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Abstract The Alcubierre metric is a spacetime geometry
where a massive particle inside a spacetime distortion, called
warp bubble, is able to travel at velocities arbitrarily higher
than the velocity of light, a feature known as the warp drive.
This is a consequence of general relativity, which allows
for global superluminal velocities but restricts local speeds
to subluminal ones as required by special relativity. In this
work we solved the Einstein equations for the Alcubierre
warp drive spacetime geometry considering the dust mat-
ter distribution as source, since the Alcubierre metric was
not originally advanced as a solution of the Einstein equa-
tions, but as a spacetime geometry proposed without a source
gravity field. We found that all Einstein equations solutions
of this geometry containing pressureless dust lead to vacuum
solutions. We also concluded that these solutions connect the
Alcubierre metric to the Burgers equation, which describes
shock waves moving through an inviscid fluid. Our results
also indicated that these shock waves behave as plane waves.

1 Introduction

In general relativity it is possible for particles, in a global
sense, to travel with superluminal velocities whereas the light
speed limit is respected inside a local light cone. The Alcu-
bierre warp drive metric [1] satisfies this requirement by basi-
cally producing a spacetime distortion, called a warp bubble,
such that a particle would travel inside this bubble contract-
ing the spacetime in front of it and expanding the spacetime
behind it. In such a geometrical arrangement, the particle
travels globally with superluminal velocity whereas the warp
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bubble guarantees that locally the particle’s speed remains
subluminal. In its original formulation it was advanced that
this warp metric would imply the violation of energy condi-
tions, as well as reportedly requiring great amounts of nega-
tive energy density.

Following Alcubierre’s original work, several efforts were
made to understand the main caveats of the warp drive met-
ric. Ford and Roman [2] advanced some quantum inequal-
ities and concluded that large amounts of negative energy
would be required to transport particles with small masses
across small distances. Hence, these authors concluded that
prohibitive huge amounts of negative energy density would
be required to create a warp bubble. Using these quantum
inequalities, Pfenning and Ford [3] calculated the limits nec-
essary for the bubble parameters and energy values necessary
for the viability of the warp drive, concluding then that the
energy required for a warp bubble is ten orders of magnitude
greater than the total mass of the entire visible universe, also
negative.

Krasnikov [4] discussed the possibility of a massive par-
ticle making a round trip between two points in space faster
than a photon, by arguing that this is not possible when rea-
sonable assumptions for globally hyperbolic spacetimes are
made. He discussed in detail some specific spacetime topolo-
gies, assuming that, for some of them, they need tachyons for
superluminal travel to occur. He also conjectured the need
for a possible preparation of a specific spacetime with some
devices along the travel path that would be set up previously
to operate when they were needed for the superluminal travel
to be possible without tachyons. Such spacetime was named
a Krasnikov tube by Ref. [5].

Everett and Roman [5] generalized the metric proposed
by Krasnikov by hypothesizing a tube along the path of the
particle connecting Earth to a distant star. Inside the tube the
spacetime is flat, but the lightcones are opened in such a way
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that they allow for superluminal travel in one direction. One
of the problems mentioned in Ref. [5] is that even though
the Krasnikov tube does not involve closed timelike curves,
it is possible to construct a two way non-overlapping tube
system such that it would work as a time machine. They also
demonstrated that the Krasnikov tube needs great amounts of
negative energy density to function. These authors also used
the generalized Krasnikov tube metric to calculate an energy-
momentum tensor (EMT) which would be positive in some
specific regions. Further discussions of the metric proposed
by Everett and Roman [5] were made by Lobo and Crawford
[6,7], who discussed in detail the metric and EMT derived
from it, and addressed if it is possible there exists superlu-
minal travel without the weak energy condition violation.
The quantum inequalities, brought about from quantum field
theory in Ref. [5], were also discussed.

Further studies on this subject were made by the following
authors. van de Broeck [8] showed how a minor modifica-
tion of the Alcubierre geometry can reduce the total energy
required for the warp bubble to distort spacetime. He then
presented a modification of the original warp drive metric
where the total negative mass would be of the order of a few
solar masses. Natario [9] argued that both the expansion and
the contraction of space for the Alcubierre warp drive is a
matter of choice, and proposed a new version of the warp
drive theory with zero expansion, a choice of spherical coor-
dinates, and to use the x axis as the polar axis. Lobo and
Visser [10] argued that, for the Alcubierre warp drive and
its version proposed by Natario [9], the center of the bub-
ble must be massless. They introduced a linearized theory
for both approaches and found that even for low velocities
the negative energy stored in the warp fields must be just a
significant fraction of the particle’s mass at the center of the
warp bubble. White [11,12] described how a warp field inter-
ferometer could be implemented at the Advanced Propulsion
Physics Laboratory with the help of the original Alcubierre’s
ideas [1].

In this paper we investigate some of these issues. Since the
Alcubierre metric was not originally advanced as a solution
of the Einstein equations, but as an ad hoc proposal aimed
at allowing for superluminal global speeds for particles, our
aim here is to investigate if the dust energy–momentum ten-
sor, the simplest source matter distribution for the Einstein
equations, is able to create a superluminal warp field. We dis-
cuss in detail the dust matter distribution together with the
Alcubierre warp drive metric. For this matter source the solu-
tions of the Einstein equations require a zero matter density,
i.e., vacuum. Nevertheless, the resulting vacuum solutions
connect the warp drive metric to the Burgers equation and
inviscid fluid with shockwaves, in fact plane waves in the
vacuum.

The plan of the paper is as follows. Section 2 briefly
reviews the Alcubierre warp drive theory, and in Sect. 3 the

non-zero components of the Einstein tensor for the Alcu-
bierre warp drive are written and the energy conditions are
discussed. Section 4 presents the Einstein equations written
in terms of the dust EMT, analyzes the expressions obtained
for the warp drive metric and presents the results. Section 5
depicts our conclusions and final remarks. Appendix I con-
tains a brief description of the Burgers equation.

2 Warp drive geometry

This section reviews the main aspects of the Alcubierre warp
drive spacetime. The geometrical details of its shape func-
tion, which designs the form of the bubble, are presented,
and so are its energy conditions.

2.1 The Alcubierre warp drive spacetime

The warp drive geometry [1] is basically a spacetime based
propulsion system that, in theory, allows a mass particle to
travel with apparent velocities greater than the light speed by
means of a local spacetime distortion that embeds the particle.
The general metric for the warp drive 3 + 1 formalism [13]
is given by

ds2 = −dτ 2 = gμνdxμdxν,

= −
(
α2 − βiβ

i
)

dt2 + 2βi dxi dt + γi j dxi dx j ,

(2.1)

where dτ is the lapse of proper time, α is the lapse function,
β i is the spacelike shift vector and γi j is the spatial metric for
the hypersurfaces.1 The lapse function α and the shift vector
β i are functions to be determined, whereas γi j is a positive-
definite metric on each of the spacelike hypersurfaces, for
all values of time, a feature that makes the spacetime glob-
ally hyperbolic. The lapse of proper time dτ between two
adjacent hypersurfaces, measured by those observers moving
along the normal direction to the hypersurfaces, also known
as Eulerian observers, is described by the following expres-
sion:

dτ = α(t, xi )dt. (2.2)

Figure 1 illustrates the spacetime foliation with two spacelike
hypersurfaces �t and �t+dt separated by a timelike distance
α dt .

Now, considering the metric (2.1), Alcubierre [1] assumed
the following ad hoc particular choices for the parameters,

α = 1, (2.3)

1 From now on Greek indices will range from 0 to 3, whereas Latin
ones indicate the spacelike hypersurfaces and will range from 1 to 3.
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Fig. 1 Two adjacent spacelike hypersurfaces showing the definitions
of the lapse function α and the shift vector β i . It is clear that the shift
vector β represents how the spacelike coordinates change from one
hypersurface to another as the proper time elapses. For more details
about this 3 + 1 formalism the reader is refereed to Ref. [13, Chaps.
1-2] for a clear and concise explanation

β1 = −vs(t) f
[
rs(t)

]
, (2.4)

β2 = β3 = 0, (2.5)

γi j = δi j . (2.6)

Hence, Eq. (2.1) becomes what may be called the Alcubierre
warp drive metric. It may be written

ds2 = −
[
1 − vs(t)

2 f (rs)
2
]

dt2 − 2vs(t) f (rs) dx dt + dx2

+dy2 + dz2, (2.7)

where vs(t) is the velocity of the center of the bubble moving
along the curve xs(t). This is given by the following expres-
sion:

vs(t) = dxs(t)

dt
. (2.8)

The function f (rs), named by Alcubierre [1] as the warp
metric regulating function, describes the shape of the warp
bubble. The interior of the bubble is an inertial reference
frame and the observers within it suffer no proper accelera-
tion. A photon within the warp bubble would always move
faster than a mass particle, as it should according to special
relativity. The regulating function f (rs) is defined as follows:

f (rs) = tanh [σ(rs + R)] − tanh [σ(rs − R)]

2 tanh(σ R)
, (2.9)

being, therefore, determined by two arbitrary and positive
parameters, σ and R. The former is inversely related to the
thickness of the warp bubble, and the latter is proportional
to the bubble’s radius. The variable rs(t) is defined as the
distance from the center of the bubble [xs(t), 0, 0] to a generic
point (x, y, z) on the surface of the bubble, as the following
expression shows:

rs(t) =
√

[x − xs(t)]2 + y2 + z2. (2.10)

If one substitutes x = xs(t) in the warp drive metric in Eq.
(2.7) it is straightforward to show that a particle inside the
bubble moves on a geodesic (see Ref. [1]) regardless of the
value of vs(t). Hence, the geodesic x = xs(t) is physically
interpreted as the mass particle trajectory having no time
dilatation, as can be readily seen by the fact that dτ = αdt ,
and by the choice of α = 1.

The regulating function can be approximated by a step
function, because for distances where |rs(t)| < R then
f (rs) = 1, whereas for distances where |rs(t)| � R then
f (rs) → 0. Hence,

lim
σ→∞ f (rs) =

{
1, for rs ∈ [−R, R]
0, otherwise.

(2.11)

Note that when the regulating function is equal to zero, that is,
outside the warp bubble, according to Eq. (2.7) the spacetime
is flat.

2.2 Caveats and main points

Ref. [1] emphasized some fundamental concepts of special
and general relativity theories by arguing that the main the-
oretical point behind the warp drive concept is that general
relativity (GR) does not forbid superluminal velocities in a
global sense because spacetime is dynamic. In the 3 + 1 for-
malism the foliation of hyperspace with a time parameter is
a perfect tool to allow a clear interpretation of the results and
to prevent the use of closed causal curves. The warp drive
metric relies on the regulating function f (rs) to describe the
form of the warp bubble.

A simple thought experiment can be advanced in order to
demonstrate that it is possible for particles to make round trips
with superluminal velocity. A particle moving in a local light
cone can make a round trip between points A and B separated
by a distance D in a time less than 2D/c measured by an
observer that remains always at the place of departure by just
using contraction and expansion of spacetime. Alcubierre
also stated [1] that the warp drive is possible without the use
of non-trivial topologies, such as wormholes. The particle
trajectories are always a timelike curve, regardless of the
parameters used in the Alcubierre metric. The proper time
of distant observers in a flat region is equal to the coordinate
time. This implies that the particle suffers no time dilatation
as it moves on a geodesic.

One of the major issues that seemed to imply the unphys-
ical nature of superluminal velocities by means of the Alcu-
bierre geometry came from the initial perception that the
warp drive metric violates the three energy conditions:
weak, dominant and strong. By using Eulerian observers
and the warp drive metric the calculations showed that the
energy density becomes everywhere negative [1], a result
that implies the violation of both the weak and the domi-
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nant energy conditions. However, this result did not come
from the formal solutions of the Einstein equations, but by
finding the Einstein tensor for the warp drive metric and con-
tracting it to the 4-velocity. By applying the weak energy
condition Ref. [1] showed that the energy density must be
negative. In other words, similar to wormholes, superlumi-
nal speeds would require exotic matter. However, such a
requirement does not necessarily eliminate the possibility
of using a spacetime distortion mechanism for achieving a
warp drive propulsion system, that is, a hyper-fast interstellar
travel, because Ref. [1] claimed that although exotic matter
may be forbidden classically, quantum field theory permits
the existence of regions with negative energy densities, this
being the case of the Casimir effect [14].

Finally, spacetime topology means that the spacetime
described by the Alcubierre metric is globally hyperbolic. It
is then possible to construct a spacetime that contains closed
causal curves using an idea similar to the one used in Ref.
[1].

3 The Einstein tensor

As mentioned above, the Alcubierre metric was not proposed
as a solution of the Einstein field equations, but simply as a
metric whose properties are equivalent to a propulsion system
that drives a mass particle at superluminal global speeds by
“warping” the spacetime, that is, by generating warp speeds.
Hence, the question that may be posed is what kind of mat-
ter or field sources would be able to produce such spacetime
properties. To follow this analytical path one should couple
the Alcubierre metric to the Einstein field equations in order
to try to solve the resulting equations and draw some conclu-
sions.

3.1 Einstein tensor components

We shall start by adopting Alcubierre’s original notation of
β = −β1 = vs(t) f (rs) in Eq. (2.4), since the other shift vec-
tors are zero. The components of the Einstein tensor without
a cosmological constant for the warp drive metric (2.7) are
given by the expressions

G00 = −1

4
(1 + 3β2)

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

−β

(
∂2β

∂y2 + ∂2β

∂z2

)
, (3.1)

G01 = 3

4
β

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

+ 1

2

(
∂2β

∂y2 + ∂2β

∂z2

)
,

(3.2)

G02 = −1

2

∂2β

∂x∂y
− β

2

(
2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+ ∂2β

∂t∂y

)
,

(3.3)

G03 = −1

2

∂2β

∂x∂z
− β

2

(
2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
,

(3.4)

G11 = −3

4

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

, (3.5)

G12 = 1

2

(
2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+ ∂2β

∂t∂y

)
, (3.6)

G13 = 1

2

(
2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
, (3.7)

G23 = 1

2

∂β

∂z

∂β

∂y
, (3.8)

G22 = −
[

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
]

−1

4

[(
∂β

∂y

)2

−
(

∂β

∂z

)2
]

, (3.9)

G33 = −
[

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
]

+1

4

[(
∂β

∂y

)2

−
(

∂β

∂z

)2
]

. (3.10)

3.2 Energy conditions

The components for the Eulerian (normal) observers’ 4-
velocities are given by

uα = [1,−vs(t) f (rs), 0, 0] , uα = (−1, 0, 0, 0). (3.11)

Using, as below, these results in the Einstein equations,

Tαβu
αuβ = 1

8π
Gαβu

αuβ, (3.12)

allows us to obtain an expression concerning the energy con-
ditions. Considering Eq. (3.11) and that the only non-zero
terms of Eq. (3.12) are G00, G01 and G11, we obtain the
following expression:

Tαβ uαuβ = 1

8π

(
G00 − 2vs f G01 + v2

s f
2G11

)
. (3.13)

Substituting Eqs. (3.1), (3.2) and (3.5) into Eq. (3.13) the
result may be written

Tαβ uαuβ = − v2
s

32π

[(
∂ f

∂y

)2

+
(

∂ f

∂z

)2
]

. (3.14)

This expression can be physically interpreted as being a
matter–energy density as observed in the frame of Eulerian
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observers. Besides, since the bubble radius is given by

rs =
√

(x − xs)2 + y2 + z2, (3.15)

applying implicit partial derivative rules, Eq. (3.14) takes
then the form below,

Tαβu
αuβ = − v2

s

16π

y2 + z2

r2
s

(
∂ f

∂rs

)2

≤ 0. (3.16)

The expression above shows that the energy density can
only vanish or assume negative values, a result that Ref. [1]
assumed as being a necessary condition for exotic matter and
faster than light travel. In addition, Ref. [1] also emphasized
that this result violates the energy conditions because the
energy density becomes everywhere negative. There are four
energy conditions in general relativity [15] and, according to
Alcubierre, the warp drive metric violates both the weak and
the dominant ones.

Nevertheless, it must be noted that although Alcubierre
stated [1, Eq. 19] that the relation Tαβuαuβ must be every-
where negative, the weak, strong, null, and dominant energy
conditions can still be satisfied if this contraction is equal to
zero [15].

4 Dust content energy–momentum tensors

In this section we shall discuss matter content solutions of the
Einstein’s equations considering the dust EMT for the Alcu-
bierre metric. This is the simplest possible matter content that
can be studied as possible source for warp speeds. The dust
solution contains only matter–energy density and depends on
the 4-velocities of the observables Tαβ = μuαuβ . From now
on we shall assume the following form for the Einstein field
equations:

Gμν = 8πTμν. (4.1)

4.1 Dust warp metric solutions

The dust solution is an exact solution of the Einstein equa-
tions for fluids where gravity is produced by the mass density
of pressureless particles. It can be understood as a model for
a configuration of dust particles that move with gravity alone
and, hence, there is no other type of interaction among them.
This solution is used to model gravitational collapse, besides
use in in cosmology, since galaxies are considered the basic
building blocks of the universe whose main interaction is
due to the general geometrical background. One can further
envisage a possible interest in this solution if one considers
the galactic disks as being modeled by finite rotating disks
of dust.

The stress–energy tensor of a relativistic fluid with no
pressure can be written in the simple form

Tαβ = μ uαuβ, (4.2)

where μ is a scalar function that represents the matter density.
Considering Eq. (3.11), the stress–energy tensor yields

Tαβ =

⎛
⎜⎜⎝

μ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (4.3)

In order to solve the Einstein equations one has to use
the tensor components given in Eqs. (3.1) to (3.10) with the
dust EMT above. Substituting G11 = 8πT11 and G01 =
8πT01 from the Einstein equations into the componentG00 =
8πT00, the resulting expression may be written as follows:

T00 + 2βT01 + 1

3
(3β2 − 1)T11 = 0. (4.4)

Now, considering Eq. (4.3) in the equation above implies, in
a vanishing matter density,

μ = 0. (4.5)

This result implies that a warp bubble cannot be created
with a dust matter distribution as source. Nevertheless, the
other components of the Einstein equations lead to some
interesting features for the Alcubierre warp drive metric, as
we shall see below.

Since T23 = 0, the result below follows from the equation
G23 = 8πT23,

G23 = 1

2

∂β

∂z

∂β

∂y
= 0, (4.6)

which means that either ∂β/∂z, or ∂β/∂y, or both, vanish.
Let us now discuss both cases.

Case 1:
[
∂β

∂z
= 0

]
This means that the function β does

not depend on the coordinate z and the Einstein tensor
components G13, G03 and G23 are identically zero. Sub-
stituting ∂β/∂z = 0 into the component G11 = 8πT11,
and since T11 = 0, it follows immediately that

∂β

∂y
= 0, (4.7)

which means that the function β does not depend on the
y-coordinate either. From Eq. (4.3) it is straightforward
to verify that the components G22 = 8πT22, and G33 =
8πT33 are also zero. Therefore, the field equations are
reduced to

μ = 0, (4.8)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2

= 0. (4.9)
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Case 2:
[
∂β

∂y
= 0

]
This means that the function β does

not depend on the y-coordinate and, consequently, the
Einstein tensor components G12, G23 and G02 are iden-
tically zero. Since G11 = 8πT11, and T11 = 0, it follows
immediately that

∂β

∂z
= 0, (4.10)

which means that the function β does not depend on the
z-coordinate either. Hence, the set of field equations are
also reduced to the expressions (4.8) and (4.9). ��

The two cases above lead to the same results, so it does
not matter if ∂β/∂y = 0 or ∂β/∂z = 0. In addition, they both
lead to a vanishing matter density μ = 0 and, consequently,
the energy density found in Eqs. (3.14) and (3.16) must be
zero. This means that the energy conditions in Eqs. (3.16)
are immediately, and trivially, satisfied. One must mention
that such a trivial result is a consequence of the dust case
EMT in the Alcubierre warp drive metric leading back to a
vacuum solution, which needs not necessarily happen when
one considers more complex dust or energy content EMTs.

Nevertheless, one is still left with a single partial differ-
ential equation to solve, Eq. (4.9), which can be rewritten

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= 0, (4.11)

whose integration is straightforward if we remember that β =
β(t, x), yielding

∂β

∂t
+ 1

2

∂

∂x
(β2) = h(t), (4.12)

where h = h(t) is an arbitrary function of t , to be determined
by boundary conditions.

In its homogeneous form, that is, for h(t) = 0, Eq. (4.12)
becomes the conservative form of the inviscid Burgers equa-
tion (see Appendix I for details), a well-known equation
appearing in fluid models, such as gas dynamics and traffic
flows, as well as in hyperbolic equations and conservation
laws. It is a quasilinear hyperbolic equation and its current
density is the kinetic energy density. If one defines the flow
density as being given by J f = J f (β), which may be a
general function of β, and let it be given by the following
expression:

J f (β) = β2, (4.13)

Eq. (4.12) may be rewritten

∂β

∂t
+ 1

2

∂

∂x
J f = h(t). (4.14)

The phenomena arising from the Burgers equation are con-
servation laws and the formation of shock waves, that is, dis-

Table 1 Summary of results for the warp drive spacetime having dust
matter content

Case Consequence Results

(1)
∂β

∂z
= 0

∂β

∂y
= 0

μ = 0
β = β(t, x)
∂β

∂t
+ 1

2

∂

∂x
(β2) = h(t)

(2)
∂β

∂y
= 0

∂β

∂z
= 0

μ = 0
β = β(t, x)
∂β

∂t
+ 1

2

∂

∂x
(β2) = h(t)

continuities that appear after a finite time and then propagate
in a regular manner. The one dimensional conservation law
implicit in Eq. (4.14) can be seen if we note that equations
of the form

∂u

∂t
+ ∂

∂x
F(u) = 0 (4.15)

can be interpreted as a conservation law [16], where the func-
tion u = u(t, x) is to be determined with the initial condition

u(t = 0, x) = u0(x). (4.16)

The Burgers equation can describe rarefaction and expan-
sion waves. Hence, in the present context Eq. (4.14) can
depict a spacetime shock wave, in this case a plane wave.
It is worth noticing that Alcubierre built a warp drive bubble
in vacuum, so when we impose the dust solution to the EMT
and solve the Einstein equations for the warp drive metric
the matter density vanishes, recovering the vacuum, but also
showing that the warp bubble regulating function may obey
the inviscid Burgers equation in the particular case when the
function h(t) vanishes.

In the warp drive scenario, β = vs(t) f (rs) would be inter-
preted as a boost in the x-direction, which means that the warp
bubble obeying the more general Burgers equation (4.12) the
warp drive may then be understood as conservation of lin-
ear momentum in the x-direction when h(t) = constant.
Then ∂β/∂t may be interpreted as a force per unit mass,
i.e., the time derivative of momentum, and (1/2)∂(β2)/∂x
would be a potential, i.e., the divergence of the total energy
that is entirely kinetic. This would seem reasonable, since
the EMT for the dust solution implies no interaction among
particles, so the self-gravitating potential is neglected. Note
that both cases 1 and 2 above lead to the same results, being
then a consequence of the symmetric properties of both the
Einstein equations and the EMTs. Table 1 summarizes the
results obtained above.

4.2 The warp metric and shock waves

We have seen that the Burgers equation appeared here as a
vacuum solution of the warp drive metric when one con-
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siders this geometry in the Einstein equations with dust
matter source. In recap, the current density was given by
β = vs(t) f (rs), where vs is the bubble velocity, f (rs) is
the regulating function of the bubble shape and the inviscid
Burgers equation (4.15) represents a conservation law for
this current density. This result can be physically understood
as a conservation law. Analyzing each term of the Burgers
equation as in Eq. (4.12), the first term in the left hand side,
∂β/∂t , can be interpreted as a type of force per unit mass, i.e.,
the time derivative of momentum, since for the warp drive
β = vs(t) f (rs) and this function contains the bubble velocity
and shape in the x-direction. The second term on the left hand
side, 1

2 ∂(β2)/∂x , can be understood as the divergence of the
total energy, which is entirely kinetic. The right hand side is a
function h(t) of the time coordinate only, which can be deter-
mined by boundary conditions. When h(t) = 0 the inviscid
Burgers equation is recovered, which is a kind of conserva-
tion equation. Physically it can be understood considering
the warp metric in terms of the conservation of energy and
momentum in the direction of the wave propagation.

The dust solutions lead to zero matter density, and the
Burgers equation arose in this context as a regulating function
parameter. This result suggests that the necessary energy to
create the associate shock wave is purely geometrical. The
fact that the Burgers equation appeared as part of the solution
of the Einstein equations relative to the vacuum solution is
very interesting evidence that the warp drive metric can be
understood as spacetime motion equivalent to a shock wave
moving in a fluid.

As an analogy, shock waves are produced when, for exam-
ple, an aircraft traveling at high subsonic velocity produces
sound waves piling up due to the air surrounding the aircraft
traveling at local speed of sound, causing a kind of explosion.
This result may be considered intuitive for the perfect fluid,
but it is not clear if thisis the case for dust because, as seen
above, in this case it happens in vacuum.

4.3 Divergence for the Dust EMT

Calculating the divergence for the dust EMT, and requiring
that it should be null, one arrives at the following condition:

μ
∂β

∂x
= 0, (4.17)

which is immediately satisfied since the matter density van-
ishes for the dust EMT.

5 Conclusions

In this work we have analyzed the solutions of the Einstein
equations for the Alcubierre warp drive spacetime with the
choice of the dust energy–momentum tensor (EMT) as a pos-

sible source of global superluminal particle velocities, that
is, warp speeds. The Einstein equations are reduced to two
solutions that lead to the same results. The matter density
becomes equal to zero, β(t, x) becomes a function of the time
and x coordinates only and the Burgers equation appears as a
special case of the vacuum warp drive spacetime. The diver-
gence for the dust EMT is zero. In addition, all the energy
conditions are trivially satisfied.

Summing up, we showed that if one starts with dust only
EMT the Alcubierre type warp drive is not possible, since the
Einstein equations lead the solutions back to vacuum. A more
complex matter distribution source for the EMT than sim-
ple dust is possibly required for a warp drive bubble includ-
ing, perhaps, some eletromagnetic components in the EMT
or even including the cosmological constant in the Einstein
equations. These issues are the subject of ongoing research.

Regarding Eq. (4.12), two possibilities are worth consid-
ering. If h(t) = 0 the inviscid Burgers equation is recovered,
which is a type of conservation equation with discontinuities,
that is, shock waves, in the case studied here we have plane
waves. If h(t) were to be of the form

h(t) = ν
∂2β

∂x2 , (5.1)

then Eq. (4.12) becomes the viscous Burgers equation, valid
for a dissipative system, where ν is a diffusion coefficient. It
must also be mentioned that the Burgers equation is found
in other relativistic solutions, such as FLRW cosmology and
the Schwarzschild background [17–19]. Based on Eq. (5.1),
one might speculate that h(t) possibly acts as a source term
that generates the shock waves.
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Appendix I: The Burgers equation

The Burgers equation is a very famous nonlinear partial dif-
ferential equation due to its application in areas such as fluid
and gas dynamics, traffic flow, acoustics, shock waves, and so
forth. The equation was first discovered by Forsyth [20] and
later by Bateman [21]. However, the equation was named
after Burgers [22] because of his extensive work upon the
issue. The general form of the viscous Burgers equation in
one space dimension is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 , (I.1)

where u(x, t) is field dependent as regards both time t and the
x-coordinate, and ν = ν(u, x, t) is the diffusion coefficient.
In this form it is known from its use in modeling dissipative
systems. When the diffusion term is zero, ν = 0, the Burgers
equation assumes its inviscid form, which means that the
equation is free of the viscosity term,

∂u

∂t
+ u

∂u

∂x
= 0. (I.2)

This can also be rewritten in its conservative form:

∂u

∂t
+ 1

2

∂

∂x
(u2) = 0. (I.3)

The inviscid form of the Burgers equation can be classi-
fied as a quasilinear hyperbolic equation, used as a model for
a conservation equation. The solution of the inviscid Burg-
ers equation can be constructed by using the characteristics
method, namely, for an initial condition u(x, 0) = g(x), the
solution is given by a wave solution of the form u(x, t) =
g(x − ut). The interested reader will find in Ref. [16] a dis-
cussion about the explicit solution of the inviscid Burgers
equation.

The solution u(x, t) = g(x − ut) is written in such a way
that its characteristics do not intersect each other. Besides,
when they do intersect, the inviscid Burgers equation leads to
a shock wave framework, which is considered as a propaga-
tion of a perturbation. See Ref. [23] for more details on shock
wave theory in viscous fluids and how it relates to turbulence
theory.

When one thinks about waves in fluids, the shock waves
appear when the waves move faster than the local velocity
of sound in this very fluid. They can be characterized by an
abrupt modification of the pressure, temperature and density
of the medium. Shock wave velocity and energy dissipate
quickly as a function of the distance. Another interesting fea-
ture concerning shock waves is that they keep the energy, but
they increase the entropy of the system [16]. Consequently,
the decrease in energy for a shock wave can be transformed
into work in order to keep energy for the system.

In the warp drive scenario, when the dust EMT solution
was proposed, the current density of the Burgers equation

appeared as vs
2 f 2. Hence, it can be understood as the con-

servation of the kinetic energy field of the warp bubble.
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