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Abstract The full off-shell one loop renormalization for all
divergent amplitudes up to dimension 6 in the Abelian Higgs-
Kibble model, supplemented with a maximally power count-
ing violating higher-dimensional gauge-invariant derivative
interaction ∼ g φ†φ(Dμφ)†Dμφ, is presented. This allows
one to perform the complete renormalization of radiatively
generated dimension 6 operators in the model at hand. We
describe in details the technical tools required in order to dis-
entangle the contribution to ultraviolet divergences parame-
terized by (generalized) non-polynomial field redefinitions.
We also discuss how to extract the dependence of the β-
function coefficients on the non-renormalizable coupling g
in one loop approximation, as well as the cohomological
techniques (contractible pairs) required to efficiently separate
the mixing of contributions associated to different higher-
dimensional operators in a spontaneously broken effective
field theory.

1 Introduction

In this paper we continue the study of the off-shell renormal-
ization of the Abelian Higgs-Kibble model supplemented by
the maximally power counting violating dimension 6 oper-
ator φ†φ(Dμφ)†Dμφ. In particular, we will show here how
to evaluate the one-loop divergent coefficients associated to
all dimension 6 operators which are radiatively generated,
and without limiting ourselves to: (i) on-shell quantities that
are customarily assumed in the Standard Model Effective
Field Theories (SMEFT) literature, where the cancellations
between one-loop anomalous dimensions of dimension 6
operators were originally discovered [1–3]; and (ii) the lin-
earized approximation in the higher dimensional couplings.

a e-mail: binosi@ectstar.eu (corresponding author)
b e-mail: andrea.quadri@mi.infn.it

Consequently, we will be able to compute the Generalized
Field Redefinitions (GFRs) at one-loop order in closed form,
which will give ultimately access to the explicit evaluation
of the β-function of the higher dimensional couplings (and
not only the anomalous dimensions of the operators).

The purpose of the present paper is to achieve the off-
shell renormalization of the theory by imposing the Slavnov–
Taylor (ST) identity [4,5] order by order in the loop expan-
sion. The latter identity encodes at the quantum level the
classical BRST invariance [6–8] of the gauge-fixed classical
action and ensures the fulfillment order by order in the h̄-
expansion of physical unitarity [9–12] (i.e., the cancellation
of unphysical ghost modes).

The appropriate perturbative expansion for this program is
the loop expansion, since locality properties of quantum field
theory are intimately tied to the h̄-expansion by the so-called
Quantum Action Principle [13–16]: if, for a non-anomalous
model, the ST identity is fulfilled up to order n−1 in the loop
expansion, then the ST identity at order n can be fulfilled by
a suitable choice of local counter-terms.

Indeed, the procedure presented below provides a concrete
way on how the order n ST identity can be constructed for
spontaneously broken effective gauge theories. More specif-
ically, the X -formalism allows to deal in a simplified way
(in comparison with the ordinary treatment) with such local
counter-terms by making certain hidden relations between
them explicit.

To be sure, at fixed loop order, 1-PI amplitudes can fur-
ther be expanded in powers of the coupling constants. In the
present model, an infinite number of UV divergent ampli-
tudes with arbitrarily high powers of g/�, with g the dimen-
sion 6 coupling constant and � an energy scale much higher
than the electroweak scale v, is obtained already at one-loop
order via the resummation of certain insertions of suitably
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chosen external sources.1 Yet these infinite towers of counter-
terms are controlled by just one parameter, as we will explain.

The general aspects of the formalism needed to achieve
these results have been explained in details in Ref. [17], to
which we refer the reader for a thorough exposition of the
technical tools required within the Algebraic Renormaliza-
tion approach to the problem we use [18–31].

Instead, the present paper describes in a self-contained
way the procedure developed in Ref. [17] from an operational
point of view. In particular, we show how to disentangle the
contributions to ultraviolet (UV) divergences parametrized
by unphysical (generalized) non-polynomial field redefini-
tions from those associated to the renormalization of phys-
ical gauge-invariant operators in the evaluation of one-loop
β-functions.

To systematically compute the (one-loop) UV coefficients
in spontaneously broken effective field theories possessing
(dimension 6) derivative operators, it is convenient to first
renormalize an associated auxiliary model, the so-called X -
theory, which is obtained by describing the scalar physical
degree of freedom in terms of the gauge-invariant field coor-
dinate

vX2 ∼ φ†φ − v2

2
, (1.1)

v being the vacuum expectation value of the Higgs scalar φ.
Then, in the X -theory all higher dimensional operators in

the classical action are required to vanish at X2 = 0. Thus,
the operator

g

v�
φ†φ(Dμφ)†Dμφ (1.2)

will be expressed as g
�
X2(Dμφ)†Dμφ; going on-shell with

the field X2 and an additional Lagrange multiplier X1 enforc-
ing algebraically the constraint in Eq. (1.1), we get back the
original operator in Eq. (1.2).

The latter contains tri- and quadri-linear interaction ver-
tices of the type ∼ σ∂μσ∂μσ and ∼ σ 2∂μσ∂μσ , that give
rise to an infinite number of UV divergent amplitudes already
at one-loop order, as shown in Fig. 1. Hence, the problem
of the complete renormalization of the model might seem
practically intractable already in the one-loop approximation
(although it has been known since a long time that, in princi-
ple, UV divergences can indeed be subtracted in a symmetric
way order by order in the loop expansion, as proven in a sem-
inal paper by Weinberg and Gomis [32]). Nevertheless, there

1 For phenomenological applications the appropriate expansion is
indeed in powers of g/�; therefore, the one-loop radiative corrections
of order g2/�2 should be considered together with the dimension 8 tree-
level operators of the same order. However, since we are interested in
the one-loop radative corrections of dimension 6 operators, we neglect
dimension 8 operators.

Fig. 1 UV divergent one-loop diagrams with an infinite number of
external legs. Derivatives from the vertices σ∂μσ∂μσ and σ 2∂μσ∂μσ

act on the internal propagators

are relations between the UV divergent parts of the one-loop
amplitudes that significantly simplify the problem; but they
become transparent only after one uses as a dynamical vari-
able the gauge invariant combination X2 in Eq. (1.1). This is
the main virtue of the X -formalism. It happens because the
dependence of the vertex functional � on the field X2 can be
strongly restricted by a set of functional identities that involve
external sources with a better UV behaviour, thus reducing
the number of independent UV divergences [17,33,34].

In particular, two external sources are required in order to
formulate in a mathematically consistent way the X -theory
[17] when the operator (1.2) is added to the power-counting
renormalizable action: one is coupled to the constraint vX2−
φ†φ − v2

2 and is denoted by c̄∗; the second, called T1, is
required to close the algebra of operators, implementing the
X2-equation of motion at the quantum level.

The important point is that, unlike in the ordinary formal-
ism, in the X -theory all 1-PI amplitudes, with the exception
of those involving insertions of the T1 source, exhibit a mani-
fest weak power-counting [35]: only a finite number of diver-
gent amplitudes exist at each loop order (although increasing
with the loop number, as expected in a general effective field
theory setting). As for T1-dependent amplitudes, they can
be recovered by resumming the T1-insertions on the Green’s
functions at T1 = 0, which, sometimes, can be even done in
a closed form.

Once the renormalization of the X -theory is achieved, one
goes on-shell with the X1 and X2 fields, which amounts
to a suitable mapping of the sources c̄∗ and T1 onto oper-
ators depending on φ and its covariant derivatives. Then, one
can immediately read off the UV coefficients of the higher
dimensional gauge-invariant operators in the target theory, as
now everything is expressed in terms of the original φ field.
We hasten to emphasize that since we are working off-shell
the effects of generalized field redefinitions, that are present
already at one-loop order, and are not even polynomial for the
model at hand [17], need to be correctly accounted for. This
is automatically done through the cohomologically trivial
invariants of the X -theory. In fact, as we will show, the asso-
ciated coefficients are gauge-dependent (as we will explicitly
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check by evaluating all the coefficients both in Feynman and
Landau gauge), being instrumental in ensuring crucial can-
cellations leading to the gauge-independence of the coeffi-
cients associated to gauge-invariant operators. Notice in fact
that since the ensuing analysis is based on cohomological
results valid for anomaly-free gauge theories, the computa-
tional approach presented here can be readily extended to the
electroweak gauge group SU(2)×U (1) and, more generally,
to any non-anomalous non-Abelian gauge group.

The paper is organized as follows. Our notations and con-
ventions are described in Sect. 2. After providing in Sect. 3
a brief reminder on the structure of the mapping to the target
theory, we proceed to evaluate the coefficients of the cohomo-
logically trivial invariants relevant for dimension 6 operators
in Sect. 4. Section 5 is then devoted to the evaluation of the
coefficients of the three classes of gauge invariant operators
appearing in the theory: those only depending on the external
sources, those mixing external sources and fields and those
that only depend on the fields. We finally apply the mapping
to the target theory in Sect. 6.1 thereby computing the coef-
ficients of all the UV divergent operators up to dimension 6
in the original (target) theory. This allows us to construct
(Sect. 6.3) the full β functions of the theory. Our conclu-
sions and outlook are presented in Sect. 7. The paper ends
with two appendices: Appendix A contains the list of all the
independent invariants needed for renormalizing the theory,
while the relevant X -theory divergent one-loop amplitudes
up to dimension 6 are given in Appendix B.

2 Notations and setup

The tree-level vertex functional in the X -formalism can be
written as [17]

�(0) =
∫

d4x
[

− 1

4
FμνFμν + (Dμφ)†(Dμφ)

− M2 − m2

2
X2

2 − m2

2v2

(
φ†φ − v2

2

)2

− c̄(� + m2)c + 1

v
(X1 + X2)(� + m2)

×
(
φ†φ − v2

2
− vX2

)

+ g

�
X2(D

μφ)†(Dμφ) + T1(D
μφ)†(Dμφ)

+ ξ

2
b2 − b

(
∂A + ξevχ

)

+ ω̄
(
�ω + ξe2v(σ + v)ω

)

+ c̄∗(φ†φ − v2

2
− vX2

)

+ σ ∗(−eωχ) + χ∗eω(σ + v)
]
. (2.1)

The first line is the action of the Abelian Higgs-Kibble
model in the X -formalism. Besides the usual scalar field
φ ≡ 1√

2
(σ + v + iχ), with v its vacuum expectation value

(v.e.v.), one also adds a singlet field X2 that provides a gauge-
invariant parameterization of the physical scalar mode.

When going on-shell with the field X1, that plays the role
of a Lagrange multiplier, one recovers the constraint2 X2 ∼
1
v
(φ†φ − v2/2). Inserting the latter back into the first line of

Eq. (2.1), the m2-term cancels out and one is left with the
usual Higgs quartic potential with coefficient ∼ M2/2v2.

Hence, Green’s functions in the target theory have to be
m2-independent, a fact that provides a very strong check of
the computations, due to the ubiquitous presence of m2 both
in Feynman amplitudes and invariants.

We notice that in the limit v → 0 (unbroken phase) the X -
formalism is ill-defined, since in this limit the X1-equation
of motion yields

vX2 = φ†φ − v2

2
= 0 ⇒v→0 φ†φ = 0.

The X1,2-system comes together with a constraint BRST
symmetry, ensuring that the number of physical degrees of
freedom in the scalar sector remains unchanged in the X -
formalism w.r.t. the standard formulation relying only on the
field φ [33,36]. More precisely, the vertex functional (2.1) is
invariant under the following BRST symmetry:

sX1 = vc; sφ = sX2 = sc = 0;

sc̄ = φ†φ − v2

2
− vX2. (2.3)

The associated ghost and antighost fields c, c̄ are free. The
constraint BRST differential s anticommutes with the gauge
groupBRST symmetry of the classical action after the gauge-
fixing introduced in the fourth line of Eq. (2.1):

s Aμ = ∂μω; sω = 0; sω̄ = b;
sb = 0; sφ = ieωφ. (2.4)

Here ω (ω̄) is the U(1) ghost (antighost); the latter field
is paired into a BRST doublet with the Lagrange multiplier
field b, enforcing the Rξ gauge-fixing condition

Fξ = ∂A + ξevχ. (2.5)

2 Going on-shell with X1 yields the condition

(� + m2)
(
φ†φ − v2

2
− vX2

)
= 0 , (2.2)

so that the most general solution is X2 = 1
v

(
φ†φ − v2

2

)
+ η, η being a

scalar field of mass m. However in perturbation theory the correlators
of the mode η with any gauge-invariant operators vanish [34], so that
one can safely set η = 0.
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The two BRST symmetries can both be lifted to the corre-
sponding Slavnov-Taylor identities at the quantum level, pro-
vided one introduces the antifields, i.e., the external sources
coupled to the relevant BRST transformation that are non-
linear in the quantized fields. The antifield couplings are dis-
played in the last line of Eq. (2.1). Then the ST identity for
the constraint BRST symmetry is

SC(�) ≡
∫

d4x
[
vc

δ�

δX1
+ δ�

δc̄∗
δ�

δc̄

]

=
∫

d4x
[
vc

δ�

δX1
− (� + m2)c

δ�

δc̄∗
]

= 0, (2.6)

where in the latter equality we have used the fact that both
the ghost c and the antighost c̄ are free:

δ�

δc̄
= −(� + m2)c,

δ�

δc
= (� + m2)c̄. (2.7)

Hence Eq. (2.6) reduces to the X1-equation of motion

δ�

δX1
= 1

v
(� + m2)

δ�

δc̄∗ . (2.8)

Finally, the ST identity (equivalently the BV master equation)
associated to the gauge group BRST symmetry reads

S(�) =
∫

d4x
[
∂μω

δ�

δAμ

+ δ�

δσ ∗
δ�

δσ
+ δ�

δχ∗
δ�

δχ
+ b

δ�

δω̄

]

= 0. (2.9)

The third line of Eq. (2.1) contains the derivative dim.6
operator

X2(D
μφ)†Dμφ ∼

(
φ†φ − v2

2

)
(Dμφ)†Dμφ

together with the sourceT1 required to define the X2-equation
at the quantum level in the presence of such an additional non
power-counting renormalizable interaction:

δ�

δX2
= 1

v
(� + m2)

δ�

δc̄∗ + g

�

δ�

δT1

−(� + m2)X1 − (� + M2)X2 − vc̄∗. (2.10)

Notice that the terms in the third line of Eq. (2.1) respect
both BRST symmetries and thus they do not violate either
the X1-equation (2.8) or the ST identity (2.9).

The set of the functional identities holding in this theory
is completed by:

• The b-equation:

δ�(0)

δb
= ξb − ∂A − ξevχ; (2.11)

• The antighost equation:

δ�(0)

δω̄
= �ω + ξev

δ�(0)

δχ∗ . (2.12)

In what follows subscripts denote functional differentia-
tion w.r.t. fields and external sources. Moreover, if not other-
wise stated, amplitudes will be denoted as, e.g., �

(1)
χχ , mean-

ing

�(1)
χχ ≡ δ2�(1)

δχ(−p)δχ(p)

∣∣∣∣∣
p=0

. (2.13)

A bar denotes the UV divergent part of the corresponding
amplitude in the Laurent expansion around ε = 4 − D, with
D the space-time dimension. Dimensional regularization is
always implied, with amplitudes evaluated by means of the
packages FeynArts and FormCalc [37,38]. As already
remarked, all amplitudes will be evaluated in the Feynman
(ξ = 1, with ξ the gauge fixing parameter) and Landau
(ξ = 0) gauge; this will allow to explicitly check the gauge
cancellations in gauge invariant operators.

The UV divergent contributions to one-loop amplitudes
form a local functional (in the sense of formal power series)

aptly denoted by �
(1)

. In particular, �
(1)

belongs to the kernel
of S0 i.e.

S0(�
(1)

) = 0, (2.14)

where S0 is the linearized ST operator

S0(�
(1)

) =
∫

d4x
[
∂μω

δ�
(1)

δAμ

+ eω(σ + v)
δ�

(1)

δχ

− eωχ
δ�

(1)

δσ
+ b

δ�
(1)

δω̄

+ δ�(0)

δσ

δ�
(1)

δσ ∗ + δ�(0)

δχ

δ�
(1)

δχ∗
]

= s�
(1) +

∫
d4x

[δ�(0)

δσ

δ�
(1)

δσ ∗ + δ�(0)

δχ

δ�
(1)

δχ∗
]
,

(2.15)

which acts as the BRST differential s on the fields of the
theory while mapping the antifields into the classical equa-
tions of motion of their corresponding fields. Then, the nilpo-

tency of S0 ensures that �
(1)

is the sum of a gauge-invariant

functional I
(1)

and a cohomologically trivial contribution

S0(Y
(1)

):

�
(1) = I

(1)

gi + S0(Y
(1)

). (2.16)
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3 Mapping on the external sources

As a result of the previous Section, we only need to determine

the invariants contributing to I
(1)

gi and Y
(1)

that will induce
in the target theory operators of dimension less or equal to 6.

To that end we first need to consider how the mapping
affects the external sources c̄∗, T1.

The X1- and X2-equations (2.8) and (2.10) at loop order
n ≥ 1 for �(n) read

δ�(n)

δX1
= 1

v
(� + m2)

δ�(n)

δc̄∗ ;
δ�(n)

δX2
= 1

v
(� + m2)

δ�(n)

δc̄∗ + g

�

δ�(n)

δT1
, (3.1)

thus implying that the whole dependence on X1 and X2 can
only arise through the combinations

c̄∗ = c̄∗ + 1

v
(� + m2)(X1 + X2); T1 = T1 + g

�
X2.

(3.2)

In particular, Eq. (3.1) states that the 1-PI amplitudes involv-
ing at least one X1 or X2 external legs are uniquely fixed in
terms of amplitudes involving neither X1 or X2.

We now turn to the analysis of how the right-hand side
of Eq. (3.2) is transformed under the mapping. For that
purpose we need to impose the equations of motion for
X1,2. At the one-loop level, we can restrict to tree-level
equations of motion for these fields. As already discussed,
the X1-equation of motion enforces the constraint X2 =
1
v

(
φ†φ − v2

2

)
. Once one takes into account this constraint,

the X2-equation of motion in turn yields

(� + m2)(X1 + X2) = −(M2 − m2)X2

+ g

�
(Dμφ)†Dμφ − vc̄∗. (3.3)

By substituting the above expressions for X1,2 into the
replacement rules (3.2) we arrive at the sought-for mapping
transformation (at zero external sources):

c̄∗ → − (M2 − m2)

v2

(
φ†φ − v2

2

)
+ g

v�
(Dμφ)†Dμφ;

T1 → g

v�

(
φ†φ − v2

2

)
. (3.4)

Since the right-hand side of the above equation contains
operators of dimension at least 2, in order to obtain target
operators of up to dimension 6 it is clear that we need to
consider amplitudes with up to 3 external sources c̄∗ and
T1. Equivalently, we can assign dimension 2 to both c̄∗ and
T1 and use it in order to identify the mixed fields-external

sources invariants that will contribute to target operators of

up to dimension 6. For instance
∫

d4x c̄∗
(
φ†φ − v2

2

)
would

project onto

∫
d4x c̄∗(φ†φ − v2

2

)

→ − (M2 − m2)

v2

∫
d4x

(
φ†φ − v2

2

)2

+ g

v�

∫
d4x (Dμφ)†Dμφ

(
φ†φ − v2

2

)
, (3.5)

whereas
∫

d4x c̄∗
(
φ†φ − v2

2

)2
would give rise to

∫
d4x c̄∗(φ†φ − v2

2

)2

→ − (M2 − m2)

v2

∫
d4x

(
φ†φ − v2

2

)3
, (3.6)

where we have neglected the covariant kinetic term in the
first term of Eq. (3.4) since it would generate a dimension 8
operator.

Finally, the coefficients of the three possible types of

invariants contributing to the X -theory functional I
(1)

gi will
be indicated with λi (combinations of the field strength, its
derivatives and φ and its covariant derivatives of up to dimen-
sion 6), θi (combinations of external sources and fields) or ϑi

(combinations of external sources only). The complete list of
invariants is reported in Appendix A.

4 Cohomologically trivial invariants

Before addressing the evaluation of the coefficients of the
gauge invariants, it is necessary to fix the coefficients ρi of the

cohomologically trivial invariants contributing to S0(Y
(1)

).
Their knowledge is crucial in the renormalization procedure,
since these invariants will allow us to obtain in closed form
the generalized field redefinitions present in the original φ-
theory (once the mapping is applied).

Taking into account the bounds on the dimensions, this
requires to consider two invariants at T1 = 0, namely

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ];

ρ1 S0

∫
d4x (σ ∗σ + χ∗χ). (4.1)

123



807 Page 6 of 22 Eur. Phys. J. C (2020) 80 :807

4.1 Generalized field redefinitions

To begin with let us observe that Eq. (2.15) implies

ρ1 S0

∫
d4x (σ ∗σ + χ∗χ) ⊃ −evρ1

∫
d4x χ∗ω. (4.2)

Therefore, the coefficient ρ1 associated to this invariant is

controlled by the single amplitude �
(1)

χ∗ω. Indeed, Eq. (4.2)
demands that

evρ1 = −�
(1)

χ∗ω, (4.3)

or, using the result (B2a),

ρ1 = M2
A

8π2v2

1

ε
(1 − δξ0), (4.4)

with δξ0 = δ00 = 1 in the Landau gauge and δξ0 = δ10 = 0
in the Feynman gauge. Notice that this result implies that
there are no pure field redefinitions in Landau gauge, i.e., the
v.e.v. renormalizes in the same way as the fields, as we will
soon show.

Finally, repeated insertions of the source T1 resum to

ρ1S0

∫
d4x

1

1 + T1
(σ ∗σ + χ∗χ). (4.5)

A comment is in order here. In the standard formalism one
should consider the effect of the generalized field redefini-
tions in the target theory, which, as explained in Ref. [17], is
the one induced by Eq. (4.5). This implies that the fields σ

and χ undergo the transformation

σ → σ + ρ1

1 + g
�v

(
φ†φ − v2

2

)σ ;

χ → χ + ρ1

1 + g
�v

(
φ†φ − v2

2

)χ. (4.6)

This would be a rather involved task, which is however sim-
plified in the approach developed here, since all the combi-
natorics is automatically taken into account via the renormal-
ization of the X -theory, through the cohomologically trivial
invariant Eq. (4.5).

4.2 Tadpoles

The tadpoles �
(1)

σ , �
(1)

c̄∗ allow to fix the coefficients of three
invariants:

ρ0 S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ λ1

∫
d4x

(
φ†φ − v2

2

)
+ ϑ1

∫
d4x c̄∗

⊃
∫

d4x
[
(−m2vρ0 + vλ1)σ + (ρ0v

2 + ϑ1)c̄
∗] . (4.7)

Indeed, Eq. (4.7) gives rise to the equations

−m2vρ0 + vλ1 = �
(1)

σ ; (4.8a)

ρ0v
2 + ϑ1 = �

(1)

c̄∗ . (4.8b)

Direct inspection of the one-loop results (B1a) and (B1c)
shows that, in the Feynman gauge, it is consistent to set
ρ0|ξ=1 = 0, thus yielding the results

λ1|ξ=1 = 1

v
�

(1)

σ

∣∣∣
ξ=1

= 1

16π2v2

1

ε

[
m2(M2 + M2

A) + 2(M4 + 3M4
A)

]
,

(4.9a)

ϑ1|ξ=1 = �
(1)

c̄∗
∣∣∣
ξ=1

= −M2 + M2
A

16π2

1

ε
. (4.9b)

On the other hand, since λ1 must be gauge invariant,
Eq. (4.8a) implies

ρ0 = 1

m2v

(
vλ1 − �

(1)

σ

)
= M2

A

16v2π2

1

ε
δξ0, (4.10)

whereas Eq. (4.8b) furnishes a consistency condition that can
be easily checked. Notice in particular that Eq. (4.8b) shows
that ϑ1 is gauge independent (as it should) since the gauge

dependence in �
(1)

c̄∗ is cancelled by the one in ρ0. Finally,
using Eq. (4.10) and the gauge independence of ϑ1, Eq. (4.8b)
can be recast in the form

−m2

v

(
�

(1)

c̄∗
∣∣∣
ξ=0

− �
(1)

c̄∗
∣∣∣
ξ=1

)
= �

(1)

σ

∣∣∣
ξ=0

− �
(1)

σ

∣∣∣
ξ=1

.

(4.11)

Next, we need to consider the insertion of one and two
sources T1 on tadpole amplitudes. Starting from a single
insertion, the relevant projection equation becomes

ρ0T1S0

∫
d4x T1[σ ∗(σ + v) + χ∗χ ]

+ θ2

∫
d4x T1

(
φ†φ − v2

2

)
+ ϑ7

∫
d4x c̄∗T1

⊃
∫

d4x
[
(−m2vρ0T1 + vθ2)T1σ + (v2ρ0T1 + ϑ7)c̄

∗T1

]
.

(4.12)
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As before, one obtains two equations

−m2vρ0T1 + vθ2 = �
(1)

T1σ
, (4.13a)

v2ρ0T1 + ϑ7 = �
(1)

c̄∗T1
, (4.13b)

which is most easily solved in the Feynman gauge in
which ρ0T1

∣∣
ξ=1 = 0, and therefore, using the results (B2h)

and (B2f),

θ2|ξ=1 = 1

v
�

(1)

T1σ

∣∣∣
ξ=1

= − 1

8π2v2

[
m2(M2 + M2

A) + 2(M4 − 3M4
A)

]1

ε
,

(4.14a)

ϑ7|ξ=1 = �
(1)

c̄∗T1

∣∣∣
ξ=1

= (M2 + M2
A)

8π2

1

ε
. (4.14b)

Then, using the fact that θ2 is gauge invariant, Eq. (4.13a)
can be used to fix the coefficient ρ0T1 , obtaining

ρ0T1 = 1

m2v

(
vθ2 − �

(1)

T1σ

)
= − M2

A

8π2v2

1

ε
δξ0, (4.15)

which, once inserted in Eq. (4.13b) shows that ϑ7 is gauge
invariant, thus allowing to recast the condition (4.13b) in the
form

−m2

v

(
�

(1)

c̄∗T1

∣∣∣
ξ=0

− �
(1)

c̄∗T1

∣∣∣
ξ=1

)
= �

(1)

T1σ

∣∣∣
ξ=0

− �
(1)

T1σ

∣∣∣
ξ=1

,

(4.16)

in complete analogy with Eq. (4.11).
Finally, for the case of two T1-insertions, the relevant pro-

jection equation reads

ρ0T 2
1

∫
d4x T 2

1 S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ θ12

∫
d4x T 2

1

(
φ†φ − v2

2

)
+ ϑ11

2

∫
d4x c̄∗T 2

1

⊃
∫

d4x
[
(−m2vρ0T 2

1
+ vθ12)σT

2
1 + (v2ρ0T 2

1
+ ϑ11

2
)c̄∗T 2

1

]
,

(4.17)

giving rise to the conditions

2(−m2vρ0T 2
1

+ vθ12) = �
(1)

σT1T1
, (4.18a)

2v2ρ0T 2
1

+ ϑ11 = �
(1)

c̄∗T1T1
. (4.18b)

In the Feynman gauge ρ0T 2
1

∣∣∣
ξ=1

= 0, so that, using Eqs. (B3l)

and (B3b)

θ12|ξ=1 = 1

2v
�

(1)

σT1T1

∣∣∣
ξ=1

= 1

16π2v2

[
m2(3M2 + 2M2

A) + 6(M4 + M4
A)

]1

ε
,

(4.19a)

ϑ11|ξ=1 = �
(1)

c̄∗T1T1

∣∣∣
ξ=1

= −3M2 + 2M2
A

8π2

1

ε
. (4.19b)

Using then the gauge independence of θ12 we obtain,
from Eq. (4.18a)

ρ0T 2
1

= 1

2m2v

(
2vθ12 − �

(1)

σT1T1

)
= M2

A

8π2v2

1

ε
δξ0, (4.20)

which, once inserted in Eq. (4.18b) shows that ϑ11 is also
gauge invariant, so that the condition (4.18b) reads

− m2

v

(
�

(1)

c̄∗T1T1

∣∣∣
ξ=0

− �
(1)

c̄∗T1T1

∣∣∣
ξ=1

)

= �
(1)

σT1T1

∣∣∣
ξ=0

− �
(1)

σT1T1

∣∣∣
ξ=1

. (4.21)

We remark that resummation of the T1-insertions is not at
work for the tadpoles in the Landau gauge since the loop

with a massless Goldstone field in �
(1)

c̄∗ and �
(1)

σ happens to
be zero in dimensional regularization.

In the Landau gauge there is no pure field redefinition
since ρ1|ξ=0 = 0. On the other hand the invariant

ρ0 S0

∫
d4x [σ ∗(σ + v) + χ∗χ ], (4.22)

shows that in Landau gauge also the v.e.v. v renormalizes
in the same way as the field φ. This is a well-known fact in
spontaneously broken gauge theories [39].

5 The gauge invariant sector

Having fixed the relevant invariants in the cohomologically
trivial sector, we can now extract from the one-loop UV diver-
gent 1-PI amplitudes the contributions to the gauge invariants
up to dimension 6. In the X -theory this requires to consider
three classes of operators: (i) those only dependent on the
external sources; (ii) those mixing external sources and fields;
and (iii) those only dependent on the fields. These invariants
cannot depend on the gauge, as we will explicitly show.

Once the mapping in Eq. (3.4) is applied, these invariants
will contribute to the dimension 6 operators in the target the-
ory. The tadpole operators that mix with the cohomologically
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trivial sector have already been determined in the previous
Section.

5.1 The pure external sources sector

The invariants in the pure external sources sector are reported
in Eq. (A1),

5.1.1 Linear terms

ϑ1 has been already fixed in Eq. (4.8b). ϑ2 can be fixed by
looking at the T1-tadpole (B1b):

ϑ2 = �
(1)

T1
= − (M4 − 3M4

A)

16π2

1

ε
. (5.1)

Notice that there are no contributions from cohomologically
trivial invariants since there are no linear couplings for T1 at

tree-level. Consequently �
(1)

T1
is the same both in Landau and

in Feynman gauge.

5.1.2 Bilinears

ϑ3 is fixed by the 2-point c̄∗-amplitude Eq. (B2e):

ϑ3 = �
(1)

c̄∗c̄∗ = 1

8π2

1

ε
. (5.2)

Notice that �
(1)

c̄∗c̄∗ does not develop momentum-dependent
divergences and that it does not depend on the gauge.

This is clearly not the case for �
(1)

T1T1
as Eq. (B2g) shows;

we can then read off the coefficients of the different bilinear
invariants, obtaining

ϑ4 = �
(1)

T1T1
= 3

16π2 (M4 + M4
A)

1

ε
,

ϑ5 = − ∂�
(1)

T1T1

∂p2

∣∣∣∣∣∣
p=0

= 3

32π2 (M2 + M2
A)

1

ε
,

ϑ6 = ∂�
(1)

T1T1

∂p4

∣∣∣∣∣∣
p=0

= 1

32π2

1

ε
. (5.3)

We notice that ϑ6 has been included for completeness but
does not contribute to operators of dim. ≤ 6 in the target
theory, rather to dim.8 operators.

Finally, ϑ7 has been fixed in Eq. (4.14b), while the p2-

coefficient of the amplitude �
(1)

c̄∗T1
, see (B2f), is gauge inde-

pendent and implies

ϑ8 = − ∂�
(1)

T1c̄∗

∂p2

∣∣∣∣∣∣
p=0

= 1

16π2

1

ε
. (5.4)

5.1.3 Trilinears

While ϑ11 has been fixed in Eq. (4.19b), it turns out that
the remaining trilinears do not receive contributions from
cohomologically trivial invariants. In particular we find

ϑ9 = 0 (5.5)

since �
(1)
c̄∗c̄∗c̄∗ is UV finite, and, using the results (B3a)

and (B3c)

ϑ10 = �
(1)

c̄∗c̄∗T1
= − 1

4π2

1

ε
; ϑ12 = �

(1)

T1T1T1
= −3M4

4π2

1

ε
.

(5.6)

5.2 The mixed external sources-field sector

5.2.1 The θ1 and θ2 coefficients

The coefficients θ1 and θ2 can be fixed by evaluating the

three-point functions �
(1)

c̄∗χχ and �
(1)

T1χχ at zero momentum.
Since

ρ0 S0

∫
d4x

[
σ ∗(σ + v) + χ∗χ

]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ) + θ1

∫
d4x c̄∗(φ†φ − v2

2

)

⊃
∫

d4x
(
ρ0 + ρ1 + θ1

2

)
c̄∗χ2, (5.7)

one arrives at the relation

2ρ0 + 2ρ1 + θ1 = �
(1)

c̄∗χχ . (5.8)

Then, using Eqs. (4.4), (4.10) and (B3h), we immediately
obtain the result

θ1 = �
(1)

c̄∗χχ − 2(ρ0 + ρ1) = −m2 + M2 + M2
A

8π2v2

1

ε
, (5.9)

which, due to the compensation of the gauge parameter
dependence between the amplitude and the coefficients ρ0

and ρ1 turns out to be gauge independent, as it should. In a
similar fashion, considering the combination

ρ0T1S0

∫
d4x T1

[
σ ∗(σ + v) + χ∗χ

]

+ θ2

∫
d4x T1

(
φ†φ − v2

2

)

⊃
∫

d4x
(

− ρ0T1

m2

2
+ θ2

2

)
T1χ

2, (5.10)
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we get

−ρ0T1m
2 + θ2 = �

(1)

T1χχ , (5.11)

or, using the result (B3i)

θ2 = −m2(M2 + M2
A) + 2(M4 − 3M4

A)

8π2v2

1

ε
, (5.12)

and again one obtains the gauge independence of this param-
eter as a result of the cancellation of the gauge-dependence
between the 1-PI amplitude and the coefficient ρ0T1 .

The validity of these results can be checked against the
relations provided by 1-PI amplitudes involving one source
and one external σ -field. For example considering the c̄∗σ
case, we find

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

( ∫
d4x (σ ∗σ + χ∗χ)

)

+ θ1

∫
d4x c̄∗(φ†φ − v2

2

)

⊃
∫

d4x v
(

2ρ0 + ρ1 + θ1

)
c̄∗σ, (5.13)

yielding the relation

v(2ρ0 + ρ1 + θ1) = �
(1)

c̄∗σ , (5.14)

which can be checked directly using Eqs. (4.4), (4.10) and

(5.9). Notice that �
(1)

c̄∗σ is the same in Feynman and Landau
gauge, see Eq. (B2i); therfore, since θ1 is gauge independent,
so must be the combination 2ρ0+ρ1, as can be easily verified.

Considering the T1σ amplitudes, we find instead

ρ0T1S0

( ∫
d4x T1(σ

∗(σ + v) + χ∗χ)
)

+ θ2

∫
d4x T1

(
φ†φ − v2

2

)

⊃
∫

d4x
(

− vm2ρ0T1 + vθ2

)
T1σ. (5.15)

Thus we get

−vm2ρ0T1 + vθ2 = �
(1)

T1σ
, (5.16)

which can be immediately verified using the one-loop
result (B2h).

5.2.2 The θ3 and θ5 coefficients

In order to fix θ3 and θ5, we need the amplitude �
(1)

c̄∗χχ , which
can be decomposed in form factors according to

�
(1)

c̄∗χχ (p1, p2) = γ 0
c̄∗χχ + γ 1

c̄∗χχ (p2
1 + p2

2) + γ 2
c̄∗χχ (p1·p2).

(5.17)

We find

θ3

∫
d4x c̄∗(Dμφ)†Dμφ ⊃ θ3

∫
d4x

c̄∗

2
∂μχ∂μχ, (5.18a)

θ5

∫
d4x c̄∗[(D2φ)†φ + h.c.

]
⊃ θ5

∫
d4x c̄∗χ�χ, (5.18b)

which, using the result Eq. (B3h), implies the following iden-
tifications

θ3 = −γ 2
c̄∗χχ = − 1

16π2

g

v�

(
2 + gv

�

)1

ε
;

θ5 = −γ 1
c̄∗χχ = − 1

16π2

g

�v

1

ε
. (5.19)

Notice that both coefficients are the same in Landau and
Feynman gauge, as expected.

In this case a consistency check is provided by the three-

point function �
(1)

c̄∗AμAν
, since one has

θ3

∫
d4x c̄∗(Dμφ)†Dμφ + θ5

∫
d4x c̄∗[(D2φ)†φ + h.c.

]

⊃
∫

d4x
M2

A

2

(
θ3 − 2θ5

)
c̄∗A2, (5.20)

so that

M2
A(θ3 − 2θ5)gμν = �

(1)

c̄∗AμAν
(p1, p2)

∣∣∣
p1=p2=0

, (5.21)

as can be easily verified with the help of Eq. (B3e).

5.2.3 The θ4 and θ6 coefficients

In order to fix θ4 and θ6 we need the amplitude �
(1)

T1χχ , which
we decompose as before according to

�
(1)

T1χχ (p1, p2) = γ 0
T1χχ + γ 1

T1χχ (p2
1 + p2

2)

+ γ 2
T1χχ (p1·p2) + O(p4

i ), (5.22)

and the dots denote terms of order p4, which are not needed.
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There are two projections to be considered, namely
T1∂

μχ∂μχ and T1χ�χ , to which the cohomologically trivial
invariants can also contribute. To begin with, observe that

ρ1S0

∫
d4x

1

1 + T1
(σ ∗σ + χ∗χ)

= ρ1S0

∫
d4x (1 − T1 + · · · )(σ ∗σ + χ∗χ)

⊃ ρ1

∫
d4x

(
T1∂

μχ∂μχ + T1χ�χ
)
. (5.23)

On the other hand we have

ρ0S0

∫
d4x (σ ∗(σ + v) + χ∗χ)

+ ρ0T1S0

∫
d4x T1[σ ∗(σ + v) + χ∗χ ]

⊃
∫

d4x
[
ρ0T1∂

μχ∂μχ − ρ0T1T1χ�χ
]
. (5.24)

Therefore we obtain

ρ1 − ρ0T1 + θ4 = −γ 2
T1χχ ; 2(ρ1 + ρ0) + θ6 = −γ 1

T1χχ ,

(5.25)

from which, using Eq. (B3i), we finally get the values

θ4 = − 1

32π2v2

×
[
4m2 + M2

A

(
4 − 3

g2v2

�2

)
+ M2

(
4 + 3

g2v2

�2

)]1

ε
,

θ6 = − 1

16π2v2

[
m2 − M2

A + M2
(

1 + 2
gv

�

)]1

ε
. (5.26a)

Similarly to what we have done in the previous case, we
can check the results above using the three-point function

�
(1)

T1AμAν
. Indeed we have

θ4

∫
d4x T1(D

μφ)†Dμφ + θ6

∫
d4x T1

[
(D2φ)†φ + h.c.

]

+ ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ0T1S0

∫
d4x T1[σ ∗(σ + v) + χ∗χ ]

⊃
∫

d4x
M2

A

2
[θ4 − 2θ6 + 2(ρ0 + ρ0T1)]T1A

2, (5.27)

implying the consistency condition

M2
A

[
θ4 − 2θ6 + 2(ρ0 + ρ0T1)

]
gμν

= �
(1)

T1AμAν
(p1, p2)

∣∣∣
p1=p2=0

. (5.28)

the validity of which can be easily verified with the help
of Eq. (B3f).

5.2.4 The θ7 and θ8 coefficients

In this sector the relevant projections are

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ θ1

∫
d4x c̄∗(φ†φ − v2

2

)

+ θ7

∫
d4x c̄∗(φ†φ − v2

2

)2

⊃
∫

d4x
(
ρ0 + ρ1 + θ1

2
+ v2θ7

)
c̄∗σ 2, (5.29a)

ρ0T1S0

∫
d4x T1[σ ∗(σ + v) + χ∗χ ]

− ρ1S0

∫
d4x T1(σ

∗σ + χ∗χ)

+ θ2

∫
d4x T1

(
φ†φ − v2

2

)

+ θ8

∫
d4x T1

(
φ†φ − v2

2

)2

⊃
∫

d4x
(
m2ρ1 − 5

2
ρ0T1m

2 + θ2

2
+ v2θ8

)
T1σ

2,

(5.29b)

yielding the relations

2(ρ0 + ρ1) + θ1 + 2v2θ7 = �
(1)

c̄∗σσ ;
2m2ρ1 − 5ρ0T1m

2 + θ2 + 2v2θ8 = �
(1)

T1σσ , (5.30)

and, finally, the values

θ7 = 0;
θ8 = − 1

8π2v4

×
[
m4 + 2m2(M2 + M2

A) + 2(M4 − 3M4
A)

]1

ε
,

(5.31)

see Eqs. (B3j) and (B3m).

5.2.5 The θ9 and θ10 coefficients

The fact that the function �
(1)

c̄∗AμAν
turns out to be momentum

independent, see Eq. (B3e), implies immediately that

θ9 = 0. (5.32)
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Next, in order to extract the coefficient θ10 one needs first
to change the variables to the contractible pairs basis, as
explained in Ref. [17]. To this end, one replaces the deriva-
tives of the gauge field with a linear combination of the com-
plete symmetrization over the Lorentz indices and a contri-
bution depending on the field strength:

∂ν1...ν�
Aμ = ∂(ν1...ν�

Aμ) + �

� + 1
∂(ν1...ν�−1 Fν�)μ, (5.33)

where (. . . ) denote complete symmetrization. In the present
case it is therefore sufficient to consider the monomial
T1∂

μAν∂μAν since, due to Eq. (5.33)

T1∂
μAν∂μAν = T1∂

(μAν)∂(μAν) + T1

4
FμνFμν. (5.34)

Then, after we decompose the amplitude �
(1)

T1AμAν
accord-

ing to

�
(1)

T1AμAν
(p1, p2)

= [γ 0
T1AA − 2γ 1

T1AA(p1·p2) + γ 2
T1AA(p2

1 + p2
2)]gμν

+ γ 3
T1AA p

μ
1 pν

2 + γ 4
T1AA p

ν
1 p

μ
2 , (5.35)

Eq. (B3f) gives

θ10 = γ 1
T AA

4
= − M2

A

128π2

g2

v2�2

1

ε
. (5.36)

5.2.6 The θ11, θ12 and θ13 coefficients

The coefficient θ12 has been fixed already, see Eq. (4.19a);
on the other hand, θ11 is determined by the projection of

θ11

∫
d4x c̄∗T1

(
φ†φ − v2

2

)

− ρ1S0

∫
d4x T1(σ

∗σ + χ∗χ)

+ ρ0T1S0

∫
d4x T1[σ ∗(σ + v) + χ∗χ ]

⊃
∫

d4x
(
vθ11 − vρ1 + 2vρ0T1

)
c̄∗T1σ . (5.37)

yielding

θ11 = 1

v

(
�

(1)

c̄∗T1σ
+ vρ1 − 2vρ0T1

)

= 1

4π2v2 (m2 + M2 + M2
A)

1

ε
, (5.38)

where the one-loop result (B3d) has been used. Finally,

θ13

∫
d4x (c̄∗)2

(
φ†φ − v2

2

)
⊃

∫
d4x θ13vσ(c̄∗)2, (5.39)

which implies

θ13 = 1

2v
�

(1)

c̄∗c̄∗σ = 0, (5.40)

as this amplitude turns out to be UV finite.

5.3 The gauge-invariant field sector

The last sector we need to consider is finally the one of gauge
invariants containing only the fields.

5.3.1 The λ2 and λ3 coefficients

While the coefficient λ1 has been already fixed, see Eq. (4.7),
λ2 and λ3 can be determined by considering the two- and
three-point σ amplitudes. The relevant projection equation
are

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ1

∫
d4x

(
φ†φ − v2

2

)

+ λ2

∫
d4x

(
φ†φ − v2

2

)2

⊃
∫

d4x
(
v2λ2 + 1

2
λ1 − m2ρ1 − 5

2
m2ρ0

)
σ 2, (5.41a)

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ2

∫
d4x

(
φ†φ − v2

2

)2

+ λ3

∫
d4x

(
φ†φ − v2

2

)3

⊃
∫

d4x
(

2v3λ3 + 2vλ2 − 3m2

v
ρ1 − 4m2

v
ρ0

)
σ 3,

(5.41b)

yielding

2v2λ2 + λ1 − 2m2ρ1 − 5m2ρ0 = �
(1)

σσ , (5.42a)

6v3λ3 + 6vλ2 − 9m2

v
ρ1 − 12m2

v
ρ0 = �

(1)

σσσ . (5.42b)
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Eqs. (B2c) and (B3n) implies then the following results

λ2 = 1

16π2v4

[
m4 + 2m2(M2 + M2

A) + 2(M4 + 3M4
A)

]1

ε
,

λ3 = 0. (5.43a)

The values of these coefficients can be checked by looking

at the �
(1)

σχχ and �
(1)

σσχχ amplitudes, for which the projection
equation

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ2

∫
d4x

(
φ†φ − v2

2

)2

⊃
∫

d4x
(
vλ2 − 3m2

2v
ρ1 − 2m2

v
ρ0

)
σχ2

+
∫

d4x
(1

2
λ2 − m2

v2 ρ1 − m2

v2 ρ0

)
σ 2χ2, (5.44)

gives rise to the consistency conditions

2vλ2 − 3m2

v
ρ1 − 4m2

v
ρ0 = �

(1)

σχχ ,

2λ2 − 4m2

v2 ρ1 − 4m2

v2 ρ0 = �
(1)

σσχχ , (5.45)

which, using Eqs. (B3o) and (B4a), can be easily proven to
be fulfilled.

5.3.2 The λ4 and λ5 coefficients

These coefficients are fixed by the 2-point Goldstone ampli-
tude, which is controlled by the invariants

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ1

∫
d4x

(
φ†φ − v2

2

)

+ λ4

∫
d4x (Dμφ)†Dμφ

+ λ5

∫
d4x φ†[(D2)2 + DμDνDμDν + DμD2Dμ]φ

⊃
∫

d4x
[1

2

(
λ1 − m2ρ0

)
χ2

+
(
ρ0 + ρ1 + λ4

2

)
∂μχ∂μχ + 3

2
λ5χ�2χ

]
, (5.46)

which gives rise to the following projections

λ1 − m2ρ0 = �
(1)

χχ

∣∣∣
p2=0

;

2(ρ0 + ρ1) + λ4 = ∂�
(1)

χχ

∂p2

∣∣∣∣∣∣
p2=0

;

3λ5 = ∂�
(1)

χχ

∂(p2)2

∣∣∣∣∣∣
p2=0

. (5.47)

From the one-loop expression reported in (B2b), we then
obtain the gauge-independent coefficients

λ4 = − 1

32π2v2

×
[gv

�

(
4 − gv

�

)
M2 + M2

A

(
16 + 12

gv

�
+ 3

g2v2

�2

)]1

ε
,

(5.48a)

λ5 = g2

96π2�2

1

ε
. (5.48b)

5.3.3 The λ6 and λ7 coefficients

The relevant Green’s function for fixing these coefficients is
the four-point Goldstone amplitude since

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ2

∫
d4x

(
φ†φ − v2

2

)2

+ λ6

∫
d4x

(
φ†φ − v2

2

)(
φ†D2φ + (D2φ)†φ

)

+ λ7

∫
d4x

(
φ†φ − v2

2

)
(Dμφ)†Dμφ

⊃
∫

d4x
{[λ2

4
− (ρ0 + ρ1)

m2

2v2

]
χ4

+ λ6

2
χ3�χ + λ7

4
χ2∂μχ∂μχ

}
, (5.49)

yielding

6λ2 − 12m2

v2 (ρ0 + ρ1) − 3λ6

4∑
i=1

p2
i − λ7

∑
i< j

pi p j

= �
(1)

χχχχ (pi ). (5.50)

Notice that we keep the momentum dependence of the four
point χ amplitude on the right-hand side. A remark is in
order here. Before attempting to extract the coefficients of
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the momenta polynomia on the left-hand side of Eq. (5.50),
we need to take into account the fact that FeynArts and
FormCalc internally implement momentum conservation,
so the amplitude is only known on the hyperplane

∑
i pi = 0.

Hence we eliminate p4 in favor of the remaining momenta,
p4 = −∑3

i=1 pi , so that Eq. (5.50) becomes

6λ2 − 12m2

v2 (ρ0 + ρ1) − (6λ6 − λ7)
( 3∑

i=1

p2
i +

∑
i< j

pi p j

)

= �
(1)

χχχχ (p1, p2, p3). (5.51)

Then the condition

6λ2 − 12m2

v2 (ρ0 + ρ1) = �
(1)

χχχχ

∣∣∣
pi=0

, (5.52)

is easily verified, see Eq. (B4b). On the other hand, we notice

that the restriction of �
(1)

χ4 on the momentum conservation
hyperplane only fixes the combination 6λ6 − λ7, and an
additional amplitude needs to be considered to fix the two
coefficients separately.

To this end, let us consider the two point σ -amplitude, with
the following projection on the derivative-dependent sector

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ4

∫
d4x (Dμφ)†Dμφ

+ λ6

∫
d4x

(
φ†φ − v2

2

)(
φ†D2φ + (D2φ)†φ

)

⊃
∫

d4x
[(λ4

2
+ ρ0 + ρ1

)
∂μσ∂μσ + v2λ6σ�σ

]
,

(5.53)

leading to the condition

2v2λ6 − λ4 − 2(ρ0 + ρ1) = − ∂�
(1)

σσ

∂p2

∣∣∣∣∣
p2=0

. (5.54)

This gives then the result, see Eq. (B2c)

λ6 = 1

64π2v3

g

�

[
4m2 + (M2 − 3M2

A)
(

4 + gv

�

)]1

ε
,

(5.55)

which in combination with Eqs. (5.51) and (B4b) yields
finally

λ7 = 1

32π2v3

g

�

[
2m2

(
2 + gv

�

)

− M2
(

4 − 5
gv

�

)
− 3M2

A

(
12 + 5

gv

�

)]1

ε
. (5.56)

We can check this result against the projections on the mono-
mials σχ�χ, σ∂μχ∂μχ , namely (we use integration by
parts in the last line)

λ6

∫
d4x

(
φ†φ − v2

2

)(
φ†D2φ + (D2φ)†φ

)

+ λ7

∫
d4x

(
φ†φ − v2

2

)
(Dμφ)†Dμφ

⊃
∫

d4x
(
vλ6σχ�χ + vλ7

2
σ∂μχ∂μχ + λ6v

2
χ2�σ

)

=
∫

d4x
[
2vλ6σχ�χ +

(
vλ6 + vλ7

2

)
σ∂μχ∂μχ

]
.

(5.57)

After eliminating the σ -momentum in favour of the remain-
ing two by using momentum conservation, the resulting
amplitude can be expanded as

�
(1)

σχχ (p1, p2) = γσχχ + γ 1
σχχ (p2

1 + p2
2)

+ γ 2
σχχ p1·p2 + O(p4) (5.58)

Eq. (5.57) then implies the consistency conditions

2vλ6 + γ 1
σχχ = 0; 2vλ6 + vλ7 + γ 2

σχχ = 0, (5.59)

which can be easily verified using the result Eq. (B3o).

5.3.4 The λ8 and λ9 coefficients

These coefficients are controlled by the AA amplitude which
also provides a non-trivial example of the contractible pairs
technique. Indeed, the two-point function of the Goldstone
field fixes the coefficient λ5 via the projection on the mono-
mial

∫
d4x χ�2χ ; on the other hand, the λ5 invariant admits

also a non-trivial expansion in power of the gauge field,
precisely accounting for the non-transverse form factors of

�
(1)

AμAν .
To see this in detail, observe that the relevant invariants

are

ρ0S0

∫
d4x [σ ∗(σ + v) + χ∗χ ]

+ ρ1S0

∫
d4x (σ ∗σ + χ∗χ)

+ λ5

∫
d4x φ†[(D2)2 + DμDνDμDν + DμD2Dμ]φ

+ λ8

2

∫
d4x F2

μν + λ9

∫
d4x ∂μFμν∂ρF

ρν
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⊃
∫

d4x
[(

ρ0 + λ4

2

)
e2v2A2

− λ5

2
e2v2(2Aμ∂μ∂A + Aμ�Aμ)

+ λ8

2
(∂μAν − ∂ν Aμ)2

+ λ9(�Aμ − ∂μ(∂A))2
]

(5.60)

There are no contribution of order p4 in�
(1)

AμAμ , see Eq. (B2d),
so

λ9 = 0. (5.61)

The remaining terms give the projection equation

[
e2v2(2ρ0 + λ4) + (2λ8 + e2v2λ5)p

2
]
gμν

+ 2
(
e2v2λ5 − λ8

)
pμ pν = �

(1)

AμAν (p). (5.62)

Notice that in the right-hand side of the above equation we
keep the momentum dependence of the two point gauge
amplitude. From Eqs. (4.10), (5.48a), (5.48b) and (B2d), we
see that the above equation is verified with

λ8 = − M2
A

96π2v2

(
2 + 2

gv

�
+ g2v2

�2

)1

ε
, (5.63)

which implies that λ8 is gauge-independent, as it should.

5.3.5 The λ10 coefficient

This coefficient can be obtained in much the same way as
θ10, i.e., by the contractible pair method. Parameterize the

amplitude �
(1)

σ AμAν
according to

�
(1)

σ AμAν
(p1, p2)

= [γ 0
σ AA − 2γ 1

σ AA p1 · p2 + γ 2
σ AA(p2

1 + p2
2)]gμν

+ γ 3
σ AA p

μ
1 pν

2 + γ 4
σ AA p

ν
1 p

μ
2 , (5.64)

and extract λ10 through the form factor γ 1
σ AA:

λ10 =
∫

d4x F2
μν

(
φ†φ − v2

2

)

⊃ λ10

∫
d4x 2σ∂μAν∂μAν . (5.65)

We obtain, see Eq. (B3g),

λ10 = γ 1
σ AA

4v
= M2

A

128π2

g2

v2�2

(
− 4 + gv

�

)1

ε
. (5.66)

Notice in particular that the combination

λ10 + g

v�
θ10 = − M2

A

32π2

g2

�2v2

1

ε
, (5.67)

correctly reproduces the coefficient c(1)
O of [17].

6 Mapping

6.1 Renormalization coefficients

We are now in a position to evaluate the renormalization
coefficients of the operators of dimension less or equal to 6
in the target theory. For that purpose one simply needs to map
the invariants depending on the external sources by applying
the substitution rules (3.4) and collecting the contributions
to the operator one is interested in.

Notice that all the coefficients obtained must be gauge-
invariant (as a consequence of the gauge-invariance of the
θi , ϑi and λi coefficients); in addition they must not depend
onm2. The latter is a highly non-trivial check of the computa-
tions, due to the ubiquitous presence of m2 in the projections
as well as in the amplitudes.

In what follows, we list here the results for all possible
operators, reinstating the correct D-dimensional dependence
on the ’t Hooft mass μ.

• φ†φ − v2

2

λ̃1 = 1

v2

[
(M2 − m2)ϑ1 + gv

�
ϑ2 + v2λ1

]

= μ−ε

16π2v2

{
M4

(
3 − gv

�

)

+ M2
A

[
M2 + 3M2

A

(
2 + gv

�

)]}1

ε
. (6.1)

•
(
φ†φ − v2

2

)2

λ̃2 = (m2 − M2)2

2v4 ϑ3 + g2

2�2v2 ϑ4

+ g

�v3 (m2 − M2)ϑ7 + m2 − M2

v2 θ1

+ g

�v
θ2 + λ2

= μ−ε

32π2v4

×
{

4M2
AM

2
(

1 − gv

�

)

+ 3M4
A

(
4 + 8

gv

�
+ g2v2

�2

)

+ M4
(

10 − 12
gv

�
+ 3

g2v2

�2

)}1

ε
. (6.2)
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•
(
φ†φ − v2

2

)3

λ̃3 = (m2 − M2)3

6v6 ϑ9 + g(m2 − M2)2

2�v5
ϑ10

+ g2(m2 − M2)

2�2v4 ϑ11 + g3

6�3v3 ϑ12

+ m2 − M2

v2 θ7 + g

v�
θ8

+ g(m2 − M2)

�v3 θ11 + g2

�2v2 θ12

+ (m2 − M2)2

v4 θ13 + λ3

= − μ−ε

16π2v5

g

�

×
[
2M2M2

A

(
2 − gv

�

)
− 6M4

A

(
2 + gv

�

)

+ M4
(

10 − 9
gv

�
+ 2

g2v2

�2

)]1

ε
. (6.3)

• (Dμφ)†Dμφ

λ̃4 = g

�v
ϑ1 + λ4

= − μ−ε

32π2v2

×
[
M2 gv

�

(
6 − gv

�

)

+ M2
A

(
16 + 14

gv

�
+ 3

g2v2

�2

)]1

ε
. (6.4)

• φ†[(D2)2 + DμD2Dμ + DμDνDμDν]φ

λ̃5 ≡ λ5 = μ−ε

96π2

g2

�2

1

ε
. (6.5)

•
(
φ†φ − v2

2

)
(φ†D2φ + h.c.)

λ̃6 = g2

2�2v2 ϑ5 + g

�v3 (m2 − M2)ϑ8

+ m2 − M2

v2 θ5 + g

�v
θ6 + λ6

= − μ−ε

16π2v2

g2M2

�2

1

ε
. (6.6)

•
(
φ†φ − v2

2

)
(Dμφ)†Dμφ

λ̃7 = g(m2 − M2)

�v3 ϑ3 + g2

�2v2 (ϑ5 + ϑ7)

+ 2g

�v3 (m2 − M2)ϑ8 + g

�v
(θ1 + θ4)

+ m2 − M2

v2 θ3 + λ7

= − μ−ε

32π2v3

g

�

×
[
M2

(
16 − 14

gv

�
+ 3

g2v2

�2

)

+ M2
A

(
36 + 8

gv

�
− 3

g2v2

�2

)]1

ε
. (6.7)

• FμνFμν

λ̃8 ≡ λ8 = − μ−ε

96π2v2 M
2
A

(
2 + 2

gv

�
+ g2v2

�2

)1

ε
. (6.8)

• ∂μFμν∂
ρFρν

λ̃9 ≡ λ9 = 0. (6.9)

•
(
φ†φ − v2

2

)
F2

μν

λ̃10 = −M2 − m2

v2 θ9 + g

v�
θ10 + λ10

= − μ−ε

32π2

g2M2
A

�2v2

1

ε
. (6.10)

6.2 v/� expansion

In order to match our results with standard conventions used
in the EFT literature (see e.g. [40]), it is convenient to rescale
the coupling according to

g′ = g

v�
→ g′

�2 , (6.11)

with g′ dimensionless. This constitutes then the dimension 6
coupling in the target theory, namely one has

g′

�2

(
φ†φ − v2

2

)
(Dμφ)†Dμφ. (6.12)

Then, all the target theory coefficients in Eqs. (6.1)–(6.10)
are polynomials in the coupling constants e = MA

v
, λ =

M2

v2 , g′ as well as the ratio v2

�2 , as one would expect. The only

exception is the tadpole λ̃1, that still exhibits a v2-dependence
not suppressed by � but which is anyhow present already in
the power-counting renormalizable limit g′ → 0.

Moreover it should be noticed that not all the invariants
parameterized by the λ̃’s are on-shell independent. Therefore
the question arises of whether the same v/� behaviour holds
true once the on-shell reduction is carried out.

In Appendix A4 we provide the relevant linear combi-
nations of the invariants that are on-shell independent and
contain the minimum number of covariant derivatives. As
the coefficients of those linear combinations are analytical
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in v, e2 = M2
A/v2, λ = M2/v2, also the on-shell indepen-

dent projections can be expanded in powers of v/� and the
remaining coupling constants of the model.

As a final remark, it is instructive to compare these on-
shell invariants with those of the Warsaw basis [41]. This is
done in Appendix A5. In particular we notice that the change
of variables is still analytic in the coupling constants and v2.
However, since in the Warsaw basis the v.e.v. is unsubtracted,
the tower of invariants contributing to a given amplitude is
in general infinite. For instance, in the simplest case (the
tadpole) each invariant

(φ†φ)n =
[1

2
(σ + v)2 + χ2

]n ∼ v2n

2n
+ nv2n−1

2n−1 σ + · · ·
(6.13)

contributes to the 1-point σ -amplitude. This is not the case for
the choice of the contractible pairs basis, since by subtracting
the v.e.v. in the combination φ†φ − v2

2 , the linear system to
be solved is truncated and only a finite number of amplitudes
has to be evaluated in order to fix the invariant coefficients.

6.3 β-functions

It is now immediate to construct the β-functions of the theory.
Renormalization implies that the running of the coupling λ̃i
in the target theory is determined by the corresponding β-
function βi

βi = (4π)2 d

d log μ
λ̃i . (6.14)

Then, taking into accounts only terms proportional to the
beyond the SM coupling g we can write

βi ⊇ −(4π)2Ci , (6.15)

where the coefficients Ci are obtained from the correspond-
ing λ̃i dropping terms proportional to the power counting
renormalizable couplings and replacing g/� with λ̃7 as dic-
tated by Eqs. (2.1) and (A6).

In the linear approximation we finally obtain

βi ⊇ ci λ̃7, (6.16)

with

c1 = 1

v
(M4 − 3M4

A);

c2 = 2

v3 (3M4 + M2M2
A − 6M4

A),

c3 = 2

v5
(5M4 + 2M2M2

A − 6M4
A);

c4 = 1

v
(3M2 + 7M2

A),

c5 = 0; c6 = 0,

c7 = 2

v3 (4M2 + 9M2
A); c8 = 1

3v
M2

A,

c9 = 0; c10 = 0. (6.17)

7 Conclusions

We have presented the explicit evaluation of all the UV coeffi-
cients of dimension less or equal to 6 operators in an Abelian
spontaneously broken gauge theory supplemented with a
maximally power counting violating derivative interaction of
dimension 6. This has been possible by following the method-
ology put forward in a companion paper [17], in which one
constructs an auxiliary theory based on the X -formalism in
which a power-counting can be established (thus limiting the
number of divergent diagrams one has to consider at each
loop order) together with a mapping onto the original theory.

In particular, a separation of the gauge-dependent con-
tributions, associated to the cohomologically trivial invari-
ants, from the genuine physical renormalizations of gauge
invariant operators has been achieved, and we have explicitly
checked in two different gauges (Feynman and Landau) our
results in order to explicitly verify the gauge independence of
the coefficients of gauge invariant operators. In this respect
it should be clear the pivotal role played by the field redefini-
tions for the correct identification of the gauge dependent
coefficients of the cohomologically trivial invariants and,
consequently, of the coefficients of the gauge invariant opera-
tors. Purely gauge fixed on-shell calculations will completely
miss their contributions, running the risk of obtaining gauge
dependent results even in the case of ostensibly gauge invari-
ant quantities. As an example we have derived the complete
set of one-loop β-functions of the model which, after the field
renormalization is carried out, can be read immediately from
the renormalization coefficient of the corresponding opera-
tor.

The techniques presented here and in Ref. [17] are suit-
able to be generalized to: the inclusion of the complete set
of dimension 6 operators; the extension of higher orders in
the loop expansion; the extension of non-Abelian case, and,
in particular, to the Standard Model effective field theory in
which dimension 6 operators are added to the usual SU(2)
× U(1) action. This latter generalization would be especially
interesting, as it would allow to better understand the remark-
able cancellations and regularities discovered when evaluat-
ing the one-loop anomalous dimensions for this model, and
which have been linked to holomorphicity [42], and/or rem-
nants of embedding supersymmetry [3]. Work in this direc-
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tion is currently underway and we hope to report soon on this
and related issues.
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Appendix A: List of invariants

1. Pure external sources invariants

The invariants in this sector are

ϑ1

∫
d4x c̄∗; ϑ2

∫
d4x T1,

ϑ3

∫
d4x

1

2
(c̄∗)2; ϑ4

∫
d4x

1

2
T 2

1 ,

ϑ5

∫
d4x

1

2
T1�T1; ϑ6

∫
d4x

1

2
T1�2T1

ϑ7

∫
d4x c̄∗T1; ϑ8

∫
d4x c̄∗�T1,

ϑ9

∫
d4x

1

3! (c̄
∗)3; ϑ10

∫
d4x

1

2
(c̄∗)2T1,

ϑ11

∫
d4x

1

2
(c̄∗)T 2

1 ; ϑ12

∫
d4x

1

3!T
3
1 . (A1)

Notice that ϑ6 has been inserted for completeness but does
not contribute to dim. 6 operators in the target theory.

2. Mixed field-external sources invariants

The invariants in this sector are

θ1

∫
d4x c̄∗(φ†φ − v2

2

)
;

θ2

∫
d4x T1

(
φ†φ − v2

2

)
,

θ3

∫
d4x c̄∗(Dμφ)†Dμφ;

θ4

∫
d4x T1(D

μφ)†Dμφ,

θ5

∫
d4x c̄∗[(D2φ)†φ + h.c.

]
;

θ6

∫
d4x T1

[
(D2φ)†φ + h.c.

]
,

θ7

∫
d4x c̄∗(φ†φ − v2

2

)2;

θ8

∫
d4x T1

(
φ†φ − v2

2

)2
,

θ9

∫
d4x c̄∗F2

μν; θ10

∫
d4x T1F

2
μν,

θ11

∫
d4x c̄∗T1

(
φ†φ − v2

2

)
;

θ12

∫
d4x T 2

1

(
φ†φ − v2

2

)
,

θ13

∫
d4x (c̄∗)2

(
φ†φ − v2

2

)
. (A2)

Notice that the use of the contractible pair basis allows us to
re-express the (otherwise present) invariants

θ14

∫
d4x c̄∗�

(
φ†φ − v2

2

)
; θ15

∫
d4x T1�

(
φ†φ − v2

2

)
,

(A3)

in terms of the above, since one has

�
(
φ†φ − v2

2

)
= (D2φ)†φ + φ†(D2φ) + 2(Dμφ)†Dμφ,

(A4)

and therefore

θ14 = 2θ3 + θ5; θ15 = 2θ4 + θ6. (A5)

3. Gauge invariants depending only on the fields

The invariants in this sector are

λ1

∫
d4x

(
φ†φ − v2

2

)
;

λ2

∫
d4x

(
φ†φ − v2

2

)2
,

λ3

∫
d4x

(
φ†φ − v2

2

)3;

λ4

∫
d4x (Dμφ)†Dμφ,

λ5

∫
d4x φ†[(D2)2 + DμDνDμDν + DμD2Dμ]φ;

λ6

∫
d4x

(
φ†φ − v2

2

)(
φ†D2φ + (D2φ)†φ

)
,
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λ7

∫
d4x

(
φ†φ − v2

2

)
(Dμφ)†Dμφ;

λ8

2

∫
d4x F2

μν ,

λ9

∫
d4x ∂μFμν∂

ρFρν;

λ10

∫
d4x

(
φ†φ − v2

2

)
F2

μν. (A6)

These invariants are the only ones appearing also in the target
theory; in that case the associated coefficient will be indicated
as λ̃i (with i = 1, . . . , 10).

4. On-shell reduction

Let us denote by Ij the gauge invariant of coefficient λ̃ j and
by S the classical gauge-invariant action in the target theory,
namely

S =
∫

d4x

×
[

− 1

4
FμνFμν + (Dμφ)†(Dμφ)

− M2

2v2

(
φ†φ − v2

2

)2]
. (A7)

The Ij ’s are not all independent if one imposes the tree-level
equations of motion

δS

δφ† = −D2φ − M2

v2

(
φ†φ − v2

2

)
φ = 0 ,

δS

δφ
= −(D2φ)† − M2

v2

(
φ†φ − v2

2

)
φ† = 0 ,

δS

δAμ
= ∂νFνμ − ie[(Dμφ)†φ − φ†Dμφ] = 0 . (A8)

We use this freedom in order to select as an on-shell basis the
independent invariants with a minimum number of covariant
derivatives, which are: I1,I2,I3,I7,I8,I10.

Indeed, consider for instance I4; integrating by parts and
using the first of Eq. (A8) we get

I4 = −
∫

d4x φ†D2φ =
∫

d4x
M2

v2

(
φ†φ − v2

2

)
φ†φ

= M2

2
I1 + M2

v2 I2. (A9)

Next, let us consider

I5 =
∫

d4x φ†
[
(D2)2 + DμD2Dμ + DμDνDμDν

]
φ.

(A10)

The first term can be reduced by using again the first of
Eq. (A8) and integration by parts:

∫
d4x φ†(D2)2φ = M4

v4

∫
d4x

(
φ†φ − v2

2

)
φ†φ

= M4

2v2 I2 + M4

v4 I3. (A11)

The second term of Eq. (A10) reads instead

∫
d4x φ†DμD2Dμφ =

∫
d4x φ†DμDρDμDρφ

+
∫

d4x DμDρ[Dρ, Dμ]φ

=
∫

d4x φ†DμDρDμDρφ

− ie
∫

φ†DμDρFρμφ , (A12)

where in the last line we have used the relation

[Dμ, Dν] = −ieFμν . (A13)

By further anti-symmetrizing the last term of Eq. (A12) we
finally obtain

∫
d4x φ†DμD2Dμφ =

∫
d4x φ†DμDρDμDρφ

+ e2

2

∫
d4x F2

μνφ
†φ

=
∫

d4x φ†DμDρDμDρφ

+ e2v2

4
I8

+ e2

2
I10 . (A14)

The third term of Eq. (A10) can be finally treated in a similar
way:

∫
d4x φ†DμDρDμDρφ =

∫
d4x φ†(D2)2φ

+
∫

d4x φ†Dμ[Dρ, Dμ]Dρφ

=
∫

d4x (D2φ)†D2φ

− ie
∫

d4x Fμρ(Dμφ)†Dρφ .

(A15)
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The second term in the above Equation can be reduced by
using the equation of motion as follows:

− ie
∫

d4x Fμρ(Dμφ)†Dρφ

= − ie

2

∫
d4x Fμρ

[
(Dμφ)†Dρφ + (Dμφ)†Dρφ

]

= − ie

2

∫
d4x

[
− ∂μFμρφ†Dρφ − Fμρφ†DμDρφ

− ∂ρFμρ(Dμφ)†φ − Fμρ(DρDμφ)†φ
]

(A16)

where in the r.h.s. in the first line of the above equation we
have integrated by parts w.r.t. (Dμφ)† (respectively Dρφ) in
the first (respectively second) term.

By anti-symmetrizing the terms containing the field
strength and by using Eq. (A13) we eventually obtain

− ie
∫

d4x Fμρ(Dμφ)†Dρφ

=
∫

d4x
{ ie

2
∂μFμρ

[
φ†Dρφ − (Dρφ)†φ

]
+ e2

2
F2

μρφ†φ
}
.

(A17)

Use of the Aμ-equation of motion Eq. (A8) then yields

− ie
∫

d4x Fμρ(Dμφ)†Dρφ

= −e2

2

∫
d4x

{
2φ†φ(Dμφ)†Dμφ − (Dμφ)†φ (Dμφ)†φ

− φ†Dμφ φ†Dμφ
}

+ e2

2

∫
d4x F2

μρφ†φ. (A18)

By direct computation and after a certain number of integra-
tions by parts one can check that

∫
d4x

[
(Dμφ)†φ (Dμφ)†φ + φ†Dμφ φ†Dμφ

]

= −e2
∫

d4x

×
{

4φ†φ(Dμφ)†Dμφ + φ†φ
[
φ†D2φ + (D2φ)†φ

]}
.

(A19)

By plugging Eqs. (A19) and (A18) into (A15) we arrive at
the following result:

∫
d4x φ†DμDρDμDρφ

=
∫

d4x φ†(D2)2φ + e2v2M2

4
I1 + e2M2I2 + e2M2

v2 I3

− 3

2
e2v2I4 − 3e2I7 + e2v2

4
I8 + e2

2
I10. (A20)

Putting everything together we arrive at the on-shell reduc-
tion (recall that MA = ev):

I5 = − M2
AM

2I1 + M2

2

(3M2

v2 − 2M2
A

v2

)
I2

+ M2

v2

(3M2

v2 + 2M2
A

v2

)
I3

− 6M2
A

v2 I7 + 3

4
M2

AI8 + 3

2

M2
A

v2 I10 . (A21)

By using the φ, φ†-equations of motion I6 can be reduced
as

I6 = −M2I2 − 2M2

v2 I3 (A22)

while by using the Aμ-equation of motion and Eq. (A19) I9

can be expressed as

I9 = − M2
AM

2

2
I1 − 2M2

AM
2

v2 I2 − 2M2
AM

2

v4 I3

+ 3M2
AI4 + 6M2

A

v2 I7

=M2
AM

2I1 + M2
AM

2

v2 I2 − 2M2
AM

2

v4 I3 + 6M2
A

v2 I7 ,

(A23)

where in the second line we have eliminated I4 via Eq. (A9).
By direct inspection we see that the coefficients of the

linear combinations of the on-shell reduction are polynomials
in e2 = M2

A/v2, λ = M2/v2 and v2.

5. Comparison with the Warsaw basis

The Warsaw basis invariants [41] in the dimension 6 sector
of the Abelian theory are

WB,1 =
∫

d4x (φ†φ)3,

WB,2 =
∫

d4x φ†φ�φ†φ,

WB,3 =
∫

d4x (φ†Dμφ)†φ†Dμφ,

WB,4 =
∫

d4x φ†φF2
μν. (A24)
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These are not on-shell independent, since by using the
equation of motion for φ, φ† one gets the relation

WB,2 =
∫

d4x φ†φ�φ†φ

=
∫

d4x φ†φ
{
(D2φ)†φ + φ†(D2φ) + 2(Dμφ)†Dμφ

}

= −2M2

v2

∫
d4x (φ†φ)3 + M2

∫
d4x (φ†φ)2

+ 2
∫

d4x φ†φ(Dμφ)†Dμφ

= M2
∫

d4x (φ†φ)2 − 2M2

v2 WB,1 + 2WB,3

= −M2I2 − 2M2

v2 I3 + 2I7. (A25)

Then one can straightforwardly obtain the decomposition for
the WB, j j = 1, 3, 4 in terms of the I’s:

WB,1 = v6

8
+ 3

4
v4I1 + 3

2
v2I2 + I3,

WB,3 = M2v2

4
I1 + M2

2
I2 + I7,

WB,4 = v2

2
I8 + I10. (A26)

Notice the consistency condition

WB,2 = I6 + 2I7 (A27)

which holds true since on-shell

I6 + M2I2 + 2M2

v2 I3 = 0. (A28)

Appendix B: UV divergent ancestor amplitudes

1. Tadpoles

�
(1)

c̄∗ = −M2 + (1 − δξ0)M2
A

16π2

1

ε
, (B1a)

�
(1)

T1
= − (M4 − 3M4

A)

16π2

1

ε
, (B1b)

�
(1)

σ = 1

16π2v

×
[
m2M2 + (1 − δξ0)m

2M2
A + 2(M4 + 3M4

A)
]1

ε
.

(B1c)

2. Two-point functions

�
(1)

χ∗ω = eM2
A

8π2v

1

ε
(δξ0 − 1), (B2a)

�
(1)

χχ = 1

32π2v2

×
{

2m2(M2 + M2
A) + 4(M4 + 3M4

A)

− 1

16π2v2 M
2
A(m2 + 2p2)

δξ0

ε

−
[gv

�
M2

(
4 − gv

�

)

+ M2
A

(
8 + 12

gv

�
+ 3

g2v2

�2

)]
p2

+ g2v2

�2 p4
}1

ε
, (B2b)

�
(1)

σσ = 1

16π2v2

×
{

2m4 + m2(5M2 + M2
A) + 6(M4 + 3M4

A)

−
[
4M2

A + 2
gv

�
(m2 + 2M2)

]
p2

+ g2v2

�2 p4
}1

ε

− M2
A(m2 + 2p2)

16π2v2

δξ0

ε
, (B2c)

�
(1)

AμAν
= − M2

A

32π2v2

×
{
M2 gv

�

(
4 − gv

�

)

+ M2
A

[
4(4 − δξ0) + 12

gv

�
+ 3

g2v2

�2

+ 1

3

(
2 + gv

�

)2
p2

]}gμν

ε

+ M2
A

24π2v2

(
1 + gv

�
+ g2v2

�2

) pμ pν

ε
, (B2d)

�
(1)

c̄∗c̄∗ = 1

8π2

1

ε
; (B2e)

�
(1)

c̄∗T1
= 1

16π2

[
2M2 + 2M2

A(1 − δξ0) − p2
]1

ε
,

(B2f)

�
(1)

T1T1
(p2) = 1

32π2

×
[
6(M4 + M4

A) − 3(M2 + M2
A)p2 + p4

]1

ε
,

(B2g)

�
(1)

T1σ
(p2) = − 1

32π2v

×
{

4m2(M2 + M2
A) + 8(M4 − 3M4

A)

− 2
(
m2 + M2 − M2

A + 2M2 gv

�

)
p2
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+ gv

�
p4

}1

ε

+ δξ0

8π2v
M2

A(m2 − p2)
1

ε
, (B2h)

�
(1)

c̄∗σ (p2) = 1

16π2v

[
− 2(m2 + M2) + gv

�
p2

]1

ε
. (B2i)

3. Three-point functions

�
(1)

c̄∗c̄∗T1
= − 1

4π2

1

ε
, (B3a)

�
(1)

c̄∗T1T1

∣∣∣
p1=p2=0

= −3M2 + 2M2
A

8π2

1

ε
+ M2

A

4π2

δξ0

ε
, (B3b)

�
(1)

T1T1T1
= −3M4

4π2

1

ε
, (B3c)

�
(1)

c̄∗T1σ
= m2 + M2 + M2

A
2

4π2v

1

ε
− M2

A

8π2v

δξ0

ε
,

(B3d)

�
(1)

c̄∗AμAν
(p1, p2) = − M2

A

16π2

g2

�2 gμν

1

ε
, (B3e)

�
(1)

T1AμAν
(p1, p2) = M2

A

32π2v2

×
[gv

�

(
8 − 3

gv

�

)
M2

−
(

8 + 4δξ0 − 3
g2v2

�2

)
M2

A

+ 2

3

gv

�

(
1 + 2

gv

�

)
(p2

1 + p2
2)

+ 2
g2v2

�2 p1·p2

]
gμν

1

ε
,

− 1

96π2v

g

�
M2

A

(
2 + gv

�

)

(p1μ p1ν + p2μ p2ν)
1

ε

+ M2
A

16π2

g2

�2 p1μ p2ν, (B3f)

�
(1)

σ AμAν
(p1, p2) = − M2

A

16π2v3

×
[
3
(

4 + 8
gv

�
+ 3

g2v2

�2

)
M2

A

− g2v2

�2 m2 + gv

�

(
8 − 3

gv

�

)
M2

+ 1

6

gv

�

(
4 − 10

gv

�
+ 3

g2v2

�2

)

(p2
1 + p2

2) − g2v2

�2

(
4 − gv

�

)
p1·p2

]

gμν

1

ε

+ 1

48π2v2

g

�
M2

A

(
2 + 7

gv

�

)

× (p1μ p1ν + p2μ p2ν)
1

ε

+ M2
A

8π2v

g2

�2 p1μ p2ν

1

ε
, (B3g)

�
(1)

c̄∗χχ (p1, p2) =
[

− m2 + M2 − M2
A

8π2v2

− M2
A

8π2v2 δξ0 + 1

16π2

g

�v
(p2

1 + p2
2)

+ 1

16π2

g

�v

(
2 + gv

�

)
p1·p2

]1

ε
, (B3h)

�
(1)

T1χχ (p1, p2) =
{

− m2(M2 + M2
A) + 2(M4 − 3M4

A)

8π2v2

+ m2M2
A

8π2v2 δξ0

+ 1

32π2v2

×
[
4m2 + (M2 − M2

A)
(

4 + 3
g2v2

�2

)

+ 4M2
Aδξ0

]
p1·p2

+ 1

16π2v2[
m2 − 3M2

A + M2
(

1 + 2
gv

�

)]

s × (p2
1 + p2

2)
}1

ε
+ O(p4), (B3i)

�
(1)

c̄∗σσ

∣∣∣
p1=p2=0

= − 1

8π2v2 (m2 + M2 − M2
A)

1

ε

− M2
A

8π2v2

δξ0

ε
, (B3j)

�
(1)

T1σσ

∣∣∣
p1=p2=0

= − 1

8π2v2

(2m4 + 5m2M2 + 6M4 + 3m2M2
A − 18M4

A)
1

ε

+ 3m2M2
A

8π2v2

δξ0

ε
, (B3k)

�
(1)

σT1T1

∣∣∣
p1=p2=0

= 1

8π2v

×
[
m2(3M2 + 2(1 − δξ0)M

2
A) + 6(M4 + M4

A)
]1

ε
,

(B3l)

�
(1)

c̄∗c̄∗σ = 0, (B3m)

�
(1)

σσσ

∣∣∣
p1=p2=0

= 3

8π2v3

×
(
m4 + 2m2M2 + 2M4 − m2M2

A(1 − δξ0) + 6M4
A

)1

ε
,

(B3n)
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�
(1)

σχχ (p1, p2) = 1

8π2v3

×
(
m4 + 2m2M2 + 2M4 − m2M2

A(1 − δξ0) + 6M4
A

)1

ε

− 1

32π2v2

g

�

×
[
4m2 + (M2 − 3M2

A)
(

4 + gv

�

)]
(p2

1 + p2
2)

− 1

16π2v2

g

�

×
[
3
gv

�
M2 + m2

(
4 + gv

�

)
− 3M2

A

(
8 + 3gv

�

)]

× p1·p2
1

ε
. (B3o)

4. Four-point functions

�
(1)

σσχχ

∣∣∣
pi=0

= 1

8π2v4

×
(
m4 + 2m2M2 + 2M4 − 2m2M2

A(1 − δξ0) + 6M4
A

)1

ε
,

(B4a)

�
(1)

χχχχ (p1, p2, p3)

= 3

8π2v4

(
m4 + 2m2M2 + 2M4 − 2m2M2

A + 6M4
A

)1

ε

+ 3

4π2v4 (m2 − M2
A)M2

A
δξ0

ε
− 1

16π2v3

g

�

×
[
3M2

A
gv

�
+

(
8 − gv

�

)
M2 +

(
4 − gv

�

)
m2

]

×
( 3∑

i=1

p2
i +

∑
i< j

pi p j

)
+ O(p4

i ). (B4b)
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