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Abstract Small perturbative fields in a synchrotron influ-
ence both the spin and orbital motion of a stored beam. Their
effect on the beam polarization consists of two contributions,
a direct kick and an effect of the ring lattice due to orbit per-
turbation. Spin response function is an analytic technique to
account for both contributions. We develop such a technique
for the spin-transparent synchrotrons where the design spin
motion is degenerate. Several perspective applications are
illustrated or discussed. In particular, we consider the ques-
tions of the influence of lattice imperfections on the spin
dynamics and spin manipulation during an experiment. The
presented results are of a direct relevance to NICA (JINR),
RHIC (BNL), EIC (BNL) and other existing and future col-
liders when they arranged with polarization control in the
spin-transparent mode.

1 Introduction

The Spin-Transparent (ST) technique has been proposed as
an efficient, high flexibility method to control the beam polar-
ization, from acceleration to long term maintenance and spin
manipulation in real time of an experimental run of a collider
[1–5]. Attractiveness of the ST method is that it allows for
control of the polarization using small insertions of weak
magnetic fields (stationary or quasi-static), which can be
operated and varied as needed even in real time of an exper-
imental run.

The ST mode in colliders allows one to [1]:

– Control of the polarization by weak magnetic fields not
affecting the orbital dynamics,
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– Accelerate the beam without polarization loss,
– Maintain stable polarization during an experiment,
– Set any required polarization direction at any orbital loca-

tion in a collider,
– Change the polarization direction during an experiment,
– Monitor the polarization on-line during an experiment,
– Do frequent coherent spin flips of the beam to reduce

experiment’s systematic errors,
– Carry out ultra-high precision experiments.

Thus, the ST mode allows one to significantly expand the
capabilities of polarized beam experiments at the EIC in the
US [6], NICA in Russia [5], EicC in China [7], and other
future facilities.

The polarization dynamics in a ST synchrotron is based
on the following basic elements.

The degenerate spin dynamics design.Design spin motion
along the design orbit of a ST synchrotron is degenerate,
i.e., any spin direction at any orbit points repeats itself every
particle turn. The most natural example of a ST synchrotron
is a synchrotron shaped as a plane figure 8 where the spin
rotation about the vertical field in the first arc is compensated
by an opposite rotation in the second arc [3,8] (Fig. 1a). Other
example is a racetrack with two identical Siberian Snakes
installed in two opposite straights [4,5] (Fig. 1b). In both
examples, the spin tune ν is independent of energy and equals
zero.

Spin navigators. At a first glance, such a situation is not
constructive since particles are in the ν = 0 resonance. In
this case spin dynamics is highly sensitive to any small per-
turbative fields associated with lattice errors, focusing fields
and other. These fields determine an effective spin field of the
ST resonance ω: the particle spins precess about an uncon-
trolled direction ω/ω with a tune ω equal to the ST resonance
strength, i.e., the spin makes a full turn in 1/ω particle turns.
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Fig. 1 ST synchrotrons: a a figure-8 ring and b a racetrack with two
identical snakes. The blue arrows illustrate the spin dynamics along the
design orbit for longitudinal polarization at the interaction point (IP)

On the other hand, the indicated resonance sensitivity
actually makes it possible to realize a firm spin control and
preservation by inserting spin navigators (SN) – small coher-
ent spin rotators [9,10]. The SN effect on a group of spins is
characterized by the axis nN and angle 2πνN of the spin pre-
cession about the axis in one particle turn. The only general
requirement on an SN to provide the polarization stability is
that the induced spin tune must significantly exceed the ST
resonance strength:

νN � ω. (1)

Thank to the smallness of their fields, SNs can be widely
varied in both nN and νN , thus providing an effective and
flexible polarization control and preservation in all stages of a
polarized beam operation, from acceleration to maintenance
and manipulation in a storage ring.

Spin response function.An important aspect of a polarized
beam synchrotron design and practice is correct accounting
for effect of various sources of small perturbative resonance
or quasi-resonance fields. A particular source type can be
localized or distributed randomly or regularly over the design
orbit. Examples of elementary sources: field and alignment
errors of magnetic lattice elements, betatron and synchrotron
oscillations, SN fields, non-linearities of the magnetic lattice,
non-linear fields of the colliding beams, etc.

Each elementary field effects particle spin and trajectory
simultaneously; with further particle propagation through
magnetic lattice, the latter does effect spin in certain correla-
tion with the direct kick from the perturbative element. After
a large number of particle revolutions the resulting effect to

spin is represented by integral over elementary kicks in prod-
uct with a factor called the spin response function, kind of a
spin’s Green function of the lattice.

The spin response factor of the synchrotron lattice was
first analyzed and accounted in [12]. The term “spin response
function” has been introduced in [13]. The formalism was
later generalized for other synchrotrons including those with
snakes and strong betatron coupling [14,15]. The response
function was widely applied. For example, it was used to cal-
culate the resonance strengths and evaluate the beam–beam
effects for colliding electron-positron beams [13], to mini-
mize depolarization rate and increase stored polarization life-
times [16], to calculate the ion resonance strengths [17], to
explain the experimental data on the rf-resonance strengths
[18,19], to analyze the design parameters of a spin flipper
[20].

The response function was used in the above studies to
analyze rings where the design lattice defines a unique (dis-
tinct) stable spin direction (n-axis) [11]. Below we call such
a mode of spin motion a “Distinct Spin” (DS) mode. In this
mode, the spin tune is not an integer. The response functions
for DS synchrotrons are defined using a distinct n-axis and
allow for calculation of the spin field components transverse
to the n-axis only. Extension of the response function for-
malism to the ST case is the subject of this paper.

2 Spin dynamics in the ST mode

2.1 Orbital motion in the accelerator reference frame

The particle orbital motion is described using a design orbit
specified by a 3D vector r0(z) in the Cartesian lab frame
where z is the path length along the design orbit. The lon-
gitudinal unit vector ez(z) = dr0/dz is directed along the
tangential vector and is a continuous function of the length
z. In the general case, the design orbit itself can deviate from
the plane and have crossing points. The binormal K(z) of
such a design orbit defined as a vector perpendicular to the
local orbital plane is given by:

K(z) = ez × dez
dz

≡ ez × e ′
z, (2)

which has no longitudinal component: K · ez = 0. For a
design orbit, the longitudinal unit vector is a periodic function
and satisfies the equation

dez
dz

= K(z) × ez, ez(z) = ez(z + L), (3)

where L is the design orbit length.
The unit vectors transverse to ez can be selected arbitrarily.

For a design orbit consisting of only straights and arcs, one
can define the transverse unit vectors from the solutions of
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the same equation that the longitudinal unit vector satisfies
[21]:

dex
dz

= K(z) × ex ,
dey
dz

= K(z) × ey, (4)

which are continuous and periodic as the longitudinal unit
vector ez . The particle’s position vector r near the design
orbit can be written as:

r(x, y, z) = r0(z) + x ex (z) + y ey(z), (5)

where x and y are particle’s transverse coordinates.
The introduced accelerator reference frame allows one to

consider not only flat design orbits with only vertical compo-
nent of vector K (Kx = 0) but non-planar orbits (Kx �= 0)

as well. This is important for designing ST colliders whose
orbits may come out of plane, for example, in snakes and in
sections where the two beams are brought into collision.

Linearized equations for the transverse deviations x and
y can be obtained from the Hamiltonian H(x, Px , y, Py, z)

H = ΔHx y − ΔHyx − x2

2

∂(gHy)

∂x
+ y2

2

∂(gHx )

∂y

+ xy

2

(
∂(gHx )

∂x
− ∂(gHy)

∂y

)

+1

2

(
Px − Hz

2
y

)2

+ 1

2

(
Py + Hz

2
x

)2

(6)

whose canonically conjugate variables are the generalized
coordinates u = (x, y) and momentum P = (Px , Py), while
the coordinate z plays the role of time, g = 1 + Kx y − Kyx ,
H = (Hx , Hy) and Hz are the normalized transverse and
longitudinal magnetic fields in units of the magnetic rigidity.
The fields and its derivatives are taken on the design orbit
while changes in the normalized field ΔH = (ΔHx ,ΔHy)

ΔHx = Hx − Kx , ΔHy = Hy − Ky (7)

account for the fields on the design orbit related to momentum
deviation and imperfections in construction and alignment of
the magnetic elements.

The equations of motion in the canonical form are

du
dz

= ∂H
∂P

= P + Hz

2
ez × u,

dP
dz

= −∂H
∂u

=
[(

u · ∂

∂u

)
H − 1

2

(
∂

∂u
· H

)
u
]

× ez

+Hz

2

(
ez × P − Hz

2
u
)

+ ΔH × ez . (8)

2.2 Thomas-BMT equation in the accelerator reference
frame

The spin motion is described by the Thomas-BMT equation
[22,23]. After switching from the time t to the coordinate
z similarly to how it is done when describing the transvers

coordinates of the orbital motion, the Thomas-BMT equation
in the accelerator reference frame takes the form:

dS
dz

= W × S, W = W0 + w. (9)

Here W is a spin angular rate. When moving on the design
orbit, the spin angular rate is

W0 = γGK + (1 + G)Hzez, W0(z) = W0(z + L).(10)

When deviating from the design orbit, the spin perturbation
w = W − W0 in the linear approximation becomes:

w = (1 + γG) ez × d2u
dz2 + (1 + G)Hz

du
dz

+ez

(
(1 + G)

d

dz
(Ku) − (1 + γG)K

du
dz

)
. (11)

Here we assume that design dipoles and solenoids are
installed in different places: Hz(z) · K(z) = 0.

2.3 Spin perturbations in the ST mode

In addition to the “accelerator reference frame” connected to
the design orbit and allowing one to describe small orbital
deviations from it, we introduce a “spin reference frame”
connected to the spin dynamics when the particles travel on
the design orbit. The spin motion looks simplest in the spin
frame: the particle spins remain fixed (the spin components
along the spin unit vectors are constant) on the design orbit in
case of a perfect ring and experience small deviations from
the design spin motion in the presence of sufficiently small
perturbing fields. According to the linear approximation for
the spin, here and below we assume that the spin deviation
due to these perturbing fields remains small |ΔS(z)| � 1
everywhere in the ring during one turn of a particle. The fields
can be considered small if the following sufficient condi-
tions are satisfied |γG(du/dz)| � 1 and |γG(Δγ/γ )| � 1.
However, at very high energies, when special measures are
taken to prevent depolarization such as Siberian snakes, these
conditions are modified to significantly weaker ones.

In the ST mode, one can introduce three periodic spin unit
vectors si (z) = si (z + L) on the design orbit, which satisfy
the Thomas-BMT equation:

dsi
dz

= W0 × si . (12)

The choice of the reference frame origin and initial ori-
entations of the spin unit vectors is arbitrary. One can make
this selection from the point of view of experimental conve-
nience. For example, one can select the detector (injection
point, polarimeter, interaction point, etc.) as the frame ori-
gin and align the spin unit vectors at that location with the
accelerator ones. Even though the spin unit vectors are dif-
ferent from the accelerator ones at any other point of the
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design orbit, at the detector, the polarization components in
the accelerator frame are the same as in the spin frame.

In the spin reference frame, the equation for the spin vector
S = ∑

Si si is determined by the wi perturbation components
along the spin unit vectors: w = ∑

wi si . The spin equation
in the spin reference frame becomes:

dS
dz

= w × S. (13)

In the linear approximation, we get the following expres-
sions for the spin perturbation components in the spin refer-
ence frame

wi = w si = wi,dir + wi,orb, (14)

where

wi,dir =
(

Δγ

γ
γGK + (1 + G)ΔHzez

)
si , (15)

wi,orb = γG

(
dsi
dz

× du
dz

)
ez −

(
K
du
dz

) (
si ez

)

−(1 + G)(Ku)

(
dsi
dz

ez

)
+ dΦ

dz
(16)

with the full-derivative terms separated out:

Φ = (1 + γG)(ez × τ · si ) + (1 + G)(Ku)(ezsi ). (17)

Parameter Δγ/γ is the relative deviation of energy from its
design value and ΔHz is the deviation of the normalized
longitudinal field.

We separate Eq. (14) into two terms giving different con-
tributions to the spin perturbation components. The first term
wi,dir is due to a “direct effect on the spin”, which gives a con-
tribution to the spin perturbation even when moving along the
design orbit. The second term wi,orb consists of expressions
proportional to transverse deviations from the design orbit u
and their derivatives du/dz and describe the spin effect of
perturbing fields through the perturbed orbit.

In the linear approximation in the variables u and P,
the spin perturbation components describing the orbital spin
effect in the spin reference frame take the form

wi,orb = ∂wi

∂u
u + ∂wi

∂P
P, (18)

where the respective contributions of the generalized momenta
and coordinates equal

∂wi

∂P
= γG

(
ez × dsi

dz

)
− K (ezsi ) ,

∂wi

∂u
= γG

Hz

2

dsi
dz

− (1 + G)K
(
ez · dsi

dz

)
. (19)

Combining the canonically conjugate variables u and P
into a single 4-dimensional state vector V with components
V T = (x, Px , y, Py), the spin perturbation components can

be expressed as

wi,orb = ∂wi

∂Vα

Vα. (20)

Note that the components ∂wi/∂Vα do not depend on the
orbital motion and are determined by the design values of the
vector K and the longitudinal field Hz as well as by the spin
unit vectors. Thus, the components ∂wi/∂Vα are periodic
functions with a period z = L .

2.4 Spin field of the ST resonance

In the linear approximation of the method of 1st order aver-
aging, the spin field components ωi are determined by the
average values wi in the spin reference frame:

ωi = L

2π
〈wsi 〉 = L

2π
〈wi 〉 = const. (21)

The spin field becomes azimuthally dependent through the
z dependence of the spin basis vectors when written in the
accelerator frame

ω(z) =
∑

ωi si (z). (22)

After averaging, the last term of wi,orb in Eq. (16) separated
out into a full derivative does not contribute to the spin field.
A full derivative can be separated out from wi,orb in different
ways thus giving different equivalent forms of the spin field
ω, which can be used depending on their convenience for
further analysis and quantitative computation of ω.

In the ST mode, the spin at an orbital location z precesses
about the direction n = ω/|ω| with a small tune ν = |ω|
where the three components of the spin field are given by the
following expressions:

ωi = ωi,dir + ωi,orb. (23)

In the expression for the spin field (23), as in the expres-
sion for the spin perturbation (14), we distinguish two terms
ωi,dir and ωi,orb giving contributions due to the “direct spin
effect” and the spin effect through the perturbed orbit. Par-
ticles deviating from the design orbit execute betatron oscil-
lations as well as forced oscillations caused by perturbing
fields along the deviating orbit. Since the spin unit vectors
and the vector K are periodic functions of z, betatron oscilla-
tions after averaging do not contribute to the spin field ωi,orb.
A nonzero contribution to the spin field comes only from
periodic perturbations whose spectrum contains harmonics
of the particle circulation frequency. One can identify two
main types of perturbations contributing to the spin field in
the ST mode: the first one is the spin effect of the momentum
spread and the second type is the spin effect caused by con-
struction and alignment errors of the lattice elements (lattice
imperfections).
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3 Response function in the ST mode

3.1 Longitudinal and transverse spin response functions

In the ST mode, the spin response functions allow one to
calculate the ST resonance strength and the spin navigator
field. In the spin reference frame, the contribution of peri-
odic perturbing fields ΔHx , ΔHy , and ΔHz to the spin field
components ωi is described by three vector spin response
functions Fx = (Fx1, Fx2, Fx3), Fy = (Fy1, Fy2, Fy3) and
Fz = (Fz1, Fz2, Fz3)

ωi = 1

2π

L∫
0

(
ΔHx Fxi + ΔHyFyi + ΔHzFzi

)
dz, (24)

where Fx , Fy and Fz are the radial, vertical, and longitudi-
nal response functions, respectively, determined by the ring
design lattice. In other words, in our approximation, the per-
turbing fields do not modify the response functions.

It is important to emphasize that the effects of the lon-
gitudinal and transverse perturbing fields on the spin have
different characters.

The longitudinal fields ΔHz contribute to the spin field
ωi,dir, but do not perturb the closed orbit. Comparing the
expressions for wi,dir in Eq. (15) and ωi in Eq. (24), we get
the following result for the components of the longitudinal
response function

Fzi = (1 + G)ezsi (z). (25)

The transverse fields ΔHx and ΔHy perturb the orbit caus-
ing the closed orbit to deviate from the design orbit and con-
tribute to the spin field ωi,orb through the perturbed orbit. The
forced particle oscillations Ṽ caused by transverse fields can
be calculated using:

Ṽ = Im

⎛
⎝ f1

z∫
−∞

( f ∗T
1 ΔĤ)dz + f2

z∫
−∞

( f ∗T
2 ΔĤ)dz

⎞
⎠ , (26)

where ΔĤ is the transverse perturbation of the magnetic
field written in a 4-dimensional form with the components
ΔĤ T = (−ΔHy, 0, ΔHx , 0) and f1 and f2 are the Floquet
functions having the following periodicity properties

f1(z + L) = ei2πν1 f1(z), f2(z + L) = ei2πν2 f2(z), (27)

where ν1 and ν2 are the tunes of the two independent betatron
oscillation modes.

Using the periodicity properties of the Floquet functions,
the integrals from “−∞” to “z” can be reduced to integration
over a single turn

z∫
−∞

( f ∗T
i ΔĤ)dz = 1

e−2π iνi − 1

L∫
0

( f ∗T
i ΔĤ)dz

+
z∫

0

( f ∗T
i ΔĤ)dz. (28)

Substituting the forced motion Ṽ into the expression for
the spin perturbation wi,orb (16) and taking the field pertur-
bation out of the integral by integration by parts, we get the
following expressions for the radial and vertical response
function components

Fxi = Im

⎛
⎝f ∗

1,3

z∫
−∞

∂wi

∂Vα

f1,αdz + f ∗
2,3

z∫
−∞

∂wi

∂Vα

f2,αdz

⎞
⎠,

(29)

Fyi = −Im

⎛
⎝f ∗

1,1

z∫
−∞

∂wi

∂Vα

f1,αdz + f ∗
2,1

z∫
−∞

∂wi

∂Vα

f2,αdz

⎞
⎠,

(30)

where fi,α denotes the αth component of the 4-dimensional
Floquet function fi .

3.2 Response function in a ST synchrotron without
betatron coupling

In the absence of betatron oscillation coupling, the two lower
components of the vector f1 and the two upper components of
the vector f2 become zero: f1,3 = f1,4 = 0, f2,1 = f2,2 = 0.
The Floquet function components can be expressed in terms
of β-functions in the following way

f1,1 = √
βx exp

⎛
⎝i

z∫
0

dz

βx

⎞
⎠ = fx , f1,2 = d fx

dz
≡ f ′

x ,

f2,3 = √
βy exp

⎛
⎝i

z∫
0

dz

βy

⎞
⎠ = fy, f2,4 = f ′

y . (31)

In that case, the equations for the response functions get
simplified

Fxi = Im

(
f ∗
y

z∫
−∞

Ky

[
(γ 2G2 − 1) f ′

y (ez si )

+γG(1 + G)Ky fy(ex si )
]
dz

)
, (32)

Fyi = Im

(
f ∗
x

z∫
−∞

Kx

[
(γ 2G2 − 1) f ′

x (ez si )

+γG(1 + G)Kx fx (ey si )
]
dz

)
. (33)

Integration in the response functions reduces to integration
over dipoles. In the derivation of Eqs. (32) and (33), we used
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the conditions of the absence of betatron coupling: Hz(z) = 0
and Kx (z) · Ky(z) = 0.

In the ultra-relativistic limit, we get

Fxi = γ 2G2 Im

(
f ∗
y

z∫
−∞

Ky f
′
y(ezsi )dz

)
, (34)

Fyi = γ 2G2 Im

(
f ∗
x

z∫
−∞

Kx f
′
x (ezsi )dz

)
. (35)

3.3 A conventional synchrotron in the ST mode at an
integer spin resonance

In a conventional synchrotron consisting of straight sections
and arcs (Kx = 0, Ky �= 0), the stable polarization direc-
tion is vertical and the spin tune is proportional to the beam
energy. Conventional synchrotrons operate in the DS mode
everywhere except for narrow energy bands in the regions of
integer spin resonances ν = γG = k, i.e. when the combined
effect of the arcs on the spin results in an integer number of
rotations about the vertical axis. In these regions, a conven-
tional synchrotron operates in the ST mode at integer spin
resonances.

Let us choose that, at the reference origin, s1(0) = ex is
oriented along the radial direction, s2(0) = ey is vertical, and
s3(0) = ez is along the particle velocity. For such a choice,
the spin unit vector s2 is constant along the whole design
orbit. As the particle moves along its path, the other two unit
vectors s1 and s3 rotate about the vertical field in the arcs
staying in the ring’s plane.

The dynamics of the spin unit vectors is determined by the
angle Ψ accumulated by the spin as it rotates about the ver-
tical direction in the arcs in the accelerator reference frame:

Ψ (z) = γG

z∫
0

Ky dz. (36)

The spin unit vectors as functions of the z coordinate are
given by

s2(z) = ey, s1(z) + i s3(z) = (ex + i ez)eiΨ (z). (37)

Since the particle is in an integer spin resonance, after a
full turn, the final spin rotation angle in the ring’s plane is
Ψ (L) = 2πk and the spin unit vectors become again aligned
with their initial directions.

Equations (32) and (33) show that, of all of the response
function components, the only non-zero ones are Fx1 and
Fx3, which lie in the orbital plane. Only the radial perturba-
tions of magnetic field contribute to the ST resonance spin
field ω through the orbital effect on the spin. Thus, in the
same-direction guiding magnetic field, the spin field ω has
only two components transverse to the vertical unit vector ey ,

which coincides with the n-axis of the DS synchrotron. In this
case, the spin field ω can be calculated using the response
function formalism for DS synchrotrons, which gives the ω

components transverse to the n-axis. The response functions
F of the DS formalism are related to the components of the
radial response function of the ST formalism as

F = Fx1 + i Fx3 (38)

where

F = 1

2

(
f ∗
y

z∫
−∞

(
(γ 2G2 + G)Ky f

′
y + (1 + G)K ′

y fy
)
eiΨ dz

− fy

z∫
−∞

(
(γ 2G2 + G)Ky f

′∗
y + (1 + G)K ′

y f
∗
y

)
eiΨ dz

)
.

(39)

This form of the spin response function is used in [17–19].
In conventional synchrotrons in the ST mode at integer

resonances, spin navigators can be realized using weak radial
or longitudinal fields for polarization control in the collider’s
plane. Detuning the energy from the resonance by a value
of ε = ΔγG is equivalent to turning on a vertical navigator
of the strength νN = ε, which moves the polarization out
of the collider’s plane. It is not possible to compensate the
effect of such a vertical navigator at a fixed energy using
small navigator fields.

The obtained results also apply to the case of a flat figure-8
ring, where the vector K is vertical and changes sign when
going from one arc into the other. Equation (37) for the spin
unit vectors remain the same but are periodic at any energy.
The spin field ω due to lattice imperfections lie in the syn-
chrotron’s plane. However, due to the energy independence
of the spin tune ν = 0, one can now arrange weak-field
spin navigators for polarization control in the synchrotron’s
plane at any energy. A navigator for control of the vertical
polarization component must use radial fields. Reference [3]
provides an example of such a navigator with a design based
on weak solenoids in a vertical orbit bump.

4 Applications of response function in ST synchrotrons

4.1 Statistical calculation of the ST resonance strength

The ST resonance strength ω is determined by the magnitude
of the ST resonance spin fieldω, which consists of two parts: a
coherent part arising due to additional transverse and longitu-
dinal fields on the closed orbit deviating from the design orbit
and an incoherent part associated with the particles’ betatron
and synchrotron oscillations (beam emittances) [2,24]

ω = ωcoh + ωemitt, ωcoh � ωemitt. (40)
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The coherent part of the resonance strength is determined
by the linear approximation in the spin perturbations and can
be calculated using the response functions. The incoherent
part in this approximation vanishes after averaging over the
betatron and synchrotron oscillations. The incoherent part
is determined by higher-order approximations in the spin
perturbations and depends on the orbital beam emittances.
In practice, the coherent part ωcoh significantly exceeds the
incoherent one ωemitt.

The ωcoh part resulting from the lattice’s imperfections
can be calculated using a statistical model. It allows one to
account for random perturbations ΔHx , ΔHy , and ΔHz of
the design fields of the magnetic elements. The rms value of
the coherent part of the resonance strength ωcoh is calculated
in the following way

ω2
coh = 1

4π2

∑
elem

(
σxx |Fx |2 + σyy |Fy |2 + σzz |Fz |2

+2σxyFxFy + 2σxzFxFz + 2σyzFyFz

)
L2

el, (41)

where Lel is the length of the perturbing element and

σxx = ΔH2
x , σyy = ΔH2

y , σzz = ΔH2
z , (42)

σxy = ΔHxΔHy, σxz = ΔHxΔHz, σyz = ΔHyΔHz .

are the correlation coefficients of the random field perturba-
tions of the magnetic elements. The bar denotes averaging
over the field and alignment errors of the lattice elements.

4.2 Spin navigators in the ST mode

Use of spin navigators with weak magnetic field integrals
is sufficient to stabilize the desired polarization direction at
the detector. The spin navigator field ωnav induced by inser-
tion of small transverse hx , hy and longitudinal hz magnetic
fields can be calculated in the spin reference frame using the
response functions:

ωnav,i = 1

2π

L∫
0

(
hx Fxi + hy Fyi + hz Fzi

)
dz. (43)

In the spin frame, all three field components ωnav are con-
stant. In the accelerator frame, change of the field compo-
nents ωnav is related to evolution of the spin unit vectors

ωnav(z) =
∑

ωnav,i si (z). (44)

In a perfect lattice, the spin precesses about the navigator
field ωnav(z) with a tune νN = |ωnav| independent of z. In the
presence of small perturbations (ω � νN ), the polarization
is stable along the navigator field and repeats every particle
turn.

We emphasized above the different characters of the spin
effects of the longitudinal and transverse magnetic fields.
Solenoids do not change the closed orbit. The longitudinal
response function components contain no terms proportional
to the energy and account for the direct effect of the solenoids
on the spin.

Use of weak transverse fields leads to closed orbit excur-
sion especially at low energies. The transverse response func-
tion components contain terms proportional to the energy
and account for the effect on the spin through the distorted
orbit. At high energies, the spin rotation angles in transverse-
field elements significantly exceed the orbital rotation angles.
One can arrange a coherent enhancement of the spin effect
of transverse fields distributed along the design orbit. This
can be done practically without perturbing the beam’s orbital
characteristics. Thus, use of solenoids is suitable for polariza-
tion control at low and medium energies. At high energies, it
is preferable to use transverse fields for polarization control.

Spin navigators can be used not only to stabilize the
polarization but to empirically compensate the ST resonance
strength as well. A real synchrotron with lattice imperfec-
tions then becomes equivalent to an ideal one that has no
alignment and setup errors of its magnetic elements. After
such a compensation, the resonance strength is determined
only by the beam emittances that allows one to realize a sta-
ble spin-flipping system to reduce the systematic errors in
polarized beam experiments.

Compensation of imperfection resonance strengths was
earlier done using a system of small variable dipoles at the
ZGS, Argonne, USA [25] and AGS, BNL, USA [26]. It may
be of interest to study the possibility of efficient systematic
use of SNs together with the spin response function approach
for compensation of the ST resonance strength relying on
polarization measurement information. This may also allow
one to extend the energy range where the ST technique can
be used for spin manipulation.

4.3 Suppression of the depolarizing effect caused by
beam–beam interaction

The spin response method can be applied to suppress the
depolarizing effect of the beam–beam interaction [27]. This
can be done by designing the ring optics with a small value of
the spin response function in the interaction region. Note that
the spin response function can be made small or even zero
not only at the interaction point but in the whole interaction
straight. Such a porblem is similar to designing a lattice with a
dispersion-free region around the interaction point necessary
to ensure the highest luminosity of the colliding beams. One
must keep in mind that the degree of such a suppression is
limited by the nonlinear betatron tune spread caused by the
beam–beam interaction. A detailed analysis of this limitation
can be the subject of further studies.

123



778 Page 8 of 11 Eur. Phys. J. C (2020) 80 :778

4.4 Effect of the energy spread on the spin dynamics in the
ST mode

It is particularly important to account for the effect of the
energy spread on the spin motion when going to high ener-
gies. At medium energies, γG ∼ 1 and the polarization life-
time is comparable to the beam lifetime. In contrast to the
orbital perturbation, the spin perturbation contains terms pro-
portional to the energy, which, with increase in energy, can
lead to a significant reduction of the polarization lifetime.

Effect of the energy spread on the spin dynamics can be
determined using the spin response functions. Momentum
deviation creates the following perturbations in the normal-
ized magnetic field

ΔHx = −Δp

p
Kx , ΔHy = −Δp

p
Ky, ΔHz = −Δp

p
Hz,

(45)

which give the following contribution to the spin field

ωdisp,i = Δγ

γ

1

2π

L∫
0

γG(Ksi )dz

−Δp

p

1

2π

L∫
0

(
Kx Fxi + KyFyi + HzFzi

)
dz. (46)

The first term above accounts for the explicit dependence of
the spin angular rate W0 on the energy while the second one
gives the contribution to the spin field through the response
functions.

When the condition

ωdisp,i = 0 (47)

is satisfied, it means that the spin transparency is achieved
not only at the design energy but to 1st order at any energy
within the energy spread. Such a type of ST synchrotrons
with “zero spin dispersion” is of interest for high-precision
experiments with polarized beams.

Let us consider the effect of the energy spread on the
spin dynamics for three configurations of the ST mode: a
conventional synchrotron at an integer spin resonance point,
a figure-8 ring, and a racetrack ring with two identical snakes.

4.4.1 A conventional synchrotron at an integer spin
resonance

Considering that the spin unit vectors in a conventional syn-
chrotron have the form of Eq. (37), let us calculate the spin
field due to the explicit dependence of the spin angular rate

on the energy:

γG

2π

L∫
0

Kydz = γG � 1. (48)

Thus, in conventional rings, when setting the ST mode at
integer spin resonance points, the energy spread has a strong
effect on the spin dynamics especially in the high energy
region.

4.4.2 A figure-8 synchrotron

For a figure-8 synchrotron, calculation of the direct effect of
the energy spread on the spin motion gives:

γG

2π

L∫
0

Kydz = 0. (49)

The effect of the energy spread on the spin through the
response functions is also zero, since the vertical response
function components Fyi = 0 and there are no radial and
longitudinal design fields. Thus, in figure-8 rings, there is no
effect in the 1st order of the energy spread on the spin dynam-
ics. Due to the ring topology and the absence of betatron
coupling, a figure-8 synchrotron has zero spin dispersion.

4.4.3 A racetrack with two identical snakes

Dynamics of the spin unit vectors in a ring with two identical
snakes is more complicated and is determined not only by the
spin’s angle accumulated in the arcs but also the directions
of the snake axes m, about which the spin rotates by 180◦.
Let the axes of both snakes make an angle α with the radial
direction in the ring’s plane (mx + imz = eiα).

As before, we choose the reference frame origin at the
detector located in one of the experimental straights and
direct the spin unit vectors along the accelerator unit vec-
tors at that point. The unit vector s2(z) then remains vertical
in the arcs changing its sign ζ = ±1 when passing through
a snake from one arc into the other s2 = ζey . The other two
unit vectors s1 and s3 lie in the ring’s plane rotating about the
vertical axis in the arcs:

s1 + i s3 = ei Ψ

{
ex + i ez, in the 1st arc
e2i α(ex − i ez), in the 2nd arc

, (50)

where

Ψ (z) = γG

z∫
0

Kyζdz, Ψ (z) = Ψ (z + L) (51)

is the periodic spin phase accumulated by the particle in the
arc (ζ = 0 outside of the arcs). The above formulas show
that the integrand in the phase Ψ changes sign at each pass
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through a snake. As a result, the phase Ψ becomes periodic
instead of growing monotonically and the effect of the first
arc on the spin is “compensated” by the second arc. After
a full turn, the phase value Ψ (L) = 0. The spin dynamics
in a ring with two snakes becomes equivalent to the spin
dynamics in a figure-8 ring.

The dynamics of the spin unit vectors inside the snakes
depends on the particular designs of the snakes. However,
the formulas for the spin unit vectors in the arcs are universal
and allow one to calculate the contribution of the arcs to the
spin field due to the energy spread:

ωdisp,i = −Δp

p

1

2π

∫
arcs

KyFyi dz . (52)

The contribution of the arcs to the spin field ωdisp,i is related
to the vertical response function.

To eliminate the influence of the energy spread on the
spin, the snakes’ design and the ring optics must satisfy the
following condition:∫
snakes

(
Kx Fxi + KyFyi + HzFzi − v2γG(Ksi )

)
dz

+
∫

arcs

KyFyi dz = 0.

(53)

If the condition of Eq. (53) is satisfied, a racetrack will
also have zero spin dispersion as a figure-8 ring.

5 Numerical example

Let us provide a calculation of the response functions in a ST
synchrotron with strong betatron oscillation coupling using
an example of the NICA collider at JINR (Dubna, Russia)
where the ST mode is implemented using two solenoidal
snakes [5]. Figure 2 shows the dependence of the response
functions components Fxi , Fyi and Fzi in the spin reference
frame on the z coordinate for protons at γG = 6.5. The origin
of the reference frame is selected at the interaction point of
the spin detector. The response function components corre-
sponding to the radial, vertical and longitudinal directions in
the detector are drawn in blue, green, and red colors, respec-
tively [28,29].

Our calculation shows that the response function Fz

describing the direct effect of the longitudinal field pertur-
bations on the spin is about an order of magnitude lower
than the response functions Fx and Fy describing the effect
of the transverse field perturbations on the spin through the
distorted closed orbit.

In the NICA collider, in contrast to a figure-8 collider, the
spin is influenced by not only the radial but also the vertical

Fig. 2 Radial Fx , vertical Fy , and longitudinal Fz response functions
for protons at γG = 6.5 in the NICA collider

magnetic field perturbations contributing to all three compo-
nents of the spin field. The response functions indicate the
places in the collider lattice where the effect of the introduced
transverse fields on the spin can be enhanced manifold. Such
information is necessary for the design of efficient 3D nav-
igators by placing transverse fields at the points of maxima
of the response functions and adding their spin effects coher-
ently.

The presented structure of the NICA collider has not been
optimized for polarized protons. However, the response func-
tion approach can already be applied to it to develop an effi-
cient polarization control scheme that requires only small
field integrals in the ST mode. For example, setting the spin
tune of ν = 0.01 necessary to stabilize the proton polariza-
tion requires a longitudinal field integral of

(BL)‖ ≈ 2πν

Fz
Bρ ≈ 0.4 T · m, (54)

where Fz ∼ 3 and Bρ ∼ 20 T·m. When considering only
the direct spin effect of a transverse field, its integral needed
to produce a spin rotation by an angle 2πν at γG ∼ 10 is

(BL)⊥ ≈ 2πν

γG
Bρ ≈ 0.12 T · m. (55)

When a spin navigator dipole is placed at the maximum of
the transverse response function (F⊥ ∼ 100), the required
field integral becomes

(BL)⊥ ≈ 2πν

F⊥
Bρ ≈ 0.01 T · m, (56)

i.e. the collider’s optical structure amplifies the spin effect of
the navigator dipole by about a factor of 10.
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6 Conclusions

In conclusion, we briefly state our main results. We devel-
oped a spin response function formalism for spin-transparent
synchrotrons. The response functions are determined by the
design lattice of a ST synchrotron and can be applied to com-
plete the following tasks:

– Calculate the spin field of the ST resonance caused by
field and alignment errors of the lattice magnetic ele-
ments.

– Design the 3D spin navigators using insertions of small
fields for manipulation of the polarization direction dur-
ing an experiment.

– Compensate for chromatic spin tune spread caused by
particular design elements of a ST synchrotron.

– Suppress the depolarizing resonant effect of non-linear
fields of the colliding beams.

Thus, the response functions are a valuable tool for cal-
culation of the optics parameters of ST synchrotrons neces-
sary for performing high-precision experiments with high-
luminosity polarized beams.
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