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Abstract The scalar tensor theory contains a coupling
function connecting the quantities in the Jordan and Einstein
frames, which is constrained to guarantee a transformation
rule between frames. We simulate the supernovae core col-
lapse with different choices of coupling functions defined
over the viable region of the parameter space and find that
a generic inverse-chirp feature of the gravitational waves in
the scalar tensor scenario.

1 Introduction

The searches for gravitational waves (GWs) by the kilometric-
size laser-interferometer systems, such as the Laser Inter-
ferometric Gravitational wave Observatory (LIGO) in US,
Virgo in Italy and the KAmioka GRAvitational Wave Detec-
tor (KAGRA) in Japan, have been initiated to test various
gravitational theories. Particularly, the gravity effects in the
strong-field regime can be verified through the observations,
where the underlying gravity theory may deviate from gen-
eral relativity (GR). In practice, several alternative theories
of gravity have been proposed. Among them, the scalar ten-
sor (ST) theory is the most natural extension to GR, in which
gravity can be mediated by a scalar field in addition to the
metric one. This additional field introduces the spontaneous
scalarization phenomenon within the gravitation field of neu-
tron stars [1], which is a non-perturbative deviation from GR.
In a recent work [2], it has been shown that one can observe
the presence of such phenomenon in the supernova core col-
lapse scenario as well.
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Furthermore, it has been proved by Damour and Esposito-
Farèse [1,3] that under the assumption that there exists a
transformation between Jordan and Einstein frames, a two-
parameter family of the ST theory is sufficient to parametrize
the most general post-Newtonian deviations from GR with
the nonperturbative strong-field effects. Many works have
also been done along this direction [2,4–9]. However, sev-
eral problems related to the assumption have been discussed
in the literature [10–16]. The transformation between two
frames includes a Weyl transformation of metric and a redef-
inition of the scalar field, dφ/dϕ. It has been demonstrated
in [15,16] that there is a criterion concerning the scalar field
redefinition, which leaves a constraint on the parameter space
of the coupling function α(ϕ, α0, β0) defined in the Einstein
frame [16]. In light of such criterion/constraint, it is prospec-
tive to further constrain the ST theory with the signals of
GWs. To capture the features of those signals, we consider
the stellar core collapse systems in the massive ST scenario.

In this work, we first express how the aforementioned cri-
terion manifests itself as a constraint on the parameter space.
We then numerically simulate the supernovae core collapse
in the viable region of the parameter space by using the code
in [2] to study the profile of the genuine strong-field effects.

The paper is organized as follows. In Sect. 2, we briefly
introduce the theoretical framework of the ST theory by con-
centrating on the constraint on the scalar field. The numerical
simulations of the supernovae core collapse are represented
in Sect. 3. Our conclusions are given in Sect. 4.

2 Scalar tensor theory

The ST theory can be formulated in both Jordan and Einstein
frames, which are conformally related. In the Jordan frame,
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the action takes the form

S =
∫

d4x

√−g

16πG

(
F(φ)R − ω(φ)

φ
gμν∂μφ∂νφ −U (φ)

)

+ Sm[ψm, gμν], (1)

where F(φ) and ω(φ) are the regular coupling functions of
the scalar fieldφ, and Sm corresponds to the action of ordinary
matter. It has been revealed since the original Brans–Dicke
paper appeared [17,18] that another formulation of the theory
is possible. Through a Weyl transformation

gμν = A(φ)2g�
μν, (2)

and a redefinition of the scalar field [16]

dϕ

dφ
:= ±

√
3(F,φ)2

4F2 + ω

2φF
, (3)

one can recast the theory into the so-called Einstein frame
with the action, given by

S =
∫

d4x

√−g�

16πG

(
R� − 2g�μν∂μϕ∂νϕ − 4V (ϕ)

)

+ Sm[ψm, A2g�
μν], (4)

where g�
μν is the transformed metric, A(φ) is the coupling

function defined by F = A−2, and V (ϕ) := A4U (φ)/4. As a
result, the field equations are the usual Einstein ones with the
scalar field as a source together with an equation of motion
of the scalar field, namely

R�
μν = 8πG

(
T �

μν − 1

2
T �g�

μν

)
+ 2∂μϕ∂νϕ + 2Vg�

μν, (5a)

��ϕ = −4πGα(ϕ)T � + dV

dϕ
, (5b)

where

α(ϕ) := d ln A

dϕ
= − 1

2F

dφ

dϕ

dF

dφ
, (6)

and T � := g�μνT �
μν with the stress energy tensor

T �
μν := −2√−g�

δSm
δg�μν

. (7)

In the mathematical viewpoint, having the scalar field ϕ

in the Einstein frame to be viable in the Jordan frame, one
should be able to represent ϕ as a function of φ. Subsequently,
the existence of φ(ϕ) indicates that [16]

dφ

dϕ
�= 0 or

dϕ

dφ
�= 0. (8)

Hence, the solution to the scalar equation in the Einstein
frame must satisfy (8). Otherwise, it is not a solution to the
scalar equation in the Jordan frame.

In this work, we adopt the conformal factor A(ϕ) as dis-
cussed in [1,5,6,19], given by

ln A = α0(ϕ − ϕ0) + 1

2
β0(ϕ − ϕ0)

2, (9)

where ϕ0 is the asymptotic value of ϕ at spatial infinity. The
constants α0 and β0 are defined as

α0 := α(ϕ0), (10a)

β0 := dα

dϕ
(ϕ0). (10b)

The coupling function in (9) leads to

α = α0 + β0(ϕ − ϕ0) (11)

and

ln F = −2α0(ϕ − ϕ0) − β0(ϕ − ϕ0)
2. (12)

By substituting (11) into (5b), one obtains the equation of
motion

��ϕ = −4πGα0T
� + m2

effϕ, (13)

where m2
eff is the square of the effective mass for ϕ, defined

by

m2
eff := −4πGβ0ϕT

� + dV

dϕ
. (14)

In [1,19], Damour and Esposito-Farèse described the dra-
matic deviation from GR for some specific values of the cou-
pling constants, dubbed as “spontaneous scalarization”. To
trigger this sudden behavior of the scalar field, β0 should be
smaller than a specific value, which is −4.35 for the static
neutron stars, while it would increase a bit but still negative
[20] for the rotating ones. In this study, we set that α0 > 0
and β0 < 0.

The non-vanishing property of (8) together with the def-
inition (6) implies that the parameter α can never be zero,
resulting in that there is a critical value for ϕ by (11), denoted
as ϕc [16], i.e.

ϕ �= ϕc := −α0

β0
. (15)

This shows that the solution space of the scalar field in the
Einstein frame is divided into two disconnected branches by
the value of ϕc with ϕ = ϕc to be a non-crossing line for the
scalar field in the Einstein frame.
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The metric in the Jordan frame is partially determined by
ϕ, which is a field in the Einstein frame. Technically speak-
ing, once one ensures that the signals from the simulation are
reversible to the Jordan frame, the measurable amplitude of
the scalar signal can be expressed as

hs = hB − hL , (16)

where

hB = 2α0ϕ (17)

and

hL =
(

ωcomp

ω

)2

hB, (18)

which are the breathing and longitudinal modes of GWs,
respectively [21]. The amplitude of the longitudinal mode
hL is proportional (up to a sign) to hB , and the coefficient
depends on the Compton length of the scalar field, ωcomp :=
meff/h̄, hence to the effective mass term of ϕ. As a result, hs
is clearly proportional to ϕ. We shall show that this amplitude
has an inverse-chirp evolution along with ϕ, which is the key
profile of the additional modes of GWs in the massive ST
theory. Practically, the GW signals from the stellar collapse in
the theory are monochromatic soon after the emission, which
are likely detectable with the ground-based GW detectors [2].

3 Numerical simulations

We follow the method used in [2]. The supernovae core col-
lapse is considered with the spherically symmetric metric of
the form

ds2 = −Fα2dt2 + FX2dr2 + rd
2, (19)

where all metric functions depend only on the coordinates
r and t . We take matter as a perfect fluid, whose energy-
momentum tensor in the Jordan frame can be expressed in
the spherical coordinate as

Tμν = ρHuμuν + pgμν, (20)

where ρ, p and uμ are the energy density, pressure and 4-
velocity of matters, respectively. The enthalpy is defined by

H = 1 + ε + p

ρ
, (21)

where ε is the internal energy. The quantities are connected
to those in the Einstein frame, labeled with the asterisk, via
the relations

ρ = A−4(ϕ)ρ�, (22a)

p = A−4(ϕ)p�, (22b)

uμ = A(ϕ)u�
μ. (22c)

The field equations are solved numerically by utilizing the
modification of the code introduced in [2], which is devel-
oped from GR1D [22]. In the simulation, the hybrid equa-
tion of state (EOS) is used to account for the stiffening of the
nuclear and model the response of the shocked material by
the forms of p = pc + pth and ε = εc + εth with the thermal
effects, where the cold parts of pressure and internal energy
are given as

pc = K1ρ
�1 , εc = K1

�1 − 1
ρ�1−1, as ρ ≤ ρnuc (23a)

pc = K2ρ
�2 , εc = K1

�2 − 1
ρ�2−1 + E3, as ρ > ρnuc,

(23b)

where ρnuc = 2 × 1014g/cm3 and K1 = 4.9345 × 1014 [cgs]
with K2 and E3 naturally followed by the continuity. An
additional relation to close up Eqs. (22) and (23) is given by

pth = (�th − 1)ρεth. (24)

Clearly, we have three parameters (�1, �2, �th), set to be
(1.3, 2.5, 1.35), to specify the EOS.

As a first study of the influence of the constraint in (8), we
will present the results for a specific progenitor of the super-
nova core collapse, which is coded as WH20 in [24], along
with the density of the atmosphere being 2 g/cm3 outside the
progenitor. Note that our methodology can be generalized to
all systems.

We consider the action

S =
∫

d4x

√−g�

16πG

(
R� − 2g�μν∂μϕ∂νϕ − 2m2ϕ2

)

+ Sm[ψm, A2g�
μν], (25)

where the coupling function A(ϕ) is given in (9). The effec-
tive mass can be obtained from (14)

m2
eff = −4πGβ0T

� + m2. (26)

If GWs are to be detectable inside the LIGO sensitivity win-
dow, the mass should be bounded above by 10−13 eV since
the low-frequency modes of GWs with ω < ωcomp will damp
out instead of radiating outward to infinity [23]. In addition,
the mass less than 10−15 eV would not be able to generate
the strong scalarization and satisfy binary pulsar constraints
[24,25] at the same time. Hence, we fix the mass to be 10−14

eV hereafter.
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Fig. 1 Waveforms of the scalar field, extracted at rex = 5 × 109 cm
away from the supernovae core, where the parameters are chosen in the
manner that they have the same critical value of ϕc = k = 0.05

In principle, one can define the coupling functions by fix-
ing α0 and β0 in (11) with ϕ0 = 0 [2,16] to carry out the
simulation. To illustrate our results, we use the set contain-
ing pairs (α0, β0) with a constant ratio of −k, namely

Sk = {
(α0, β0)

∣∣α0/β0 = −k
}
. (27)

It is clear that Sk is defined by a certain critical value. One
can view the solutions of the scalar field for (α0, β0) within
Sk as an one-parameter family curve by choosing β0 as the
parameter for the later analysis. In Fig. 1, we show that the
amplitudes of the GW signals at the distance of 5 × 109

cm away from the stellar core are too small by comparing
with the critical value k = 0.05, where ϕ = k = 0.05 is
a horizontal line far above the signals on the plot. One can
further notice that the signals for the cases with β0 = −2 and
−4 are obviously different from the others since they do not
or barely possess the second twist before reaching the peak
around 0.3 s. This will be explained next.

As introduced in [26], the amplitudes of the signals at
the wave zone of their propagations with different Compton
lengths of the scalar field have an approximate universal rela-
tion. If we ignore the source term of −4πGα0T � in (13), the
Compton length would be a function of β0, so that the signals
within the same window Sk have a homologous form. This
universality is broken due to the presence of −4πGα0T �,
which may be measured by the absolute value of the ratio
between the coefficients of the zeroth and first order terms in
O(ϕ) on the right hand side of (13), given by

δ := −4πGα0T �

−4πGβ0T � + m2 = −k

1 − (4πGβ0)−1γ
, (28)

where γ = m2/T �. Consequently, we have that δ ≈ −k =
−0.05 for S0.05 as the linear term dominates, and δ → 0−
otherwise. The behaviors of δ as a function of β0 with several
values of γ (γ = 1) are plotted on the left (right) panel
of Fig. 2. For the signals in Fig. 1, our simulation on the
right panel of Fig. 2 illustrates that there are deviations of
0.79–1.31% illustrates that there are deviations of when β0 =
−6,−8 and −10, whereas they are about twice even three
times as much as the cases with β0 = −2 and −4. From
Fig. 2, one can graphically see that the homologous form has
been distorted for the later two cases.

For S1×10−5 in Fig. 3, the amplitudes of the GW signals at
the same extraction distance are comparable to those at the
critical value ϕ = k = 1 × 10−5, and hence the constraint is
more stringent in this case. Any solution crossing the dashed
line ϕ = k will be ruled out. In the cases shown in Fig. 3, δ is
confined in 0.20−0.26% with respective to −k = −1×10−5,
which is small enough so that the shapes of the signals do
not deviate much.

From Figs. 1 and 3, one can observe that as β0 decreases,
the peaks of the curves increase accordingly until they touch
the non-crossing line. We can define the corresponding
parameter as the critical value of β0, denoted by βc. As a
result, there exists a value of βc such that the peak of ϕ reaches
the value of ϕc. Consequently, any case with |β0| > |βc| will
be forbidden due to its crossing with the line of ϕ = ϕc.

In Fig. 4, we select seven values of 1 × 10−5, 8 × 10−6,
7 × 10−6, 5 × 10−6, 2.5 × 10−6, 1 × 10−6, and 5 × 10−7

for k as the constraints on β0. The parameter space is split
into two pieces bounded by the solid curve, in which the
parameters in the left (yellow) region are ruled out. This is
to say, the Jordan and Einstein frames do not correspond to
each other in the shade area in Fig. 4. We note that the shade
area will change for the different initial data/progenitors as
well as EOS.

We now discuss the dependence of our results on the
hybrid EOS. The scalar field signal grows in the amplitude
during the collapsing phase, while the central mass density
increases. As the density gets beyond the nuclear density
ρnuc, the stellar core undergoes a short period of bounces.
After this phase, the scalar field in the inner core tends to be
a static profile, while the scalar radiation is generated out-
wards. During the process, �2 and �th in Eqs. (23) and (24)
related to the EOS only affect the wave signal during and
after the bounces, so that the influence of the EOS on the
scalar waves is mainly from �1. Explicitly, a larger �1 would
result in a more compact core at the moment of the bounce,
while the stronger scalar waves would be released accord-
ingly [24]. This leads to a larger shaded area because the
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Fig. 2 Behaviors of δ as a function of β0, where the left panel repre-
sents the cases in Fig. 1 with Sk=0.05 by fixing γ to be 0.1, 0.5, 1, 5 and
10, respectively, while the right panel is our simulation with γ = 1. For

both panels, the vertical dashed lines for β0 = −2,−4,−6,−8, and
−10 are the values for the signals in Fig. 1

Fig. 3 Legend is the same as Fig. 1, but with ϕc = k = 1 × 10−5,
where the scalar field labeled by β0 = −40 is ruled out by the argument
in the context

peak of the scalar field reaches the non-crossing line with a
smaller |β0|.

However, the inverse-chirp feature of the scalar radia-
tions remains unchanged as long as one considers the viable
parameter space.

Moreover, within the same parameter set of Sk , the ampli-
tude of the scalar field with a larger |β0| or α0 is bigger. The
contribution of the scalar field in the Einstein frame to the

Fig. 4 Constraints on the coupling parameters α0 and β0 in (11) with
ϕ0 = 0 and k = 1×10−5, 8×10−6, 7×10−6, 5×10−6, 2.5×10−6, 1×
10−6 and 5×10−7, respectively, where the shaded region of (β0, ln α0),
given by the critical values βc, marks the inviable parameters

gravitational waveform in the Jordan frame comes through
Eq. (5.6), given by [3]

2α0ϕημν, (29)

which implies that the scalar field ϕ affects more as α0

increases. However, to some extend, the solution will touch
the non-crossing line and this α0 puts the upper limit for the
detectability of the contribution of the scalar field in GWs.
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4 Conclusions

We have simulated the supernovae core collapse and found
the generic feature of scalar GWs in the ST scenario with
V = (1/2)mϕ2 in the Einstein frame, which has an inverse-
chirp behavior. We have shown that the ST theory should be
defined in the viable region for the parameter space in order
to have the signal to be recognized as GWs in the Jordan
frame.

In particular, to ensure that one can transform the fields
from the Jordan frame to Einstein one, and vice versa, there
is a constraint on the parameter space in the ST theory. For
the supernovae core collapse, we have illustrated the upper
bound on −β0 for each Sk in (27). Using the bounds for
the different sets of Sk , we have obtained the viable region
for the parameters in the particular ST theory. In this area
of the parameter space, we have carried out the numerical
simulations with several pairs of (α0, β0).

Even though the intrinsic amplitude of the scalar field
is insensitive to (α0, β0) [2], the measurable scalar signal
with the amplitude hs in terms of ϕ is closely related to
the Weyl transformation associated with the viable region of
these parameters. Furthermore, the constraint of the param-
eter would affect the contribution of the scalar mode in the
gravitational waveform of the tensor mode, which has been
shown in (29). Therefore, we have demonstrated that the
inverse-chirp profile of the GW signals is generic so that
it can be used as a probe to test the ST theory.
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