) =

= [] Gi—e)- (43)

I<i<j<4

—_— —_—

€)
3

& €5 €
3

€, € &4

A(e~!) is obtained by replacing &; by & ! in the above
expression. Then using Eq. (27),

1 dzydzpdzs -1
d = IS Ay ale
HSUD = Jomid 21 22 23 0O ( )
| dzydomd 1
:7ﬂ£ﬁ(l_zm)(1_7>
2402ri)} 21 2 3 7123
z% 22 2122 23
(-3 (-2) (22 (- 2)
2 2 3 7122
2
(1o 2 ) (1-az (,@)
7123 z5 21
21 Z% 22
><<l——> -3y (-2, (44)
2223 2 3
Characters

— The Fundamental Representation: 4 = (1, 0, 0) =[]
Using Eq. (25), we get A = (1,0, 0, 0). Now, since p =
(3,2, 1,0) therefore, r = A + p = (4,2, 1,0) and the
character is obtained as:

let, &2, el, 1] 1

x(e1,€2,€3,64) =
4 2
gl e e 1
4 2
& & & 1

4 2
g3 &3 €3 1

4 2

ey & &4 1
&1+ &+ &3+ ¢4.
23 1
22 3

2
L XGSU@. (1, 22,23) = 71 + ot (45)

— The Anti-fundamental Representation: 4 = (0,0, 1) =

I

WegetA=(1,1,1,0)andr =1+ p = (4, 3,2,0) and
the character is obtained as:

le?, &3, &2, 1]
x(e1,€2,€3,64) =

|e3, €2, ¢, 1]
8‘1‘ 8? 8% 1
B 1 e & e 1
C Tlicicjea(si—gj) f &) €3 1
ef e el 1

= 18283 + £186284 + £16384 + £26384
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2 oz 1
SoXesu@ng (@ z2.3) =+ —+ — + —. (46)
3 22 2
— The Decuplet Representation: 10 = (2,0,0) =[]
WegetA=(2,0,0,0)andr =12+ p =(5,2,1,0) and
the character is obtained as:

&3, &2, ¢, 1]
X(81,82,83,84)=m
e) &2 e 1
1 e &3 e 1
[izicjza(ei —2j) |63 &3 &5 1
e &3 es 1

=8%+8§+8§+8§+8182+8183+8184

+e263 + €264 + €384.

2 2 Z%
CLXSU@)0(R1,22,23) =27 + —i +
1 2
1 1 721 23 22 z123
tstnt—+—+=+—4+——. @)
23 22 3 1 2123 22

— The Anti-decuplet Representation: 10 = (0, 0, 2) =

Wegetdi=(2,2,2,0)andr =1+ p = (5,4,3,0) and
the character is obtained as:

_ le2, e*, &3, 1]
x(e1, €2, €3,84) = W
sf 3? 8? 1
1 83 83 8% 1
a 1_[151<j54 (ei —¢j) e e & 1
82 82 82 1

2.2.2 2.2.2 222
= £16,85 +e18564 + £18384
222 2.2
+er656) + €1€58364

2.2
+e1€263€4
2 2 2.2
+eie26384 + €1858384
2...2 2.2
+e1858384 + €18265¢6].
2 2
. _ 2, % .4 1 1
SoXSUpGEL.) =Bt S+ 5+ 5+t
23 Z2 Zl 22

Z Z 212 Z
22 E8 2 0 4)
21 23 22 2123

— The Adjoint Representation: 15 = (1,0, 1) =

WegetA=(2,1,1,0)andr =1+ p = (5, 3,2,0) and
the character is obtained as:

le3, &3, 2, 1]
le3, €2, &, 1
1

[Ti<icj<a(ei —¢))

x(e1,€2,€3,84) =

= 8%8283 + 818%83
+ 2 2 2
£16263 +€1€284 +€165¢€4
—l—a]ezeﬁ + 8%8384
+818%84 + 81838%
+828 &4+ € 828 + &p¢ 52
28384 26384 2€3¢&y
+3e16028384.
2123 Z%

X ( ) = *Zl + 2 + —
SU 4 <1,%2,23
SU@)1s I Z% z% 2123

2122 21 3 2223
— t — 4+ — + —

+
23 2223 2122 2]
2
1 Z Z
+21z3F —— + = + 2 43,
amz 2 3
(49)

2.SO2N + 1)

Characters
The Weyl character formula for SO (2N + 1) representa-
tions [35,37-39] can be written as:

(M (e))

Xrla”2>~~-er

|8r1 _S—rl’grz_g—rg SrN_S—rN|

g ey

3 1 7
N3 ez -2

(50)

_1 _N+1L _3
|€N 7 —¢ N+2,8N 7 _ ¢

where M(e) = diag(ey, €2, ..., en) identifies a particular
representation of SO (2N + 1) and the r;’s are obtained from
the Dynkin labels of a particular representation. The ¢;’s can
again be obtained by inspecting the matrix form of the max-
imal torus of SO(2N + 1) [40]:

cos O —sinfy --- 0 0 0
sinf; cosf; --- 0 0 0
™[ . (51)
0 0 ---cos Oy —sin Oy 0
0 0 -sin Oy cosfOy O
0 o - 0 0 1 QN+1)x(2N+1)

Each 2 x 2 block can be written in diagonal form as:
(COS 0 —sin 9") - (elei 0). Then, by defining &; = €%, we

sin 6; cos 6; 0 e 0
find (2N + 1) parameters {g;, &; ~', 1} wherei = 1,2, ... N.
The numerator of Eq. (50) can be recast as:
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e — g™ g™ — T2 N — TV

r | r —r rN —IrN

e —e et —g P8 =g

r —r] r —r N —IrN

&y —&y &y — &y T8y —gy

= . ) , ; (52)
r | rn —r rn rn
EN —EN EN —EN- i EN —EpN
where the denominator is expressed as:
_1 N4k 1 _1
|8N 2 —¢ N+2,...,82—8 2|

N-1L -N+1 N3 —N43 1 -1
2 2 2 2 2 2

& — £ g — £ o8] — g

N-1 -N+1 N3 —N43 1 -1
2 2 2 2 2 2

B2 T T8 & T T & R )

N-1 N+L N3 —N43 1 -1
2 2 2 2 2 2

En T T éEN Y N En — &N

(53)

Calculating the r;’s
The Cartan matrix corresponding to SO(2N + 1) is an

N x N matrix
——ay — —
——an_ — —
——ay — —
0
0

DSOQN+1) =

2 -10 - 0 0
-12 —1--- 0 0
=1 - oo (54)
00 0--—-12 =2
00 0--0-12

NxN

To find the r;’s, the weight tree [41] corresponding to the
LDF representation of SO (2N + 1) needs to be constructed
first. This can be done by successively subtracting the rows
of the Cartan matrix (&/span+1)), given in Eq. (54), from the
respective Dynkin label (1,0, ..., 0). The general structure
of the weight tree is given as:

Ly =(1,0,0,...,0,0),
—_—_——
(N —tuple)
L2=L1_al =(_111701"'1070)7

Ly=Ly1—ap1=(@,...,—1,1,...,0),
LN—] ZLN_2—QN_22(0,0,...,—1,1,0),
LN:LN—I_aN—l =(0107"'7O’_172)' (55)

A particular representation of SO (2N + 1) can be uniquely
identified by its Dynkin label (a1, aa, ..., an). To find the

@ Springer

r;’s, first, we solve the following equation in terms of the
Dynkin label and the fundamental weight tree of LDF repre-
sentation to obtain A;’s:

(ay,a,...,an) =21(1,0,...,0,0) + A2(=1,1,0,...,0)
4+ +Any_100,...,—1,1,0) + AN (0,0,...,—1,2).

Here, we have N-unknowns in {A{, A2, ..
are N-equations in {ay, az, ..., ay} as:

., An} and there
k=1,...

ay =2An and ar = A — Ak,

Thus, we find unique solutions of A;’s as:

an an
AN = - AN-1=an-1+ - Ak = ag + a1
an
+oday_) + —. (57)

2

The r;’s are related to the A; ’s through the following equation:
1

r=Xi+p where p; =N—i+§,

Having obtained r;’s, we can compute the numerator given
in Eq. (52) and subsequently the full character.

i=1,2,..,N.(58)

Haar measure
The general form of the Haar measure can be written as
[8,16,42]:

N

1
d/'LSO 2N+1) — —%
/SO(2N+1> CY T @riyV 2V |£1\=111]
del —1
—A(e)A(s ) (59)
&

A (e) is given in Eq. (53), A(e™) can similarly be computed
by substituting 8;1 in the place of ¢; in the expression of
A (g). Finally, substituting for known quantities in Eq. (59)
we can obtain the Haar measure for given group.

Next, the characters for certain representations [43,44]
of SO(7) and SO(9) have been computed and the explicit
computation of the respective Haar measures of these groups
have also been shown.

Haar measure
The denominator for the character formula in this case is:

|
I

)
|

™
=

™

(ST}

Ae) = |g -3 (60)

Wi N = oium
™
(&)

Ll

™

Wiojw N ojw = ojw
™
)
™

)
|

)
w

)

1

A(e~1) is obtained by replacing &; by g;  in the above

expression. Then using Eq. (59),
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1 de) dey des
3 3 __A( )A ( )
3123 2wi)? €1 &2 &3
1 d81 d82d83 2
= — 1 + & &1 — €&
18 ni)  £0e8e0 (= 1? (61 — €2)
x (—1 +82)
2 2 2
X (=14 e182)" (61 —&3)" (82 — &3)

x (=1 +83)% (=1 + £163)% (=1 + &263)?

diso) =

(61)

Characters

— The Fundamental Representation: 7 = (1, 0, 0)
Using Eq (57), we get A = (1,0,0). Now since p =

(2 55 2) therefore, r = A + p = (2 5, 2) and the
character is obtained as:
XS0 (€1, €2, €3)
7 _1 3 3 1 _1
le2 —e7 2,82 —g7 2,82 —g 2|
= N 3 1 1
le2 —e72, 682 —g7 2,82 —g 2|
7 _1 3 _3 1 _1
ef —&;’ ef —e 7 gl —&
7 _1 3 _3 1 1
& —&° & —& & —&°
7 _1 3 _3 1 1
€5 —&3° &5 —&3° &3 —&3°
=753 I 3 1 1
ef —e e —& 7 gl —g’
5 _5 3 _3 1 _1
gy —& 1 & —& ' & —&’
5 _5 3 _3 1 _1
ey —e3” &5 —&3° &5 —ey”
1 1 1
=l+e+—+e+—+e+—.
€1 &2 €3
(62)

— The Spinor Representation: 8§ = (0, 0, 1)
We obtain A = (3, 1, yandr =1+ p = (3,2, 1) and
the character is obtained as:

Xsom)s (€1, €2, €3)

|63 —e3, g2 — g2, gl _ g~
=5 5 3 31
le2 —e7 2,682 —¢g 2,2 —g 2|
3 32 =2 _1 -1
g1 =& & & & —¢&
3.3 2 -2 _1 1
E) T & & T& & &
3.3 2 -2 .1 1
_ |83 T8 &3 &3 &3 &
=7 5 3 3 1 1
2 2 2 2 2 2
& —E& 7 & —& " & — &
5 _5 3 _3 1 1
2 2 2 2 2 2
&) =& & —& " & —&
€3 —&° &3 — & 83 — &3

£283

&1

£1€2 8183
= Je16283 —i—\/ \/

€1

. (63)
£83

«/51828 V/Slsz V/8381
— The Adjoint Representation: 21 = (0, 1, 0)

We obtain A = (1, 1,0) andr =X+ p = (3,3, 1) and
the character is obtained as:

XSO (€1, €2, €3)

7 _1 3 _5 1 _1
le2 —e7 2,62 —g 2,62 —g 2|
=T _5 3 3 1 1
le2 — e 2,82 —¢g 2,82 —g 2|
7 _1 3 5 1 _1
2 2 2 2 2 2
€] —& 7 & —¢& " & —¢&
7 _1 3 _5 1 _1
2 2 2 2 2 2
E) —E)T &) —& T & — &
7 _1 3 5 1 _1
2 2 2 2 2 2
|83 — &3 &3 — &3 &3 — &
=7 _5 32 _3 1 _1
2 2 2 2 2 2
€ —& T & —& & —¢&
5 5 3 3 1 _1
2 2 2 2 2 2
&) =&~ & —& " & —&
3 503 3001 Tl
2 2 2 2 2 2
€3 —E3° &3 —&3° &3 — &3
1
=3+ t+tet+e3+—+—+—
& &
1 1 1
+e162 + 6283 +E€163+ —+ — + —
£182 £2€3 £1€3
€1 &2 €1 €3 &2 €3
=+ =+ =+ =+ =+ = (64)

&2 &1 &3 €1 &3 &2

Haar measure
The denominator for the character formula in this case is:

>
|
™
™
|
»
»

o
|
»

[\S]
»

I
®
N
®

A(e) =

o
|
™
(98]
™
™

™
Ll SRS IS SR )

B 0D U o ol
w
™
Ll SR ST S IR T

|
™

~
™

(65)

A(e™!) is obtained by replacing &; by & " in the above

expression. Then using Eq. (59),

1 d81 d82 d83 d84
duso©) =

Characters

— The Fundamental Representation: 9 = (1, 0, 0, 0)
Using Eq. (57), we get A = (1, 0, 0, 0). Now, since p =
(Z g % 2) therefore,r = A+ p = (g g g 2)andthe

character is obtained as:
X(S09))o (€1, €2, €3, €4)
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9 _9 5 5 3 31 _1
le2 —e72, 62 —g7 2,62 —e7 2,82 —g 2|
=77 7 3 5 3 3 1 1
le2 —e72, 62 —g7 2,62 —¢7 2,82 —g 2|
9 _9 s _5 3 3 1 _1
ef —&C el —& 7 & —& 7 & —g
9 _9 s _5 3 3 1 _1
&y —&)° &5 —&° & —&° & —&°
9 _9 s _5 3 3 1 _1
63 —&3° &5 —&3° &3 —&° &5 —&°
9 _9 s _5 3 _3 1 _1
€y —&y° £ =&y & —E&y & —&°
=11 —7 3 5 3 N 1
ef —&; 7 ef —& & —& & —g°
7 _7 s _5 3 3 1 _1
&y —& % & —& ' & —& ' & —&°
7 _71 s _5 3 _3 1 _1
€7 — 837 €5 —&y° €5 —&3° & —&°
7 _7 s _5 3 3 1 _1
f — 840 8§ —&y0 & —&y° & —&;°
1 1 1 1
=l+eg+—+e+—+e+—+a+—. (67)
£ & &3 &4
— The Spinor Representation: 16 = (0, 0, 0, 1)
witha =G 2 L Dandr =1+ p=(4,3,2,1), the
character is obtained as:
XS0 16(E15 €2, 3, €4)
|(94 —8_4, &3 —8_3, g2 —8_2, gl —£_l|
7 _7 5 s 1
le2 —e72, 62 —g72,e2 —€72,¢82 —g 2|
&4 -4 3 -3 2 -2 1 —1
€ =& & — & & & & —¢
o -4 3 2 -2 .1 -1
) =& & T & & =& & —&
o 4 3 -3 2 2 .1 -1
€3 —& &3 — & E3— &3 &3 &
4 -4 3 -3 2 -2 .1 -1
L Y S T S T B
11 —7 3 5 3 3 1 1
2 2 2 2 2 2 2 2
€ —& T & —& T & — &~ & —¢§
7 _1 5 _5 3 31 _1
2 2 2 2 2 2 2 2
€) —E)" &) —é& " & —& " & —&
7 _1 3 s 3 “3 001 “1
2 2 2 2 2 2 2 2
€3 —& " &3 — & &3 —& " &3 — &
7 1 3 5 3 31 _1
2 2 2 2 2 2 2 2
€ —E&4 7 &4 —EyT &4 —E& T &4 &y
£16263 £1€364 £1€264
= \/€16283€&4 —}—\/ +\/ —I—\/ .
3

E2E3E4 €182 E1€4 8183
_%\/ V/8384 V/8382 €284
E3&4 E2E3 E2&4
\/ V/8184 V/8183 £3€261

&3
+J +
£2€184

— The Adjoint Representation: 36 = (0, 1, 0, 0)

@ Springer

\/ +\/ el " 1
£1€384 £26384  JE1626364
(68)

With A = (1,1,0,0) andr = A+ p = (3, 1, 3, 1), the
character is obtained as:
X(S0©))36 (€15 €2, €3, €4)
9 _9 1 _7 3 _3 1 _1
le2 —e72, 62 —g7 2,62 —¢€72,¢62 —g 2|
=7 1 5 s 3 _3 1 I
le2 —e72,82 —g7 2,82 —g 2,82 —¢g 2|
9 _9 1 _7 3 31 _1
2 2 2 2 2 2 2 2
Ef —E& T & —E& T & —& 7 & —¢&
9 _9 1 _7 3 31 _1
2 2 2 2 2 2 2 2
€) —ET &) =& T & —& T & —&
9 _9 1 _7 3 31 _1
2 2 2 2 2 2 2 2
€3 —&3 7 &3 — &7 &3 —& 7 &3 — &
9 _9 1 _7 3 31 _1
2 2 2 2 2 2 2 2
8y T &y Bp — &y 8y — &y Ef — &y
11 —7 5 ) 3 1 1
2 2 2 2 2 2 2 2
€ —& " & —& T & —& " & —¢&
7 _1 5 _5 3 31 _1
2 2 2 2 2 2 2 2
€y —E)" &) —é& " & —& " & —&
7 _1 3 _s 03 “3 001 _1
2 2 2 2 2 2 2 2
€3 —&3" &3 —é&3° &3 —E&3° &3 — &
A S S T NS T S
€4 —E4° €4 — &4 €5 —E&,0 &5 —&
=4d+4ce1+eyte3tes+e16y+ 263+ e6183
1 1 1
+E184 + €264 + 6384+ — + — + —
€1 &2 &3
1 g1 & & & & &3
i i i B T
€4 2 1 &3 1 3 &
€1 &4 1) &4 &3 &4
e R e
&4 1 &4 2 4 €3
1 1
— b —F—F—F—+—. (69)
£167 €263 €163  E£164  £264  E483
3.SO@2N)
Characters

The character computation of a particular representation
for SO (2N) needs special attention as it possesses the notion
of simple and double characters. First, we compute two char-
acter functions [35,37,38]

g(M(s)) _ e 467", e"2 46772, "N 47N —dxyol
P12 N = [eN—1 L g=N+1 oN=2 f =N+2____ 1| ’
y(M(S)) _ |8rl —e " ’ g2 — 8_'"2’ e g'N —e7'N | (70)
12, 0rfN T |€N—1+€—N+1’8N—2 +8_N+2,...,1| '
For Ay = 0, the simple character is given as:
(M(e))  _ co(M(e))
Xrl r2,....,IN T Cgrl,rz,---,rzv‘ (71)
Otherwise, if Ay # 0, the simple character computation is

redefined as:

L M)

M M
ME) %<@’ () (72)

Xr],rZ, r,r2, J’N)

Here M (¢) =diag(ey, €2, ..., en) identifies a particular rep-
resentation of SO(2N). The r;’s can be obtained from the
Dynkin labels of the representation while the g,’s can be
obtained by examining the matrix form of the maximal torus
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of SO(2N) [40] given below:

cos O —sin Oy --- 0 0
sinf; cosf; --- O 0
™| Do : (73)
0 0 .- cos Oy —sin Oy

0 0 - sin Oy cos Oy

2N x2N

Each 2 x 2 block can be written in diagonal form as:
(C":‘ 0 —sin 9!’) > (elei 9 > Then, by defining &; = ¢'% we get

sin 6; cos 6; 0 e i
2N parameters {&;, si’l} wherei = 1, 2, - - - N. The respec-
tive numerators on the RHS of Eq. (70) can be explicitly
written as:

e 47 e 472 N TV — 850

r —r rn —r rN —FrN
e e e te el e T =0
r —ry —r N —ryN
&) +&y &y +Ey -8y &y T =80
e :
r —r rn —r rN —IrN
ey tey ey tey cEy Tey T — 0
e — e, " — T2 N — TN
- r ) N N
)t —e et —e P e —ef
—r] r —r rN —IN
ey —ey ey —ey 7 ey —
= , (74)
—r ) N —rN
€N—8N eN ey EN —EN
while the denominator is
|8N71 +87N+1,8N72+87N+2““7 1
N1 ~N+L —N+2
el e Mt ZperNt2
N-1 —N+1 N+2
& + &5 el +82 |
= . (75)
N—1 —N+1 _N=2 —N+2
ey téy ey tén |

Calculating the r;’s
Cartan matrix for SO(2N) group is an N x N matrix

——a — —
——OtN 5 — —
——ay_| — —
——ay — —
.. 0
.0

Ds00N) =

Once again our first step in calculating the r;’s is the con-
struction of the weight tree [41] corresponding to the LDF
representation of SO (2N). We start with the Dynkin label
(1,0, ..,0) and successively subtract rows of the Cartan
matrix shown in Eq. (76). The weight tree can be expressed
as:

Ly =(1,0,0,...,0,0),
(N —tuple)
Ly=L,—a; =(—1,1,0,....0,0),
Ly=Ly 1—a1=@,...,—1,1,...,0),
LN*] = LN*Z —ON-2 = (05 07 ey _15 17 1)7
LN:LN—I_aN—l=(0107"'301_171)' (77)

A particular representation of SO (2N) is uniquely identified
by its Dynkin label (ai, ..., ay). The elements of Dynkin
label a;’s can be written in terms of the fundamental weight
tree of LDF representation and the A;’s as:

ay) = A1(1,0,...,0,0) + A2(—1,1,0,...,0)
—1,1,1) + Ax(0,0,...,—1,1).

(ai,az, ...,
+o+An_1(0, ...,

The above equation can be solved to find the A;’s uniquely
through following steps

an = AN-1+ AN,
ar = A — M1, k=1,...,

an—1 = AN—1 — AN,
N —2. (78)

which are inverted as:

1 1
AN = E(GN —an-1), An-1= E(GN +an-1),

1
AN—2 =an-—2 + z(azv +an-1),

M= ak + agp1+ - +ay-o + %(azv +an-1),
k<N-2. (79)
The r;’s are related to the X;’s through the following equation:
r=A+p where p,=N—-i, i=1,2,...,N. (80)

Once r;’s are noted down, we can compute the numerator
using Eq. (74) and subsequently the full character.

Haar measure

The Haar measure for SO(2N) group can be written as
[8,16,42]:

/ diso@n)
SO2N)

1 de
- - A A .
Qri)N 2N-1 N1 7€s,|=1 E 0 2@ ( )

(81)
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A (g) is the denominator given in Eq. (75), Ale~D) can sim-
ilarly be computed by substituting &, in the place of &; in
the expression of A (¢). Finally, substituting them in Eq. (81)
we can obtain the Haar measure.

As examples, the characters for a few representations [43,
44] of SO (8) and the Haar measure are explicitly computed.

Haar measure
The denominator for the character formula in this case is:

3, -3 2., .2 1, -1
el te erteT g te

1
8%4—82_3 8§+82_2 8%4—82_1 1
A@=|5 5 5, 2 1, 1| (82)
&3+e3” &5+e37 &3+ &3 1
1

3 -3 2 -2 1 -1
84+£4 84+£4 84+84

1

A(e~!) is obtained by replacing &; by g; in the above

expression. Then using Eq. (81),

1 de) dey des dey _
duso®y = ——— ! A()A(s 1).

Characters

— The Fundamental Representation: 8, = (1, 0, 0, 0)
Using Eq. (79), we get A = (1, 0, 0, 0). Now, since p =
(3,2, 1,0), therefore,r = A+ p = (4, 2, 1, 0) and using
Eq. (71) the character is obtained as:

X(S0@®)s, (€1, €2, €3, €4)
|84 e 2462 gl 4l 1]
|34 e3, 824672 gl 46

4 —4 1 -1
& +& &+ & 1

24 -2
&1+
4 1, -1
& +e, 1

2 -2
%+% &5+ &,

4

7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2 2
&l +¢& &l +¢& el t+¢ &l t+¢&
7 _1 3 _5 3 _3 1 _1
2 2 2 2 2 2 2 2
& te " &t & te& T & &
7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2 2
€3 +&3° &3 +& 7 &3 T&° & + &
7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2 2
ey eyt gy eyt ey e gy ey
83+8_3 82+8_2 81+8_1 1
% Ly 1 L { 5
%+%3%+%2?+%11
8%+833 8%4-832 831,4-831 1
gy te,” eite " gt 1
u7?50(8»3§(8],82753,84)

5 3 _3 1 _1
|£2—8 2 82—8 2,82 —¢g 2,2 —g" 2|
|834—s 3,824—8*2,81+- -1
7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2 2
€] —& T & —& T & —& T & — &
7 _1 3 _5 3 _3 1 _1
2 2 2 2 2 2 2 2
E) —E)T &) —é& T & — &7 & —&
7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2 2
€3 —&3 7 &3 — &7 &3 —& 7 &3 — &
7 _ 5 _ 3 _3 1 _1
2 2 2 2 2 2 2 2
L ley —eyt ey —ey T g —Ey T gy — gy

8?4—8r3 8%4—8{2 8%4—8;1 1
3 -3 2 -2 1 -1
& t+e” 5+ e te 1
3 -3 2 -2 1 -1
&3 t+&7 &5+ ¢e37 &3+ &5 1
3 ) -2 1 -1
gy +te,” e te” g te 1

Using Eq. (72) the character of this representation can be

given as:

X(SO®))g, (61 €2, €3, €4)

1
= *(%(SO(S))g (e1, €2, €3, 84) + F(50(8))g, (£1. €2, €3, £4))

182 8184 8183 €384
= \/€182€384 +
8‘;84 8382 8284 182

8284

83 +83

4
84+84

2 -2
&3 + &3

2 -2
ey + ¢,

1 -1
&3 +&3 1

1 -1
g, + &4

sl—i—el

2 -2
85-{-812
8%—1—822
&35 +¢&5

2 -2
&y =+ &4

sll—i—sl_l
8%4—82_1
sé +83_1
8i+84_1

—_— e e e |

8253
8164

5153

JE162636

(85)

— The Conjugate Spinor Representation 8 =1(0,0,1,0)
WegetA=(3, 1,3, —Dandr=2+p=(}.3,3, -1

and using Eq. (70) we get:

C(s08))s, (€1, €2, €3, €4)

1 1 1 1
=g t+—+a+—+ea3+—+es+ —.
€1 &2 &3 &4

(84)

— The Spinor Representation: 8; = (0, 0, 0, 1)
We obtain A = (%, %, %, %) andr=A+4p = (%, %, %, %)
and using Eq. (70) we get:

Cs0@®))s, (61, €2, €3, €4)
5 3 3

7 7 5
le2 +e72,e2+¢e 2,246 2, + |
N |83 4673 24672 el 471 1]
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7 _7 3 _3 3 31
le2 +e72,82 462,824+ 2,82 +¢ |
|83+8_3, e2 4672 gl4e1 1]
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7 _1 s _5 3 _3 1 _1
2 2 2 2 2 2 2 2
&l +¢ &l +¢& el +¢ el t+¢
7 _1 3 _5 3 _3 1 _1
2 2 2 2 2 2 2 2
& te " &t & t& T & &
7 _1 3 _5 3 _3 1 _1
2 2 2 2 2 2 2 2
€3 H&37 &5 +& 7 &3 T&° & + &
7 _1 s _5 3 _3 1 _1
2 2 2 2 2 2 2 2
I e R e o e R a1
- 3 -3 2 -2 1 —1 ’
e]+e "~ ert+e " g t+e 1
3 -3 2 -2 1 —1
& +e,” e5+e,” g+e 1
3 -3 2 -2 1 —1
8%4—833 8%+832 831’+831 1
gp+e,” eite,” gute, 1

S(508))s, (€1, €2, €3, €4)
A N N R R Lol
l|e2 —e72, 82 —e7 2,82 —g 2, —(e2 — g 2)]

|e3 4+ 673, 24672, el 471, 1]

7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2
€ —& 7 & —& T & —¢& —(ef —&;7)
7 _1 3 _5 3 _3 1 _1
2 2 2 2 2 2 2 2
E) —E)" &) =& & —& —(& —&7)
7 _1 3 _5 3 3 1 _1
2 2 2 2 2 2 2 2
€5 —&3° &5 —&° &3 —&° —(&5 —&7)
SIS S B B S
2 2
ey —ey T gy —ey T &y — 8y — (g5 —&47)
- 3 -3 2 -2 1 —1
e%—i-sl 8%—1-812 8%"‘811 1
8‘%-{—823 8%4—822 8%-{—821 1
8§+833 8%4—832 8%+831 1
eyte,” eites” gtey 1

Using Eq. (72) the character of this representation can be
given as:

X(S0@®))g, (€15 €2, €3, €4)

1 )
= 5(%)(50(8))36 (e1, 82, €3, 84) + S (50(8))g, (€1, €2, €3, €4))
& & & &
:\/ 1 +\/ 2 +\/ 3 +\/ 4
£28384 £18384 £1€264 £182€3
ENERE. E1E3€E. E18E9E. E1E7€
+\/234+\/134+\/124+\/123_
£1 & &3 e4
— The Adjoint Representation: 28 = (0, 1, 0, 0)

We obtain A = (1,1,0,0) andr = A+ p=(4,3,1,0)
and using Eq. (71) we get:

(86)

X(SO(8))s (€1, €2, €3, €4)
|84 et B 4e3 el 4! 1]
34 e3, 24672 el 4ol

et +ert el +e el vl 1
s§+82_4 83—1-82_3 8%-{-82_1 1
s§+8§4 s§’+8§3 8;-{-8;1 1
_ sj—i-e;“ 82—1-8;3 8}‘-‘1-8471 1
B 8?4—81_3 8]2+81_2 811+€1_1 1
834—82_3 s§+82_2 8%4—52_1 1
8;-{-83_3 8%-{-83_2 8%—{—83_1 1
82+s4_3 si+s4_2 8i+84_1 1
=4+ e16) + 6263 + 6183 + €164 + €264 + £384
1 1 1 1 1 1
e1ey | Exf3 | £163 | E184 264 E4f3
- B R B SR
& & & € & €& &4 &
T (87)

&4 1) &4 &3
4. Sp(2N)
Characters
The Weyl character formula for Sp(2N) group is given as
[35,37-39]:

et —e™ g2 —eg72 .
|eN — =N, eN=1 — g=N+1

M(e) &N — e

Xrir, iy =

) 81 - 8_1|7
(88)

where M (¢) =diag(ey, €2, . . ., €y) represents a specific rep-
resentation of Sp(2N). The ¢,’s are determined using the
matrix form of the maximal torus of Sp(2N) [40]. The sim-
ple parametrization &; = ¢'% yields the variables used in the
definition of the character.

e 0 ...00
0 e%... 0

™. . . . . (89)
6 () . eiéN

NxN

The numerator of Eq. (88) can be expressed as:

e —e™ g™ — T2 N — g7V
r —r] r —r N —rN
€ —& & —E& T g — &
r —r] r —r rN —FrN
€y =& &y —& T &y —&

= . ] . , (90)

r —r] r —r rn —IN
EN —EN EN TENT T EN T &y

and the denominator is given as follows:

N N=1 _ =N+l I

eV — e ..., € —¢

@ Springer



938 Page 20 of 73

Eur. Phys. J. C (2020) 80:938

E{V—sl_N E{V_l—el_NH 8%—81_1
B S S
=" . . o
8%—8;71\, 8%—1 —8;]N+1 ._.8]1\]_8;]1
Calculating the r;’s
The Cartan matrix for Sp(2N) group is given as:
—— - —
——ay— —
DspN) = |
——ay_ — —
——ay — —
2 -10 -0 0 0
-12 -1---0 0 O
ol B SN L)
000 ---12 -1
0 0 O 0 -2 2

NxN

Starting from the Dynkin label for the LDF representation of
Sp(2N) (1,0, ..., 0) and successively subtracting the rows
of the Cartan matrix, see Eq. (92), the corresponding weight
tree [41] is computed as:

Ly =(1,0,0,...,0,0),
—
(N-tuple)
Ly=Li—a; =(-1,1,0,...,0,0),

Lkszfl_akfl=(O""’_171""70)’
LN—l:LN—Z_aN—ZZ(0507"'7_11170)7
Ly=Ly_1—an—-1=1(0,0,...,0,—-1,1). 93)

Similar to the earlier cases, a particular representation
of Sp(2N) is uniquely identified by its Dynkin label
(a1, az,...,ay). Following the same trajectory, we can
rewrite the A;’s in terms of the a;’s using the weight tree
of LDF. The successive paths adopted in this construction
are as follows:

(ar,az,...,an)
=21(1,0,...,0,0) + Ap(—1,1,0,...,0)

4+ An_1(0, ... —1,1,0) + AN (0,0, ..., —1, 1).

Each entry of the Dynkin label can be recast as:

k=1,...,N—-1.
(94)

ay = Ay and ap = Ag — A+,

Then we can find unique A;’s in the following form

AN =an, AN—1=ay-_1+ay,

@ Springer

Ak = ag + ag+1+ -+ +an. 95)
The r;’s are related to the A; ’s through the following equation:

r=A+4+p where p,=N—-i+1, i=1,2,..,N. (96)

After computing the 7;’s, we can further simplify the numer-
ator using Eq. (90) and compute the full character.
Haar measure

Here, the Haar measure can be written as [8,16,42]:

/ dispn)
Sp(2N)

1 N dey .
- A A .7
i)V 2V N1 ﬁ,_lg o 2® (8 ) ©7)

A (g) is the denominator given in Eq. (91), A(e~1) can simi-
larly be computed by substituting &, Uin the place of ¢; in the
expression of A (g). Then using these information we obtain
the Haar measure for Sp(2N) group.

Here, the characters for certain representations [43,44]
and the Haar measures correspond to Sp(4) and Sp(6) groups
have been computed in detail.

Haar measure
The denominator for the character formula in this case is:

T—e? el —ep!
A=, 5 1 ©8)
&) =& & &

A(e™!) is obtained by replacing &; by & " in the above
expression. Then using Eq. (97),

dpspay =~ 2142 f oy (=)
HSr® = 502 axiy? &1
1 dei d 2
S L dedn )
8(Q2mi)” & &
2\? 2 2\\?
X (—1 ~|—€2) (82 + 182 — €1 (1 +82)) .
99)
Characters

— The Fundamental Representation: 4 = (1, 0)
Using Eq. (95), we get A = (1, 0). Now, since p = (2, 1)
therefore, r = A + p = (3, 1) and the character is
obtained as:

g3 —e3, gl = 5_1|

X(sp@ys(er, €2) = P e
el -6 el ey

8-’ g e

-’ el —ep

8%—82_2 8%—82_1
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1 1
=g +—+ea+—. (100)
€1 159
— The Quintuplet Representation: 5 = (0, 1)
Weobtain A =(I,1) andr = A+ p =
character is obtained as:

(3, 2) and the

|e3 —e73, 2 — 72

Xispans (€1 €2) = oy Ty

3 -3 2 -2
&1 — & &1 — &
3.3 2 -2
&) — & & — &
2 .2 .1 I
ey —& " & —¢&
) -1
%_% %_%
1
14— 2 + +8182 (101)
£1&2 &2

— The Adjoint Representation: 10 = (2, 0)
We obtain A = (2,0) and r = A + p = (4, 1) and the
character is obtained as:

X(Sp@) 1o (€1, €2)

4 -4 1 -1
&1 —& &1 —¢&

et — e, el — 71| 8‘2‘—82_4 8%—52_1
T2 _ o2 o1 (2.2 1 1
e —e=>, et —e7}| el —& - & —é&
) -1

%_% %_%

1 1 1 € £
24+t p—t =42

& &5 182 & &
+e160 + €3 (102)
Sp(6)
Haar measure
The denominator for the character formula in this case is:
3 -3 2 -2 1 -1
€1 — & & —¢& & —¢&
A(e) = |3 _ =3 2 -2 1 _ .—1|. 103
(&) 8% 823 8% 822 8% 821 (103)
€3 — &3 &3 &3 &3 &

A(e~!) is obtained by replacing &; by & ! in the above

expression. Then using Eq. (97),

W00 = S o1 e e 20 2()
- mdﬂ%% (-1 +£1>2
x (—1-+52)2(82-Fe$52-81(1-Fs§))2(—4-+a§)2
x (s3 +edes—e (1 + s%))z <s3 ) (1 + s%))z )
(104)
Characters

— The Fundamental Representation: 6 = (1, 0, 0)
Using Eq. (95), we get A = (1,0, 0). Now, since p =
(3,2, 1) therefore, r = A + p = (4,2, 1) and the char-
acter is obtained as:

e — ™4, &2 — g2 gl — g7
X(Sp(©no(E1 €2, €3) = 13— 53— =3 T o
8‘1‘—81_4 8%—81_2 8}—81_1

8‘2‘—82_4 82—82_2 8;—82_1

_ 83—83_4 83—83_2 8%—83_1

e 22—t el -

83—82_3 8%—82_2 8%—82_1

s§—83_3 6‘%—83_2 e%—sgl

1 1
=& +—+ea+—
€1 &2

1
+&3+ —.
€3

(105)

— The 14-dimensional Representation: 14 = (0, 1, 0)
WeobtainA =(1,1,0) andr = A+ p = (4, 3, 1) and the
character is obtained as:

X(Sp6))14 (€1, €2, €3)

-4 3 -3 .1 —ll

|84—8 ,e—¢g 7, e —¢

|63 — 63, 2 _ g2, gl _ g

ef—ert el e e —ep
et e e
_ et e e ey
R S
& Boe g-e
ej=e -6y s ey

1 €1 159 1 €1
=24+ —4+—4+ =4+ —4+—
£18&2 &2 &1 €183 €3
1 & &
+—+—+8182+8183
€283 €3 €& &

+é&7€3.

(106)

— The Adjoint Representation: 21 = (2, 0, 0)
We obtain A = (2,0,0) andr = A+ p = (5, 2, 1) and the
character is obtained as:

X(Sp(6))21 (€1, €2, €3)
65— 65, g2 — g2, gl — g

T ed 3, g2 _ g2, gl _g |
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5 -5 2 =2 _1 -1
€1 =& & — & & —¢§
5 -5 2 _-2 -1
8%—825 8%—822 8%—821
. & —83 83—83 83—83
T3 3.2 -2 _1 —1
€] — & &1 — & & —¢§
3 302 -2 1 -1
) =& & & & =&
3 302 -2 1 -1
€3 — &3 &3~ & &3~ &3
1, 1
=3+ tef+5+—
€ & €182
1 2
) s 1 1
+t—+ = +aom+s+ 5+ —
&2 €1 83 £1&3

€1 1

&3 &283 &3

+— + &263 +£3.
&2

&2 &3
+ — +é&183
€1

(107)

2.2 The curious case of the non-compact Lorentz group

The quantum fields under consideration are dynamical in
nature. Thus to perform a gauge invariant operator construc-
tion we need to include the covariant derivative Z,, in a con-
sistent way. We have devoted this section to address that. We
know that &, transforms trivially under the internal sym-
metry groups while it has a non-trivial transformation prop-
erty under the space-time transformations. Again, unlike the
quantum fields we can not simply treat it as another degree
of freedom because such an inclusion can introduce redun-
dancies within the operator sets by virtue of integration by
parts (IBP) and equation of motion of fields (EOM). It has
been discussed in [6,9,45] how some of the effective oper-
ator structures can be removed in favor of others by pay-
ing close attention to IBP and EOM. Thus the incorpora-
tion of &, is a highly involved task. The quantum fields
carrying non-zero spins of any model as well as &, trans-
form non-trivially under the Lorentz group, i.e., the group
of space-time transformations in 3 + 1 dimensions. For the
sake of the computation, we prefer to work with finite dimen-
sional unitary representations. Thus, instead of working with
non-compact Lorentz group SO (3, 1) we choose to work
with the Euclidean conformal group SO (4, C). It has been
noted that in case of dimensions d = p + g > 3 dimen-
sions, the conformal group is SO(p + 1, g + 1). Thus for
d = 3 + 1 dimensions, the conformal group is SO 4, 2).
While writing SO(3, 1) = SO (4, C) we recognize the fact
that the presence of 2 extra dimensions increases the rank by
one unit and this manifests itself as the scaling dimension
(Ay) of the representation. We recall, here, that the Lorentz
group is non-compact and its unitary representations are infi-
nite dimensional. Therefore, we will realize SO (4, C) as
SU(2) x SU(2) or more appropriately SU(2); x SU(2),.
In addition to that we will be working in the Weyl (chiral)
basis instead of the Dirac basis for the spinors. The simi-
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lar treatment is extended to the field strength tensors where
instead of Fy,, and F),,, we will work with F/ and Fr:

1 - i
Fluw =3 (F,M, - zF,w) L (Flag = 0,7 ey Fli,

1 N . . .
Friv =5 (Fu+iFn). (F=g1 ot cth Fr,,.
(108)

which transform under the (1, 0) and (0, 1) representations
of SU(2); x SU(2), respectively. Here, o* = (I, o) and
" = (I, —o') witho! (i = 1, 2, 3) being the Pauli matrices
and [is the 2 x 2 unit matrix. Also, ¢ is the fully antisymmetric
rank-two tensor.

The next step is the identification of our physical fields,
i.e., scalars, spinors and vectors as Unitary Irreducible Rep-
resentations (UIRs) of the conformal group. These represen-
tations can be categorized into long and short representations
based on whether they satisfy certain unitarity bounds defined
by the scaling dimension and the highest weight of the repre-
sentation [8-10,46-53]. Once a representation is identified
as either long or short, the next step is to express the SO (4, C)
characters as a linear combination of SU (2) x SU (2) charac-
ters. The detailed procedure, as well as the precise meaning
of each term, is given in [8,47,48,53]. Instead of repeating
the detailed computations, we have provided the characters
relevant for our analysis involving fields of spins-0, -1/2, and
-1:

(oo @ B) = 7P @, a.p) x [1 - 7],

XD (D08 = 2P (T, a,p)
[13.3,01

x|:a+éf_@(ﬂ+%):|,

3
XD (D,a,B) = D7 PD(D,a,B)
[5:00,7)]

)
X100 2o B) = PP (P, a, B)
x[a2+aiz+1—@(a+é)(ﬂ+%)+@2],
X0 (Z- @ B) = 72 PD(Z, a, B)
x[52+%+1f@(a+é)(ﬂ+%)+92]
(109)

where the subscripts on the LHS [A, (j1, j2)] contain infor-
mation about the scaling dimension (A,) and the represen-
tation under SU(2) x SU(Q2) as (ji, j»). PD(2,a, B) is
the momentum generating function which can be written as
[8,9,48]:

2

PP, a,B) = [(1 — Pap) (1 - —)
op

(%)) o
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The removal of redundancies in this construction due to the
EOM and IBP are discussed in Refs. [8,9] in great detail.
Next, the PE in Eq. (11) also gets modified as [9]:

3 (¢ \ xr(@a" B
PE[¢,.@,R]—CXP[§(@A¢) .

R LY A R
PE[Y, 7, R] = exp [2(_” (QAW) - ,

(112)

for bosons and fermions respectively.
Haar measure for the Lorentz group

Since the Lorentz group is non-compact the Haar measure
is not defined for it. So, to enable the group space integra-
tion we transform Minkowskian SO (3, 1) to the Euclidean
SO (4, C) which is further decomposed into SU (2) x SU (2).
Based on the knowledge of the Haar measure for SU(2)
Eq. (29) the Haar measure for the Lorentz group is depicted

as:
/ 1 4 4
_— X
PO (T.a. B) USU(2) USU(2)

/d/LLorentz =
B 1
N IOIN))
1 do 2 1
x [2(27”')7(1 - )(1 - @)}
1 dp ) 1
X[mmﬁ(]_ﬁ )<1_P>]

(113)

The incorporation of the derivative operators and conse-
quently the Lorentz group modifies the Hilbert Series in
Eq. (10) to the following form [8-10]:

1
T = d d _
[¢] /LG Hsu@) X dusu) PO D B)

1"[/ duj PElg, 7, R], (114)
=179

where, & is the spurion variable symbolizing the covariant
derivative operator.

3 Invariant polynomial: paving the path to Lagrangian
3.1 Two Higgs doublet model (2HDM)

The Two Higgs Doublet Model (2HDM) is a minimal exten-
sion of the Standard Model (SM) content through an addi-
tional SU (2) complex doublet scalar [54—64]. Here, we have
considered a generic 2HDM scenario without imposing any
Z, symmetry. We start the discussion by first giving the full
field content and their transformation properties under the
gauge group SU(3)c ® SU(2); ® U(1)y and the Lorentz

Table 2 2HDM: Quantum numbers of fields under the gauge groups
and their spins under the Lorentz group. / = 1,2,3 and a = 1,2,...,8
correspond to SU(2) and SU (3) gauge indices respectively, and p =
1,...,Ny denotes the flavor index. The color and isospin indices have
been suppressed. L and R denote the chirality, i.e., the left or right
handedness of the field

2HDM fields SUB)c SUQ2)L Uy Spin
#1 1 2 12 0
(%) 1 2 12 0

v 3 2 1/6 12
uly 3 1 2/3 12
dy 3 1 -1/3 12
LY 1 2 —-1/2 12
ek 1 1 -1 12
By 1 1 1
wh, 1 3 1
G, 8 1 1
Dy Covariant Derivative

group in Table 2. Based on this information our aim is to
construct the invariant polynomial, i.e., the Lagrangian for
2HDM.

Gauge group characters and Haar measure

The first step is to compute the characters corresponding to
each field as well as its conjugate. The characters of the rele-
vantrepresentations of SU (3),1.e., the 1, 3 and 8-dimensional
representations and SU (2), i.e., the 1, 2 and 3-dimensional
representations have been computed in Sect. 2.1. Also, the
U (1) characters can be obtained using Eq. (13). Multiply-
ing together the characters of representations under different
groups one can obtain the total gauge group character for a
field. One must also note that the Haar measures of these
groups, which are important to carry out integration over the
group space have been computed in Eqgs. (14), (29) and (37).

Lorentz characters and Haar measure

Now, 2HDM contains only particles with spins-0, -1/2,
and -1 particles. So, the relevant Lorentz characters are the
ones givenin Eq. (109). Multiplying together the gauge group
characters and Lorentz characters we obtain the total charac-
ter of each field.

Argument of the plethystic exponential

Having obtained the total character, the next step is to
construct the Plethystic Exponential. The argument of the
Plethystic Exponential is an infinite sum whose general term
is the total character of a particular field weighted by a spu-
rion denoting the field name. The variables parametrizing
the characters as well as the spurion are raised to the power
r, where r runs from 1 to oo. Below we have enlisted the
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contributions to the argument of the Plethystic Exponential
corresponding to each field,

1 1
Bl — ;Bl’ X((i)()) (2".a", "), Br— -

4
Br" X((O,)l) (»@r’ar’ ﬂr) .
wi Eer 4 7 r
= W (0 (77" B7) xsuap; @D
Wr — lWrr 4 (@r r ﬂr) r
W X 700 BY) Xisu@ys (@1)s
Gl lGlr 4 g o B" ror
= Gl xq.0) (77" B") x(su@ns @1 2),
1 4
Gr — —Gr’ o (77,7, ") xesuas @5 25,
1 r., @) 17 ry_1/2
$1 > — o] X0.0) (27" B") xcsu@n, @D a7,
1 4 _
¢T - ;(d)f)r X(((J,)O) (70" B") xsu@py @z /2,
1 4
91— 0 Koy (770 B) x(su@n, G
1 4 _
¢; - ;(¢§)r X((O,)O) (2",a",8") X(SU(z))E(z{)z /2,

1
e —> 7(_1)r+ erX(4)
R CF)

. (_1)r+l
e —
r

(@r’ar’ﬁr) 2,

" X(%,o) (2".a".8") ",

G 4
u— P u” XEO)%) (’@r’ arv ﬁr) X((S%/G))}(ZE, Zg)Z

2r/3

. (_1))‘+1

: 4 -
ut = 7(MT)r XEI) O) (@r’ar’ ﬂr) X(SU(S));(ZEng)Z 2r/3’
1 E

(_1)/’+1 —_ _

d=>——d XEO) 3 (77 " B") xesuan, a3,
02

(G R .

d" - ——— @'y fo 0) (7.a" . B) xsuans@h 5277,

2

(_1)r+1 r @ ror ar ry o —r/2
L— L™y, (270" B") xsu@y, @
’ (2:9)

=+ 4

Lt — f(ﬂ)r Xéo)%) (2", d".8") X(SU(z))f(ZI)zr/z.
(71)r+l r., 4 o 7 Rgr

0— , 0 (%O)(jvavﬂ)

XU G35 ) Xsu @, @ 27,
-1 r+1
of o D

r 1

°2

(QT)I’ XE?)) l) (_@r’ar’ﬂ}’)

XU G5 (e 35 Xsu @y 2. (115)
Having thus constructed the Plethystic Exponential and
with the knowledge of the momentum generating function
Eq. (110) and Haar measures of the gauge groups and the
Lorentz group, we can compute the Hilbert Series using
Eq. (114). From the full Hilbert Series we have filtered out
the output based on the mass dimension of the fields and suit-
ably categorized them. For operators up to mass dimension-4,
we have provided the proper scheme to translate them into a
covariant form in Table 3 because the Hilbert Series construc-
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tion is oblivious to parameters such as coupling constants as
well as to the presence of invariant tensors such as y*, oy,
in the Lagrangian.

In Table 4 we have presented both the Hilbert Series output
and the covariant form of operators up to mass dimension-
4 for general N ¢ (number of fermion flavours), side by side
and we have categorized the operators based on whether they
are constituted of purely SM fields, purely BSM fields, i.e.,
operators containing only the second doublet scalar or a mix-
ture of the two. We have also catalogued higher dimensional
effective operators up to dimension-6 in Table 5 and cate-
gorized the operators based on their composition in terms
of scalars (¢), fermions (1) and the field strength tensor of
gauge bosons (X). Note, the covariant form of these opera-
tors (for Ny = 1) were discussed in great detail in [45]. So,
we do not repeat the same here.

3.2 The Pati-Salam model

The Pati-Salam model can be thought of as a partially uni-
fied scenario where SU(3)¢ and U(1)g_; are embedded
to form SU (4)c. This leads to quark-lepton unification and
the lepton is considered to be the fourth color [65-67]. The
underlying gauge symmetry is SU(4)c @ SU (2) L @ SU 2)r.
The Pati-Salam model also has a rich scalar structure to facil-
itate symmetry breaking. We consider the most general form
of Pati-Salam [68] where scalar fields transform as (1, 1, 1),
1,2,2), (15, 2,2), (10,3, 1) and (10, 1, 3). On top of that,
a global Pecci-Quinn U(1)pp symmetry is imposed. The
field content and their transformation properties under the
gauge groups and the Lorentz group, as well as their U (1) pg
charges, are provided in Table 6. The necessary informa-
tion related to characters and Haar measures has already
been discussed in earlier sections. Based on that we have
computed the Hilbert Series. It must be kept in mind that
since the model consists of two distinct SU (2)s, their char-
acters must be parametrized using distinct variables. Unlike
2HDM, for this particular case, we have limited ourselves up
to dimension-5 operators. Due to the rich scalar structure, we
have emphasized the scalar potential and Yukawa terms by
explicitly giving their covariant forms in Tables 7 and 8. The
dimension-5 resultis collected in Table 9. On comparing with
[68], we have found some discrepancies. We observe that the
operator structure @ X (X ")? is absent in [68], whereas the
Hilbert Series output contains 4 operators having this struc-
ture as well as their hermitian conjugates. We have shown the
explicit forms of those operators in Table 8. We also observe
an under-counting w.r.t. the operator structure ¥ X AR A;,
while [68] contains only 1 such operator (and its hermitian
conjugate), Hilbert Series output contains 2 such operators
(and their hermitian conjugates).
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Table 3 Dictionary for translation of operators from the Hilbert Series to their covariant forms. The translation from the form (F1, Fr)to (F,, F )

is accomplished using Eq. (108)

0 - QZ u

o - [ u’

L - L? e

Lf — Zz et

(WL, Wr) - Wi, Wh) (GI, Gr)

A

p p
u'p d — dg

uh d’ — 3[1;

R $12, 91, - $12, 91,
ek 17 — Dy

(GZV’ G(Zw) (B, Br) - (Bp.va B;w)

Table 4 2HDM: renormalizable operators as Hilbert Series output and
their covariant form. Coefficients of each operator (which appear as
functions of Ny) give the number of all possible operators with the
same structure. The operators in blue have distinct hermitian conjugates
which we have not written explicitly. Here, I = 1,2,3 are SU (2) indices;
a=1,....8are SU(3) indicesandr, s = 1,2, ..., N are flavour indices

which are summed over with the suitable coupling constants. & - In the
Hilbert Series the fermion kinetic terms appear with a factor of N2 but
in the physical Lagrangian there is a flavour symmetry which forces
the kinetic terms to be diagonal and the factor of N}% isreduced to Ny.
For the gauge kinetic terms the translation from the form (FI, Fr) to
(Fuv, 1:";“,) is accomplished using Eq. (108)

Operator Type ~ HS Output

Covariant Form

No. of Operators (including h.c.)

Mass Dimension-2

BB

2
- 1IN? +38

Pure SM ol ol
Pure BSM gl ¢12
Mixed ¢l 62
Mass Dimension-4
Pure SM BI% + Br?, B"V By,
GI? 4 Gr?,
Wi+ Wr2,
N3L'gre, N2Qi¢nd. N3QTou,
AN70'09, Nju'u2, N3d'd,
N3LILD, N3e'ed, ¢]¢1 7>, (d]1)?
Pure BSM ¢;¢2@2, (¢§¢2)2
Mixed N;L*@& N;Q+¢2d7 szc QT¢§M7

@22 (@) 2h1d2, (9D b1
20 1912, B $27°

GMGe,, GG

whwwl - wivwl

Ly piel, Oro1dy, Q) dius,

20,90, Wy Puly, dyPDdy,

Ly PL,, ey Den, (2,01 (P"1), (8] ¢1)?
(Zu$2)T (2" 2). (3¢2)> 2
Lygoey, Qready, O by, 6N% + 10
(@622, @] 01)(@]d2). ($301) (D))

(@01 (@362). (6] $2)($301). (Zu 1) (7" )

4 Bridging the theory and the program

In the previous sections we have delineated the mathemat-
ical ideas in an algorithmic way and we have shown how
they can be used to write down the Lagrangian as a poly-
nomial constituted of quantum fields. We have accentuated
the procedure through an in-depth study of two distinct non-
supersymmetric models. The same guiding principles can
be employed to construct group invariant polynomials of
superfields. Based on these ideas and to automatize the pro-
cess aMathematica® package has been developed named
“GrIP”. This program asks for minimal information from the
user about the model. One needs to provide only the particle
content and their transformation properties under connected
compact internal symmetry groups and the Lorentz group
to generate the a complete and independent set of operators
at any (canonical)mass dimension. The remaining sections

depict the anatomy of GrIP and illustrate its utility in the
context of supersymmetric as well as non-supersymmetric
model building.

5 GrlIP: automatizing invariant polynomial
computation

GrIP is a Mathematica® based scientific package that
automatizes the computation of group invariant polynomials
following the algorithm sketched in Fig. 6.

4 The current version of this code is with

Mathematica® V.11 and higher.

compatible
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Table S 2HDM: operators of mass dimensions-5 and -6

Operator Class

Operators (in non-covariant form)

Mass Dimension-5

Plep?

Mass Dimension-6

X3
@6

viply

w3

&4 P?

SN2+ NpGIL?, SN +Np)@IL?,  NigigL?

w3, wrd, GPB, Gr’

@161°, (6302)°, 201@))’020), 2010]63BD%  (6])°63. #1612, $1(6))°43,
@030, $103@1% 2616 d36)

GPPoi¢1, GPoidn, GPoldn, G, WPig1, WIhigr, Wioign, WIhie),
B¢ g1, BI’¢idy, BI2p| ¢y, BI2pid), BIWI ¢, BIWISI¢n, BIWI ¢n, BIWI¢i¢)
(NHGIp[d Q. (N)GIgid' Q. (N)Glgu' Q. (ND)Glgou' Q. (NHWIg[d Q. (NHWigld' 0.
(NOWigiu'Q, (NHWigou' Q. (NHWigletL, (NHWigle'L, (N})Big{d' Q. (N3)Blgid' Q.
(N})quﬁluTQ, (N})qubzu*Q, (N})qu[ﬁeTL, (N})Bl%e*L

(NDdd gip] 2, (NDAd 62637, (NDee'd16]7. (NDee o937, QNDLL ¢1] 2,
CQNDLL 2012, 2NHQQ 162, 2NHQQ h2¢]7, (NDuu'¢1]2, (NDuu' $29] 2,
(NDAd'§{§27. (NDee'$[$22, (NPuu'pldr2, QNPLLI${$22, 2NDHQQ {422,
(NDud' (4))22, (Npud'(@))*2, (NhHud' () (@)

(NDg1 (92T L, (NDda(@])?eTL, (ND$1(@))%e L, (N9 ¢2e’L, 2NDpig]pletL,
CNHG papie’ L. (NDe1(9])2d" Q. (ND4a(97)%d" Q. (N1 (97)%dT Q. (N)(9])*¢2d" 0.
CNDGip93d 0, CNDG[apid Q. (NDgip[u' Q. (NH3pjuT Q. (NHeigiu’ 0,
(NDp{g3u’ Q. QNP1 du Q. QNP p1agpiu’ 0

203272, 23B)P%, 41626[017%, 200017 T2, 20162011 T, 201(¢)) $2
(NPeetuu’, (3N +INHLALD?, (N7 +NHO*QH?, @NHLLTQQT,

(NDeefdd™, (3N + 3N} + NP, (3N} + 3NDA* A2, GN7 + 3NDu@')?,
CNpdd ', (NPee'LLT, (Npuu'LL', (NpAd'LLT, (NPee'QQ', @Npuu'QQ,
QNDAdTQQT, (NPeL'd'Q, @Npud(Q"?, (NPeL'uQ’, (3N} +3INHLO?,

(3N} + INDeu Q% (NPew?d, (NHLud Q

Table 6 Pati-Salam Model: Quantum numbers of fields under the gauge symmetry hence we do not assign any character to the fields corre-
groups, their spins and gauge group characters. Since the model only sponding to it. Internal symmetry indices have been suppressed. L and
contains fields having spins-0, -1/2, and -1, the relevant Lorentz charac- R denote whether the fields transform non-trivially under SU (2), and
ters are the ones given in Eq. (109). Here, U (1) po appears as a global SU (2) g respectively

Fields SU@)c SUR)L SUR)g U(Dpo Spin Gauge group characters
S 1 1 1 4 0 1

@ 1 2 2 2 0 X(SU@L) - X(SUQ@g)
> 15 2 2 2 0 X(SU@)1s * X(SU@L) * X(SUQ@g)
AL 10 3 1 2 0 X(SU@N10 * X(SU@)L)3
AR 10 1 3 -2 0 X(SU@)10 * X(SUDR)
VL 4 2 1 1 172 X(SU@) * X(SUQ@L)2
VR 4 1 2 -1 172 X(SU@Na * X(SU@ )
Wi 1 3 1 XSUQ)L)3

Wrpuw 1 1 3 1 XSU@R)3

Vi 15 1 1 0 1 X(SU@))s

Dy Covariant Derivative
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Table 7 Pati-Salam model: renormalizable operators as Hilbert Series
output and their covariant form. The operators in blue have distinct
hermitian conjugates which we have not written explicitly continued.
We have suppressed the indices in the Yukawa terms. Notation for the

indi.ces is same as in [68], i.e., o, B, ¥,k = 1,2 are SU(2), indices,
a,B,y,k = 1,2 are SUQ2)g indices and u,v, p, 7,7, &, ¢, 0 =

1,2,3,4 are SU(4)c indices

HS Output Covariant Form HS Output Covariant Form
Mass Dimension-2
ol Pip [ iy e
AL AL a AL AR Ayna Ay
S S
Mass Dimension-3
o0 63,56 P DI DD 7 syt 6456 T 1P 1
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20 AT AR o8 q)dt"AfWBA}“y.“B 403 (x1)? iz DN
ol Y A}"V.v’é PY 2:5 DI
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23X 3 A} AT ePeoy (Zha T3f AL ALE) e 2 ApAg 6P eg (ZhE T3 A Ay ) €77
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3TTA] Ag e o (T zlf af, AT ol il LAl
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e eui (Z1 T3) A, A1) 7 (2102 Ma i)

5.1 Introducing GrIP

The complete package can be downloaded from https://
TeamGrIP.github.io/GrIP/ in . zip aswellas . tar . gz for-
mats. The downloaded file contains :

1. ‘GrIPm’ — This is the main program where all the rele-
vant functions have been defined, which enables the user
to carry out all of the computations.

2. ‘GrpInfo.m’ — This file contains information about
dimensions of the representations of various SU(N)
groups with N < 5 and their corresponding Dynkin
labels.

3. ‘MODEL’ — This folder contains examples for model
input files. Two model files are provided one in terms of
the Dynkin label (_Dyn is appended at the end) another
in terms of the representation (_Rep is appended at the
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Table 8 Table 7 continued. The operator structures highlighted in red show discrepancies when compared with the results of [68]

HS Output Covariant Form HS Output Covariant Form

Mass Dimension-4
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Table 9 Pati-Salam model: operators of mass dimension-5

Operator Class Operators (in non-covariant form)

Mass Dimension-5

vie? S I Yk, SO YR

@3 (V22 67T 23 %t 2. 7(9N)2 @2, ST 2751, 27T 220" 29T X P2,

47825 0, SALAR(EN?, FTALARS?, 27T A S5 29N B 8T, A7 ApA] 2 ET,
47TA AT (22, S AT AR DT, STAT AL@?, FTALARD?, AT Ag ST,
47 ARAR(E), STAL AR ST, ST AR ARD?, 2T ALA, @, 2.9 AR AR D T

@ Springer



Eur. Phys. J. C (2020) 80:938

Page 29 of 73 938

end), for each of the following scenarios.’

(a) SM and its Extensions: Standard Model and its exten-
sion by the other lighter degrees of freedoms: Singly
Charged Scalar; Doubly Charged Scalar; Complex
Triplet Scalar; SU(2) Quadruplet Scalar; SU(2)
Quintuplet Scalar; Left-Handed Triplet Fermion;
Right-Handed Singlet Fermion; Scalar Lepto-Quarks;
SU(2) Doublet Scalar (with different hypercharge);
Real Triplet Scalar; Color Triplet Scalars and Sterile
Neutrino; SU (2) Triplet and Quadruplet Fermions,

(b) Supersymmetric scenarios: MSSM, NMSSM, Super-
symmetric Pati-Salam, Minimal Supersymmetric Left-
Right models.

(¢) UV models: Two Higgs doublet, Minimal Left-Right
Symmetric, Pati-Salam, and SU(5) Grand Unified
models.

(d) Models below electroweak scale: SU(3)c @ U(1)em
and its extension by additional: Scalar Dark Matter;
Vector-like Fermion Dark Matter.

4. ‘Example_SM.nb’, ‘Example_MSSM.nb> — Two
Mathemat ica® Notebook files, for non-supersymmetric
and supersymmetric input models are provided. The
results there are generated using “SM_Rep.m” and
“"MSSM_Rep.m” input files from the ‘MODEL’ folder
respectively.

5. ‘CHaar.m’ — This sub-program calculates character
for a particular representation and Haar measure for a
given connected compact group when the corresponding
Dynkin label is provided. This program can be used with-
out preparing any input file.

6. ‘Example_CHaar.nb’ — A Mathematica® Notebook
file that contains illustrative examples showing how the
functions of CHaar work.

5.2 User input: model description

The user is required to prepare an input file to feed informa-
tion into the main program. This file should contain infor-
mation about the symmetry groups, particles and their repre-
sentations and(or) charges under the given symmetries. The
conjugate fields need not to be mentioned separately in the
input file. For a given field, the respective conjugate will be
created by the program.

There are four main classes within the input file:

5 The effective operators corresponding to the models depicted in italics
are discussed in this paper. The respective input files for all scenarios,
given below, can be found in the downloaded package.

Model name

There is a provision to save the results in a folder for each
input model file. The user must provide a suitable name for
the model as a string as shown below:

ModelName= "Name of the model".

Group class

The user must provide information about the gauge and(or)
global symmetry groups within the "SymmetryGroup
Class". These groups must be connected and compact, but
can represent global or gauge symmetries. The user needs
to provide the name of the groups in the following format,
i.e., one should write "SUN" for SU(N) and "U1" for U (1)
groups. So far this program can handle symmetries of the
form of U(1) and SU(N). A point to be noted is that for
multiple occurrence of the same group one must give differ-
ent names as shown in Table 10.

SymmetryGroupClass ={

Groupl[l] = {

"GroupName" — "(name of the group)",

"N" — ( N for SU(N), 1 for U(1))
}l

};

(Super)field class

(Super)Field content of the model should be given in this
class. Within this class following information must be pro-
vided:

{<"FieldName" >, < "Self — Conjugate" >,
< "LorentzBehaviour" >, < "Chirality" >,
< "BaryonNumber" >, < "LeptonNumber" >,
< "G1lRep/G1lDyn" >, ---}. If there are multiple sym-
metry groups, then the quantum numbers or representa-
tions of a particle under each group must be provided in
the same order in which the groups are mentioned in the
"SymmetryGroupClass". If the model does not contain
any (Super)Field, the user should leave this part empty. The
possible values of these attributes are described in Table 11.
The characteristics of the particle (or superfield) under group
"G1" can be incorporated in two ways:

either "GlRep"— > " <dimension of the
representation under Group[l]>",

or "GlDyn"— > " <Dynkin label of the
representation under Group[l]>".
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Fig. 6 A flow chart depicting
the major components of GrIP
and the algorithm on which it is
based
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Table 10 Information related to symmetry groups that must be specified within the “SymmetryGroupClass” in the input file along with the

possible values

Keys Values Details
GroupName "SUN", "Ul", Name of the groups.
"SUNL", "SUNR", There is no restriction on the
"gly", "Ulx". number and ordering of the groups.
N N for "SUN", Degree of the group.
1 for "Ul". No distinction for different SU(N)’s.
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Table 11 Characteristics of the particles that must be specified within " (Super)FieldClass" and " (Super)FieldTensorClass" in

the input file along with the possible values

Keys Values

Details

FieldName
or symbols

Self-Conjugate True or False

Lorentz Behaviour "SCALAR",
"FERMION",
"VECTOR" .

Chirality i,
npw
"NA".

Baryon Number Numerical Value.
(eZ)

Lepton Number Numerical Value.
(e 2)

GlRep +ve integer.
(e Z%)

G1Dyn n-tuple - { }

Alphabets, characters

It represents the particle (superfield). Operators
will be obtained in terms of these variables

It decides whether to prepare the conjugate
field of this particular (super)field or not

The option should be selected considering the
gauge and Lorentz symmetry behavior

These values describe the spin of the particle:

0 (scalar), 1/2 (fermion), 1 (vector)

In the case of superfields we attach the prefix
“SUPER" to the respective values. Superfields
behave like scalars under the Lorentz group

"1" denotes left-handed(LH) field or conjugate of
right-handed(RH) one, "r" denotes RH field or
conjugate of LH one. "NA" is for scalar field only

Assignment should be consistent with the

SM hypercharge

Assignment should be consistent with the

SM hypercharge

Dimensionality of the representation of the
field under group G1

Dynkin label of the representation

The " (Super)FieldClass" when representations are
provided in terms of dimension is:

(Super)FieldClass={

(Super)Field[1]={

"FieldName"-> < >,

"Self-Conjugate"-> < >,

"Lorentz Behaviour"-> <" ">,

"Chirality"-> <" ">,

"Baryon Number"-> < # >,

"Lepton Number"-> < # >,

"GlRep"-> <dimension of the
representation under Groupl[l]>,

P

7

The " (Super)FieldClass" when representations are
provided in terms of Dynkin label is:

(Super)FieldClass={
(Super)Field[1]={
"FieldName"-> < >,
"Self-Conjugate"-> < >,
"Lorentz Behaviour"-> <" ">,

"Chirality"-> <" ">,

"Baryon Number"-> < # >,

"Lepton Number"-> < # >,

"GlDyn"-> <Dynkin label of the
representation under Groupl[l]>,

},...
Y

(Super)field strength tensor class

A gauge invariant Lagrangian does not explicitly contain
the gauge fields, instead, it contains the corresponding field
strength tensors. Inthe " (Super)FieldTensorClass"
the user must provide the information about these (super)field
strength tensors. In absence of any gauge symmetry, this part
should be left empty. We must emphasize that within the
"SymmetryGroupClass" all the symmetry groups, irre-
spective of gauge or global symmetries, must be enlisted. But
field strength tensors correspond to only the gauge symme-
tries and not the global symmetries. The user must keep this
in mind while framing this sector.

(Super)FieldTensorClass={
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Table 12 Different output functions of GrIP and their details

Functions

Details of the output

DisplayUserInputTable
DisplayWorkingInputTable

DisplayCharacterVariables

DisplayCharacterTable

DisplayHaarMeasure

A list of particles and their properties provided by the user

A list of particles &the respective conjugate fields and their properties based
on the information provided by the user

The list of independent variables for different symmetry groups
The no. of variables = Rank of the group

The characters of the representations

are functions of these variables

Explicit structures of the character function correspond to the particle
representation in terms of the character variables

The Haar measure of the symmetry groups in terms of the character variables

(Super) TensorField[1]={
"FieldName"-> < >,
"Self-Conjugate"-> < >,
"Lorentz Behaviour"-> <" ">,
"Chirality"-> <" ">,

"Baryon Number"-> < # >,
"Lepton Number"-> < # >,

(b) If the user keeps it in the ‘Applications’ folder in
$SUserBaseDirectory, it can be loaded using
"Needs[]":

In[3]:= Needs [ "GrIP "]

If the program is loaded correctly, a text cell will appear in
the Notebook file to notify the user.

"GlRep"-> representation under Groupl[l],

}1"'
Y

5.3 Running the code

The user must perform the following tasks to run the code

successfully:

5.4 Saving private output

Once the program is loaded, a folder named "Name of
the model" will be created in the working directory. All
the results generated through specific commands will be
saved in this folder in TeXForm.

The output functions available in GrIP can be grouped
into the following categories based on their specific purpose.
Details on these have also been provided in Tables 12, 13, 14
and 15.

1. Step-1: The user should prepare a ‘Model’ file, if itisnot 1541 verification
already inside the ‘MODEL'’ folder and keep it inside the

‘MODEL"’ folder which already contains many example  The input information provided by the user can be verified

model input files.

using: In[1]:= DisplayUserInputTable

2. StepTZ: Then load the rgodel file .us.ing "Get [1" func-  We also need the conjugate fields to construct valid Lagran-
tion in Mathematica™ by providing proper $Pathto  gjan. These conjugate ficlds will be automatically generated

access the model file:

internally based on the information entered by the user in the

In[1]:= SetDirectory ["<provide address of  model input file, and the full list of particles can be verified

the MODEL folder>"]
In[2]:= Get [ "MODEL/Model .m" ]

3. Step-3: Now one has to install the main program. There

are two ways to do that:

through: In[2]:= DisplayWorkingInputTable

Group theoretic output

(a) If the user keeps ‘GrIP.m’ in a local folder, to load = The characters of the representations of each field and their
one has to use "Get [] " with proper address of the  respective conjugate fields can be obtained through:

main program file as shown in Step-2:

In[1]:= DisplayCharacterTable

In[38:= SetDirectory["<provide address Similarly, the associated Haar measure of the underlying

of the package>"]
In[4]:=Get ["GrIP.m"]
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Hilbert series output: polynomial of fields

This program aims to compute the independent group invari-
ant polynomials that can be expressed as the monomial basis
of different mass dimensions. We can further classify the
operators for a given mass dimension as a polynomial whose
order is determined by specific baryon number and lepton
number violation. Here, we have provided two options to
get the operators: (i) for a specific mass dimension setting
"OnlyMassDimOutput"-> True and (ii) up to a spe-
cific mass dimension setting "OnlyMassDimOutput" ->
False. One can be more specific while selecting the oper-
ator set by probing specific values (#) to "AB"-># and
TAL"->#.

In[1]:=DisplayHSOutput [ "MassDim"—#,
llABn_)#’ IIALH_>#’

formed using: In[1]:= Poly = SaveHSOutput [ "MassDim"—#,
"AB"—#, "AL"—#, "Flavours'"—#]
Same can be achieved for the supersymmetric case using:
In[1]:= Poly = SaveSHSOutput["CanonicalDim"—#, "AB"—#,
"AL"—#, "Flavours"—#]
To count the number of terms in any polynomial one can use
the function OpCounter. If the polynomial is composed of
chiral and vector superfields then the corresponding task is
carried out by SusyOpCounter:
In[2]:= OpCounter [Poly]
In[2]:= SusyOpCounter [Poly]

"OnlyMassDimOutput"—$,
"Flavours"—#]

Note that for the case of supersymmetric models we have the
following function which serves the same purpose:

In[1]:=DisplaySHSOutput [ "CanonicalDim"—#, "OnlyCanonicalDimOutput"—S$S,

HABH_)#’

"AL"—#, "Flavours"—#]

One can also look for operators violating baryon number
(B) and lepton number (L) by specific amounts using the
following command:

In[1]:= DisplayBLviolatingOperators["HighestMassDim" —#,
"Flavours"—#]

HALH_)#’

"AB"—#,

The argument "HighestMassDim" sets the upper limit
of search process. The function always returns the lowest
dimensional operator amounting the required B and L viola-
tions if any within the given "HighestMassDim".

If the user wants to obtain a suggestive form of the
Lagrangian, it is also possible to collect all the terms of the
Hilbert Series polynomial and give them the schematic form
of a Lagrangian through suitable incorporation of the dimen-
sion full parameters. This can be obtained using the following
function:

In[1]:=DisplayLagOutput [ "MassDim"—#,
IIABH_)#, HALH_)#,

Given a polynomial in the input fields, one can also impose
external global symmetries which were not defined in
"SymmetryGroupClass" to sort out specific operators
(Table 14). The function ReOutput enables the user to do
that:

"OnlyMassDimOutput"—§S,
"Flavours"—#]

There is also the provision of storing the output (i.e., the
operator set) under a variable to allow for further manip-
ulations for both non-supersymmetric and supersymmetric
models. For the non-supersymmetric case, this job is per-
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Table 13 GrIP functions and their working principles

Functions

Options

Details of the output

DisplayHSOutput
[MassDim, OnlyMassDimOutput,
AB, AL, Flavours]

DisplayLagOutput
[MassDim, OnlyMassDimOutput,
AB, AL, Flavours]

MassDim — positive integer,
OnlyMassDimOutput— True,
AB — "NA", AL > "NA",
Flavours — 1, Ny.
OnlyMassDimOutput — True,
AB — integer, AL — integer.
OnlyMassDimOutput — False,
AB — "NA", AL — "NA".
OnlyMassDimOutput — False,
AB — integer, AL — integer.
Same as DisplayHSOutput

Operators at a given mass dimension
irrespective of B & L number violation

with specific no. of fermionic flavours

Operators at a given mass dimension
posing specific B & L number violation
Operators up to a given mass dimension
irrespective of B & L number violation
Operators up to a given mass dimension
posing specific B & L number violation
Similar as DisplayHSOutput, where all
the operators are collected and multiplied

by suitable mass-dimensional couplings

Table 14 Table 13 continued

Functions

Options

Details of the output

DisplayBLviolatingOperators
[HighestMassDim, AB, AL,
Flavours]

Poly = SaveHSOutput

[MassDim, AB, AL, Flavours]
OpCounter [Poly]

ReOutput
[NameOfPoly,
SymmetryName, Qno, Asym]

AB — integer, AL — integer,
HighestMassDim — #,
Flavours — 1, Ny

Poly — any variable

Poly — any variable

NameOfPoly— Poly,

SymmetryName— {"QN1", "QN2", ...

Ono— {{FieldName — #3},
{FieldName — #},...},
Asym— {$,$...}

The lowest mass dimensional operator
that posses the mentioned amount of

B & L violation within the specified #

Saves the operators as a polynomial
named Poly

Number of independent invariant
operators that constitute the polynomial

Assigns qunatum no. # to the
particle and returns those operators

which violates the quantum no by $ unit

In[38]:=ReOutput [ "NameOfPoly"—Poly,
"Ono"— {{FieldName—#},---},

"SymmetryName"— {"QN1", "QN2",--- 1},

"Asym"—{S$, - }]

5.5 CHaar and its working principle

In addition to GrIP, the package also includes a separate
sub-program CHaar which would enable the user to obtain
Haar measures and characters for any given irreducible repre-
sentations of connected compact groups: SU (N), SO(2N +
1), SO(2N) and Sp(2N). Note that unlike GrIP, it does
not rely on any input file and it operates independently. The
process of loading ‘CHaar.m’ in the Notebook file is the
same as what has been followed for ‘GrIP.m’. Again one
can use both "Get[]" or "Needs[]" to load the pro-
gram after setting up the package directory $Path using
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"SetDirectory[]".If the package is installed in a local
folder, ‘CHaar.m’ can be launched in the following manner:

In[1]:= SetDirectory|"<provide address of
the package>"]

In[2]:= Get [ "CHaar .m"]
If the package is installed in the ‘Applications’ folder in
SUserBaseDirectoryonecanuse "Needs [] " toload
the program. In this case, there is no need to set up the SPath
of the folder it is installed in.

In[1]:= Needs [ "CHaar "]
We illustrate the functions of CHaar and their working prin-
ciples in Table 16.
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Table 15 GrIP SUSY functions and their working principles

Functions

Options

Details of the output

DisplaySHSOutput

[CanonicalDim,
OnlyCanonicalDimOutput,

AB, AL, Flavours]

Poly = SaveSHSOutput

CanonicalDim — positive integer,

OnlyCanonicalDimOutput— True,

AB — "NA", AL - "NA",

Flavours — 1, Ny
OnlyCanonicalDimOutput — True,
AB — integer, AL — integer
OnlyCanonicalDimOutput — False,
AB — "NA", AL, —> "NA"
OnlyCanonicalDimOutput — False,
AB — integer, AL — integer

Poly — any variable

Operators at a given canonical dimension

irrespective of B & L number violation

with specific no. of fermionic flavours

Operators at a given canonical dimension
posing specific B & L number violation

Operators up to a given canonical dimension
irrespective of B & L number violation

Operators up to a given mass dimension

posing specific B & L number violation

[CanonicalDim, AB, AL,
Flavours]

SusyOpCounter [Poly]

Poly — any variable

Saves the supersymmetric operators as a

polynomial

Number of independent
invariant operators that
constitute the polynomial
in supersymmetric case

Table 16 Output functions of CHaar and their working principles

Functions Options

Details of the output

HaarMeasure Group— String,

[Group, Argument] Argument— #.
CharacterFunction
[Group, Argument, of the representation.

Dynkin]

Dynkin— Dynkin label

Haar measure for a group for a

given degree #. The user must provide this as string
The character function for a particular

representation of a group of given

degree # and Dynkin label of the representation

Examples of output provided by the functions of CHaar are
shown below:

In[1]:= CharacterFunction["Group"—"SO",
"Argument"—7, "Dynkin"—{0,0,1}]

Out[1]:=

L A, JA VA
da a T ovm TYaYaYs

IN[2]:= HaarMeasure[ "Group"—"Sp", "Argument'-—>4]

out[2]:=

dzidz (-1 + 2 (14 2) (42— (1+32))
32122323

6 GrlIPping: ilustrating the action of GrIP

6.1 Operator construction for a non-supersymmetric model
using GrIP

This subsection illustrates how GrIP works for a non-
supersymmetric model. The input file and the results from
GrlIP are shown explicitly with the proper functions. The
Standard Model (SM) is used as an example.

The fields and their transformation properties
The field content and the transformation properties of those

fields under the gauge groups SU(3)c ® SU22)r ® U(1)y
and the Lorentz group are enlisted in Table 17.
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Table 17 Quantum numbers of fields under the SM gauge groups and Lorentz group. I = 1,2,3; a = 1,2,...,8; p = 1,2,3 denotes the flavor index.
The color and isospin indices have been suppressed. / and r denote the chirality, i.e., the left or right handedness of the field

SM Fields SUQB)c SUQ)L U(l)y Lorentz Group (SU(2); ® SU(2),)
H 1 2 12 Scalar (0,0)

o 3 2 1/6 Spinor (1/2,0)
u? 3 1 2/3 Spinor 0,1/2)
df 3 1 -1/3 Spinor (0,1/2)
L’ 1 2 —1/2 Spinor (1/2,0)
e’ 1 1 -1 Spinor (0,1/2)
Bl 1 1 0 Vector (1,0)

wi 1 3 0 Vector (1,0)

Gl 8 1 0 Vector (1,0)
Covariant Derivative 7, Bi-spinor (1/2,1/2)

The GrIP Input file

The structure of the model input file "SM_Rep .m" is shown
in detail below:

ModelName="StandardModel"

SymmetryGroupClass ={

Group[l]={"GroupName"->"SU3", "N"->3},
Group[2]={"GroupName"->"SU2", "N"->2},
Group[3]={"GroupName"->"Ul", "N"->1} };

FieldClass={
Field[1l]1={(

"FieldName"-> H, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SCALAR",
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "2",
Field[2]={

"FieldName"-> @, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "FERMION"
"Baryon Number"-> 1/3, "Lepton Number"-> 0, "SU3Rep"-> "3", "SU2Rep"-> "2",
Field[3]1={

"FieldName"-> u, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "FERMION",
"Baryon Number"-> 1/3, "Lepton Number"-> 0, "SU3Rep"-> "3", "SU2Rep"-> "1"
Field[4]={(

"FieldName"-> d, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "FERMION",
"Baryon Number"-> 1/3, "Lepton Number"-> 0, "SU3Rep"-> "3", "SU2Rep"-> "1"
Field[5]1={

"FieldName"-> L, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "FERMION",
"Baryon Number"-> 0, "Lepton Number"-> -1, "SU3Rep"-> "1", "SU2Rep"-> "2",
Field[6]={

"FieldName"-> el,

"Self-Conjugate"-> False, "Lorentz Behaviour"-> "FERMION", "Chirality"->
"Baryon Number"-> 0, "Lepton Number"-> -1, "SU3Rep"-> "1", "SU2Rep"-> "1",

FieldTensorClass={
TensorField[1]={

"FieldName"-> BI, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "VECTOR",
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "1"
TensorField[2]={

"FieldName"-> WI, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "VECTOR",
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "3",
TensorField[3]={

"FieldName"-> GI, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "VECTOR",
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "8", "SU2Rep"-> "1"
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"Chirality"-> "NA"
"UlRep"-> 1/2},
,  "Chirality"-> "1v

"UlRep"-> 1/6},

"Chirality"-> "r"
"UlRep"-> 2/3},

"Chirality"-> "r"
"UlRep"-> -1/3},

"Chirality"->
"UlRep"-> -1/2},

wyn

"UlRep"-> -1}1};

"Chirality"-> "1",
"UlRep"-> 0},
"Chirality"-> "1",
"UlRep"-> 0},
"Chirality"-> "1",

"ULRep"-> 0} };

"y,

'

’
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Fig. 7 Correct and incorrect TensorField[2]={

ways of encoding the details of

the chiral nature of the field METe AR WILIL,

TensorField[2]={ 4

strength tensors in the "Self-Conjugate"->
"FieldName" "Lorentz Behaviour

"Chirality"-> "l",

"Baryon Number"-> 0,

"Lepton Number"-> 0,

"su3Dyn"-> {0,0},
"SU2LDyn"-> {2},
"SU2RDyn"-> {0},
"ulbyn"-> 0},

Fig. 8 This figure highlights
how one should not name the
groups in describing the particle
transformation property

Field[3]={
"FieldName"-> a2,

"Lorentz Behaviour"-

"Chirality"-> "NA",
"Baryon Number"-> 0,
"Lepton Number"-> 0,
"SU3Rep"-
"SU2LRep"
"SU2RRep"
"UlRep"->
Field[4]={(
"FieldName"-> Q1,

"Self-Conjugate"-> F

"SU3Dyn" )}
"su2LDyn"
"SU2RDyn"
"U1Dyn" -,

Alternate provision: Providing Dynkin labels instead of
dimension of the representation.

Field[2]={(
"FieldName"-> Q,
"Baryon Number"-> 1/3,

"Self-Conjugate"-> False,

"Lepton Number"-> 0, "SU3Dyn"-> {1,0

"Self-Conjugate"-> False,

"Lorentz Behaviour"-> "FERMION",

"FieldName"-> wil,.. -}

False,
"_> "VECTOR",

TensorField[2]={ x
"FieldName"-> Wly,...}

TensorField[2]={ x
"FieldName"-> WllL,...}

Field[3]={
"FieldName"-> A2,
"Self-Conjugate"-> False,
"Lorentz Behaviour"-> "SCALAR",
"Chirality"-> "NA",

"Baryon Number"-> 0,

> "SCALAR",

multiple
occurenece of n Lepton Numberl|7> 0
)

same group must

be distingushed , Su3 Rep n_y onqn
)

“Dyn” or “Rep” (1l n nmin
both cannot be used SU2Rep"+> "1,
in same input file.
Either of them ""'SU2Rep"
should be used
consistently.

> "3n,
"UlRep"-> 2},

Field[3]={

"FieldName"-> A2,

"Self-Conjugate"-> False,

"Lorentz Behaviour"-> "SCALAR",

"Chirality"-> "NA",

"Baryon Number"-> 0,

X

se,
"FERMION",

"Lepton Number"-> 0,
"SU2LRep"-> "1",
"SU2RRep"-> "3",
"UlRep"-> 2},

X

Number". Their sequence must be unaltered and none of
the keys should be omitted.

"Chirality"-> "1",

¥, "Su2Dbyn"-> {1}, "UlDyn"-> 1/6},

Possible sources of errors

Here, we have highlighted possible errors one can make-
break while preparing the input file for a new model.
The prime focus should be on the keys: "FieldName",
"Self-Conjugate", "Lorentz Behaviour",
"Chirality", "Baryon Number" and "Lepton

The entries within the " SymmetryGroupClass" must
be incorporated systematically, respecting the following
thumb-rules:

e The sequence of group information in "Symmetry
GroupClass" and "Field[i] " must be the same.
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Fig. 9 The correct way of
providing details about the
gauge groups

Field[3]=(

"Lepton Number"-> 0,

"SU3Rep"-
"SU2LRep"
"SU2RRep"

e The chiral nature of the field strength tensors must be
reflected at the end of "FieldName" by appending “/"
or “r",e.g..“Bl" or “Br", see Fig. 7.

e Different names to the same group must be assigned in
case of their repetitive appearance, e.g, two SU (2) groups
should be named as “SU2L" and “SU2R" to distinguish
them from each other.

e The transformation property under a particular group
must be entered in the form of the dimension of the
representation (“Rep") or Dynkin label corresponding to
that representation (“Dyn"). These options should not be
mixed up and must be used uniformly for the whole input
file, see Figs. 8 and 9.

e The dimensions of the representations must be provided
keeping the following points in mind:

1. For non-abelian groups the dimension of the repre-
sentation must be written as a string, see Fig. 9. Also,
for abelian groups such as U (1), the charge must be
entered as a number.

2. The conjugate of any representation must contain
"bar",e.g.: 3 — "3 bar".

3. One must distinguish different representations of the
same dimension: 8 — "8 p", similarly, 8" — "8
pp", see Table 18.
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"FieldName"-> A2,
"Self-Conjugate"-> False,
"Lorentz Behaviour"-> "SCALAR",
"Chirality"-> "NA",

"Baryon Number"-> 0,

Field[3]=(
"FieldName"-> A2,
"Self-Conjugate"-> False,
"Lorentz Behaviour"-> "SCALAR",
"Chirality"-> "NA",
"Baryon Number"-> 0,

"Lepton Number"-> 0,

"syspyn" ) (0,0},

Multiple instances
of same group is

properly
distinguished

“Dyn” is used
consistently

-> False,
"Lorentz Behayiour"-> "FERMION",
"Chirality"-£ "1l",

"Baryon Nupfber"-> 1/3,

"SU2RDyN"|

"UlD nll_

Field[4]=(
"FieldName"-> Q1,
"Self-Conjugate

Table 18 Input form of the dimension

Dimension Input Form
20 "20"

20 "20 bar"
20/ "20 p"

20" "20 pp"
20" "20 ppbar"

Details of the user interface for the Standard Model

Here, we provide an illustration of how to run GrIP and uti-
lize its various commands to obtain specific outputs based on
the Standard Model and how to further modify those results.
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In[1]:= SetDirectory[" /home"]
In[2]:= Get [ "MODEL/SM_Rep.m"]

Model Name: Standard Model

Authors: Upalaparna Banerjee,
Joydeep Chakrabortty,

Suraj Prakash, Shakeel

Ur Rahaman

Institutes: Indian Institute of
Technology Kanpur, India

Emails: upalab, joydeep,
surajprk, shakel@iitk.ac.in

In[8l:=Get ["GrIP.m"]

GrIP-V.1.0.0

Authors: Upalaparna Banerjee,
Joydeep Chakrabortty,

Suraj Prakash,

Shakeel Ur Rahaman

Indian Institute of Technology
Kanpur, India

"GrIP is successfully loaded and
ready to compute!

A folder, named [StandardModel] has
been created in your working
directory and all the output will be
saved in that folder.

Thank You!!"

In[4]:= DisplayUserInputTable
Out[4]:=
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Field Self Lorentz Chirality Baryon Lepton SU3Rep SU2Rep UlRep
name conjugate behaviour number number
H False SCALAR NA 0 0 1 2 12
(0] False FERMION 1 1/3 0 3 2 1/6
u False FERMION r 1/3 0 3 1 2/3
d False FERMION r 1/3 0 3 1 —1/3
L False FERMION 1 0 —1 1 2 —-1/2
el False FERMION r 0 -1 1 1 -1
Bl False VECTOR 1 0 0 1 1 0
wl False VECTOR 1 0 0 1 3 0
Gl False VECTOR 1 0 0 8 1 0
In[5]:= DisplayWorkingInputTable
Out[5]:=
Field Self Lorentz Chirality Baryon Lepton SU3Dyn SU2Dyn UlDyn
name conjugate behaviour number number
H False SCALAR NA 0 0 {0,0} {1} 12
(0] False FERMION 1 1/3 0 {1,0} {1} 1/6
u False FERMION r 1/3 0 {1,0} {0} 2/3
d False FERMION r 1/3 0 {1,0} {0} —1/3
L False FERMION 1 0 -1 {0,0} {1} —1/2
el False FERMION r 0 —1 {0,0} {0} -1
Hf False SCALAR NA 0 0 {0,0} {1} —172
ot False FERMION r —1/3 0 {0,1} {1} —1/6
u' False FERMION 1 —1/3 0 {0,1} {0} —2/3
df False FERMION 1 —1/3 0 {0,1} {0} 1/3
LY False FERMION r 0 1 (0,0} {1} 1/2
elf False FERMION 1 0 1 {0,0} {0} 1
Bl False VECTOR 1 0 0 {0,0} {0} 0
wi False VECTOR 1 0 0 {0,0} {2} 0
Gl False VECTOR 1 0 0 {1,1} {0} 0
Br False VECTOR r 0 0 {0,0} {0} 0
Wr False VECTOR r 0 0 {0,0} {2} 0
Gr False VECTOR r 0 0 {1,1} {0} 0
In[7]:= DisplayHaarMeasure
Out[7]:=
SU3 Su2 Ul
(~G122Glz + G123 + G123 (1 + G123) — Gz (Glza + G1z3)) (—1+G223)’ 1
6G123Glz; 2G2z3 G3z

In[6]:= DisplayCharacterTable
Out[6]:=
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Dyn SU3 Su2 Ul
{{0,0},{1},1/2} 1 + G2z4 JG3z
G2z1
1
{{1,0}.,{1},1/6} Glzi+ G-+ oty g + G2 G371/6
1 Glzo
1,0},{0},2/3 G1 — 1 G3z23
{{1,0},{0},2/3} 21+G122+G1Zl z
[{1.01,{0},—1/3) Gl + —— 4 G122 1 I
Vg, B 21 Glz, Glz, 1 G3lz]/3
({0.0).(1).~172) I o + G2z .
1
0,0},{0},—1 1 1 _—
{{0,0},{0},—1} rezy
1
0,0},{1},—1/2 1 + G2z
{{0,0},{1} } Gt 1 o
[{0,1},{1},—1/6} L L8 6 e !
Ar Glzi  Glm ' 0% Gz Y G3:1/6
[{0,1},{0},—2/3} L | !
Y ’ Glzy Glzp 2 G3Zz/3
{{0,1},{0},1/3} ! + Gl +Gl1 1 G373
.1y, 5 GIZ] Glzz 22 Z
1
{{0,0},{1},1/2} 1 o + G2z JG3z
21
{{0,0},{0},1} 1 1 G3z
{{0,0},{0},0} 1 1 1
{{0,01,{2}.0) 1 1+ ——+G22 1
2]
Glz 1 Glz2  Glzn G123
1,1},{0},0 + + + Glz1Glzp + 1 1
HL1L{010) G122 GlziGlz | Gl | Gl TGl
{{0,0},{0},0} 1 1 1
1
{{0,0}.{2},0} 1 1+ 7+Gzz% 1
21
Glz 1 G122 Glzn G173

{{1,1},{0},0}

+ +
Glz3  GlziGlzm  Glzn

5+ Glz1Glzy +

Glz Glzy

In[9l:=DisplayBLviolatingOperators["HighestMassDim"—10,
"Flavours"—1]

"ALT— —1(+1),

"AB"— +1(—1),

Out[9:= L Q3 +dL Qu-+el Q2 u+del u* (corresponding hermitian conjugates)

In[8]:=DisplayHSOutput["MassDim"—4,

Out[8]:=

"AB"—0, "AL"—0,

"OnlyMassDimOutput"—True,

"Flavours"—1]

—BI?> — Br* — GI> — Gr* — WI* — Wr* — Bl 2% — Br 2?

+d 7d" +el D el'+H P H
2

—Qd"H' —Lel' H — H? (HT) e HL +L 2L}

~dHQ"+02 Q" —uH Qf
—HQu +u2u —2*
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InN[10]:=DisplayLagOutput [ "MassDim"—4,
"Flavours"— Np]
Out[10]:=
—BI> — Br? —GI> —Gr* =W = Wr* +d Ny 2d"
+el Ny Pel' + HZ*H' — N7 Qy1d" H'

"OnlyMassDimOutput"—False, "AB"—"NA", "AL"—"NA",

2 . - 3
~H2 % (H') + LNy 9 LT —el H N} 2L+ Ny 0 70

~d HN}ys Q' =Njuy, H' 0
+Nyu2u' —HN; Qysu’ —L Njysel H'

In[11]:=DisplayLagOutput [ "MassDim"—4,
"Flavours"— 1]
Out[11]:=

"OnlyMassDimOutput"—False, "AB"—0, "AL"—0,

—BP—Br’4+d2d" —Qyid"H —dHy, 0"+ Zelel’ —Ly,el' H —el Hy; L'

. N2
+PPHH — H®H' —uys H QT — H? )\(H') —HOQysu'

+2LL"+200 "+ Zuu’
—GI?> — Gr? — WI* — wr?

In[12]:=PolyA=SaveHSOutput [ "MassDim"—4, "AB"—0, "AL"—0,

"Flavours"—1];
In[13]:= OpCounter [PolyA]
Out[13]:= 22

In[14]:=PolyB=SaveHSOutput [ "MassDim"—4, "AB"—"NA", "AL"—"NA",

"Flavours"— Nyl;
In[15]:= OpCounter [PolyB]
Out[15]:= 11Nf+11N§.

6.2 Operator construction for a supersymmetric model
using GrIP

Our prescription is not restricted to non-supersymmetric
models. The program GrIP enables one to construct the
polynomial in terms of chiral and vector superfields. In our
construction, we have taken care of the transformation of
vector superfield (V) under the Wess-Zumino [69,70] gauge
as V' = V 4+i(A — A"). The chiral superfield @ transforms
as ® — ¢~194¢ and its conjugate as &1 — ¢4’ @, This
leaves @ Te?" @ invariant.
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For multiple chiral superfields (©) and gauge symme-
tries, the respective Vg can be written as linear combina-
tions of vector superfields corresponding to the individual
gauge groups suitably accompanied by the gauge charges
of @. We have enlisted the transformation properties of the
superfields of the Minimal Supersymmetric Standard Model
[71,72] under the gauge group SU (3)c®SU (2)L QU (1)y in
Table 19. The Vg for this particular scenario is summarized
in Table 20.
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Table 19 MSSM: quantum numbers of superfields under the gauge groups. Internal symmetry indices have been suppressed. i=1,2,...,N is the
flavor index

Superfields SU@3)c SUQ2)L Uy
H, 1 2 1/2
Hy 1 2 —12
0! 3 2 1/6
U 3 1 —2/3
D! 3 1 1/3
L 1 2 —12
E! 1 1 1

B 1 1 0

w 1 3 0

G 8 1 0

Table 20 Vector superfields corresponding to each of the given chiral priate charges of the chiral superfields. (qg denotes the charge of the
superfields expressed as a linear combination of the vector superfields fields F' under the gauge group ¢)
corresponding to the gauge groups of the model weighted by the appro-

VH, — q?ﬁ(z)L W + qu‘l)y B VhH, — qu(z)L W+ qgfl)yB
Vo - quU(3)CG+‘ISQU(2),‘W+‘13(1)YB Vi - a5u@, W + 460y, B
Vu - 450G + a0y, B Ve - 1y, B

Vb - 50 G +400), B

GrlP input file for MSSM

The input file is prepared following the similar rules pre-
scribed for the SM case:

ModelName="MSSM"

SymmetryGroupClass = {

Group[l] = {"GroupName" -> "SU3", "N" -> 3},
Group([2] = {"GroupName" -> "SU2", "N" -> 2},
Group[3] = {"GroupName" -> "Ul", "N -> 13} };
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SuperFieldClass={

SuperField[1l]={
"FieldName"-> H,,
"Baryon Number"->

SuperField[2]={
"FieldName"-> Hy,
"Baryon Number"->

SuperField[3]={
"FieldName"-> Q,
"Baryon Number"->

SuperField[4]={
"FieldName"-> U,

"Baryon Number"->

SuperField[5]={

"Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERSCALAR", "Chirality"-> "NA",
0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "2", "UlRep"-> 1/2},

"Self-Conjugate"->False, "Lorentz Behaviour"-> "SUPERSCALAR", "Chirality"-> "NA",
0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "2", "UlRep"-> -1/2},
"Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERFERMION", "Chirality"-> "NA",
1/3, "Lepton Number"-> 0, "SU3Rep"-> "3", "SU2Rep"-> "2", "UlRep"-> 1/6}
"Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERFERMION", "Chirality"-> "NA",
1/3, "Lepton Number"-> 0, "SU3Rep"-> "3 bar", "SU2Rep"-> "1", "UlRep"-> -2/3},

"FieldName"-> D, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERFERMION", "Chirality"-> "NA",
"Baryon Number"-> 1/3, "Lepton Number"-> 0, "SU3Rep"-> "3 bar", "SU2Rep"-> "1", "UlRep"-> 1/3},
SuperField[6]={
"FieldName"-> L, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERFERMION", "Chirality"-> "NA",
"Baryon Number"-> 0, "Lepton Number"-> -1, "SU3Rep"-> "1", "SU2Rep"-> "2", "UlRep"-> -1/2},
SuperField[7]={
"FieldName"-> E, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERFERMION", "Chirality"-> "NA",
"Baryon Number"-> 0, "Lepton Number"-> -1, "SU3Rep"-> "1", "SU2Rep"-> "1", "UlRep"-> 1}
};
SuperFieldTensorClass={
TensorSuperField[1]={
"FieldName"-> BI, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERVECTOR", "Chirality"-> "1"
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "1", "UlRep"-> 0},
TensorSuperField[2]={
"FieldName"-> WI, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERVECTOR", "Chirality"-> "1"
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "1", "SU2Rep"-> "3", "UlRep"-> 0}
TensorSuperField[3]={
"FieldName"-> GI, "Self-Conjugate"-> False, "Lorentz Behaviour"-> "SUPERVECTOR", "Chirality"-> "1"
"Baryon Number"-> 0, "Lepton Number"-> 0, "SU3Rep"-> "8", "SU2Rep"-> "1", "UlRep"-> 0}
Yi
User interface for MSSM
In[1]:= SetDirectory[" /home"]
In[2]:= Get [ "MODEL/MSSM_Rep.m"]
In[8]:=Get ["GrIP.m"]
The above commands display similar output as shown in the
non—supersymmetric case.
In[4]:= DisplayUserInputTable
Out[4]:=
Super Self- Lorentz Chirality Baryon Lepton SU3Rep SU2Rep UlRep
field conjugate behaviour number number
H, False SUPERSCALAR NA 0 0 1 2 172
H, False SUPERSCALAR NA 0 0 1 2 —172
0] False SUPERFERMION NA 1/3 0 3 2 1/6
U False SUPERFERMION NA 1/3 0 3 bar 1 —2/3
D False SUPERFERMION NA 1/3 0 3 bar 1 1/3
L False SUPERFERMION NA 0 —1 1 2 —172
E False SUPERFERMION NA 0 —1 1 1 1
Bl False SUPERVECTOR 1 0 0 1 1 0
wi False SUPERVECTOR 1 0 0 1 3 0
Gl False SUPERVECTOR 1 0 0 8 1 0
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Super Self- Lorentz Chirality Baryon Lepton SU3Dyn SU2Dyn UlDyn
field conjugate behaviour number number
H, False SUPERSCALAR NA 0 0 {0,0} {1} 172
Hy False SUPERSCALAR NA 0 0 {0,0} {1} —172
] False SUPERFERMION NA 1/3 0 {1,0} {1} 1/6
U False SUPERFERMION NA 1/3 0 {0,1} {0} —2/3
D False SUPERFERMION NA 1/3 0 {0,1} {0} 1/3
L False SUPERFERMION NA 0 -1 {0,0} {1} —12
E False SUPERFERMION NA 0 —1 {0,0} {0} 1
(H,)" eVt False SUPERSCALAR NA 0 0 {0,0} {1} —12
(Hp)' eVt False SUPERSCALAR NA 0 0 {0,0} {1} 172
Qfeve False SUPERFERMION NA —1/3 0 {0,1} {1} —1/6
UteVv False SUPERFERMION NA —1/3 0 {1,0} {0} 2/3
DYeVp False SUPERFERMION NA -1/3 0 (1,0} {0} —-13
LieVt False SUPERFERMION NA 0 1 {0,0} {1} 12
EfeVe False SUPERFERMION NA 0 1 {0,0} {0} -1
BI False SUPERVECTOR 1 0 0 {0,0} {0} 0
wi False SUPERVECTOR 1 0 0 {0,0} {2} 0
Gl False SUPERVECTOR 1 0 0 {1,1} {0} 0
Br False SUPERVECTOR r 0 0 {0,0} {0} 0
Wr False SUPERVECTOR r 0 0 {0,0} {2} 0
Gr False SUPERVECTOR r 0 0 {1,1} {0} 0
Total number of independent operators at
The functions - DisplayCharacterTable and dimension 3 is3+2Nf+JlN%+9N}

DisplayHaarMeasure generate similar output as in the
case of SM since the gauge groups and and the transformation
properties of the particles are similar.

In[6]:=DisplaySHSOutput["CanonicalDim"—3,
"OnlyCanonicalDimOutput"—False, "AB"—"NA"
"AL"—"NA", "Flavours"— Nf]

Out[6]:=

Total number of independent operators at
dimension 1 is O,

Operators: 0

Total number of independent operators at
dimension 2 is4+4Ny+5N;

Operators:

L Ny Hy + Hy HL,-',-DNJ% DY eVp +EN} ET ¢VE +LN‘/2¢ Ltee
+Ny Hy LT "L+ NG 0 07 V0 + N7 UUT &MU 4
LNy (Hy)' e"Ma 4 Hy (Hp)' e"Ha + Hy (Hy)' eV
N LY (H eVeeViu 4 (Hpt (H)t eV Ha Vi

Operators:

B2 B2 G2 G2 1 _ 5, 5 1 5, 4 3

=y v CEIEN24+-EL’N3+DLN
Sttt 5 3 7+ 70
PRSI PRI g LR

TR Np UA e Ny Ut et -+ EL NG Ha

1
+DN]% QHd+NJ% QUHM+§NJ% 02 pte'p
+3 N} QD" "D + ENF U DD+ NT QU LT "L
+N]% HET LT VE oL

Un2 g (1) Ve (Vi) 4 L N3 BT (L) oVe (V)
SN} E (L) e (e ) +3 N} E (L) e (e )
_,’_N% Hy, DT Q‘{ eVD eVQ +N? D" LT Q" eVD eVL eVQ

Loon (o2 (Vo2 . L 3 (a2 (V)2
+3DNF (€) (") + 50w (€7) (¢70)

L2 (1) Ut (VD) oo £ La3 (D) Ut (VD) oW
-5 (D) U (e ) U+ DN} (D) U (e ) e
+D N} ETUT VE MU 4 L NG 0T UT V0 VY
+N7 Hy 0T UT eVe eV
+N2 QU (Hp)' e"Ma + Ny Hy EY (Hp)t eVE VMa
+NFETLT (Hp)T eVE VL eVHa
+N% DT QF (HyT eV eV0 MM + E L N} (H)t eV
+D N7 Q (Hy)" eVHu + E Ny Hy (Hy)" e¥Hu

+N3 0f Ut (H)T Ve eV Vi
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In[7]:=DisplaySHSOutput [ "CanonicalDim"—4,
"OnlyCanonicalDimOutput"—True, "AB"—"NA",
"AL"—"NA", "Flavours"— Nf]

Out[7]:=

+%EN;£U (o ? (Ve ?
(o) ()
#33p (0) (o)’

—1LN2Q3+lLN4Q3+ELN4QU+DN4Q2U 1 3 301 \3 3
37N 370 ! f _gNJ%LT (QT) VL (evg) +§N}{LT (Qi) VL (er)

1 3,2, 1 4,2 1 3 13,3
~3DENJU? + SDENU? — 2N; Q3 Hy + 3N} O Hy
+EN}QUHd
+LNyHyHy + HiH; + DLN}H,D'e"D + DN7 HyH,D'e"D

1 5 N2 v\ L L2 va (2 (V)2
A3 (01) ()" + Lo (o)’ ()

1 2 N2 (V)2
~3 Vot (D7) (')

1 3 N2 v\ L L o2 () Lvn)?
+3Nj QA (DT)(¢¥2)"+ 387 (D7) ()

L3 (i (V) L L ond (N (V) L L 302 et Ve
—EENf(D> (e ) +6ENf(D> (e ) + DN e

1 ' 1 ) .
—EDSN}EUVE + 6D31\/;‘(.E*eVE + ELNJ%.HL,E'eVE
+DN}QHuETeVE + EN%HdHuE%VE + DEN?D*E*eVDeVE

Lo2u2 (m0\2 (Ve
NG (E7) (')

Vo3 eV (Ve o L g2 nd (51) (Ve )
8N (ET) (") N (1) (%)
+L*N}H, L eVl + 2LNFHyH, L el + Ny HH L eVT
+DLN;D*L*eVDeVL
+DNFHgD L "DVl + N3UH, DT LT VD VL

Lo (D) Lt (eV0) eve 4 Lnto (Dt Lt (V) Ve
fENfQ<D) L (e ) e +5NfQ(D) L (e ) P
+ELN}‘ETLTeVEeVL
+DN;QE*L*eVEeVL

1 N2 2
3 Tyt VE V, 2262 i V,
+ENFHgETLTe et + ZL7NG (L ) (e L)

1 2 2 2 2
+5L°N} (LT) (eVL) +LN}Hy (LT) (eVL)

1 ) N2 v 2 1 2.2 N2 v 2
Nyt (L) ()" gN g (L) (e)
_Lysypt (L*)2 eV (eVL)2 + Indypt (L*)zeVD (eVL)z

2 2

1
—EDZLN}QUVQ

1 1 1
+§D2LN;QTeVQ - EDZN;HdQTeVQ + EDZN;HdQTeVQ
+2LN}QHy Q"e"0 + DNJUH, Qe + 2N} QHyHy Q'e"0
+ELN}D' feVDeVo
+2DN‘/‘.QD*QTeVDeVQ + EN?-HdDTQTeVDeVQ
+EN;QE"‘Q*eVEeVQ + 2LNf;.QL"'QfeVLeVQ
+DN;4CULTQTeVLeVQ

2 2
+2N}QHgLT 0 eV eVe + N} 02 (QT) (eVQ)

#Nje2 (') (¢'e) + sEnju (@) (o)
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1
fEDLzN;UTeVU
1 . . .
+EDL2N¢U‘eVU +DLN}HgU "V + LNFUH,U "V
+NFUHgHU eV + LN} QD U "D 'Y
+2DN}UD U DY
. 1
+N3QH D U VDU 4 EN} Q2 ETUTeVE MU
1 .
+= e'Ee + e’ ke
2N}QZETUT VE VU EN}UE'UT VE VU
+LNJUL U VeV
+NIUHGL U VLMY +2N}‘VQUQTUTeVQeVU
+N§-HMETQTUT6V56VQ6VU +N}1-ETLTQTUT6V56VL€VQ€VU
2 2
+N4Df (Q*) UteVp (eVQ) VU
1 2 2 1 2 2
A (1 () g (0 ()
1 e a2 2
—EN}D'EI (U‘) VD VE (eVU)
1 . 2 2
+5N$DET (UT) VD VE (eVU) + LAN3H, (Hy)'t e
+2LNHyHy (Hp)' e"Pa + HYH, (HpT e"Ha
+DLN} D' (Hy)' eVDeVHy
+DN}Hy D' (Hy)' eVDeVHy N}UH, D (Hg)' e'P ¢VHa
1 2 2
—EN}Q(DT) (Hp)' (eVD) ¢VHa

VHd

"N 0 (D7) (V0 )
+5NfQ<D) (Hy) (e ) P
+ELNIE" (Hy)T eVEe"Ma + DN QET (Hy)t Ve e M
E+N}HGE' (Hy)' eVESVHL 4 L*N3LT (Hp)' eVieVHy
+2LNJ2fHdL+ (HteVLeHa NpHILY (Hp)' eV eVHa
+N3UDTLY (Hg)T eV Vi e Ha
+2LN3 00" (Hy)' eV2e Ma + DNFU QT (Hy)' eV Ha

v 1 3 3y
+2NFQH Q" (Hy)' eV0e Ma — N <QT) (Hy)t (er) VHa
+LNIUUT (HpT eV e M + N3UHUT (Hy)' €'V e Ma
+NIETQTUT (Hy)' e E 0 U e Ha

[ ) N2 ([ Vi)?

_ d
+5 LNy ((Hd)) (e )

) N2 ( Vi, \?
+5L°N; ((Hd)) (e d)

+LNHy ((Hd)T>2 <eVHd>2
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2y, N2 1 .
+HHE (Ha)T)" (e74)" = V707 (T e
1 .
+3NFQP ()T eV
+EN} QU (Hy)' e"Hu + LN ¢ Hy (Hy)' et + Hy Hy (Hy)T eVHu
+DN/% H, DT (H)T VD e Hu 1 EN/% HyET (Hy) eVE eVHu
+2LNJ2fHuLT (Hu)' eVLeVHu + 2Ny HyHy LT (Hy)' VL eVHu
+DN}D*LT (Hy) eVDeVLeVHu + EN}ETLT (Hy) TeVE VL eVHu
N2 p 2
+LN3 (L‘) (HM(eVL) eVHu
+N} Hy (L*) (Hu)T( )2 Vi,
1 1
—EDQN2 of ()T eVeeVHu + E1)2N3 of ()T eV eVHu
+2NFOH, OF (H)' e"0eVtu + ENFDT QT (Hy)' e¥Pe"0 eV Hu
+2N§.QL*QT (H)T e"e"0e Hu 4+ DLNGUT (Hy)T ¥V eVHu
+DN7HgU™ (Hy)' eV eVHu + NUH, U™ (Hy)' eV eV
+N} oD Ut () VDYV VL 4 N}ULTUT (H)t VL eV eVH
+2LN p Hy (Hy)' ()T e Ha eVt 4 2Hy By (Hy) (H)T e Ha Vi
1 1
+DNFDY (Hp)' (H)T e VD Vig o Vi, 4 SL NfH2+ SLENFH;
+ENYET ()" (H)T VEe M oVit
+2LNFLT (HpT (H)' eVLeVHa ¢V
2N HaL (H) b (H)T Vie P eV
+ 28200 (Hy) (H)t Ve e Ma Vi
+N3UUT ()T (H)T eV VM Vi
2 2 2 Vi \2
+H? ((HM)T) (eVHu) + LNy ((Hd)T) (Hy)' (e Hd) eVHu
2 & 2
+Ha ((HT) (HF (e Ha ) eV
( (e )’
2
gy (L) (") () (Vi)
2
430 (L) (") () (V)
2
+Hy (H) T ((H)T) " e (Vi )2

VL VHd

)

+NfH Lt (Hu)*)

8L H' () e

()« ) (o

6.3 Categorizing the operators and writing them in a
covariant form

Covariant form of the SM Lagrangian

To convert the GrIP output into a covariant form, we employ
the translation between symbols as outlined in Table 21. The
correspondence between the Hilbert Series output generated
by GrIP and their covariant forms is shown in Table 22.

Higher dimension effective operators of the SM

We have enlisted the higher dimensional effective operators
upto mass dimension 6 in Table 23. These operators and
their implications in the context of SMEFT have been heavily
studied [73-87].

Categorizing the operators of the MSSM based on canonical
dimension

For supersymmetric scenarios, the operators are constructed
out of superfields. Unlike the usual quantum fields, e.g. non-
supersymmetric models, mass dimension is not a suitable
index for superfields and it cannot be used as the order param-
eter of the polynomial. Instead, the canonical dimension does
the required job.% At the end of the previous subsection, we
showed a representative MSSM Lagrangian comprised of
operators having canonical dimension 4. We can similarly
obtain operators having different canonical dimensions. We
have tabulated those operators in Tables 24 and 25 and also
classified them based on whether they only contain chiral
superfields or a mixture of chiral as well as vector super-
fields.

While comparing our results with those of [88], one must
keep in mind that while we have categorized the operators
based on their canonical dimension, in [88] the categoriza-
tion is based on the mass dimension of the F-term (for oper-
ators composed solely of chiral superfields) or the D-term
(for operators composed of chiral as well as vector super-
fields) obtained after expanding the superfields in terms of
the quantum fields. Also, the mass dimension of the F-term is
one more than the canonical dimension of the original oper-
ator while that of the D-term is two more.

Here, we have elaborated on the detailed structures of the
operators and their flavour dependence:

1. We have noted that the operators ﬁ(g) = Efe'E Hdz,
oy =UteDH?, 03" = Dfe VDUH2 o =
U2DH3, 0% = D32, 07 = EH3Hd which
appear in [88], are absent from our set. We can jus-
tify this as follows. Here, we have Ny fermion-like
superfields while only one flavour of the Higgs-like
superfields H, and H;. So, each of the structures
03,605,659, 617, 630, 677 would appear if
H,, H; were to have more than one flavour.

2. Operators enclosed in boxes vanish for certain values of

]Nf.The followinlg operator structurles vanishfor Ny = 1:
5 (N} - N3) L2E, 5 (¥} - n3) DU, 5 (N} - N}) UPDE,

6 For chiral superfields the canonical dimension is 1, while for vector

superfields it is 0. The covariant derivatives have canonical dimension
1/2, hence the field strength tensors which are composed of a vector
superfield and 3 covariant derivatives have canonical dimension 3/2.
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Table 21 Dictionary for translation of operators from the Hilbert Series output to their covariant forms. The translation from the form (FI, Fr) to

(Fuv, 1:";“,) is accomplished using Eq. (108)

0 e o7 u

o) - o/ '

L - Ly el

LT — Zf el

(WL, Wr) - Wi, Wh) (Gl, Gr)

il

uf d — df

ul d’ — H,p

el H,Hf — H,H'

e’ 17 — Dy

(Gl Gl (BL, Br) - (Buv. Bun)

Table 22 SM: Renormalizable operators as Hilbert Series output and
their covariant form. Coefficients of each operator (which appear as
functions of Ny) tell us the number of all possible operators with the
same structure. The operators in blue have distinct hermitian conjugates
which we have not written explicitly. Here, I = 1,2,3 are SU (2) indices;
a=1,..,8are SU(3) indices and ¢, s = 1, 2, ..., N are flavour indices

which are summed over with the suitable coupling constants. & - In the
Hilbert Series the fermion kinetic terms appear with a factor of Nj% but
in the physical Lagrangian there is a flavour symmetry which forces
the kinetic terms to be diagonal and the factor of N2 is reduced to N f-
For the gauge kinetic terms the translation from the form (F1I, Fr) to
(Fuv, 1:";“,) is accomplished using Eq. (108)

Mass Dimension-2
HS Output

Covariant Form

No. of Operators (including h.c.)

H'H H'H

1

Mass Dimension-4

HS Output Covariant Form No. of Operators (including h.c.)
BI? + Br?, B"B,,, B"B,,, 1IN7 +38
Glz 4 Gr2 G Ga Ga;wéa
) uv? nv?
W+ Wr?, whowl o wivwl
H'HZ?, (H'H)?, (ZuH) (7"H), (H'H)?,
N;L'L9, Niel'el?, LioL!, & pel,

*N; 0702, N]%um@, N}d*d@,

N]%L*Hez, N; 0"Hd, Nj% O"Hu,

*olvol. uloul, dal9dt,
L/Het, QfHd4®, O] Hu’

Table 23 SM: operators of mass dimensions-5 and -6

Operator Class

Operators (in non-covariant form)

Mass Dimension-5

(N})WlHu*Q, (N})WzHTeﬁL,

(N]%)ddTHH*@, (N]%)ezel*HHT.@, (2N})LL*HHT@, (2N})QQTHH*@, (N]%)uu*HHT@,

N+ NDLALH?,  (NF+NHO*(QT), @NHLLTQOT,
%(N_% + 2N} + Npel(el')?, %(N} + NHd*dh?, %(N} + Nhur')?,

w22 5(N7+NpHL?
Mass Dimension-6
x3 Wi, wrd, GPB, Gr?
@ (HYH)?
P2X2 GI’H'H, WI*H'H, BI*H'H, BIWIH'H
127:9¢ (N]%)GlH*dTQ, (N]%)GlHuTQ, (N]%)W/H*d*Q,
(N})BlH*dTQ, (N]%)B/HMTQ, (N]%)BleeﬁL
w2929
(NHud' (H)? 9
w3 (N_?)H(H*)ZeﬁL, (N;.)H(H*)ZdTQ, (N}.)¢2HTMTQ
4 P? 2H*(HN)29?
w4 (Npelel uu,
(N;)ezeﬁdd*,
(2N})ddTuuT,

(N;)elel*LLT, (N‘;)uuTLLT, (N})ddTLLT, (N?)elelTQQT, (2N‘;)uuTQQ*,

(2N})dd*QQT, (N;)ezL*d*Q, (2N]4,)ud(Q*)2, (2N§)e1L*uQ*, g(Nj%Jerj,)LQ{
%(N}+N_;‘.)eluQ2, (N_‘;)elu2d, (N_;‘.)LudQ
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Table 24 MSSM: Operators composed solely of chiral superfields. Xp, Xw, X are field strength tensors corresponding to the vector superfields
B, W and G. Boxed operators vanish for Ny = 1

Canonical Dim. Operators No. of Operators
HyH,. NjH,L Nyp+1
N}LEHd, N}QDHd, N%QUHL,, ZN} +2N%
1 1
3 3 2 2 3 2 2
NILOD. |3 (Nf - Nf> LE|| 3 (Nf - Nf> p*U
2 2 1 2 2 4 2 4 17 74 5 a73 1 A72
4 (HgH,)?, NyHgH2L, A (Nf +Nf) (H,L)>, N4Q*DU. N*QULE, N4+ SNT+ LN
1 1 1
3 4 3 2 3 3 4 2 3 7
N QUEH. | 5 (Nf _ Nf) UPDE| | 3 (N_,. - Nf) HiQ*| |5 ( 4 Nf) Lo FINg+1
1
2 2 3 2 4 2 3 3 11 A75 3 A4 37 A73
5 N}H,HILE. N}HHiL?E. | 5 (Nf —Nf) H,L’E | 2N}H,HyLDQ. LN+ 3N+ N3
1 1
4 2 2 2 4 3 2 3 2 2 5 ar2
N}HL2DQ. N}HHIDOQ, | 2 (Nf —Nf> H,LDU || 3 (Nf —Nf> HyHaD2U |, +3N}+4Np +4

1 1
NjHZLQU. N}H}H,QU. | 3 (N} - N}) QWE| |4 (N} - N}) 0'U |

1 1
< (N} =3} +2N) HaLD* | | = (Nf — 4N} +5NF —2NF) L2D? |

1
12
NyX%H,L, X} H,Hy, NpX% H,L, XpXwH,Hq, NpXpXwH,L

(N} —2NY N} + 2N}) EU? |, X3 H,Hy, Ny X3 H,L, X% H,Hy,

Table 25 MSSM: Operators composed of chiral as well as vector superfields. The operators in blue have distinct hermitian conjugates which we
have not written explicitly. Boxed operators vanish for Ny = 1

Operators No. of Operators (including h.c.)

Operators of Canonical Dimension-2

Hje"#a Hy, Hye"t Hy, N3Q%e'0, NyHjeVH L SN% +2Ny +2
N7LTe" L, N3ETeVPE, N;D'e"? D, NjU eV U

Operators of Canonical Dimension-3

I1x3, X3, 1x2, NeH[ eV HE, N]%HJ'eVHuLE, N%HJeVHu oD SN} +7N} +2Nf +3

N2Hje""a QU, NIL'e"r QU, N3D'e'"?UE, } (N} i N%) DteVp 02

Lina_ 3 L) Lo? 1 s 4 3 2\ 1213

3 (Nf Nf) HaQ", 5 (Nf Nf>LQ : o (Nf — 4N} + 5N} —2Nf> L*D3,

Liva o 3. Liyva_ 3 2

3 (V% - N3) HLE, 5 (N} = N}) HuLD?U, 1 (N? Covt o N+ ZN?-) E2U3,

Livs _ a2 2 L5 a3 o228 L(ns _ a3) ot 123 '

7<Nf—Nf) HyuHy DU, 7<Nf—N‘f)Q U2E, 7<Nf—Nf)Q U

20 20 A = (N} —3N53 +2N3) Bl D2,

5 (V3 = n}) @YoV p2, 2 (N} - N3 ) UTev L2, 6

Lva w3 otVop2r (w3 _ ¥ Vi 03

2 (Nf Ny ) Qe ®Dh7L. g (N. Ny ) Hye e Q It is easy to understand this vanishing behaviour. Each of
1 (N; _ N]%) ofeVo D2 Hy. these operators contains 3 similar superfields which trans-
2

form under the fundamental representation of SU (3) (D, U).

The explicit index contraction can be written as, for example,
Another set of operators vanish for Ny = 1,2 for HyL D3:

(Nj‘c — 3N} + 2NJ%) HyLD?, HyLD? = eqpeq g, Hf LY D* DP DY

N =
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Table 26 Table 25 continued

Operators

No. of Operators (including h.c.)

Operators of Canonical Dimension-4

(HJe"" Ha?, (Hie e H,)2, 2(H]e s Hy) (HeVin H), 5 (N3 + N3 ) U7 u)2,
1 (N} + N}) (Dte"r D)2, 1 (N;t +2N3 + N}) (ETeVEE)?, (N;t + N}) (01eVe 0)2,
L (N4 N2) (LT L2, NH(DeYo DHJeV Hy), N3(DYe"> DHJ eV H,),
N3(E'eVe EHje""a Hy), N3(U e U Hje s Hy), N3(UTe" U Hj eVt ),

N3 (EYe"e EHJ eV Hy), 2N3(L eV LH]e""a Hy), 2N3(LYe"t LH[ eV Hy),

2N} (QFeve QH e Hy), 2N (QTe¥e QH,j eV Hy), 2N4(UTe"v U DTeP D),
2N_‘;(Q*eVQ OLYeLL), 2N}(QTeVQ oDte"P D), ZN}(QTeVQ QU ),
N}(QTeVe QETe" E), N{(LTe" LETe " E), Nj(LTe"L LU "V U),
Nj(L'e"LD'e"? D), N}(ETe"FED'e"? D), N} (ETe"EEUTV U),

Ny(Hje"" HyHje"" L), 2Ny (H,je i H,Hje " L), J(N% + Ny)(Hje"" L),

289

12

4
Ny

+25N3 +

413 N2

s

+ 8N +8

2N} (Qfeve QHje ML), N}(L*eVLLH;eVHd L), N} (ETe e EHje " L),

. 1 .
N}(DTe? DHe L), Ny UH e L), | 5 (N} = N3) Qe feVn p?,

2

1 (N‘;- n N}) UTeVw ETeVe Q2 NY(ETeE Hje" i DQ), N}(QTe e Hje" " DU),

N%(DTeVD Hje'ta H,U), N;,(D*eVDLTeVL H,U), N} (Q'e"eLe"LUD),

1

1 R
N4E e LT D Q). | - ( 4 N}) UteprL?| | = ( 4 N}) 0feVeD?L |,

2 2

N}UTeVUDLHd, N}UTeVUUHL,Hd, N_}U*eVUUHuL, N}HjeVHu QUE,
N3Qte"e DUH,. 2N3Q"e"e QH, Hy. 2N} Q' 2 QH, L, N2 H]e"" H,L?

1 1

3 2

ZN%L'i'eVLLHMHd, N}L"‘eVL H,L%,

1 4 3 2 TV 3
< (N_,. ~ 3N} +2N_,.) EfeVED

- (N; — Nf) HieVm 03| | - (N; — N%) Q'eeD*Hy |, NyLie"t H2H,,

N}E*eVEEHL,Hd, N;.ETeVEEHuL, N_?.DTeVDDHuH,, N3DfeYPDH, L,

f

N3ETeVEDQH,, 2Ny Hje" s HyH,L. NyHje" HXL, Hje"" H}H,, Hje" H2Hy

where a, b are SU (2) indices and «, B, y are SU (3) indices.
Here, &4 is fully anti-symmetric whereas D*DBDY is
fully symmetric. Now, if we have 2 flavors of D, then the
expression is still symmetric in 2 of the indices (Table 26).
Therefore, this operator and other similar operators are non-
vanishing only if Ny > 2.

6.4 Extracting phenomenologically relevant operators
using GrIP

Baryon and Lepton Number violating rare processes in the
SM

The renormalizable SM Lagrangian has accidental symme-

tries in the form of baryon and lepton number conservation.
But these do get violated at higher mass dimensions [89-94].

@ Springer

Operators displaying such violations have attracted a lot of
attention due to a variety of reasons. The most popular being
contributions to neutrino mass [92,95-98] as well as predic-
tions of exotic processes, for instance, neutrinoless double
beta decay [99-102], and the decay of proton and other nucle-
ons into leptons [103,104]. As we look for higher and higher
mass dimensional operators the number of possible combina-
tions of the fields increases. Thus it becomes difficult to filter
out operators that violate baryon and lepton numbers by some
specific amount. Keeping this in mind, we have defined a
function "DisplayBLviolatingOperators" within
GrlIP, which enables one to obtain the lowest dimensional
operators for a particular combination of AB and AL. We
have collected the results in Table 27 and also described the
action of this particular function.
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Table 27 Baryon and Lepton number violating SM operators. The operators in red vanish for Ny = 1. The hermitian conjugates of each of these

operators will have AB — —AB and AL - —AL

AB AL Lowest Operators Remarks
Dimension

0 -2 H2L? Contributes to Neutrino Mass [92,95,96]

+1 —1 LQ3, LOdu, eluQ?, elu?d These contribute to proton decay.

1 1 el’d*2, LTQd*9, H'LTdQ?, H'LTud® These violate Baryon and Lepton numbers by
equal amounts thus preserving B — L

+2 0 d*0*, dPuQ?, 2uld* Leads to nucleon-nucleon scattering

+1 -3 L3Qu?, L?eli? Leads to decay of nucleons to 3 charged leptons
[103]

+1 +3 10 HY (L3 a3 Leads to decay of nucleons to charged leptons
mediated through a scalar [103,104]

0 —4 10 H*L* Suggests the possibility of a neutrinoless

quadruple beta decay [105,106]

The baryon and lepton number violations are also signa-
tures of various extended SM scenarios. It is important to
note that operators with the same amounts of AB and AL
appear at different mass dimensions for different models. If
in the near future such rare process(es) are discovered one can
perform a comparative analysis across a variety of models.

new assignment, one can identify operators that either con-
serve this symmetry or violate it by a specific amount. This
can be achieved through by judiciously using the functions
"SaveSHSOutput"’ and "ReOutput " intandem. As an
illustration, we have worked with the model given in [107].

In[1=DisplayBLviolatingOperators ["HighestMassDim"—10, "AB"—0,

"AL"— -2, "Flavours"— Nyl

Out[1]:=First instance of AB=0and AL=-2 occurs atmass dimension}5,

s 1272502 4 1272
Operators: ;H’L°N}+ ;H’L?Ny

In[2]:=DisplayBLviolatingOperators["HighestMassDim"—10, "AB"—1,

"AL"— -1,"Flavours"— Nr]

Out[2l:=First instance ofAB=1 and AL=-1occurs atmass dimensioné6,

Operators: del N} u2+dLNjc Qu+ kel N} Q% u+ el N} Q%u +
2 4 AH3 1 2 »3
FLN} Q3+ 4L NGO

External U (1) g global symmetry and extended MSSM

We have kept the provision to assign quantum numbers
under some external global symmetry, which is not intro-
duced in the input file, to each particle. Based on this

We have listed the superfield content and their transformation
properties under the gauge group SU (3)c®@SU (2) L QU (1)y
as well as under the global U (1) g in Table 28. One can obtain
the superpotential up to canonical dimension 4 with the help
of GrIP in the same way in which we obtained the superpo-
tential for MSSM. Then, using the function "ReOutput",
see Table 13, we can assign the U(1)r charges and segre-
gate between operators having different values of the over-
all R-charge. In Table 29, we have collected the segregated
superpotential for Ny = 1.

7 For non-supersymmetric cases, one must use "SaveHSOutput"
instead of "SaveHSOutput".
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In[1]:=diml =SaveSHSOutput ["CanonicalDim"—1, "AB"—"NA", "AL"—"NA",

In[2]:=ReOutput [ "NameOfPoly"—diml, "SymmetryName"—{"U(1l)gr"},
"Qno"—{Q—1,U—1,D—>1,L->2,R,—2,Ry —>2},"Asym"—{0}]

Out[2]:=
Total No. of Operators: 1
Operators: 7

In[3]:=dim2 =SaveSHSOutput [ "CanonicalDim"—2, "AB"—"NA", "AL"—"NA",

Out[3]:= Ry Hy+Hy Ry+Hy Hy+Ry Ry+L Hy+L Ry+02+524+ 52
In[4]:=ReOutput [ "NameOfPoly"—dim2, "SymmetryName"—{"U(1)r"},
"Ono"—{Q—1,U—>1,D—1,L->2,R,—>2,Rg =2}, "Asym"—{0}]

Out[4]:=

Total No. of Operators: 4

Operators: HyH,+ 02 +Ss2+ 712

In[5]:=ReOutput [ "NameOfPoly"—dim2, "SymmetryName"—{"U(1)r"},
"Ono"—{Q—1,U—»1,D—1,L-2,R,—2,Rg; —2},"Asym"—{2}]

Out[5]:=

Total No. of Operators: 3

Operators: RyH, + HyR, + LHy

In[6l:=ReOutput [ "NameOfPoly"—dim2, "SymmetryName"—{"U(1)r"},
"Oono"—{Q—1,U—1,D—>1,L—>2,R,—2,Rg —2},"Asym"—{4}]

Out[6]:=
Total No. of Operators: 2
Operators: RyR,+ LRy

In[7]:=dim3 =SaveSHSOutput [ "CanonicalDim"—3,"AB"—"NA", "AL"—"NA",

out[7]:=

DQH;+DQR;+ELH; +EH; Ry+ELRy+ . Ry Hy
+.¥ Hy Ry + 7 RqH, + .7 Hy R, +. Hy H,

+7 HyH,+. RyR, + 7 Ry R, +DL Q
+L.YH,+L 7 H,+QUH, +L.SR,+L T R, + 0
+0*S +QUR, + S+ T?

In[8:=ReOutput [ "NameOfPoly"—dim3, "SymmetryName"— {"U(1)g"},
"Oono"—{Q—1,U—1,D—1,L>2,R,—>2,R; —2},"Asym"—{0}]

Out[8]:=

Total No. of Operators: 6

Operators: .Y HyH,+ T HyHy+ 63+ 0% 7 + 73 +.7 T2

In[9]:=ReOutput [ "NameOfPoly"—dim3, "SymmetryName"—{"U(1)g"},
"Ono"—{Q—1,U—>1,D—1,L—-2,R,—2,Rg =2}, "Asym"—{2}]

Out[9]:=

Total No. of Operators: 10

Operators: D Q Hy+E L Hy +E Hy Rg+ Hy Ru+ Rq Hu +
T HyRy+ T RgHy+L.% Hiy+L .7 Hy+ QU Hy
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Table 28 MSSM + Global U (1) g: Quantum numbers of superfields under the gauge groups. Internal symmetry indices have been suppressed.

i =1,2,.., Ny is the flavour index

Superfields SUB)c¢ SUQ) L U(l)y UDg
H, 1 2 1/2 0
Hy 1 2 —12 0
0! 3 2 1/6 1
U 3 1 —2/3 1
D! 3 1 1/3 1
L 1 2 —12 2
E! 1 1 1 0
Ru 1 2 1/2 2
Ry 1 2 —12 2
5 1 1 0 0
T 1 3 0 0
% 8 1 0 0

In[10]:=ReOutput [ "NameOfPoly"—dim3, "SymmetryName"—{"U(1)g"},
"Oono"—{Q—1,U—1,D—1,L>2,R,—2,R; —2},"Asym"—{4}]

Out[10]:=

Total No. of Operators: 8

Operators: DQR;+ELR;+.% RyRy+7 Ry Ru+DL Q+
LY Ry+LT Ry+0QURy

7 Operator bases of SM extended by Infrared degrees
of freedom

The shortcomings of the Standard Model are attempted to
be cured by extending the gauge symmetry and (or) adding
new particles. Some of the additional particles, i.e., DOFs,
are expected to be lying around the electroweak scale (within
the TeV scale). These particles can be remnants of a com-
plete UV theory where the other heavier modes are beyond
the reach of present days experiments. In that case, the light
enough BSM particles or multiplets need to be taken into
consideration as IR DOF along with the SM ones. Thus we
need to include the higher dimensional effective operators
involving these new IR DOFs which extend the SM-EFT
operator basis. This is the key idea behind this section where
we have provided the complete set of dimension-6 operators
for a few popular choices of beyond SM infrared degrees
of freedom. We have tabulated the results for a few more
scenarios in the appendix. A pertinent detail that must be
kept in mind is that different UV theories may lead to the
same set of IR DOFs, after integrating out suitable heavier
modes for respective theories. Our program GrIP allows one
to construct the complete basis of effective operators which
is always a superset of the operator sets achieved through the

top-down (integrating out) method [19,108-114]. We have
illustrated the complementary nature of these constructions
in Fig. 10. This construction also opens up the possibility
to use the EFT method in the light of present and future
experiments to address the “inverse problem". This work is
a significant step towards that final goal of identifying the
experimentally favoured BSM physics.

We start by constructing operator sets for minimal, single
particle extensions of the Standard Model. These extra par-
ticles are kept in the same footing as the SM ones and are
considered to be IR DOFs for further operator construction.
Here, we will not repeat the SM interactions, which are neatly
categorized in Table 23. Rather, our focus will be on the inter-
actions of the non-SM particles among themselves and with
the SM ones. We have considered a variety of exotic scalars
and fermions that transform differently under the SM gauge
symmetry. These extra fields and their transformation prop-
erties under the gauge groups SU(3)c ® SU2)L @ U(l)y
and their spins are enlisted in Table 30.

SM + singly charged scalar
Our first minimal non-trivial extension, the trivial case being
that of a real gauge singlet scalar [115], is the inclusion of

a singly charged color and isospin singlet scalar. Now, such
a scalar could exist outside of any multiplet or it could be a
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Table 29 MSSM + Global U (1) g: Superpotential terms (for Ny = 1). Terms in red correspond to the operators given in [107]

Canonical Dim. Operators No. of Operators
Superpotential with U (1) g charge = 0

1 7

2 72, 72, 6%, HyH,

3 S, ST, 6%, 03, HiH,S, HiH, T 6

Canonical Dim. Operators No. of Operators
Superpotential with U(1)r charge =2

2 H,L, H,Ry, HiR, 3

3 LEH,;, ODH,;, QUH,, EH;Ry, H,Ry., H,L.Y, HyR,, H,L.7, H,Ry.7, HyR, T 10

Canonical Dim. Operators No. of Operators
Superpotential with U(1)g charge =4

2 R4Ru, RyL

3 QLD, LER;, ODRy, QUR,, LR,7, RyRy7, LRy, RiR,.

Renormalizable Lagrangians of UV Theories

T

/

Integrating Out heavy degrees of freedom (2)
(and / or)
Symmetry Breaking (6 — 9)

=

GrIP

Fig. 10 A schematic depiction of the two approaches to EFT and their
interplay. Here, ¢ and ¢ represent the degrees of freedom and gauge

group of the IR theory while <Dj(.i) represent the heavy fields of the i-th

UV theory and %) represents the corresponding gauge groups. GrIP
generates a superset of effective operators for a given low energy theory

@ Springer

Table 30 Quantum numbers of various BSM fields under the SM gauge
groups and their spins

Model No.  Extra Particle SUQ3)¢ SUQ®2)r U(l)y Spin
1 s+t 1 1 1 0

2 s+t 1 1 2 0

3 A 1 3 1 0

4 O 1 4 3/2 0

5 2 1 5 0 0

6 ) 1 3 0 12
7 N 1 1 0 12

part of some n-plet whose other components acquire larger
masses. As those heavy modes are integrated out, their foot-
prints can be captured through the effective operators com-
posed of SM fields and a light singly charged scalar. We
have collected the operator sets at mass dimensions-5 and -6
in Table 31.

SM + doubly charged scalar

Similar to the earlier case, the doubly charged scalar can be
the IR DOF and several theories can lead to this scenario
[116]. The additional effective operators in the presence of
8+ are shown in Table 32.

SM + complex triplet scalar

Unlike the previous two scenarios, an entire multiplet may be
light enough to be included as an IR DOF. The SU (2) 1, com-
plex triplet (A) leading to neutrino mass generation through
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Table 31 SM + singly charged scalar (§1): Operators of mass dimensions-5 and -6 excluding pure SM operators. The operators in blue have distinct
hermitian conjugates which we have not written explicitly. Boxed operators vanish for Ny = 1. Here, § — standst — 6~

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
w22

Mass Dimension-6

%(N}Jrzvf)ezzaz, (Nj%)ezaH*L*, (N]%)daH*Q"‘, (N]%)u’?'aH‘*‘Q

88TH2(HT)?

o6 83™3, HHTs2(87)?,

®2x? BI2ssT, Gi2sst, witsst
2 | 2 2

w2pX 3 (N34 Np) BIL%S, 5

! (N3 = Np) wiL?s

viply
w3
2HH§8" 92

@4@2 82(87‘)2@27

. . . 1
(NPHHTL?S, (N})HSS'Liel, (N7)H38'dQ', (NPIH887uQ", 7<N%—Nf)L28287

(N}%)QQW'@, (N})LL*ssT@, (Nj%)uu*aa@, (Nj%)dd'*'aa*@, (N})elel*aai‘@, (Nj%)HaLem

2

Table 32 SM + doubly charged scalar(87F): Operators of mass dimension-6 excluding pure SM operators. There are no mass dimension-5

operators except pure SM operators. Here, § — 8§+ and P

Operator Class

Operators (in non-covariant form)

Mass Dimension-6

@ HHT82(5)2, H2(HT)285T, §3(5T)3
®2x? BI288", G185, witsst
1 )
w2p X 5 (N3 = Ny) Cel"s' i
viply (Nj%)QQ""B(S"'@, (N})uu"‘&é"‘@, (N})dd‘*'ss"'@, (N}%)LL""BS"'@, (N})elel"‘é&"‘@, (N%)(SH"'eIL_@

vlp3

(N2)85THLTel, (N2)88THAQT, (N})88T HTuQ', | (N}, + N_,-) L25(H)2,

1 2 2¢2¢0F 1 2 2 ]
L (N34 Np) e28%67, 5 (N3 4 Ny ) ePSHH!

o4 P? 826292, 2HHT88T 2?2

the Type-II seesaw is one such case [117-119]. The effective
operators involving A have been catalogued in Table 33.

SM + SU(2) quadruplet scalar

SU(2) quadruplet scalars often appear in the study of
fermionic dark matter candidates which themselves are
quadruplets under SU (2) [120]. They have also appeared in
discussions of the Type-III Seesaw where they contribute to
the Dirac mass of a lepton triplet [121]. Lastly, they also fur-
nish a doubly charged scalar and provide an avenue to study
the relevant phenomenology [116]. Here, we have consid-
ered a SU (2) quadruplet scalar with hypercharge 3/2 and
provided the effective operators of mass dimensions-5 and
-6 in Table 34.

SM + SU(2) quintuplet scalar

SU (2) quintuplet or higher n-plet scalars are commonly stud-
ied in the context of Minimal Dark Matter (MDM) models
[122], where the neutral component is usually proposed to be
the candidate particle. At the same time, a SU (2) quintuplet
can also furnish a doubly charged scalar. So any discussion of
such multiplets brings forth a discussion of the phenomenol-
ogy of doubly charged scalars [116]. We provide the effective
operators of mass dimensions-5 and -6 in Table 35.

SM + left-handed triplet Fermion

Extensions of SM through the addition of a triplet fermion
leads to the generation of neutrino mass through Type-III see-
saw mechanism. This has also been discussed in the context
of dark matter model building where the neutral component
of (X, 30, X7) is proposed as the DM candidate [123].
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Table 33 SM + complex triplet scalar (A): operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class Operators (in non-covariant form)

Mass Dimension-5

@3 H3HTAT, 2H?2A(AT)?
w22 (NHAHTLTel, (N)AHTAQT, (N)ATHuQ', | (N]% + Nf) el2A?
Mass Dimension-6
@ 2A3(A%Y3, 3A2(AT2HHT, 3AATH2(HY)?, H*(AT)?
P2x? BIPATA, GIZATA, 2WI2ATA, BIWIATA
1

2 2y72 2 . 2
wipX (NDL2 AW | 5 (Nf —N_,)L ABI
vlplg (N})uu'*AA'*‘.@, (N})dd"'AA"‘@, (N})elel'*‘AA"‘@, (2N]%)QQ*AA'*'_@,

(2N]%)LL'*AAT@, (N}%)AHLel@

w3 (2N})AATHLTe1, (2N})AA*H¢1QT, (2N}%)AA+HTMQ*,

(N3 +Np) 124247, § (3N + Ny ) L2AHHT, § (N3 + Np) el H2A

P4 P? 3A2(ANY2 92, 4aAATHHT 9?2

Table 34 SM + SU (2) quadruplet scalar (®): operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class Operators (in non-covariant form)

Mass Dimension-5

w22 3 (N} ) HloL?

Mass Dimension-6

@° 303ON3, 4HHT02(©M)?2, 3H2(HN200T, H*HTOT, 2H30(©7)?2

®2X? BI’OOT, GI’eet, 2wieet, BIWleeT

vlplg (N%)utﬂ@@T@, (N})dd*@@@, (N})ezelT@@T@, (2N})QQT@@T@, (2N})LLT@@T@

2408 (N;)L*el(a(m)z, (N})QW@(H*)Z, (N%)QM@*H% (ZN%)LTelH@@T,
(ZN})Q"'dH@QT, (2N§)Q*‘um@@"'

o4 P? 4AHH 06192, 46%2(©1)?2

Table 35 SM + SU (2) quintuplet scalar (£2): operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class Operators (in non-covariant form)

Mass Dimension-5

@3 23HTH, 2(HN?H?, 25

P X2 Wit

Mass Dimension-6

@ 2020, 2022H*(HN?, 2*HHT

P2x? BI’22, GI*2?, 2WI§2?

vlplg (N}%)QQT.QZQ, (N})LL*Q@

23 1 (N]% + Nf) QH?L?, (N)Q?HelL', (N)R?HdQ', (N)R*HTuQ"
o4 P? 202492 2Q2°HH'2?
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Table 36 SM + left-handed triplet Fermion (X): Operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
w22

(N]%)ZzHH*, (N]%)E*elﬂz

1725'¢

1
5(N]% — Ny)BIx?

L (N7 + NpWIE?

Mass Dimension-6

vlp2g (2N]%)HH*22*@
vipx (NJ%)BZLZH, (2N})W1L>:H
w3 (2N})L2H2H*
) . ) 1 .
A @NHLOd' X, (N‘;)LQ'ux, (N‘})L%ﬂx, E(N;‘- - N}HQ¥ET|, %(N‘f‘ +3N7) T4,

(N;t)uu*zzt (N;‘,)dmz):f, (N;‘;)elelTZ‘ET, (2N;)QQ*>:>:*, (2N})LLT22T,
GNE+ NG+ 3INDH 22 (51)?

Table 37 SM + right-handed singlet fermion (./"): operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
1282

%(N_?- +NpA?HHT

125

1
E(N} — Np)BL (#T)?

Mass Dimension-6

(N})HHDV,/V*@, (N})sz*el 9

vlplg
1270:3'¢ (N})Bl LVTH, (N?.)Wl LAyTH
w23 (NPHLT A H(HT)?
1
4 4 2 4
v E(Nf - N7 N

A %(N; +N})Q2d./, (Nj,)dzu,//, (N}*)(L"‘)Zez N, (N;)u’l'd el*.n,

(N?-)LQTML/VT, (2N§.)L*Quw, (N;‘.)uubn/x/*, (N;)ddfm/w, (N;)ezezimwi
(NHQO' AN N (NDLLIN NT (GNT + NG+ gND AN T)?

2°00f

We have enlisted the effective operators of mass dimensions-
5 and -6 in Table 36.

SM + right-handed singlet fermion

Inclusion of a heavy right handed singlet fermion attempts to
describe neutrino mass by way of the Type-I seesaw mecha-
nism [124]. But recently, the discussion has shifted towards
the extension of the SM degrees of freedom by a light singlet
fermion [125] and construction of effective operators. One
such scenario was considered in [126] where the full particle
content was comprised of SM fields, a right handed fermion
singlet (.#"), a couple of vector-like fermions (x g, xn) and a

scalar (@). Operators of dimensions-5 and -6, comprised of
SM fields and the right handed singlet fermion are obtained
when the vector-like fermions and the heavy scalar are inte-
grated out. We have categorized all the dimensions-5 and
-6 operators highlighting interactions between the SM fields
and the right handed fermion as well as self-interactions of
the fermion in Table 37. It must be remarked that the opera-
tor set given in [126] contained redundancies w.r.t. equations
of motion of the fields. Such redundancies do not exist in
the operator set provided in Table 37. We have also drawn a
pie-chart showing the number of effective operators of mass
dimension-6 for Ny number of fermion flavours and distin-
guishing the three cases: (i) Operators composed only of SM
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Fig. 11 Pie-chart showing
number of operators including
their conjugates for 3 distinct
scenarios

No. of Operators:

No. of Operators:

87TN? 103N4 413N? 3N%  397N%
f 3 f f f f
1 N4+ —1L 5 —L
5+ 5 + 3N} + 15+ —5 5+t
1 SM + (N, xe, xn,P) SM+ N SM

fields (ii) Operators composed of SM fields + .4 and (iii)
Operators composed of SM fields + A4 + xg + xny + @ in
Fig. 11.

Extensions of the SM through addition of Lepto-Quarks

We now shift our attention towards the extension of the SM
by including lepto-quarks, i.e., particles having both baryon
and lepton numbers [127]. We expect to observe baryon and
lepton number violation among the operators constituted by
them. Lepto-quarks attract a lot of attention not just because
they act as mediators between the quark and lepton sectors
[128—131] but also because they can lead to the breaking
of the SU (3) color symmetry as well. We have considered
the models discussed in [128,129]. We have listed the lepto-
quark fields and their transformation properties under the
gauge groups SU(3)¢c ® SU(2);, ® U(1)y and the Lorentz
group as well as their baryon and lepton numbers in Table 38.
The effective operators of dimensions-5 and -6 have been
neatly categorized and given in Tables 39, 40, 41 and 42.

Interactions of a light dark matter candidate with SM fields
Recently, models built of the lighter SM fermions, after hav-
ing integrated out the heavy particles, i.e., the SU (2) gauge

bosons, the Higgs and the top quark, with the gauge group
SU (3)c®U (1), and the corresponding gauge fields the glu-

@ Springer

ons (G, and the photon (F},,) have sparked some interest.
Also known as Low Energy Effective Field Theory (LEFT),
[132—135] these below electroweak scale models provide a
nice platform to study interactions between weakly interact-
ing light dark matter and the SM fermions [136]. We consider
two distinct scenarios [136], one where the DM candidate is
a complex scalar and another where it is a fermion. Since
we are working in the Weyl basis we separately define the
left and right chiral parts. In each of these cases, there is an
extra U(1)p charge assigned to the dark matter candidate,
see Table 43. We have catalogued the effective operators for
the two cases in Tables 44 and 45 respectively.

In the second model, the broken SM is extended by fermions
(XL, xr)- The imposition of a U (1) p symmetry removes the
terms having odd powers of x; g and xl g- The remain-
ing terms contain one operator at mass dimension-5 and 275
operators at dimension-6. Since all the dimension-6 opera-
tors have a similar form we have only given a schematic form
of these operators in Table 45.

8 Covariant form of operators and their explicit flavour
dependence

Explicit flavour dependence in higher dimensional operators
has always been of interest and drawn the attention of active
researchers [95,116,137-153]. Our program GrIP offers the
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Table 38 Quantum numbers of various lepto-quark fields under the SM gauge groups, their spins and baryon and lepton numbers

Model No. Lepto-quark SUQB)c SUQ)L U(ly Spin Baryon No. Lepton No.
1 X1 3 2 1/6 0 1/3 -1
2 X2 3 2 7/6 0 1/3 -1
3 Dy 3 1 2/3 0 1/3 -1
4 Dy 3 1 —1/3 0 1/3 —1

user an avenue to gain familiarity with the possible ways in
which the flavour and symmetry indices can be contracted to
construct independent sets of operators. Among the models
studied in this paper, the operators could always be catego-
rized into distinct classes. Of those classes we can identify
the following two classes where explicit flavour dependence
becomes significant: (i) w4 and (i1) UlpX.

As the program output does not show the flavour and sym-
metry indices explicitly, it is difficult to explain why and how
the number of operators varies as a function of the number
of fermion flavours (N ). To do so we are required to rewrite
those operators (&;) in covariant form.

- 0; € w*: Here, we have focussed our attention on the
w4 sector of Table 23.
Now, the fermions in this model can be divided into 4
categories based on their internal quantum numbers:

(a) SU(3) triplet and SU (2) doublet: Q,
(b) SU(3) triplet and SU (2) singlet: u, d,
(c) SU(3) singlet and SU (2) doublet: L,
(d) SU(3) singlet and SU (2) singlet: el.

We can have three possible covariant structures for the
w# operators constituted of the above:

(i) Wy ) @yre),
(i) Wy, tlwyWwyrdlw)
(i) (Fy, TPy TW)8,

But all of these need not be independent. These may
be connected through Fierz identities. If all three struc-
tures are possible as in the case of (a), then only two of
them are independent. Thus, the independent structures
for fermions of types (a)—(d) are:

(1) Py W) (@y"w) for (b, (c), (d) and
Q) Wy )@y, @yt W)@yt @) for (a).

In case (1), if ¥ transforms non-trivially under SU (3)
and SU (2) then there are %N %(N )% + 1) number of sym-
metric combinations. If ¥ is an overall singlet under
these non-abelian groups, then the number of symmet-
ric combinations is [%Nf(Nf + 1)] x [%Nf(Nf + D].
For case (2), the counting gets doubled compared to case

8 71 and T are the generators of SU (2) and SU (3) group respectively.

(1) as there exist two independent structures, i.e., the
number becomes 2 x [%N %(N ? + 1)] as ¥ transforms
non-trivially under the non-abelian groups. We must also
remark that when all four ¥’s are different then we get a
factor of N;‘c or ZN;‘, depending on the number of inde-
pendent structures.

= w2® X: Within this class, we have considered three

operators N%WllAlL%, % (N]% + Nf) W12A2L% and
% (N? — Nf) BIAL? from Table 48. Now, focussing

on Wi; A; L?, we see that since A is Lorentz scalar and W/
transforms as (1, 0) under SU (2); x SU (2),, L? must be
a symmetric product of (%, 0) and (%, 0),i.e., in Lorentz
indices. Now, if i = j, then L; can be yield both a sym-
metric and an antisymmetric product in internal symme-
try indices. Thus we must include both such structures
which gives %Nf (Ny+1)and %Nf (Ny — 1) symmetric
and antisymmetric combinations respectively, i.e., a total
number NJZC. Now, if i # j, then L? must appear only as
a symmetric combination in internal symmetry indices.
Otherwise, the full term will be antisymmetric in inter-
nal indices and vanish identically. So, the total number
of combinations is %Nf(Nf +D.

Following a similar line of reasoning, in the case of
BIA|L? the number of combinations is N (N — 1)
due to the antisymmetric nature of (L1AjL1) in flavour
indices.

These ideas can be conveniently generalized to construct
covariant form of dimension 6 operators for any model. How-
ever, when we investigate operators of dimension > 6, we are
have to be careful about the new tensor structures that may
appear and operator construction is not directly generaliz-
able from the dimension 6 set. Rather, we need novel and
ingenious techniques to accomplish this as has recently been
shown for SMEFT operators of mass dimension 8 [154,155]
and mass dimension 9 [156,157].

9 Conclusion and remarks

In this paper, our primary objective has been to elucidate
the construction of group invariant polynomials of the quan-
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Table 39 Lepto-Quark Model 1(x;): Operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5

w22 (NDLOXE, (NDelux?, (NDud(x))>, (N} + Np)Q2(x))?, @NHLOH x|, (N}eluH ],
(NPudH' 1, (NHQ*H' 1, %(N% — Npd*Hx

Mass Dimension-6

®° 253G, 3xF)PHET, 2000 H2(HT)?

®2x2 B2y x1, 2G| x1, BIGlx,| x1, BIWlx] x1, GIWlx!x1, Wi x! xi

vl x (N2.)BlLd‘X], (NZ.)GzLdTXI, (NZ)WzLdTXI

o2y CNuu' x1x{ 2. @NDdd x1x| 2. ANDQO xix] 2. CNDLL x1x] 2.
(Nz.)eleﬁmxl_@ (Neld'Hyx1 2, GNHLQ'H 12

vig3 @NHOTdH x|, GNHOTuH x1x, (NHQTdx]. (NHQut ki, (N3 QTel H? X1
(2N})L%1HX1X1, (2N2)LTdX1*HH (N2)L dH 2, 2N )LTd(xl)ZXl, (NZ)LMTHZXI

s 420222, AHH X P, P HT P

Table 40 Lepto-quark model 2 (x): operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5

w22 %(N} — Np)d*H' xa

Mass Dimension-6

»° 2030007 31300 P HH', 2000 H2(H')?

P2xX? BI>X3 x2, 2GI%x3 x2. BIGIx} 2. BIWlx) 2. GIWIX3 xa. Wi 3 x2

wipx (NZ)BlQez*xg, (Nz)GlQelTX;, (NZ.)WIQel*X;, (NZ)BILMTXZ, (NZ)GILLJXZ, (NZ)WZLMTXZ

vlp?g CNpuu' X213 9. N 2dd" x2x3 2. 4N} QO "xaxa 2. (N% Nelel' y2x3 2. 2N HLLY x2x3 2.
(Nz)eld‘H‘XQQ (Nf)elu Hx22, (2Nf)LQ "TH 2,2

vie? AN QTdH Xy, ANHQTuH xax;, AN QTela HHY, 2N} O elx3x], NP Lu'x3x3,
(2Nf)L "elHyax3, (Nf)L*dHZXZ, (2Nf)Lu "YoHHT

49?2 43222, 4HH xox) 7*

tum fields. The relevance of such invariants in high energy
physics stems from the fact that most of the phenomeno-
logical models contain certain quantum fields as the degrees
of freedom that are attributed unique transformation proper-
ties under the assigned symmetries. The phenomenological
explorations within a proposed model rely on Feynman ver-
tices and for that information of a complete Lagrangian is
necessary. Recognition of the fact that the individual con-
stituents of the Lagrangian are invariants under all the sym-
metries of the model (global, gauge as well as spacetime)
motivates us to delve deeper into their construction. The fun-
damental ingredients for such development are the characters
of different representations and Haar measure corresponding
to the connected compact groups representing the symme-

@ Springer

tries of the adopted model. In the first part of this paper, we
have outlined the detailed mathematical steps in an algorith-
mic way to lay the platform for the central part of this work
which is based around developing the Mathematica®
package, GrIP. We have explained all the necessary informa-
tion such as how to install the package, and to create an input
model file. We have also shown how to translate the output of
the program into a working Lagrangian through some exam-
ple scenarios. One of the most essential guiding principles
behind the analysis has been to ensure that the required input
be as minimal as possible and the output as simple as it can
be. This is reflected in the character computation where the
only input needed is the Dynkin label for the corresponding
representation and again in the development of GrIP where
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Table 41 Lepto-Quark Model 3 (®): operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
w22

Mass Dimension-6
(p6

®2X?

[122:3'¢

v2e2g

wlgp3

4 P?

%(N; + Npud(@))?, (N%)Ld*HTqbl, (N%)QTeIHfbl, (N%)Lu*H(pl

o} (@), d2(@)) 2 HHT, &0 H2(HT)?

BI2®| @, 2GI2®| @, BIGI®| &1, WD ®,

%(N‘% + Ny)Brd*®y, (N})Grd%bl

(2N})uu"'q>1qbf@, (2N}%)ddf¢l¢1*@, (2N})QQ"'¢1¢1T@, (N})LL%@I@,
(Nj%)elel"'q)ld?f@, (NHQdH @7, (Nj%)LuHcpl*@

(2N})Q’?‘dH¢>lq>f, (2N})Q"‘umq>lq>f, (N})L*ezﬂqnqﬂ', (N]%)LQH%J',

1 1 a1 R
5(N} —Npd*oie! |, E(N% — Np)d*o HH' |, 5(N}% — Np)Q*®(H)?

203(®))* %, 2HH 0] 7*

Table 42 Lepto-Quark Model 4 (&;): Operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
w22

Mass Dimension-6
d)ﬁ

®2X?

1727:9'¢

viply

*W2¢3

&4 P?

TN+ Np)d2(@])?, (N})Ld'Hd,

3 (@)}, @} (@)’ HH', 0,0] H2(HT)?
B2d]®y, 2GI2®] ds, BIGI®) By, WI2D] D,

i
(N}GI®20%, | S (N} = N)BIO20? | L(NF + N WIb20, QNDGI®Ju'd', (N BIoJu'd',

(N}BI®ILO. (NHWIBILQ. (NP)GIDILQ. (N})Bldsel'ul, (N})Gldsel'ul

CQNDuu' 0,012, ANDdd 820]9, 2N2)QQ 209, (ND)elel' 0209, (N2LL @0},
(NHQAH®27, (N} QuH' ®:7, (N})Qel H® 7, (NDLAH S, 9, (N)LuH 9,
(NHL'Q@39, (NDel'dd} 2

(N2 QTdH®, 8], N O uH 0], (LTl HD,0], (NHLO®H(®))2, (ND)el uds ()12,
LN+ Np)Q*@30], (NHud®3d), @NHLQOHHT, (N}l ud] HHT, (N uddr HH,
(N)Q* @y HHT

203(®))2 92, 2HH 0] 7?

Table 43 Quantum numbers of various Dark-Matter fields under the broken SM gauge groups extended by U (1) p

Model No. DM-Candidate SUQB)c Uem U(l)p Spin

1 ¢ 1 0 1 0

2 XL 1 0 1 12
XR 1 0 1 12
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Table 44 Model 1 (¢): Operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
2Y?

ot o1V L T ov2 . BT pve vy @TPve ve TPV Ve L idere), dlduru].

oipre), dloure), ¢iotre), plotrRul, dTouLeh, dTdTLek, PTPTLIY, ¢TPerT),
o pbrby, dpsrb), ¢Tedrb), diddiby, ¢Tesibl, dTocre), dTsidy, ¢ purc),
Ol purch, o' pdrd], oiosrdl, diosrs), ¢ osrdy, ¢ pugu)

Mass Dimension-6

P2x?2 FI2¢T¢, GIP¢¢
@6 (¢33

@4@2 (¢T)2¢2@
oyly

ot} 2, dtpcrc) 2, dtocrcy 2, ¢Tddid] 2, ¢t ddrd} D, ¢Tsis) D, ¢TPuLu] 2,

O osrsy 7. ¢ ouruy 2. ¢*esibL 2. T odrby 2. ¢l purc, . pTedLb} 7. ¢TeuLe) .
o'otLe} 7. ¢l purey 7. ¢ pTrRe} 2. ¢l bt 7. T OTRURD. BT PV, VI D, BT PVr, ], D,
O psrdy 2, ¢ psid) D, $iourch?, ¢ dsrby 2, $1brbL D, ¢ pere} D, piperek 2,

O oL, 2. ¢ ournk 2. ¢'o1L7[ 2. $lotRTy 2. ¢V, V], 2. ¢T P, V] 2,

i g
¢T¢V2LVeL@, ¢T¢UTLU€L9

Table 45 Model 2 (. g): Operators of mass dimensions-5 and -6 excluding pure SM operators

Operator Class

Operators (in non-covariant form)

Mass Dimension-5
P2@?

Mass Dimension-6
lI/4

Fry} xg.

Frixrs i bxixrs fo s fr € ep g, v )
qZ,RqL,RXZ,RXL,R’ q €fu.d,c,s, b}
qZ,RqR,LXZ,RXR‘L’ g €f{u.d,c s, b}
lz,RlL,RXZ,RXL,R’ Lele p, 7}
lz,RlR,LXZ,RXR,L’ Lele pn, 1}

2 2
XL,RXL.R

the input only comprises of the quantum fields corresponding
to the particles of a given model and their respective transfor-
mations under various symmetry groups. We would like to
mention that we have also provided a separate sub-program
CHaar which computes the character of representation using
the suitable Dynkin label provided by the user.

Adopting the output of GrIP for any phenomenological anal-
ysis is based on its identification as the Lagrangian. So, we
have kept the provision to identify the operators at differ-
ent mass dimensions, for different values of overall baryon
and lepton numbers, and the different number of fermion
flavours. All this has been exemplified through both non-
supersymmetric as well as supersymmetric scenarios. We
have shown how in addition to being a Lagrangian builder,
GrIP can also act as a search tool for rare processes mediated
by varying degrees of baryon and lepton number violations.

@ Springer

At the same time, it can also enable the user to filter out
the output based on the conservation or violation of exter-
nally imposed global symmetry. Both of these targets have
been achieved through suitably defined functions within the
package and their working principles have been emphasized
through relevant examples. The contemporary state of parti-
cle physics has transcended past the Standard Model (SM).
Keeping this in mind, we have employed our package in
laying the groundwork for the first step towards a model-
independent comparative study of different BSM scenarios.
We have mentioned the need for an extension of the SM par-
ticle content through the addition of certain infrared degrees
of freedom and paved the way for the study of BSM-EFT. We
have further highlighted this by constructing and tabulating
the higher dimensional effective operators for a plethora of
extended SM scenarios ranging from SU (2) scalars trans-
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forming in various multiplets to lepto-quarks, and some pos-
sible dark matter particles. Lastly, we have commented on the
distinct flavour structures of a few classes of operators and
shown how these can be understood based on group-theoretic
principles.

In the future, we will further explore the avenue of BSM-EFT.
We will employ esoteric tools based on statistical methods
and Effective Field Theory to pinpoint the new physics pro-
posals, most favoured by experimental data.
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Appendix A
Appendix A.1: Non-supersymmetric models

Below we shall discuss a couple of popular BSM scenarios
and highlight the utility of the Hilbert Series in the construc-
tion of their operator sets.

Minimal left-right symmetric model (MLRSM)

The Minimal Left-Right Symmetric Model (MLRSM) is
an intricate extension of the Standard Model where P and
CP symmetries are on par with the gauge symmetries
[97,98,142,148,158-186]. In this model the right handed
neutrino is accommodated naturally. The field content and
the transformation properties of those fields under the gauge
groups SUB)c ® SU2), ® SUR)r ® U(1) p—y, and their

spins are enlisted in Table 46. We have also given the gauge
group characters corresponding to each field in the table. The
Lorentz characters can be conveniently obtained based on the
spin of each particle. The Hilbert Series can be obtained by
following a similar strategy as in the case of 2HDM. The
Hilbert Series output and the corresponding covariant form
of the renormalizable operators has been listed in Table 47.
The categorization of the non-covariant HS output of mass
dimension-6 has been shown in Table 48. See [45] for their
covariant forms. All the operators are provided for general
N . Some of the operators vanish for Ny = 1 and these have
been highlighted by enclosing them in boxes in Table 48.

SU(5) Grand Unification - The Georgi Glashow Model

The SM gauge group SU(3) ® SU (2) ® U (1) can be success-
fully embedded in SU(5) — a unified group [187—-192]. The
field content of this model and their transformation properties
are listed in Table 49.

We shall now utilize the strategy sketched in section 2.1 and
show the explicit computation of the Haar measure and the
characters of the relevant representations of SU (5).

Haar Measure: Using Eq. (23), we can obtain for SU(5), €1
=271,8& = 21_1@, &3 = z{la, &4 = z3_114 and g5 = zzl. The
Vandermonde determinant for this case is:

8? 8% 8% e 1
83 83 8% & 1
A@=|ed &3 &2 55 1|= [] (i—e). @AD
8% 5% 8; g4 1 I<i<j<5
g5 &5 &5 &5 1

A(e~!) is obtained by replacing &; by & " in the above
expression. Then using Eq. (27),

dpsysy =

x (1 - —lez) <1 -5
73 2122

(A.2)
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Table 46 MLRSM: Quantum numbers of fields under the gauge
groups, their spins and gauge group characters. Since MLRSM only
contains fields with spins-0, -1/2, and -1, the relevant Lorentz char-
acters are the ones given in Eq. (109). Here, x parametrizes the U (1)

character. Also, I = 1, 2, 3 denotes the SU (2) index, a = 1,2,.....,8 the
SU(3) index and p = 1,...,N the flavor index. The color and isospin
indices have been suppressed. L and R denote whether the fields trans-
form non-trivially under SU (2), or SU(2)r

MLRSM Fields SU@B)c¢ SUQQ)L SUQ2)r U(l)p-1L Spin Gauge Group Characters
@ 1 2 2 0 XSUQ@L) * X(SU@p)2
AL 1 3 1 0 XSU@L); - XW )
AR 1 1 3 0 XSU@R) * XU D)
o1 3 2 1 173 172 X(SUG)3 - XSU@L) * XUD)13
* 3 1 2 173 172 X(SUGY3 * XSUQ@ R * XU
Ly 1 2 1 -1 172 X(SU@1L: " XU (1),
Ly 1 1 2 -1 172 X(SU@p)2 * XUy
By 1 1 1 0 1 1
Wi 1 3 1 0 1 X(SU@L)
Wik 1 1 3 0 1 XSUQ@ 2
Ga, 8 1 1 0 1 X(SUB)s
D Covariant Derivative
Characters 8? 8? 8% £
8; 83 8% &
1 5 .4 .3

— The Fundamental Representation: 5 = (1, 0, 0, 0)
Using Eq. (25), we get A = (1, 0, 0, 0, 0). Now, since p =
4,3,2,1,0) therefore,r = A+ p = (5,3,2,1,0) and
the character is obtained as:

le>, &3, &2, ¢, 1]

(€1, €2, €3, €4, 85) = —p——r—s——
X T le4, &3, €2, ¢, 1

1

H1§i<j§5 (81' &

)
ef e 1
eg 83 8% & 1
x |e3 &3 &5 &3 1
g & & &4 1
8‘55 sg eg es 1
=¢&1t+é&+ &3+ 64+ 6s.

22 23 24 1
LoXSUuG)s(21,22,23,24) =21+ —+ — + — + —.
<1 22 23 4

(A.3)

— The Anti-fundamental Representation: 5 = (0, 0, 0, 1)
WithA=(1,1,1,1,0)andr =2+ p = (5,4,3,2,0),
the character is obtained as:

&3, &t, &3, &2, 1]

le, &3, &2, &, 1

x (€1, €2, €3, €4, 85) =

@ Springer

a 1_[151'<j§5 (8,‘—8]') 5 4 3

™
~
™
~
™
~
™

™

[N

™
N B W NN —N
—_— = = =

™
W
)
W
™
W
)

= £1828384 + £1£2€385

+e1626465 + €1€36465

+er6384€5.
3 2
LXSUGHs(21,22,23,24) =24+ — + —
‘ 4 23
21 1
-+ (A4)
2z

— The Decuplet Representation: 10 = (0, 1, 0, 0)
WithA =(1,1,0,0,0) andr = A + p = (5,4,2,1,0),
the character is obtained as:

&3, &, €2, ¢, 1]
le4, &3, 62, &, 1]

1
[li<icj<s (e —¢j)

5 4 2
& & &1 & 1

eg 53 8% & 1
5 4 2

X |e3 €5 €5 €3 1
5 4 2
&y & &5 €4 1

5 4 2
&5 &5 €5 &5 1

x(e1,€2,€3,64,65) =

= €183 + €183 + €164 + €185 + €283
+e284 + 6285 + €384 + €385 + £485.
224 | 212 22 2124

2 08y 2

X (21,22,23,24) =
(SU(5))10'%1> 22 4 2123 2 2124 2



Eur. Phys. J. C (2020) 80:938

Page 65 of 73 938

Table 47 MLRSM: Renormalizable operators as Hilbert Series output
and their covariant form. The operators in blue have distinct hermitian
conjugates which we have not written explicitly. Here, 7, J = 1,2,3 are
SU(2)1, and SU (2)g indices respectively; a = 1,...,8 are SU (3) indices
andr,s=1,2,..., Ny are flavour indices which are summed over with

the suitable coupling constants. & - In the Hilbert Series the fermion

kinetic terms appear with a factor of N2 but in the physical Lagrangian
there is a flavour symmetry which forces the kinetic terms to be diago-
nal and the factor of N ? is reduced to N . For the gauge kinetic terms

the translation from the form (FI, Fr) to (F, F‘w) is accomplished
using Eq. (108)

HS Output Covariant Form HS Output Covariant Form No. of Operators (including h.c.)
Mass Dimension-2
L) Tr[@To] Al A TrlA] AL) 5
¢? Tr(d ] Al Ay TrlAl Ag]
Mass Dimension-4
BI? + Br? B,y B*, By B G +Gr? G4, G, G4, G 14N + 2Ny 422
2 2 I el 2 2 J J 7w

Wi + Wri W Wi Wi, W Wis + Wr3 Wi W' Wi Wi
N30 020 0,005 N30 020 0,904
N3L{Lag Ly oL, N3L Lo L, oL,
L(NF4Ng)L3AL @ CimaALL L(NF4Ng) L34 ()T CiopArLy
*N201017 0,90, *N2010:7 0rPQ%
209" Ay A] Tri®t@1Tr[A} AR] *N%L'{'L.@ L, oL,

Triof Al d Ag] “N%L;LZQ LrPLy
o* Tr® @ 1Tr[dTd] sl Tri®o @ Tr(dT @]
P? A A] Tri®t®|Tr[A] AL 2 ArA] Tr(® ®|Tr[A} AR
$? A A} Tridf Al o AL P2 A A} TriéT Al @ Ag]
poTA1A] Trietal o] (ah2a2 TrlA] AT ITr[ARAR] 16
A AT Ay A] TrlA] ALITr[A} AR] o pP? Trl(D,®)" (D*®)]
ATA P Tr[(D,AL) (DM AL)] AL A PP Tr[(D,AR) (D*AR)]
202 (91> Tri® e Tr[o ®] 243(AT)? TrlA} ALITr[A] AL

Tr@TSITr[dT @] TrlA] ATr[ALAL]
243(Ah)? TrlALARITrAL AR] 209" A1 A] Tri®t@1Tr[A] AL

TrlAL AT AR AR] Trietal oaL)

3, 2 23 24 1 _ 2 2 2 2
+2 4 22—, = £1€28364 1+ £185€364 + €1628584 + £1€2€3€]
Z1 4 24 22 23 2 2 2
(A.5) +£1828385 + £165€385 + £18283€5

— The Adjoint Representation: 24 = (1,0, 0, 1)
Witha=(2,1,1,1,0)andr =X 4+ p = (6,4, 3,2,0),
the character is obtained as:

x (&1, €2, €3, &4, €5)

|86, gt &3

, &2, 1

le4, &3, €2, &, 1

1

_n15i<j55(5i_8j) 6 4 3

g Yy

+8182838§ + 8%828485 + 818%8485 + 81828585

~|—8182848§ + 8%838485 + 818%8485

+8183842‘85 + 81838482 + 8%838485

+825§5485 + 8283842‘85 + 8283846‘% + 4e182838485.

XSUGHu (21522, 23, 24)

2 2
Z 2 1z Z 7124
— 1 = + — + 2 + ==
22 7] 25 2123 2223
2122 23 21 2224 2173
e e e e
Z3 7122 22Z4 71 74
2
24 1 2224 Z
-tz — + S5+
2123 2124 23 2224
2
2324 22 Z 23
e e Hd - 3

2 3 3 7

2223

2124

(A.6)
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Table 48 MLRSM: Operators of mass dimension-6. Operators in blue have distinct hermitian conjugates and boxed operators vanish for Ny = 1.
There are no operators of mass dimension-5 in this case

Mass Dimension-6

Operator Class Operators (in non-covariant form)
X3 Wi, wri, W3, Wwr3, GP, Gr’
@6 26M%(#)%, 2(AD3 (A1, 2(4D)3 (423, 49T 2 (9)2A] A1, 4012 (@)2A] A, 3¢Te(A]2 (A1),

36T p(A))2(42)%, 49 P A] A 4] A, 2(AI)2(A1)2A2A2, 280)2(42)% A1 A1, ¢°. $767. 26% (672
$1ATAL ¢ 0505, 9P A A2, $1ATAL 20397 AT AL 20791 AT A, 26797 A A2, 20797 A5 A1,
3012 @)2A] Ar. 207 A3(A])2, 202 43(A0)2, $2A3(A))%, 2 A3(A])2, 26741 M (A])2,
202 A1 Ax(AD)2, 202 A2 AT AT, 202 A3AT AL, 202 A1 AT A2 AT, 299T A1 A (A2, 2097 A A2 (A2,
0o' A2 (AD2, ATax(A]), A14%(A))

»2x2 BI2¢?, BI2(¢")2, GI¢%, GI2(¢")2, BI2¢'¢p. GI’¢tp, BIPAJ A\, GI*A]A1, BIASAs, GI2ASA,,
Wi, Wi2(H2, Wigte, WiBe2, Wit(ph)?2, WiBeTe, 2WIRAT Ay, WIRAT Ay, WiBAT A,
QWBALAs, WLWLG2, WLWL($HE, WHEWhe e, WLWLAT Ay, WLWLALA;,
BIWL ¢, BIWLe ¢, BIWLLATA,, BIWLA] A,

1 1 - +
2 2 2 2 Toriy2 2 il 2 2 2
vepX 3 (Nf — Nf) BIA(LY |, 3 (Nf — Nf) BIAY(Ly)" |, NfBld)TLlL , NfBl¢L]L§, Nle|A1LI,

(N3 4+ Np) WHATWD?, 5 (N3 + Ny ) WhAsL3, N3WRALYD?, N3IWLTLILL, N3AWhoL L],
N3Wh¢ LILY, NAWheLi L], N3Bl¢T 010}, N3Bl$0,05, N3Wh¢' 010, N3WL$0,10]
NiWh¢' 0105, N3Whe 0105, N3GI9T 010}, N3GI190:10]
w2gp2g 2N2¢>¢TL1L*9 2N2A1A LiL2, N2A2A2L1LT9 2N%¢¢TL2L*9 NZAIA "LaL) 9,
AN} A AL 2L} 9 2zqu>r¢>TQ1QT L2NIAIA[Q10]7, N3A2AL01019, 2N39¢T 02079
N}AIA] 02019, 2NFA2A502059, N3*LIL|7, N3$* Lol 7, N3¢? 01012, N3¢? 02057,
N?¢AIL1L2D, Ni¢ArL1L2P, N7g AiL1L2 P, N7 AsLi 129
w23 (N2 4+ N ) L3ang?, § (N34 N ) L3102, 4 (383 + Ny ) L3 Aige, (N3 + Ny ) L343 4],
L(NF N ) L3ar Al L (N34 Np) 134007, § (N3 4 Np) 134062, § (33 + Ny ) L3Aagg,
(N2 + N ) B3 aal, (N3 +Np) 13434], § (N3 4 Np) L3 axg?, 3 (N3 + Ny ) LEdn @),
(N2 + Ny ) L3A2A], N2L3 Asge', N3L3AN00, § (N3 + Np) 134162, § (N3 + N/ ) 1362,
i (N} + N_,») L3A2 A, N}LIL2¢3, 2N}L1L2¢2¢T, 2N%LIL2¢(¢T)2, N}L]Lz(w)% 2N}LIL2¢A1A1,
ANFL{Lag AL Ag, INFL] 2T AT AL, 2N L Lag" AL A, N3L{L2A] A2, N3L{Lag" A A,
N3LIL2gAJ AL, N3LILag' AL A1, N3 Q] 02¢%, 2N3 0] 029707, 2N3 0] 020(6")%, N3 0] 02(9"),
2N} Q[ 020A] A1, 2N3 Q] 0297 A] A1, 2N3 0] 0264745, 2N3 0] 026 A]As, N3 Q] 02641 45,
N30102¢0"A] 42, N3Q] 026 A1 A1, N} Q[ 026474,
&+ P2 4929222, 3(AD2(AN2 P2, 3(AD2 (A2 P2, 4dTpATA D, 4pTp Al 2,2, 24T A AL AL P2,
PP0T D, 207 AT AL D2, 207 AL TP, GPAT D2 DP, GPAL AN DP, 207 AT A D2, (A)A(82)* PP
2079 AT A, 72, $*9?
wt ( 44 N2 )Lz(lf)2 ( 44 N2 )LZ(LZ)Z N4L L Lo L], %( 44N )LZ(L2)2
(N4 +N3) @3Q)2. (N} +N3) 03(D)2, 2N 010]0:0L. (N +N?) 0012,
2NHLIL]010], 2N} 121} 020), NHL1L] 0208, NSLIL[Q20], § (2N} + N3) 1103,

ONSL{L20] Q2 NILIL1Q] Q2 4 (N} + V7)) 110103 4 (N + N} ) L20:0%. § (2N} + N3) L20)
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Table 49 SU(5) GUT: Quantum numbers of fields under the gauge
groups, their spins and gauge group characters. Since the model only
contains fields with spins-0, -1/2, and -1, the relevant Lorentz charac-

ters are the ones given in Eq. (109). Here, a, b are SU(5) indices and
L denotes the chirality (i.e., left handedness of the field)

Fields SU(5) Spin Gauge Group Characters
®f 24 0 X(SU(5))24

o 5 0 X(SUG)s

Via 5 172 X(SUGYs

l]/Z”’ 10 172 X(SUG)10

D o 24 1 X(SUG)u

Dy Covariant Derivative

Table 50 Georgi-Glashow Model: Operators that comprise the renor-
malizable Lagrangian (for Ny = 1). The operators in blue have distinct
hermitian conjugates which we have not written explicitly. Here, a, b, ¢

are SU (5) indices. We have suppressed the SU (5) indices while writing
the kinetic terms

Renormalizable Operators

Mass Dimension HS Output Covariant Form No. of Operators (including h.c.)
2 % ¢'p (@LDD). (phe™)

o3, dply (@pDLDY), (pidie?)

204 (@fdh)?, (didbdsod) 14

20297p, (¢")%p
Wip, WiyLet

v ow, vl v
0 0 D?, A1 + r?

(@O (Pl®), (@FPLYipO), (9™
Eabede (W CWE 0, Wiy 40
YL PUL, YL DY

(Zup) (D1 9), A1 Ay, Ty,

Table 51 Next to minimal supersymmetric standard model: quantum numbers of superfields under the gauge groups. Internal symmetry indices

have been suppressed. i = 1,2, .., Ny is the flavour index

Superfields SU@B)c SUQ)L U(l)y
H, 1 2 172
Hy 1 2 —1/2
0 3 2 1/6

Ui 3 1 —2/3
D! 3 1 173

L 1 2 —1/2
Ei 1 1 1

7 1 1 0

Table 52 Next to minimal supersymmetric standard model: operators constituted only of chiral superfields

Canonical Dim. Operators No. of Operators
1 4 1
2 77 1
3 Hy H,?, H,L, 3
4 LEH;, QDHy., QUH,., &* LQD.?, H,L.?*, HyH,.* 7
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Table 53 Supersymmetric pati-salam model: quantum numbers of superfields under the gauge groups. Internal symmetry indices have been

suppressed

Superfields SU@)c

SUQ2)L SUQ2)r

M TN WS
o = O I NN

—
(9]

—

—_ = N = =
[ NS I S I S BN \S B

Table 54 Supersymmetric Pati-Salam Model: Operators constituted only of chiral superfields. Terms in red correspond to the operators given in

[194]
Canonical Dim. Operators No. of Operators
2 FAH, W, D2 N, A 5
3 FIh, FHh, FHA, TR, AN, AT, AT, 53 8
4 24, FrF2, AR, TR, W 2T, 2 A, 25, 25, 31
N T, AT, 2T T, N T, 2T 70, AF2S, AF 5, 2FH A,

FIhE, FAHRE, H2NE, NS, 2AL52, 2252 2F A 52

Table 55 Minimal supersymmetric left right model: quantum numbers of superfields under the gauge groups. Internal symmetry indices have been

suppressed. i=1,2,...,N s is the flavour index

Superfields SUB)c SUQ2). SU2)r U(Dp_1
@ 1 2 2 0

A 1 3 1

A 1 3 1 -1

Ae 1 1 3 -1

A 1 1 3 1

0! 3 2 1 1/6

0l 3 1 2 —1/6

L 1 2 1 —112

LL 1 1 2 1/2

These results can be used to obtain the Hilbert Series for this
model. We have tabulated the Hilbert Series as well as the
covariant form of the operators that constitute the renormal-
izable Lagrangian in Table 50.

Appendix A.2: Supersymmetric models

We shall now discuss model building in the context of super-
symmetric scenarios. For each of the following models we
will enlist the chiral superfields and tabulate operators of var-
ious canonical dimensions constituted of these superfields. It
must be noted that for each of these scenarios one can intro-
duce vector superfields and with a suitable use of GrIP obtain
the full operator set at different canonical dimensions.

@ Springer

Next to minimal supersymmetric standard model - NMSSM

The Next to Minimal Supersymmetric Standard Model
extends MSSM by addition of a gauge group singlet chiral
superfield .. We have noted the transformation properties
of the chiral superfields of this model under the gauge groups
SUB)c®SUR)L ® U(1)y in Table 51. We have collected
the operators constituted only of chiral superfields of canoni-
cal dimensions-1, -2, -3, and -4 comprised of beyond MSSM
interactions in Table 52, see Ref. [193].
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Table 56 Minimal supersymmetric left-right model: operators constituted only of chiral superfields

Canonical Dimension-2

Operators No. of Operators
AA, AA., &2 3

Canonical Dimension-3

Operators No. of Operators
L (N2 Nf) 124, 4 (NF 4N ) L2A, NILL:®, N}QQ.® 3N? + Ny

Canonical Dimension-4

Operators

@4, 2()2(A)2, 2(A)*(Ae)?, (A)2(Ac)?, (B)2(A0)?, AAAA., AAD?, AA D2, AA P2, AA D2,

No. of Operators
2974 _ 13 4 1 a2
BNy =Ny + Ny +12

1

1 1
3 (Vi +N}) Q02 NFLLQQe. | 5 (V] = NF) 1O || 5 (N} = N ) Lol || NG (N = 1) 121

3 3

Canonical Dimension-5
Operators

2
Ny

LL.AAD, N%LLcﬂcdﬁ, N}QQCAACQ N}QQCﬂctp, ZN%QQCAZ(D, ZN%QQCACZCQ

No. of Operators
20N7 + 6Ny

2

INILLAA®, INILLAAD, NILL:D, N}QO P, 1 (N} + Ny) L2402, L (N} + Ny ) L2492,

(N2 4+ Np) L2A%4, L (N3 + Np) L2407, 5 (N3 + Np) L2492,

(N} + N_,-) L2AAZ,,

1 (N% + Nf> L2A A, | (N} + Nf> L*A(A)2%, L (N? + Nf) L¥A.(A)?, (N} T Nf> L2A%A,

The supersymmetric pati-salam model

The transformation properties of the superfields of the
Supersymmetric Pati-Salam Model under the gauge groups
SU@)c ® SU2); ® SU(2)p are enlisted in Table 53. The
results for this model are based on [194]. We have listed the
operators constituted only of chiral superfields of canonical
dimensions-2, -3 and -4 in Table 54. The terms relevant to
the phenomenology discussed in [194] are highlighted using
red colour.

Minimal supersymmetric left-right model

The transformation properties of the superfields of the Min-
imal Supersymmetric Left-Right Model under the gauge
groups SU3)c®SU )L RSU2)g QU (1) g are enlisted
in Table 55. We have reproduced the results of [195], i.e., the

operators constituted only of chiral superfields of canonical
dimensions-2, -3, and -4. We also extend the operator set by
adding terms of canonical dimension-5. We have tabulated
these in Table 56.

Appendix A.3: Dimensions and Dynkin labels for few
representations of SU(N)

See Tables 57, 58, 59 and 60.

SU(2)

Table 57 Dynkin labels corresponding to a few low dimensional representations of SU (2)

Dimension Dynkin label Dimension Dynkin label Dimension Dynkin label
1 {0} 8 {7} 15 {14}
2 {1} 9 {8} 16 {15}
3 {2} 10 {9} 17 {16}
4 {3} 11 {10} 18 {17}
5 {4} 12 {11} 19 {18}
6 {5} 13 {12} 20 {19}
7 {6} 14 {13} 21 {20}
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SU@3)

Table 58 Dynkin labels corresponding to a few low dimensional representations of SU(3)

Dimension Dynkin label Dimension Dynkin label Dimension Dynkin label
1 {0, 0} 10 {3, 0} 21 {0, 5}

3 {1, 0} 10 {0, 3} 21 {5, 0}

3 {0, 1} 15 {2,1} 24 {1, 3}

6 {2,0} 15 {1,2} 24 (3,1}

6 {0, 2} 15 {4, 0} 27 {2,2}

8 {1, 1} 15 {0, 4} 28 {6, 0}
SU4)

Table 59 Dynkin labels corresponding to a few low dimensional representations of SU (4)

Dimension Dynkin label Dimension Dynkin label Dimension Dynkin label
1 {0, 0, 0} 20 {0, 1, 1} 36 {2,0, 1}

4 {1,0,0} 20 {1,1,0} 36 {1,0,2}
4 {0,0, 1} 20/ {0,2, 0} 45 {2,1,0}

6 {0, 1,0} 20" {0, 0, 3} 45 {0, 1,2}
10 {2,0,0} 20" {3,0,0} 50 {0, 3,0}
10 {0, 0,2} 35 {4,0,0} 56 {5,0,0}
15 {1,0,1} 35 {0, 0, 4} 56 {0, 0, 5}
SU(5)

Table 60 Dynkin labels corresponding to a few low dimensional representations of SU (5)

Dimension Dynkin label Dimension Dynkin label Dimension Dynkin label
1 {0, 0,0, 0} 45 {0,1,0, 1} 126 {0,1,0,2}
5 {1,0,0, 0} 45 {1,0,1,0} 126/ {5,0,0,0}
5 {0,0,0, 1} 50 {0,0,2,0} 126/ {0,0,0,5}
10 {0, 1,0, 0} 50 {0,2,0,0} 160 {3,0,0,1}
10 {0,0, 1,0} 70 {2,0,0,1} 160 {1,0,0,3}
15 {2,0,0,0} 70 {1,0,0,2} 175 {1,1,0,1}
15 {0,0,0,2} 70’ {0,0,0,4} 175 {1,0, 1,1}
24 {1,0,0, 1} 70 {4,0,0,0} 175’ {1,2,0,0}
35 {0, 0,0, 3} 75 {0,1, 1,0} 175 {0,0,2, 1}
35 {3,0,0,0} 105 {0,0, 1,2} 175” {0,3,0,0}
40 {0,0,1, 1} 105 {2,1,0,0} 175" {0, 0, 3, 0}
40 {1,1,0,0} 126 {2,0,1,0} 200 {2,0,0,2}
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