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Abstract We study the quantum gravitational system cou-
pled to a charged scalar, Dirac fermions, and electromag-
netic fields. We use the “exact” or “functional” renormal-
ization group equation to derive the effective action I'g by
integrating the flow equation from the ultraviolet scale down
to k = 0. The resulting effective action consists of local terms
and nonlocal terms with unique coefficients.

1 Introduction

It is one of the most urgent problems in theoretical physics
to understand quantum property of the gravitational system
interacting with various matter fields. The Einstein gravity
is non-renormalizable in perturbation theory. If one believes
that gravity must be described by some quantum theory at
some level, then we are led to expect that the theory will
contain terms quadratic in curvatures which are necessar-
ily generated by quantum effects, with coefficients of order
unity. In fact, we expect to find in the action all possible
diffeomorphism-invariant terms constructed with the metric
and its derivatives. It had been shown long ago that if one
includes such higher derivative terms, then the theory is per-
turbatively renormalizable [1]. The price one must pay is
that perturbative unitarity is lost. The superstring theory is
supposed to circumvent the problem, but it is still difficult
to understand quantum geometric aspects of the spacetime
physics in superstrings.

Another approach to get insight into the quantum effects of
gravity is to use the functional renormalization group (FRG).
Itenables us to study the RG flow of infinitely many couplings
as functions of a cutoff k. It has been used to study the ultra-
violet (UV) behavior of gravity and establish the existence
of a nontrivial fixed point (FP) which may be used to define
a continuum limit [2—4]. To formulate this, one defines the
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effective average action (EAA) I'y by performing the path
integral over field modes with the momentum scales equal or
bigger than a scale given by a cutoff k [5,6], and following
the usual procedure of defining effective action. This EAA
itself is not the usual effective action and it is still divergent
in general in the UV limit. The k-dependence of the EAA is
described by the FRG equation (FRGE)

oI —1ST Tk +R _laR
= —STr
k=5 5000 k Rk |

where t+ = Ink, and Ry is a cutoff kernel which goes to
zero when its argument z is greater than the cutoff scale k.
Because the FRGE only sees the variation of the EAA, it is
free from the UV divergence and well defined in contrast to
EAA. Technically this comes from the fact that d; Ry, which
is inside the trace of FRGE, falls off fast in the UV. This
FRGE describes the flow of the theory when the energy scale
is changed. In this sense, it is also called flow equation.

We can fix initial point for the EAA at some UV scale A
and identify it as the “bare” action of the theory. One can
investigate how the EAA behaves in the limit A — oo by
integrating the FRGE in the direction of larger k. If the flow
reaches a FP, we may expect that all physical observables
to be well defined, and the theory is UV-complete. Together
with the assumption of finite dimensionality of the critical
surface on which the putative FP lies, this is what is called
asymptotic safety. There has been considerable evidence that
the nontrivial FP exists in pure gravity with higher order terms
and also gravity theory coupled to matter [7-31].

Most of the work so far focused on the existence of the
UV FP, leading to the scenario of asymptotically safe grav-
ity. There were also some works about the situation in the
infrared (IR) regime [32-34] pertaining to solve the prob-
lems with infrared divergences. We also note that many of the
interesting results amenable to observations happen at finite
energy for which the problems of UV-completion are irrel-
evant provided some form of IR-UV decoupling holds (e.g.
using Appelquist-Carazzone theorem for massive modes).

(1.1)
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It is often considered that the EAA, which is obtained by
integrating over the modes with scale larger than k, describes
physical quantities around the energy scale k. However, there
is a debate if the k-dependent EAA itself has physical mean-
ing since the cutoff k is just a figurative energy scale used to
cut off the path integral [35]. How do we then study physical
aspects of the asymptotically UV-safe gravity? We note that
it is the effective average action at k = 0, which is noth-
ing but the quantum effective action as obtained in the stan-
dard quantum field theory, that contains information on the
quantum effects on the physical quantities such as scattering
amplitudes and transition probabilities at all energy scales.

It is thus significant to compute the effective action. The
FRGE can be used as a tool to calculate the effective action
nonperturbatively. For this purpose, we integrate the FRGE
in the direction of small k£ and the infrared endpoint of the
flow of EAA gives the quantum effective action I'g. We
should mention that this method of obtaining quantum effec-
tive action is not restricted only to asymptotic safe theories,
but is valid for any quantum field theories. The advantage
of this method, compared to calculating directly a functional
integral, is that we never encounter divergences since the
FRGE does not suffer from divergences and is well defined.
Some examples have been discussed in [36,37], in which
gravity theory coupled to a scalar is considered among oth-
ers. Here we would like to extend this calculation to the more
general case of gravity coupled to gauge, Dirac and charged
scalar fields. Integrating the flow, we can derive the nonlo-
cal, finite parts of the effective action up to two powers of the
gauge field strengths and curvatures of the metric. The usual
method to calculate the rhs of the FRGE is to use the asymp-
totic expansion for the trace of the heat kernel coefficients,
which gives only local expressions. To calculate nonlocal,
finite parts of the effective action, we need a more sophisti-
cated one which includes an infinite number of heat kernel
coefficients. This expansion has been developed in [38—41].
An alternative derivation has been given in [42]. We use this
nonlocal heat kernel expansion to calculate not only the local
but also nonlocal parts of the effective action and to check
them against standard computation using local heat kernel
methods. We will see that these nonlocal terms have unique
coefficients, but local terms are subject to renormalization
and have arbitrary coefficients depending on the renormal-
ization conditions. These unique nonlocal terms can be used
to describe physical phenomena and obtain scattering ampli-
tudes. They constitute a piece of generically genuine and uni-
versal information that we can extract in the effective field
theory of gravitational interactions at low energies.

Nonlocal effective actions and their applications have
been discussed in several works in different approaches. The
nonlocal form of the anomaly-induced gravitational action
was first indicated in [43]. The effective action was calcu-
lated perturbatively in the weak field limit using the covariant
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nonlocal expansion of the heat kernel in [44—46]. Nonlocal
action from long distance fluctuations of massless particles in
QED and generation of magnetic fields during inflation were
also considered in [47]. In [48,49], it was used to derive trace
anomaly in QED and violation of equivalence principle. Refs.
[50,51] derived it using the Weyl anomaly, and discussed the
generation of cosmological magnetic fields in the universe.
Nonlocal effective gravitational actions have very interesting
cosmological phenomenology such as explaining problems
of dark matter [52], dark energy [52,53] and inflation [54]. It
has quite unusual classical features [55,56]. A comprehen-
sive review of its quantum properties can be found in [57].

The low-energy effective action has been studied in a num-
ber of papers. A nice review of this approach is given in [58].
In this approach, all independent terms compatible with the
symmetries of the theory are written down in the order of
increasing dimension [59]. It is important to sort out which
interactions are important in the low energy. The coefficients
of these terms may be calculated by perturbations on flat
background. On the other hand, our effective action is equiv-
alent to that obtained by integrating out the quantum fluctu-
ations in the path integral on general backgrounds and is not
just valid for low energy but for all energy scale. The one-
loop effective action for pure gravity and gravity coupled to
a scalar field is directly calculated using local and nonlocal
heat kernel expansion [60,61]. Attempt to give the approx-
imate form of the effective action as the sum of Feynman
diagrams is made in [62].

In this paper, we compute the effective action for the grav-
itational system coupled to some matter. In the gravitational
sector, we restrict to a theory described by the Einstein action
(Ricci scalar only) for simplicity, while a gravitational the-
ory with higher derivatives is one of our future goals of an
extension of this project. In the matter sector, we consider the
action consisting of one abelian massless U (1) gauge field,
one charged massive scalar field and a general number Nr
of massive Dirac fermions coupled both to electromagnetism
as well as to gravity. This is the simplest but quite general
theory allowing us to see how the final result is affected by
various fields. The reason for inclusion of only one abelian
gauge field is because this is the only vector field that sur-
vives in the IR macroscopic limit (classically observable). On
the other side, we consider an arbitrary number of fermions
since there are plenty of them in Standard Model of parti-
cle physics and extensions thereof. Further generalization to
include gauge fields in non-abelian gauge group, arbitrary
numbers of fermions and scalars in various representations,
and Yukawa interactions is a future goal.

This paper is organized as follows. In the next section,
we first summarize the methodology of nonlocal heat ker-
nel expansion and explain how to incorporate it in our cal-
culation of the FRGE. The result is given in the form of
a master formula. This formula requires the Hessian of the
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action for quantum fields (this is the operator of the second
variational derivative of the action with respect to fluctuating

fields, which we denoted by g;—l‘;g) in (1.1)). In Sect. 3, we cal-
culate the Hessian in a mutually coupled system of Einstein
gravity, electromagnetic (EM) gauge field, Dirac and charged
scalar fields. In Sect. 4, we plug these results into the master
formula to derive the FRGE, and integrate it (over k) from
the UV scale k = A down to k = 0 to obtain the nonlo-
cal terms with definite coefficients in the effective action I'g.
Section 5 is devoted to discussions. Some technical details
are relegated to three appendices.

2 Nonlocal heat kernel expansion

Suppose that our Laplacian (or Hessian) takes the form

A=-V1+U, 2.1)

where V is a covariant derivative with respect to all back-
ground fields and U is a non-derivative term. The main com-
putation will be performed in a spacetime with Euclidean
signature. We will need the trace of a following expression

0 Rk (A)
A+ o+ R (A)’
In the above formula, @ plays the role of the mass of the

mode and Ry (z) is the cutoff function. The FRGE then has
the form

hi (A, w) = (2.2)

1
0Ty = ETI‘ hi(A, o), 2.3)

where the functional trace (denoted by Tr) is both with respect
to internal and external indices, so the spacetime dependence
requires here also to take the volume integral. Introducing the
Laplace transform

o0
hk(A,w)=/ ds hi(s, w)e ™8, (2.4)
0
(2.3) reduces to
1 [~ .
8Ty = 5/ ds hy(s, w) Tre "4, (2.5)
0

The commutator of the covariant derivatives V gives the
curvature tensor £, (depending on a specific representation
on which these derivatives act):

[V, Vil = 2, (2.6)

We note that the tensor £, is antisymmetric and may have
indices in particular matrix representation of internal indices.
From standard (metric) Riemann tensor R, using raising
of indices with the inverse metric tensor g"”, we construct
other curvature tensors, such as Ricci tensor R, and Ricci
scalar (curvature scalar) R. Together with U and £,,,, these
last three tensors constitute a set of generalized curvatures.

The nonlocal heat kernel expansion up to the quadratic
orderin generalized curvatures R = (U, ., Ry vpo, Ryv, R)
is given by [42]

1 R
—sAy _ & d o
Tr(e~*A) = (4m)d/2/d x@tr{1+s(16 U)
52 [ 1R fric (—s V) R
+1Rfr(—sVHR + Rfry(—sV*HU

U (5T + @ (-T2 |

2.7
where the structure functions f’s are given by
fre = 2 Lo~ Lo E
Riet) = 6x T2 60 840 15120 T
1 1
frR(x) = ﬁf(x)—F af(x) T
) RS | PN S U W
g2 120 336 ' 30240" 1
1 1
frRu(X) = _Zf(x) - T[f(x) — 1]~
X
1 + X x2 n
30 280
fue) = 5/ l——+L2+
U (x X 120 A
X
fax) = _*[f(x)_ ]’\’E—@
+ x2 + (2.8)
1680 ’

Here the basic structure function (form-factor) f(x) reads

1
1
= | geeE0-H L 2
£ /0 £ S+
|
_ 2.9
840x + (2.9)

where we have also displayed the Maclaurin expansions for
small x. The first constant terms in Egs. (2.8)—(2.9) represent
the local heat kernel expansion coefficients. The full nonlocal
heat kernel has the infinite number of heat kernel coefficients,
which can be collected in the form of nonlocal form-factors
F ), fRic(x), fR(X), fru(x), fu(x), fa(x). Substituting
(2.7) into Eq. (2.5), we obtain

Tk = ;(4 )d/zfd xftr{ UO dsﬁk(s,w)s—d/z]

+ <1— - U) [/ dshy (s, a))sd/2+1:|
6 0
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+ 1R, [ /0 " dsiins, w)s_d/2+2fRiC(SZ)] R
1R [ fo " s, w)s_d/”sz(sz)} R

+R [ /O " sl s, w)sd/MfRU(sz)} U

+U [ fo " s, w)Sd/ZHfU(SZ)] U

" [ fo " dshiGs. w)s‘d/Z“fQ(sz)] Qi

+0(R3)} (2.10)

I 1

= s f dlx /g {100l

R
+(15 —U) Qq_ [ + 1Ry gric R
+1RgrR+ Rg,,U+Ug,U

+R,,50R" + .. } @2.11)

which is our master formula to derive the FRGE. In the above,
we have used “small” traces tr(. . .) to denote traces only in the

internal space of indices. Here and in what follows, z = -2
and we have defined

o0
g4 = ga(z 0, k) = / ds (s, ) falsz)s~ 422,
0
(A = Ric, R, RU, U, Q), (2.12)

_ 1 * n—1
Qn[hk]_m/o dx X"V (x). (2.13)

More explicitly, we have
oo ~
8Ric 2/ dsh(s, w) fric(sz)s />
0
1 1
= 6—ZQ%,1[hk] - z_ZQ%[hk]
Lt E(1-8)
+Z—2/0 d&Qq[hy 1,
l h 1 h
_EQ%_I[ k]—i-gQ%[ &l
Lt )
g T
Lt (1)
[ dsgg,][hk' |

déQ [hff“ 1,
0

1! E(1-8)
e T !

8R =

82

1
8RU = 2—ZQ%_1[hk] -
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1! -
gu=§/0 dgQy 0,

1
go Qg_l (el = 5~ /0 d§Qq_ Y1 @214)
where we have defined
1 ©
Qulh¢ ﬂ”]:f dsh(s, w)ses%E0=8) (2.15)
0

To evaluate this, we first recall that

hi(x, w) = / dsh(s, w)e ™ *. (2.16)
0

From this, we find
o0
/ dxx"Vhp(x +z6(1 — €), @)
0

o0 o

:/ dxx"_I/ dsﬁ(s,w)e_”_”‘?(l_@
0 0

=T () QulhiT" ™91, (2.17)

Using the definition (2.2) and the optimized cutoff [63]

Ri(2) = (k> — 2)8(k* — 2), (2.18)
in the first expression of (2.17), we find
hi] = 2% ! 2.19
Onlhi] = Frn+D1+a (2.19)
E(1—8), _ 1 2
Oulhy ]_r(n+1)1+a)
(k> — z£(1 — &)]"0[k* — z&(1 — &)1,
(2.20)

where @ = w/k?. We then obtain

1
|z o)
0

_ 2 _1— 120G _4
Tire| VITEETH)
6,/1——9(z—4)j|

1
| az o)
0

_u [z
4o 6

| Ak}

1
/ dg Q2 [hE1 )
0

5

k4 E 22 22 4\ 2
— i (i=2) ee—w],
1+J)[ 3730 30( z) =4
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with Z = z/ k2. Substituting these into (2.14), we obtain

5
=L a2 79( 4k?)
8Ric = 01+6 Z V4 N

1

_ Lo e 79( 42
R= 11 o 60 16 p ¢
3
L (4 4 79( 4k?)
24 Z ¢

+ L ( 4 29( 4k?)

240 Z ¢ ’

1
_— Ll e T — 4
UT T | 372 )7

1
1 4k%\ 2
o= 1_<1——) 6z — 412 ||
Z

1 4K\ 2 5
go=——|1-(1——) 0z—4kH)|. (2.22)
Z

We will use these results to derive the flow equation.

We note that the intermediate results of the RG flow
depend slightly on the choice of the cutoff kernel function
R;(z). However, as discussed in [2,3,14,64], the evidences
for existence of FPs (realizing the idea of asymptotic safety
in the UV) are independent of this choice and the scheme of
regularization and renormalization. The same is also true in
the & — O limit of the EAA, while the interpolating effec-
tive action 'y at finite £ > 0 shows a bit of dependence. On
the other hand, the nonlocal terms in the effective action I'y
are universal and unambiguous and they do not rely on such
details as the choice of the IR cutoff function. Here we chose
the optimized cutoff function in (2.18) in order to have an
analytic control over all functions and integrals involved in
the process of taking functional traces in (2.3) and to have
compact form for all intermediate expressions of the RG flow
also in the case of finite k.

3 Hessian for gravity coupled to EM, Dirac and charged
scalar fields

We consider the total action S7 of the system consisting of
gravity coupled to EM (gauge), Dirac and charged scalar
fields:

St = Sulgl+ Svlg, Vul+ Srlg. w1+ Sslg, 1. 3.1)

where Sy, Sy, Sy and Sg are the actions for the (Einstein)
gravity, EM field V,,, Dirac fermion v and a charged scalar
field ¢. Their explicit forms are given below.

To calculate the flow equation, we have to derive the Hes-
sian in each sector, to which we now turn.

3.1 Hessian for graviton

Let us first consider the Einstein action (Ricci scalar of the
metric g) together with the gauge fixing:

1 1
&wk:7zfﬂu@mw+zfﬂm@nﬂa6@

with g = det(g,) and where f}, is the gauge-fixing function

- 1-
fu=V'hy, — 5%’1- (3.3)
The quantum fluctuations are defined by
8uy = gﬂv + hl“) and h = g“vl’l“v . (34)

For simplicity, we set k = 1 and consider d = 4 space-
time dimensions in what follows. Background quantities are
denoted by bars over them. Separating the background and
quantum fields (3.4), we find the Hessian Hg in the follow-
ing expression from the expansion of the action (3.2) to the
second order in fluctuations £, :

% / d*x /g W Hg uvaph®, (3.5)
where
Hg = K(-V?) + U, (3.6)
and where
K = § Guafos + Buloe — Buvfieg). (3.7)
Uvap = RKyvap — &u@Rpy) — Ruvp)

+%(§W&ﬁ + 8upRu). (3.8)

Here the bracket on indices means symmetrization within
the pairs of indices (u, v) and («, B) in the second term and
within the pair (¢, 8) in the third term in (3.8) (with the factor
% included).

The diffeomorphism ghost action corresponding to the
gauge fixing in (3.3) is

Senlh, C, C, gl = /ddx@éﬂ(—ﬁzsg — RMHCY. (3.9
Hence we can calculate the ghost contribution to the flow

equation with the vector-like Hessian (Agp) iy = —8,0 V2 —
Ry

@ Springer
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3.2 Gauge fields
The action for the gauge field is

1
Sy[Vul = /d4x«/§zguagvﬁF,quaﬂ» (3.10)

where the U (1) (abelian) gauge field strength is given by

Fuy =V, Vy =V, V. (3.11)

We note that the Christoffel symbols drop out from the anti-
symmetrized field strength, but it is convenient to recover the
classical part when the derivatives acts on the gauge fields.
The quantum fluctuations are defined as

Ve=A,+ Ay, (3.12)

and then the resulting perturbation of the field strength is

Fuv = Fuy + VA — VA, (3.13)

The part quadratic in the fluctuations (/,,, A,) of the
action (3.10) under the volume integral is given by

Z\/g[h“"{ngva",g + Fua Fop + 8up Fup Fo®
1 _

5 0 1. = = p
_EgqupaFﬁ_EgaﬂFuva

Lo o - - - f
+§pr(gp,vgocﬂ — ua8vp — guﬁgua)}h
+2hHY {ZF(upgv)aﬁp + ZFQ(Mﬁv) + é_’/w Fpaﬁ’o} AY

+2An {—guﬁz + Y,V + Ry A"]. (3.14)
We introduce the gauge fixing term
1 _
—(V, A2, 3.15
2O{( wA") (3.15)
which contributes to the Hessian
1 _
— ZA”VMVUA“. (3.16)

In what follows, we set o« = 1. Collecting (3.14) and (3.16),
we find that the gauge and gravitational contributions to the
quadratic part of the action (3.10) is

1 4 /= hoP

E/d x/g(W", AMHy ( A ) (3.17)

where

Hy = Ky (=V?) + 2V}, Vs + Uy, (3.18)

with

0 0
Ky = (0 gw>, (3.19)
VS — _ 0 B K;w)\aﬁm - %Buvmﬁku
4 —Koppp FM + 360" Fy 0 '

(3.20)
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Uy = 2K var FP Fop + 3FuaFup — 1KpvapFp; 0
~2Kapau (Vo F*) + 84 (Vo Fip)  Rpua

(3.21)
where

S = 6180 + 8580,
is the unit matrix on the symmetric tensor with two indices.
In various components of Hy in Egs. (3.19)-(3.21), sym-
metrization u <> v, @ < B and (u,v) < (a, B) should
be understood. Note that Uy is not symmetric (as a matrix).
Naively one would expect that U should be symmetric, but
it is then not self-adjoint. Here we have chosen such that the
Hessian is self-adjoint (as the operator acting between fluc-
tuations and with a proper Hermitian complex scalar product
in the field space). See Appendix A for more details.

The gauge ghost contribution to the Hessian consistent
with the gauge fixing (3.16) is given by Ag = —V?2. This is
a scalar operator.

(3.22)

3.3 Dirac fields

The action we consider for Dirac fermions is

1 - - -
sy = fd‘wgz (F7 Dy = Dy v +2m i) |

(3.23)
where the covariant derivatives acting on spinors are
. 1
Dyt = O — ier AV + S0uan IV, (3.24)
- . -1 -
Dy = 3y +ier Ay — zw,mbw“”, (3.25)

with w4, being spin-connection coefficients and J ab —
%[y“, yb ] the O(4) generators. From the action (3.23) and
the definitions of covariant derivatives (3.25), one sees that
the massive Dirac fermion (with mass m ) is coupled min-
imally both to the gravitational and EM fields (via the
fermionic electric charge er). We consider Nr fermions, but
we can calculate the contribution for a single Dirac field and
multiply it by NF in the end.

We first show that we can express the fluctuation of the

vierbein ez in terms of that of the metric g, in (3.4). From

the soldering relation g,,, = e,‘ieljﬂab, we find that we can
choose [65]

_ 1
EZ = GZ + Ehz - ghﬂphpa + ooy (326)
where we denote
hz = h;é“f, etc. (3.27)

The inverse vierbein ¢ and its expansion is given by
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1 3

el =elt — —hl + —hbh) + (3.28)
2 8

By the tetrad postulate

oy = el ep + egaue;j, (3.29)

we can calculate the expansion of the spin-connection:

w0, = &, + w0, PV 4 0, PP, (3.30)
where
w, P = % (Vs — Vehh) esel. (3.31)
w,?? = % (4n“PN ,hf — 4PN P hy,

—h*PN kb + WPV, n%) ). (3.32)

The Dirac field is decomposed as ¥ = ¥ + x. (Here exclu-
sively by bars over the spinorial quantities, we denote the
Dirac conjugate of the spinors, not the background spinors).
In this way, we can express the expansion of the Dirac action
(3.23) to the quadratic order in fluctuations by only the vari-
ations of the covariant metric tensor £, gauge potential A,
and the Dirac field x. We thus see that while we need to use
vierbeins and spin-connections for the explicit construction
of the action (3.23), we do not have to use the variation of
el‘i nor a)ﬁb in the expansion since all fluctuations there are
given in terms of the metric variations /.

We then find that the Dirac action (3.23) to the quadratic
order in fluctuations (s, A, x) is given under spacetime
integral as

V3

T[XVMDMX —Duxy"x +2mpxx

. _ L aropons

=2ier Ay X + Xy ) + Sh VP v
1 o o

+§(hg““ — "YWy Dox + Xvu Doy

—DyWyux — Doy — 2ier Apyrynr)

1 [ARVIEN ) U v
RV R Yopo ¥ +mh Yy + XY)

+;(3h“h” —2hh )Yy " Dpy — Dy )

1
50 =202 (by" Dy = Dy +2m i) |.
(3.33)

where DM is the covariant derivative defined in (3.25) and
restricted to the gravitational background g, and EM fields
A w»> and yup,, is the antisymmetric product of Dirac gamma
matrices. When we deal with neutral objects (not charged
under EM group), we use only spacetime covariant back-
ground derivatives @M.

In the Hessian (3.33), we have terms with fermion—
fermion (x-x), boson-boson (k-h) and mixed (x-h with
background ) fluctuations. Here we drop the mixed terms

since they are intractable by the present methods of com-
putation and moreover lead to highly nonlocal terms in the
effective action. Let us then first discuss the fermion-fermion
terms, and then come back to the boson—boson terms. The
integration over Dirac field x in this sector yields the contri-
bution to the effective action

rPrae = —Trlog [P +mp]. (3.34)

Noting that Trlog [P + mF ]
mula (3.34) can be rewritten as

= Trlog [P — mF], the for-

: 1 5
Dirac — —ETr log [—@ + m%] . (3.35)
Now consider
_2 - -
Dy =y ylelle) DD,y
_ 1 a b 1 a b n UD D
= E{J/ % }+§[V v 1) egep DDy
5 y“b _ _
— <Du + 3 el'ey[ Dy, Dv]> v
52 )’ab 1o
= <Du + 2 eliep (—zeFF + ZR;wC Vch)) V.
(3.36)
Using the identity
iy Y =yt 4+ gy P + gyt — gy, (3.37)
and Bianchi identity for the Riemann tensor, we find
B e W g
D wz DM_wFTFIW_ZR w (338)

In this way, we have derived the so-called Lichnerowicz for-
mula relating the square of the gauge-covariant Dirac oper-
ator acting on spinors to standard Bochner Laplacian acting
on spinors treated as spacetime scalars shifted by various
curvatures (in the internal and external spaces).

Hence the contribution (3.35) from fermion—fermion sec-
tor to the effective action turns out to be

. 1 1 -
D 2
r ”“C=—§Tr10g|: D +T)/WFW+ R+mFi|

4
(3.39)
We define
1-
=D+ 2F "+ R +m2, (3.40)
[eF 1
U= — > —y Fuv+4R+mF, 3.41)
and use the regulator (2.18):
Ri(A) = (—A + k20> — A). (3.42)
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Then we have the contribution from Dirac fields to the FRG
flow of the effective action

8tl—~Dimc _ —lTI’ 0 Ry (A) )
2 A+ Re(A)

We can now use the technique of nonlocal heat kernel
as described before. Noting that £,, = [D,, D,] =
—iepFy, + %Ruv"dycyd, (3.43) is cast into

1 (> ds -
— h d* 4
; /0 G / x|
1 - _ _
— <§ R+ 4m%> s + 52{4Ruv TRic(s2) R

+4R fr(s2)R + R fru(s2)tr (U)
+tr (U fy (s2)U)

ir (R0 fa 2}

(3.43)

9 FDirac _
¢ =

(3.44)

with z = —DIZL. Internal traces that we will need are

1 - _
r(U) =trl (ZR + m%,—) = R +4m7, (3.45)

1 - 1 _ 2
tr (U%) = tr (ZR + m% + zier’“’F,w)
1 - _ -
=3 R*+4mf +2Rm% + 23 Fy,,. (3.46)

1 - _
tr (2,,2"") =tr [(—Ruvpgyp” — ieFFW)

1 - -
(ZR;UJK)LVKA - leFF;w>:|

N

1 _ _
= _ERiW —4erF,. (3.47)
We then find for (3.44)
. 1 d*x
9 FDtrac I 4 h
; 5 (4n)2J§[ Oa2lhi]

1_ _
- <§R + 4m2F> O] + 2m%(2gRU +8u)R

+4Ruy gRic RV + dmEgym?.

ERMU,O)» 8Q

B} 1 3 3
+R <4gR +grU + Zé’U) R — RHVP

26} Fun (8 = 2800 F*" . (3.48)

where gric, &R, 8RU» gu and gq are given in (2.14). We note
that the term 4m2F gUm% gives a constant under the volume
integral in (3.48), but we keep it for completeness in our
expression.

It should be noticed that by choosing the form of the kinetic
operator A and U as in (3.41), we treated the mass term as
an interaction. In this way we can parallel the treatment with
the other massless gauge fields in the derivation of the effec-
tive action. This choice of the leading operator as z = —Di
changes slightly the shape of the cutoff function Ry (z) and

@ Springer

the actual form of the flow at intermediate energy scales k.
It corresponds to the choice of the cutoff of type I in grav-
itational theories [2,14], and amounts to taking the mass-
less propagator for fermions. This is a well-developed tech-
nique in renormalization theory and it is used, in particular,
in QCD as mass-independent renormalization. In this case,
quark mass is scheme-dependent quantity and it is then the
most appropriate scheme. An alternative choice would be to
take z = —Di + m% (realizing the cutoff of type II). When
the mass interaction is fully resummed, the two schemes do
agree. However, we find it better suited to use the massless
scheme for fermions. For the effective action, the differences
between two schemes are immaterial. The difference only
shows up in the local terms. The reason for this is that nonlo-
cal logarithmic universal terms in the effective action I'¢ are
related to the expressions for the perturbative one-loop beta
functions, and these beta functions in the UV limit are com-
pletely insensitive to mass terms. The fermionic contribution
to the gravity is cosnsitent with [18].
We then come to the boson—boson terms in Eq. (3.33):

—1r1 _ -
AS = /d4x\/§§|:ghapvﬁhgl//y(xﬂﬂw
—ie(hg™ — ") Ay
1 _ _
+1hﬂ”vph,‘i\//ypﬂvw
1 _ _ _
+§<3h’;h€ — 2hh) Wy Dy — Dy )

1 - _ - -
+5 (2 =202,) (Fy" Dy = Dby + 2m i) |,
(3.49)

which should be written in a self-adjoint form. For this pur-
pose, we check how terms behave under exchange of left and
right fields and integration by parts under volume integral
(cf. with Appendix A). The first term in (3.49) is transformed
under the integration by parts as

1 ; ! J
ghapvﬁhﬂp‘/fyaﬂuw = Ehapvﬁhﬂpl//yaﬁﬂw

1 _
_Ehupvﬁ (hap‘pyaﬁuw)

1 _
- Ehwvﬁh”pwﬂﬁuw

—%h“pvﬁh"‘pmﬁm (3.50)
due to complete antisymmetry of the product yug,,. No sur-
face termis generated under the partial integration, and then it
is clear that (3.50) is self-adjoint by itself under the exchange
of fields and doing integration by parts.

We then put the quadratized action in (3.49) in the form:

_ 4 —l KV AM hef
AS = dx\/gz(h AMHD (0 )

(3.51)
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where the Hessian in the matrix form is

Hp = 2V9 D;s 4 Up. (3.52)
These terms should be combined with other terms from grav-
ity and gauge theory, and integrated over the fluctuation fields
h,, and gauge fields A ;. We remark that in the bosonic terms
in (3.49) fermionic fields appear only as backgrounds.

Explicitly the components of objects in (3.52) are given
by

D B
VS =< 16gua0¢]/vﬂ w(0)>, (3.53)
yhh - hA
Up =  Hpep “rve ) (3.54)
where

Uhh 2 (oD — Do -
pvap = glan (VvoDpy¥ w¥ - vp¥)

1 - _ - -
_gglw (WVaDﬂ‘/f — Do - Vﬂ‘l’)

1 - - -
—g8ap (VyuDv¥ = Dy - o)
1 - _ - -
_EK;waﬂ (WVpr‘l’ — Doy - Vpl[’ +2mF1/“//) ,
1 - -
Ut = =5ier @uodve¥ = Zau¥r¥).

urh — L, (Bap VYV — BV
wap = T CF 8apVYu Su@VypV)-

(3.55)
In the above, the symmetrization within each pair of indices
(u,v) and («, B) is understood but not marked. Here we
have also imposed self-adjointness, which is discussed in
Appendix A.

3.4 Charged scalar

We consider charged scalar whose action is

Ss = / d'x g [ (Di$IDi + VP ], (3.56)

where the covariant derivative on the scalar is

D¢ =(V,—iesA)p, Dup* =V, +iesA,)p*
(3.57)

and where the invariant complex square of the field we write
as |¢|? = ¢*¢. (By star in superscript, we denote complex
conjugation of field.) It should be understood that when the
covariant derivative in (3.57) acts on fields without charge, it
is simply the gravitational covariant derivative V,,. When the
derivative acts on a scalar quantity as here, it is simply a par-
tial derivative (without spacetime connection coefficients).

Let us write the field as ¢ = ¢ + ¢, the former being
the background and the latter being a fluctuation. Then the
quadratic action is

(Dud*) (D) + V(91

2 _ 2
Ss=/d4x@{}12§§(}l"k)[

+(h$hﬂ” - %hh“")(f)ud_)*)([)vé)

+%h {(Du¢*) (DM @) + (D) (DM ™)
—ieslp(Dpd*) — ¢*(Dup)1A*}

—h*" {(Du@*)(Dyg) + (D) (Dye™)
—ieslp(Dpd®) — ¢*(Dud)lAv}

+(Dpg*) (D ) +iesAud* (D' )
—ies A G(Dyug*) + e5|p1* A AP
—ies(Dud*) AP + ies(Dud) A" + V' (161 pp*
FV AP F9 + 200" + ™)

1 - - -
3V G + o) (3:58)

where bars on the covariant derivatives mean that they are
made of background fields and the prime is the derivative
with respect to |¢|? (not with respect to just ¢). This is put
in the form

hop
o

1
Efd“x«/?(h“”,A”,(p*wp)Hs f:p .

*

'

(3.59)

where the Hessian Hg has the following expansion in order
of derivatives
Hs = Ks(—D?) +2V4Ds + Us. (3.60)

Here we use the “complex” basis discussed in the Appendix B.
We find

0000
0000
0010
0001

0

(3.61)

0 —Ku" (D" =K (Drd)
0 0 R A N TN
Ko (Dr9) 562 0 0
Kap™ (D1.%) —"5¢* 8’ 0 0
(3.62)

and
hh hA he g rhe*
Up,u,aﬁ U;w,ot U#V UMV
Ah AA  pA¢ AQ*
Ug = U}L,ﬂﬂ U;wt Ul/- UIL
s = eh etA ete pete*
qu3 U, ~ U U
h A *
Ugg Us” uee uve

(3.63)
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where the various components of the Ug tensor are given
below

UM o = ~Kuvap [ (Dp")(DP®) + V(6]

2K yvra(D*$*)(Dpd) + 2K o (D*$*) (Do),
Ut = 2iesKpva" [$(D16*) — $*(D19)].
Uty = 2iesKug" [$(D16") — $*(D,9)].

h 1_ -
qu = *g,uvvld’*,

2
h L
Usp = 2Kap”* (DpDy6") + - 2apV'$",
ot 1 -
Uph = 580 V'$,
*h — - - ]_ -
Uy = 2Kap"™ (DpDsd) + 3 2apV'®,

Ufd = 26§16 8uas UL = —ies(Dud™),
A = “dies(Dad®),

UMY = ies(Dud). UL = 2ies(Du).

Uee =yt = v/ £ v" g2, U = v"$*2,

ueet = v/, (3.64)

We note that similarly to the case of Dirac fermion, here
we treat the mass of the scalar field (included in the scalar
potential V = V(|¢|?)) as an interaction. In this way we
realize cutoff of type I. For the scalar fluctuations, we are able
to deal with all terms including mixed terms in (3.60)), hence
our nonlocal contribution to the effective action is complete.
In the next section, we show how to deal with all fluctuations
in the scalar sector within nonlocal heat kernel technique.

3.5 Total Hessian

Collecting all the results for the Hessian (written in (3.5)—
(3.8), (3.17)—(3.21), (3.52)—(3.55) and (3.59)—(3.64)), we get
the bosonic part of the quadratic action of the total system.
We can write it as
hef
o

1
E/d“x«/?(h“”,A“,w*wp)Hr I?p ,

*

@

where we have expressed the bosonic fluctuations of quantum
fields in a multiplet (h*V, A*, ¢*, @), and

(3.65)

Hr = K7 (—D?) + 2V Ds + Ur. (3.66)

The components of the Hessian Hr in derivative expansion
are given as

Kuveg 0 00
0 g.00
Kr = 0 gg“ Lol (3.67)
0 0 01
—3L2 (guall_/)/\iﬁaw + gvﬁlzf):uasw) Kuv)»aﬁ)ha - %auvksﬁka _KMUA_S(DAQS*) _K//TU)LB_(DAQS)
Ve —Kaﬂ)LMFM +_%5_aﬁ)”8F)\ﬂ ‘ (_) MTS¢*<§’;L6 _l%(pgﬂé
T Kaﬁ)LS(_D)V?) %Tsd’_gaa 0 0 s
Kag* (D19%) R 0 0
and (3.68)
hh h ho™*
qu,aﬁ Uﬁlf},a Uﬂf Ul“(f
Ah AA A9 1AQ*
UT = Uﬂ‘g}f UMgA Uﬂ* UM* * ) (369)
Uéﬂﬂ O‘f Uee ye'e

U(%l P pee et
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where the components of the Uz tensor are
hh D 1‘2 N 25\ DO L 712 l‘p' N . P 7
Uvap = | R = 7F5 = (Dpp™)(D @) — V(I#]7) — E(W/ Doy — Dpyr - y"f +2mp ) | Kpuv,ap
_ - - I - _ = - - _
~ZueRew) = Ru@vp) + 5 @uv Rap + 2ap Run) + Kpwn@ Fop) ™ + Kiig (u ") Fp

1. - 3. o 3. o
‘|’§F;wszﬂ + RgW(a(i/fVﬁ)Du)lﬂ — Dy -yp¥) + Eg(a(u(w%})Dﬁ)w = Dgyyr - ynyr)

1 - _ - 1 - _ [
_gguv(wy(aDﬂ)w - D(ﬂw : Va)‘p) - ggaﬂ(WVu.Dvw — Dy - Vu‘p)
+2K,0* @ (D3.0") (D)) + 2Kapanu (D*¢*)(Dy ),

U, = 2iesKuve [6(Dr§*) — ¢*(Drd)] — ”{(gwl/?w — Zua ¥ V),

Ut = =2Kapin (Vo F'?) + 8p™ (V Fop) + 2iesKop™ [$(D16%) — ¢*(D1)]

ierp _ - -
—T(gaﬁlﬂ)/mﬂ — Zap¥vp¥),
1. - _ 1
Uil = 58w V'8*. Uly = 2Kup" (DpDr6") + S2usV'$".
* 1 — - *h = - = 1 _ -
Upl" = 58w V'd. Ul =2Kag” (D, Di) + 5 2upV'9.

Ut = Rua + 265101 3ua. UMY = —ies(Dud®),  UL* = —2ies(Dad®).
UM =ies(Du), UL =2ies(Dad),
U =U =V + Vg2, U =V"$? U =V$ (3.70)

Here symmetrization u <> v, @ <> 8 and (u, v) <> («, B), if appropriate, should be understood.
It is convenient to extract an overall factor of K7 (3.67) from the full Hessian Hy and write it as

H; = KrA = K7 (=D*1+2Y°Ds + W). (3.71)
Using
Ko =28, — 2,5, (3.72)

which is the generalization of the gravitational DeWitt metric in field space, we find

_%ggzll}yv)ﬂ)aw 2K//.v)~aﬁm - (Suvmﬁla _S;LVM(DA(ZB*) _‘Suvw(DME)

v - | ~KPu P+ 15, 0 SRR
KP4 (D; ) 5 g 0 0 ’
Kaﬂ,kﬁ(bk(i*) _ié’TSq;*gO{S 0 0
and (3.73)
hh h h he*
Wp,v,aﬁ W;ué,a W“f Wru(‘f
Ah AA Ap i Ap*
wo | Wias Wia Wu™ Wy (3.74)

W;/’;h W‘f*A we'e were*

Wo‘f’; W,;pA wee Wwee*

In principle, in the tensors Y and W the indices are in natural matrix position (one index down — one index up) letting to

perform traces (hence contractions) very naturally without usage of any metric tensor. In particular, all indices « and 8 should

be in superscripts. However, for notational simplicity, from displaying the matrix of W tensor in (3.74) we do not write them
in upper position, hoping that this will not lead to any confusion.
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The explicit components of the W tensor read

hh hh I e =2, (1a -\ | o
W;w,otﬁ = ZU;w,aﬁ - Eglw [FaﬂFﬂ - ZFpA =V —mpyyp 8ap — Z(wy(aDﬁ)w - D(awYﬂ)W)

Lo, e IAY:
+Z(WVpD Y —Dpy”Y)gup | »
i_ S R -

Wiine = 2Ujia + 58u0[2es(@Dad™ = 3* Dud) + 3er v va ¥,

st = _g/ll)v/(ﬁv

Wi = —,,V'¢*, (3.75)

and other components of the W tensor are the same as the corresponding components in U7 .
We next eliminate the first order term Y° Dy in (3.71) by writing D, = 1D,, — Y, following [37,66]. Then A in (3.71) is
rewritten as

A=-D’+W, (3.76)
where
W =W — DsY® +YsY°. (3.77)
Here

—38auD® (Yyops¥)  2KunaVPF*s = VyFooy —DyDyg* —Dy Dy

—Kapau VO Fs + 1Vo F, s
Kup™ DsDy.¢p ”% o

Ko™ D5 D;.¢* ~ % Dyg*

o
~
S

DsY® = , (3.78)

and
2,hh 2.hA 2,hg 2,hg*
Yu,v,o:ﬂ Yuv,a YMV YMV
2,Ah 2. AA 2,40 y,2,Ap*
Y Yo Y Y,
YSY(S _ [;,afh lzzL,Ol*A 1 ) 1 » . (379)
Yl Yt R y2ety
2,ph  y2,0A v 2,00*
Y Y Y299 y2.99

The explicit forms of the above components of the Y5Y? are given in Appendix C.1.

We note that the gauge- and spacetime-covariant shifted derivative D, is matrix-valued and constructed with backgrounds
of the gauge and gravitational fields. By shifting the covariant derivative D, to the new one D, we reduce the differential
operator in (3.71) to the minimal form with leading symbol with two derivatives. The leading term with two derivatives is a
square of the new covariant derivative D, the term with one derivative less is absent and finally all the other non-derivative
operators (endomorphisms of the internal vector bundle) are collected in the operator W. Now the kinetic operator in (3.76)
has precisely the form elucidated in (2.1), so the standard method of heat kernel technique can be applied here to take its
functional trace.

For the components of the W tensor, using (3.77) and (3.79), we find

Frhh ) 1'2 N 4% O A4 = 5 1/ Y4 N 17, P
Wit s = (2R = 3 F3 = 2D,6" D' 6) Kyuvap — Zualtos |V + 5 (775 Dv = Dy v
_ 1 _ L _
+2m 0¥ ) |+ 2 8uvBas (D79 DY = DPUy) = 280 R — 2Ry
+glLUROlﬂ + gaﬁR;w + ZK;w)LanAFpﬂ + ggom (‘/fVﬁDuw - DvaﬁW)

3 - = - 1 - = -
+§gau (wvaﬁW - Dﬁwva) - gg;w (wVaDﬁw - Df“pVQW)

@ Springer



Eur. Phys. J. C (2020) 80:877 Page 13 of 31 877

1

1 1 28
__gaﬁ (‘//VMD Y- D wyu‘!/) + gau (w)/vﬂél/f) gual/fyvkél/”/fyﬁ ¥

4 128
i i _____3__________
+ﬁ‘/f7/;m51/”/’yvﬂ ¥+ EgauDv‘P*Dﬂ‘b + Egot;LDﬁ(p*Dv‘P - guvDa¢*Dﬂ¢
|
_EgaﬂDM¢ D,¢,
- 3. I - ies _
W;%la = ;les8ua (¢Dv¢* - ¢*Dv¢) + - 5 g;wlﬂ)/alﬁ +leSguawva 2K;wkaVSF
> £ 1 - =5 | 28
+V/LF\)0[ - Ew)/u.aél/fFv 16gua1/fvaﬁF
W;ﬁ\? = _g/wv/‘f-’* + Dubvé*,
W;Tf* = _guvv/‘f_"i‘bubv(lg,
~ 1_- 3. o oo o
Wis = —KapruVp F* + SVaFyy + SiesKopyn (DA¢*¢>—¢*D*¢)

] 1
l; (gaﬁl/fyuw ga;ﬂ/fyﬁl/f) mSl/fVM,B ¥ — gauF w)fﬂwﬁ

_ 3, 1 1 -
WAA = Ry + ~€22,0l01* — /MF ZgWszk’

ot )
WA = DiesD, g~ F qu‘s*
nwoo— ) SHu 4 AL s

O T I
WA = ZiesDu¢ — ~F, D¢,
2 4
_ -1 _
Wis" = Kapor D’ D + > 8ep V'o,
cota 3. oo 3o
Wy & = <iesDy¢p — —D" P Fiq,
2 4
We'e = v/ + (V”—e_%) |¢-)|2 _ DAQ_S*DM;,
(v”+e )¢ — DD,

- oh I .
Wiy = Kappn D’ D*¢* + 5 8ap V'g*,

=
N
=
1

3 3
—ElesDa¢* - ZD%*FM,
Wee — (V// +e§) 2 — D, ¢*D*¢*,
Wee — v/ 4 (v” — e§) 61> — D3 D*. (3.80)

Now we wish to calculate the commutator of the shifted covariant derivatives f)u- For this purpose the commutator of
gauge-covariant derivatives D), has to be found first. We give it in a matrix form using the general vector of bosonic fluctuations

\Ij = (hotﬁ’ Aota (pa (p*)T:
hegp
T * Ag
7 Slpglllz(hlw Ay o (,o)Slp(7 o
(p*
=" [D,, D, ] V. (3.81)
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Using the commutation relations on particular types of fluctuations

[Vo. Vo | huw = 2Rpo(huye = 28u* Rpo)? hag. (3.82)
[Vps Va] Ap, = Rpop.aAou (3.83)
[Dy. D] ¢ = 2D, Do1p = —2iesVi,Acih
= —iesFys ¢, (3.84)
we find

Rpo = [Dp’ DG]

zguaépavﬂ B 0 0 0
3 0  Rpgpa O 0
- 0 0 —iesFpy O ' (3.85)

0 0 0 iesFyy
We have the general formula for the commutator £, of shifted covariant derivatives D, :
&, = [D,. D]
= R0 = 2D Yo +2Y[y o) (3.80)

and in particular for various tensors appearing above

_é_gaﬂ&yvﬂaw _ ZK;LVAQ{FAU - S,uv,)LUF)La _(S.}LU,)LUD_A(Z)* _‘Sp_,u,)\ab):(i

—Kaﬁ)»;,LF)LU +_%5¢Zﬁ,)\chxu ' 0 ) %gua‘ﬁ* _wngluﬂp (3.87)
KaﬂAG_DA? %gom(ﬁ_ 0 0 ' )
Kopro D*@* — 5 8uod* 0 0

Y, =

and

_ _—%galtb[p_(‘/f)_’vﬁﬁl‘/f o %gwbﬂﬁpﬂ - %guvbaﬁm + gu[pi)nlﬁva g,{L[pDa]D:vd_)f g_u[pba]_bvq}
DYy = | ~#8eDsFoo L w8ep Dulpr ~ 3Eat; Do P v % G0t Dot 1S Bt Doy
_Egﬂ[pDa]Dntq> + TgaﬂFpa? nga[eDGJ¢ 0 0
JDa¢* - MTSé—’aﬁFpn(p* leTSga[pDUJ(b* 0 0
(3.88)

Nl—
o1
=
>
o
B)

where we also used the Bianchi identity
2V1pFpos) = VoFgs — Vo Fpp = Vg Fpp. (3.89)
Finally, we write the components of the Q po tensor in a matrix form

&5h.h Sh, A 5o &he
Ql,w,o(ﬂ,p(r Q,uv,a,pd Q/}.v,pa QILV‘PU
~Ah SA,A AL ~ AL
Q. = Qﬂﬁﬂtﬂ,pa A Qﬂ;ﬂﬁ Qu’po (3.90)
po Qv h Qe A gete et )
of, po «,p0 po .
&¢.h &9 A 599 @,
Qaﬁ,pa Qa,pa QPU QPU
with the explicit formulas for all components given in Appendix C.2.
Since the Hessian Hr of the total system has now the minimal form (2.1), we can use our master formula for FRGE (2.11)

with identifications: U = W and 2, = . For this we need to evaluate several traces in the internal spaces of fluctuations,

~ o~ ~2 ~
while the functional traces were already done in formula (2.11). Therefore we need the traces of W, W2and @ = Q 00 Q7.
The results for them are summarized in Appendix C.3.
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4 Effective action

Now we are ready to derive the flow equation based on Eq.
(2.11). In this section, we drop bars on the fields since all
quantities considered are built out of background field values
and we will not need any field fluctuation.

We have one graviton, one real vector and one complex
scalar (cf. (3.81) and above it), soind = 4

tr(l) =10 +4 +2 = 16. 4.1

From our master formula (2.11), we get

1
B,sz—

2 /d4x@{l6 0s1hi]

+<§R —tr (W))Ql[hk] + 16R,, gric R*Y

+16R ggR

4R g tr (W) 4 g,tr (W2) + g tr (€) + ... }
4.2)

In addition, we have the contributions from the coordinate
reparametrization (gravitational) and gauge ghosts. The first
one, based on (3.9), adds to (4.2)

1 1 10
3 G | 4VE |~ 80alhe) = 01 hR

—2R, (4gRic + gu —4ga) R™Y

—2R (4gr — grU + gQ)R}- 4.3)
The gauge ghost contributes
s [ avE [ 200000 - 0ithIR
_ X _ !
2 (4)? & 2l = 3 €1l
—2Ryv gric R = 2R gRR}. (4.4)

Finally we have a contribution from fermions in (3.48). All

these contribute to the FRGE flow of the bosonic effective
. —loop

action ;1" .

Plugging the results of the traces of W, W2 and flz in
Egs. (C.5), (C.6) and (C.7) from Appendix C.3 into (4.2) and
collecting all these contributions (4.2)—(4.4) and (3.48), we
get the flow equation of the effective action
8tl—,li—loop _ 3,(F]§em + Ficalar + l—,]{ermion)’ (45)
where [F", ['§¢4la” and I} ermion are scale-dependent effec-

tive actions involving gravity and EM fields, scalars and
fermions, respectively. Explicitly the flow of them is given

by

I = d*x /g (6 — 4NF) Qa[hx]

3272
Np 3

[( 8+ T) R+4Npm3 + 2F,§V]Q1[hk]
+2m%g1R + szg2m% + Fg3F"”
+FuvFpoga (FFPFY) + Fuy F* gs (FY Fpo)
+FuvFpege (F*'FP°) + Fj g7F 5,
“I‘R;wgSle + RgoR + R;wpoglORMVpﬂ
+Fu, F¥ 811 R + F,%,)glzR
+VuF 813V, FY + V, Fpg1aVFF} | (4.6)

where the structure functions g; (fori =1, ..., 14) read
g1 =—Nr(2gru +8u), & = —4NFrgu,
g3 = —2ega — 2Nreq(gu — 282). g4 = 6gq.
3 n 5 9 3
85 = 4gU 289, 86 = 28&2, 87 = 8gU 8Q,

g8 = (6 —4NF)gric — Tgu + 8gq,
1
89 = <5 - ZNF> gu + O — Np)gru — 280
+(6 —4NF)gr,

Np
g10=3gy —(7— T)gsz, g1 = —gu +2gq,

1 3
= ——9oy — — + g0,
812 2gU 2gRU 8Q
. 1 _ 3 9 @7
813 = 2gU 8Q» 814 = 4gU ngz, .

and for the flow of the action with scalars

g, yeatar _ 32712 / d*x g |[10V +4(D,g) (D" )

—4e3 18> =2V = 2 V"] Quli]
+Dy Dy¢*g15sD* D¢ + 5 Fuvdp*g16 (9F”)
+edlolP g7 Fr, + D2g* 318D
+D,¢* Dygpgio (D ¢* D' ¢)
+D,u¢*Dyggr (D' ¢* D" ¢)
+2(Dug™)” gu (Dug)?

+D,¢* D" ¢pgr1 (Dy¢* D )
—2e3(Du¢)gud™ — 2e35(Dud*) gu ¢
+4e5D,¢* D' pgu ||

+e5¢* Dyudgn (¢* D o)

+e3¢Dyug* g (pD"$*)

+e3¢* Dudgas (¢ D ¢*)

+e5¢Dud g3 (¢° D" )

+e§lp* gaulol® + 26507 gy ™
+2V'gy V' +10VgyV

+2¢V'guDp¢* +2¢*V gy Digp
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—8pV gy (¢*V') — 4eslo gy V'
—4eslo PV gyl

+2e50° V" gud™ + 26597 gu (972V)
+2A12V"gu (1917V") +26°V gy (6™V")
+41p PV gy V' — 2(Dud) gy ($*2V")
—2(Du¢*)gu ($*V") — 4Du¢* D pgu (1917 V")
+4D,¢*D'¢gyV — 4D, p* D' gy V'
+e51p1*gasR + Vg R + 2V gru R
+2(¢1*V"gru R + Dy¢* D pgn R
+4D,¢*DypgaR" +iespDydp*g17Vy FH
—ies¢* D, pg17Vy F!' + diesD, ™ Dypgo FMY
—iesDu¢F* g17D, 9"

+iesDu¢* F" g17Dy¢ + Dyuop* D" dgas Fy,
—3Du¢* Fupga (D" ¢ F™)

+5D,¢*Dydgy (F", F'7)

+6D,pFipgq (D' ¢*FH)

+DupF" g9 (D™ F*P)}, (4.8)
where the structure functions g; (fori = 15, ...,29) read
1
815 =28u — 88a, &6 = 58U t+ 8o

9
817=—58U ~ 3ga. g8 = —gu +2gq,

17 3 17 7

819 = ZgU - 58{2, 820 = Zgu - 58&2,

1 9
821 = 58U ~ 82, 82="58U +3gq.
823 =9gu —6gq, g =1llgy — 6gq,
825 =3gu +2g8a +48ru, 826 = —12gy — 10gru,
5 3

g7 =—3gu +2gq —48ru, &8 = 78U T 82

= 2o+ 4.9)
829 = 4gU 2g$27 .

and the fermionic terms are

atF{ermion _ o7 /d4xf {[31/_/VMDM¢

=3D,Yy* Y + 10mpry

3 _ _
+ 35 VYV Y0 | Quliad

25 - -
+§ (Vyu D"y — DYry" ) gu
(‘ﬁVvaw - DU&VUW)
+6mp (v D"y — Dy ) gu (V)
+10m%. () gu (V)

21

1024 (Y yu D"y — Dy ) gu
(WVupoWW”"”W)

3 _ _
+omrIves (o)’

3
1% (Y yuDu¥r — DuYryu¥r) gu
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+év_fmp¢Fmg9 ("7 FPF)
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+%¢prwagsz (yPo w FHY)
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—gieF'/fJ/u‘/ng (WVHVP‘/IFW)

3 - .
+a1//pr1/f1//V””a¢gUR””
+ (vu D"y — Dy v) g36R
+mpY)gTR + T ymp¥) gs R
+&Vuvp‘plzyﬂoxl/fg39RvpaK
+6 (Vyu D"y — Dy ) guV
+20mp gy V
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+6j(¢yuva)28UV
+l[/]///_vp1/fFﬂUg4OVGFUﬂ
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+§€F6S¢*Du¢gU (vy"y)
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—5ereséDud"gu (vy*y)

+ies¢* Dyudgar (Vy" Py Fyp)
_i€S¢Du¢*g4l (I&VuvaFVp)
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+§ (KquD#‘// - Du'ﬁ)’”‘/’) 8uU (Dv¢*Dv¢)
+ampypgy (Dug* D" 9)
+(1p)’/w,o ')[/)2842 (Dn¢*DG¢)
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—3ier Yy gy Vo F*
19 - -
+§ (KZfVu.Dvw - Dvaﬂw) 8u
(DM¢*DV¢+DM¢DV¢*)
Y Vunp WUy o Wgas (DP9* D7 ¢)
1 _ _

— &2 DutV o vga (D¢ Yy ")
1 i L * 7 Voo
—1g Dud¥rpvea (Dad™ ¥y )

+l[_/]/p,vp1//Flwg44V(erd
3 _
+§i€SF;w¢*gQ (Dpfp‘//ylwp‘/f)
3 _
—giesFug ga (Dod™yry""Pr)

3 )
_Zvu (¢Vuprr¢) 8Q (FMUFpa)

3 _ _
— 135 Ve (V7 0¥) u Ve (V777 Y)

3 -
_Evu (wyvpa 'ﬁ) gaRMP?

3 7, -
i (Frio ) sa¥" (By"7 )

3 - -
— 22 Vi (W V) gaV* (b7 v)
+&Vuvp‘pFuag45VU Fr?

3 i _
_ﬁl//yuva]//yuakwgﬁvv (w"”w)} . (4.10)

where the structure functions g; (for i = 30, ..., 45) read

1 N 3

830 = 357688V T 163845
1 3

8317 32768V T 163845

1 1

832 = ﬁgU - ﬁgsz,
1 13

833 = 512gU 25689,
1 n 13

834 = 5128U 25689,
7 N 1

835 = 5128U 1285’9,

15

836 = ——8U 3gru

g37 = —12gy — 10gru,
B 5 3

838 = 1288U ]zggRU,
_ 3 n 3

839 = 1288U 6489,
1 +1

840 = 168U 889,
9 n 3

841 = 16gU 889,
9 1

842 = 2568U 12889’

3 1
843 = 32gU 648527

5 1
844 = 16gU 8g§2a

- : @.11)
845 = 16gU 8g52~ .

In deriving these results, we have to be careful in making
partial integration because nonlocal operators are inserted
between the factors in each of the terms above. To know pre-
cise positions, where to insert nonlocal operators in the form
of functions g;, one must distinguish between left and right

tensors, that is one needs to perform traces: tr (W L w R) and

tr (S}Lpg S}?QU). Subsequently, one inserts g; factors acting
on a bracket collecting product of all right fields. The dis-
tinction between left and right fields here is symmetric and
their roles can be reversed. This is reflected by performing
integration by parts under spacetime volume integral and the
fact that form-factors g; are functions of the integration by
parts-invariant gauge-covariant operator 7 = — Di. We have
also used Bianchi identities for the gauge field strengths and
Riemann curvatures to simplify some terms.

Now our task is to integrate the flow equation (4.5) from
the UV scale A down to zero. We first note that the g, func-
tions have the general form

B C 4
ga=Aa+(—Aa+4+~—§>,/1—:9<z—4>,
Z Z Z

(@a=U,RU,Q,1,2,...,45), 4.12)

and the coefficients are given in Table 1. As we will see in
a moment, to obtain the effective action Iy, it is enough to
focus only on A, coefficients. We can drop the term with the
structure function g; since it gives a constant after spacetime
integration.

We can integrate the flow equation for g, over k from
k =0tok = A to obtain

A dk
fo 4T = Gan® ~ Gao (@), @.13)
where
Gan(2) —Gao(2) A“l A2+A +B“+ C“(414)
— = —log — — .
a,A\Z a,0\Z ) 2 z a 12 120

We find for large A, for gravity and electromagnetism (cf.
(4.6))

rs = L/d“x\/g {(3 —2NF)A—4

3272 2
RIS s L
+%[2%m%;R +4NFm‘11,- -
+%F,WFW’F""FPG - 5(1@2”,)2

2 2
eS+4eFNF 5
3 my
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Table 1 Coefficients A,, B,
and C, in g, in (4.12) for
a=U,RU,Q,1,2,...,45

1, 2 A?
+=F2 R—ZV,FF Vo FP log| = )},  (4.15)
6 MY 3 12 vyp ] MZ

for scalar sector (cf. (4.8))

scalar __
s =
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—6e2p% (D, ¢*)? + 1262 |¢1> D, D¢
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3 3

4 2
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|¢|2V”R

—Siesp D, ¢*V, F*" + Siesd* D, ¢V, F1
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1—‘A

a Aq B, Cu a As By C, a A, B, Ca
u o1 0 0 14 0 -3 0 30 1&m gz O
RU —% 2 0 15 2 - 0 31 0 —zis O
1 2 1 2 11 1
Q 2 0 16 -1 2 0 32 & -4 0
1 4 —4Np 0 17 -5 -2 0 33 -2 - 0
2 4 1 13
2 —4NF 0 0 18 -2 4 0 34 &£ 2 0
02 +-4¢2 _ 2
3 GHGNe  etlaNe g 19 4 -1 0 3 B L0
4 1 4 0 20 % -7 o 3 -4 -2 0
5 1 3 0 21 % -2 0 37 =% -Z 9
6 -3 -3 0 2 -4 2 0 38 -5 L o
7 = 2 0 23 8 -4 0 39 -L % 0
] 82~%N,. 104 1156N1. —48+32Nf 24 10 —4 0 40 % 1172 0
106+Nfp 5242N 6—4Np 5 1
9 L = — 25 2 4 0 41 3 ! 0
224N —144+N 26 20 13 1
10 L¥e o 0 26 =% -2 o0 42 B - o0
2 4 4 4 37 1
n -2 4 0 27 -4 -4 0 43 -3 &£ 0
2 1 -1 0 28 -3 -1 0 4 % -5 0
13 -3 -3 0 29 -2 1 0 45 -5 -5 0
- 15 R/w 60 R* + 12 R;wpo _?leSDuqs*qubFlw
2 * 2
—gF,wFMpR”'O —2D,¢* D¢ F;,

A2
+8D,$* Dy (F*, F*P) ] log <F>} . (4.16)

and for fermionic sector (cf. (4.10))
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4.17)

where we have introduced an arbitrary renormalization scale
. These UV-divergences (when A — 00) can be subtracted
by choosing G, 4 in (4.13) to eliminate the A-dependence.
We set

Aq A?
Ga,A 10g < ) + Va, (418)

where y, are arbitrary constants. Then the form-factors in
(4.14) are

A z
Ga,O = 7[1 log (F) + Va

Aot 5 Ba >+ o Ca (4.19)
120 '

Thus the effective action has the local parts (4.15), (4.16) and
(4.17) with the divergent coefficients replaced by arbitrary
constants, and the following nonlocal parts with definite and
universal coefficients:

o = [§" 4 ryealar g pJermion, (4.20)

We find the following three pieces of the effective action:
1 ez +4e2 Ny -Vv?
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1 - 02 b o
—Ed/ywpl/fF o log H V'F

Slz‘ﬁyp.vpl//wy oY

_p? _
log ( 2 ) \Ad (1//)/'0‘7"1//)} . (4.23)

In preparing the above results (4.21)—(4.23), we used
extensively commutation of covariant derivatives (3.82)—
(3.84), Bianchi identities for Riemann and field strength
tensors and the antisymmetric property of the product of
three Dirac gamma matrices y,,. We also integrated by
parts (where it was possible) to put the terms in the most
symmetric form. (The operator log (%2) is always invari-
ant under integration by parts.) Finally, in the scalar and
fermionic sectors, we used the square of the gauge-covariant
background derivative D, as the argument of the loga-
rithmic form-factors. This is certainly correct. However, in
some cases when the operator acts on the fields in a right
bracket, which all together are electromagnetically neutral,
the EM background connection A, completely drops out
from Di and it is also fine to substitute Vﬁ. This was already
done for all terms in (4.21) which from construction are
uncharged.

The results (4.21)—(4.23) for the quantum effective action
are written to the quadratic order in “generalized curvatures”
R. These generalized curvatures are matrices W, @ wv and
the Riemann tensor R, and its contractions. All terms in
all components of W, Q wv counts as one unit of generalized
curvature.

Another remark is that according to the discussion in
Sects.2and 3.5, the argument of the logarithm in Egs. (4.21)-
(4.23) should be the two-derivative operator z = —13/2“ which
is common for all fluctuations, divided by pLz. The nonlocal
part of the effective action (4.19) have the same structure
as in the local UV-divergences in (4.15), (4.16) and (4.17),
with the factors of log (ﬁ_j) replaced by log (*M—lf) We
also see that the nonlocal logarithmic pieces of the effec-
tive action depend only on A, coefficients in structure func-
tions g, for each term counted by a different value of the
index a. If one looks for a shortcut to get quickly the non-
local terms in the effective action I'g, then one can con-
centrate on A, coefficients in the structure functions. One
also notes that terms proportional to Q2 and Qg in (4.2)
do not contribute at all to nonlocal logarithmic terms of the
effective action I'g. Local operators in the effective action
in (4.15), (4.16) and (4.17) are subject to renormalization
and the coefficients of independent operators are arbitrary
since they depend on the renormalization conditions. In con-
trast, the coefficients of the nonlocal terms are uniquely
determined.
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The effective action with the local and nonlocal terms is
the main result of this paper.

5 Discussion

In this paper we have calculated the effective action in the
gravity theory coupled to gauge, Dirac and charged scalar
fields. In particular we have obtained its nonlocal part unam-
biguously. Most of the work so far on asymptotically safe
gravity focused on the existence proof that there are UV FPs.
However, the object directly connected to most important
physical quantities is the effective action I'¢ (effective aver-
age action at k = 0). We have used the FRGE and integrate it
from high energy scale down to k = 0 to obtain the effective
action. The nice property of this method is that there are no
divergences in contrast to computing the functional integrals.
We have shown that the resulting effective action has non-
local terms with definite coefficients. The physical effects
corresponding to nonlocal terms in the effective action are
non-analytic in momentum, which are different from those
generated by the local and analytic divergent terms. The local
terms are affected by divergences and must be renormalized
so that their coefficients depend on the renormalization con-
ditions. The result on nonlocal terms can be used to calculate
gravitational scattering amplitudes without ambiguity [67—
69] and these predictions can be tested experimentally.

One could also evaluate the effective action perturbatively
in the weak field limit using the covariant nonlocal expan-
sion of the heat kernel in [44,45]. The effective action in this
framework was worked out in [46]. Similar results have been
obtained in [48,49] using Feynman diagrams. This result
may be used to try to generate cosmological magnetic fields.
This primordial magnetogenesis from anomalies relies on the
effective action derived in the weak field approximation [47].
The result is valid in the regime in which the curvature satis-
fies the condition R? <« V?R. During the slow-roll inflation,
the geometric curvature satisfies V2R <« R?, while during
matter domination we have V2R ~ RZ. So to study primor-
dial magnetogenesis reliably over a long range of cosmolog-
ical evolution, it is necessary to go beyond the weak field
approximation. The results in this case have been obtained
for the effective action from the Weyl anomaly in the theory
of gauge bosons interacting with Dirac fermion in curved
backgrounds [50]. However, there the metric was assumed
to be conformally flat. While this restriction has no prob-
lem in the application to Friedmann-Lemaitre—Robertson—
Walker metric, our result is valid for arbitrary backgrounds
and quantum effects from gravity are also taken into account.
The magnetogenesis has been discussed in [51] with nega-
tive conclusion. Our effective action has nonlocal terms with
a similar structure, and could be used to see if the magnetic
fields can be generated. It would be very interesting to study

this problem with the effective action derived here which
includes the quantum gravity effects.

Some comments are in order on the results for I'g in
Egs. (4.20)—(4.23). We have found so many terms in the
total expression for the effective action, in comparison with
quite a small number of terms present in the original action
of the total system (in Sect. 3.5). We started out with Ein-
steinian gravitation and renormalizable matter models (of
abelian gauge fields, fermions and scalars). There are many
virtual processes that contribute to scattering amplitudes,
which gives all possible terms. The only restriction is the
reparametrization and gauge invariance. If this condition is
satisfied, nothing forbids the invariant operators and the cor-
responding processes appear. This is true even if one starts
with renormalizable or nonrenormalizable theories. The only
difference between these theories is whether we would have
divergent coefficients beyond those operators already present
in the bare action.

It is known that in the perturbative framework (using for
example Feynman diagrams as in [48,49,58,59]), one gets
the similar expression for the effective action of the model
at the one-loop level. However, the procedure is different.
There one isolates the perturbative UV-divergences, finds
corresponding beta functions and renormalizes the theory by
introducing an arbitrary energy scale of the renormalization
point . Then the couplings of the theory are promoted from
constants to scale-dependent one, the scale being represented
by . But in the full effective action we have implicit inde-
pendence on this p parameter, because the quantum effective
action is RG transformation invariant. When the logarithmic
UV-divergences are taken into consideration, the RG running
of dimensionless couplings is logarithmic with the energy
scale . The above-mentioned RG-invariance of the effec-
tive action is only achieved if we have very special nonlocal
terms in the effective action built with the logarithm of the
momentum. In covariant language, these nonlocal universal
terms take the form with the insertion of nonlocal logarith-
mic form-factor of the gauge- and GR-covariant operator

_p? . .
log M—[; . In our case the terms under consideration are of

the quadratic order in “generalized curvatures” R, and the
. . _p?
insertion of the nonlocal operator log (—Dz)
w

is unambigu-
ous. This is in accordance with the fact that we used nonlocal
heat kernel expansion to the second order in curvatures R in
Eq. (2.11); in the flow equations (4.6), (4.8) and (4.10), terms
quadratic in R were multiplied by the functional Qg[hy],
which is a dimensionless numerical constant, and in the Egs.

(4.15)—(4.17), the terms quadratic in curvatures R were all
proportional to log (2—;) It is consistent that perturbatively
we would consider logarithmic UV-divergences in the Eqgs.
(4.15)—(4.17) related to local terms quadratic in curvatures.
The form of the universal quadratic in curvatures R part of
the nonlocal effective action is dictated by RG-invariance
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and should be read together with the scale-dependence (RG
running) of couplings. Difference between one-loop effec-
tive action obtained by perturbation and that obtained from
the FRGE is also discussed in [70,71].

We emphasize that the main novelty of this work is the
computation of nonlocal universal terms in the effective
action I'¢ of the total system in Sect. 3.5 using the FRGE
methods and integration of the RG flow equation. These
results can be also viewed as listing of all one-loop UV-
divergences for our total quantum system. These divergences
are encoded in terms, which are at most quadratic in gener-
alized curvatures R.

Our results for the effective action I'g should be under-
stood in certain expansion schemes. Let us concentrate on
nonlocal universal terms which contain logarithmic form-
factor of the covariant operator D?. Besides these terms,
there are also some local higher curvature terms with uni-
versal (RG-independent) coefficients and local terms with
coefficients dependent on the renormalization conditions. We
performed a “generalized curvature” expansion coinciding
with the scheme of heat kernel expansion. Our results are
to the second order and we expect that higher orders in R
exist too and they could be relevant for computation of var-
ious physical observables. For example, from the quadratic
terms in R in I'g, we can unambiguously derive the quan-
tum finite corrections to the graviton polarization functions,
but to know a precise form of 4-gravitons scattering ampli-
tudes around flat spacetime, we would need to possess the
knowledge of I'g to order quartic in curvatures R. The curva-
ture expansion is different from derivative expansion which
is however a common practice for the effective field theory
approaches. In our terms we have collected all powers of
energy/momentum into covariant logarithmic form-factors
of the operator D?. Within these approximation schemes and
limitations, the results in (4.20)—(4.23) are complete in the
sense that there are no other terms except those written and
with the precise coefficients that we have determined. It is
also an important problem which kind of terms may be gen-
erated at two-loop and beyond.

One can also ask a question about a possible extension
of this type of computation for a model of renormalizable
gravity in d = 4 spacetime dimensions by including higher
curvature terms. Such terms may be relevant operators, so itis
important to study the role of these terms in general RG flows.
The first renormalizable model is due to Stelle [1] and con-
tains generally covariant terms with R? and R?, (the R?
term can be easily eliminated by using the Gauss-Bonnet
identity valid in d = 4). However, due to the higher deriva-
tive nature of operators in the gravitational sector, there is an
issue with unitarity. Leaving this problem aside, we may still
analyze beta functions of the couplings. Due to the renormal-
izability of this model of gravity coupled to matter [72-74],
the number of UV-divergent terms is smaller. We note that in
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gravitational models, in which there are no perturbative UV-
divergences (and they are UV-finite [75,76]) by the above
argumentation we will not find any logarithmic term in the
effective action I'.

We have notincluded Yukawa couplings between fermions
and scalar in our study. The reason is that the gauge invari-
ance forbids Yukawa interactions between our scalar field
and fermions because the charges do not match. However
in more general situation, the Yukawa couplings may play
significant role in the flow of the gravitational coupling and
a scalar potential V (¢) [65]. So it should be significant to
extend our work in this direction. Other interesting subjects
include studying quantum effects in other physical processes.
For example, it would be of interest to use the quantum effec-
tive action to study if the quantum effects may tame the singu-
larities in the blackholes and in the early universe, if they can
be a rescue for the information paradox in the Hawking radi-
ation process or whether there is any physical consequence
in the observed gravitational waves.

‘We hope to return to these important subjects in the future.
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A Self-adjointness of the Hessian

When there are first derivative terms in the Hessian and the
coefficients depend on the coordinates, there is an ambiguity
in how to write the Hessian in the matrix form. We remove
this ambiguity by imposing the self-adjointness condition. If
we use the metric G in field space, the self-adjointness of the
kinetic operator A means that

GW', AY) =Gy, AY). (A1)
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In the usual case without first derivative terms, this require-
ment simply gives the symmetric matrix for A, but this is not
true when there are first derivative terms.

We illustrate this by consideration of some simple exam-
ples. In the action (3.14), we have the terms with first deriva-
tive:

_ o 1. - =
R {F(upgwavp + Fo(uVv) + Egqupan} A*
= " [2K yura FV 5 — 8,0 Fio V1A%, (A.2)

To clearly formulate this, it is necessary to distinguish the
unprimed (left) and primed (right) fields. We rewrite this as

_. 1 _
v’ [KWMF’\‘)V,) - Eauﬂmevp} A
_. 1 _
—AY [KWO,FM’V,) - Ea,wlmevp] hHY
_ 1 _
—AY |:KWM(VPFM’) - za,wlp(vpm)] hY. (A3)

Here, in the second line of (A.3), we added the surface terms
after the partial integration. This is the same as (A.2) if we
identify the fields with and without prime upon partial inte-
gration. We get rid of the derivatives on the unprimed fields
by partial integration and then what we get is

_ _ 1 _
—AY [KWMF“’vp — z(s,w*f’vap] v’
_ 1 _
—A“ [K,m(va*f’) - Eau&ﬂ(wm)} hv!

+htY [K,MO,F‘P% -~ %8,“)“’ Fmﬁp} A, (A4)
which is the same as (A.3) in which fields with and without
primes are interchanged. Eq. (A.3) is written in the matrix
form as in (3.18)—(3.21), which is therefore self-adjoint even
though it does not look symmetric. It is important that in the
process we use only integration by parts and do not exchange
fields unawarely.

Another example is the 7 — ¢ mixing term in the
action (3.58):

/ d*x\/g Bh {(D.$*) (D" @) + (D.h) (D" ")}
1" {(Dud*)(Dyg) + (D) (D)}
+%hV/(¢_>*<p + Jw*)]
= fd“x\/g[—zhﬂ”Klwm {(DP$*) D"y

o 1 . ,
+(DP$)D "} + 2t V(¢ e + ¢<p*)] : (A.5)

Let us rewrite (A.5) as
/d4x¢§ [~h" K ups. {(DP$*) D ¢ + (DP ) D*¢* }
+Kapor {¢/ (D" ) + ™ (D $)} D*h*P
+Kapor {9/ (D? D*$*) + ¢ (D” D*§)} h*F
+j¢h’V’<<5*w +¢9") + ihvw*d + W*)} . (A6)

This is the same as (A.5) if we identify the fields with and
without prime upon integration by parts. Upon this, we get

[ B Ko 0575 + 6* (D) D1
—hP Koppr {(DP$*)D*¢' + (D $) D*¢'*}
+Kop. {¢/(DP D*¢*) + ¢™* (D’ D*§) } h™*
1 - - 1 _ _
+ B V@ 0+ de") + L hV (@7 + w/*)} . (A7)

This is the same expression as (A.6) in which fields with and
without primes are interchanged. Eq. (A.6) is written in the
matrix form as in (3.60), which is again self-adjoint. Other
terms are similar.

B Scalar basis
When we have a complex scalar ¢, we have two different

ways to represent it. One is to decompose the scalar field
into two real fields

1 +idn
=—". (B.1)
=TA
Suppose we have the action in terms of the real fields:
S = /d4x(q§1, $2)M (g) : (B.2)

The path integrals over the complex scalar field ¢ and its
conjugate ¢* produce the factor (det M)~1/2. Note that this
matrix is of the size 2 x 2.

Now noting that

S\ _ L (1IN [(d)_ (o
(3)-5CE) (@) o
then (B.2) can be rewritten as
S = /d4x (@*, ) NTMN (q‘f)

= /d4x VINTMNy. (B.4)

Though we have a “complex” field here, ¥ and v are not
independent (¢ and ¢* are independent). So the path integral
over V¥ yields

(det NTMN)"V? = (det M)~1/?, (B.5)
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the same as the real field basis. We can use either basis
whichever convenient. If the action has only ¢*-¢ terms, we
may simply use action of the form ¢* M ¢, but this is not the
case with our action in section 3.4. In the text, we employ

the “complex” basis.

C Explicit forms of tensors and their traces

C.1 Scalar Y?

Here we collect the explicit form of components of Y? in

(3.79).
2,hh 1 _ - -
Vivap = ~ g 8ne W ronav ¥y’ v
1 - _ o
+ gV Vnas VI vup’ ¥ — FuaFop
1. - -
+§gquaAF,BA
2 up PP — B Fon B
F8epluatv” = Epatvilp
| o
_gguvgocﬂFpk — K(xﬁupquﬁ*quj
_KaﬁupDV‘f_’Dp‘f_’*ﬁ
1 - _
Yib{l&q = _Ewyuaévas
Lo 3 s des_ oo oy
—Rguwmw& - Tg““¢D”¢
ie¢_ -, - -
+52 80 b D,

2,he

1. - _
Yo = <_§8au¢)/vﬁ8¢> (8479 Dy¥)
_ - ieg _ §-
+ <2KIMJM¥F)LS - auv,MF)»a) (TSga’StP*) =0,
1. - _
Y/w = <_§gau‘//)’uﬂ8¢> <_5aﬁ'8pr¢)

_ _ ieS -
+ <2Kw))\aF)L8 - (Suv,)\(SF)»a) (_7ga5¢) =0,

2
244 _ L= =5 1 =
Yia =73 i Fa _ZglmeA
2
855 a2
28#a|¢|v

Lo 2 s
Yﬂ’a/g = 3*21’0:51&)/#;3 ¥
| A
_ﬁgauFASWVﬂA ¥
ieg e = - leg -
+7Kaﬁup¢*Dp¢ - TKaﬂp,pr‘p*(ﬁ,

2,4 = 1 ; - -
Y} ¢ _ (—KamuFm 4 §5aﬂmFm> (—B“ﬂpaquf)*)
3., - -
= —ZF*, D, ¢*,
4 n P
2, Ag* = 1 - _—
y2Ae = (—Ka,mFM + Eaaﬁ,fﬂ#) (—aaﬂpﬂ)m)
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3 =% - =
_Z D;.o,
4 w A¢

2,¢*h - - [
aﬂ(p = (KpJABDA‘f’) (_gga(pl/fya)ﬁﬁl//)

ieg _ s - _ 1 _
+ <7g06¢> <_Ko(ﬂp)LF)utS + E‘sﬂtﬂ,(SAF)\p) =0,
2,0%A
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= (Kno™ D18) (~5"7 05 D%4)
ieg _ . s- ieg _ -
+ (%g"‘sqﬁ) (—TSng)

~ D, 3D + 3.

2,¢h - - 1 -
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Yg,(pA _ (KpUMSD)J]S*> <2Kpg’3a}‘:ﬂ3 - Spg,ﬂBFﬂOt>

3,

— D" Fra

Y200 = (K9P D, ¢%) (~Sapps D' $")
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(i) ()
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(C.1)

C.2 Tensor fng

The components of Q po 1 (3.90) are
ok L 1. - -
Q;w,aﬂ,pa = Q’gliaRPUUﬁ + ZgOlILD[p (1//%),30]1”)
1. - - L
_aguaw)/v[pkl/”/fyﬂo]xw + 8uip Fva Fpo
~&ua Fotp Fpo1 + Zatp Fup Frol

1. _ _ _
_zgwga[pFﬁKFa]K
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1
+§gaﬁgu[vaKFa]/c

—8&uip8ao1 Fux F§* — 8uip@uo1Dvd* Dp
1. o
+§gu[pgo{ﬂDv¢*DU]¢
_gu[pgowlDﬂ‘z’*DvQ_5
1 -
+§gu[pgaﬁDo]¢*DV¢v

h,A 1 - -
Q/w a,po — _gllfy/m[prva]

1 - _
_gwyp,pal//Fvot

1— N oK
_gguawyvx[pr o]

1. - _
_ggu[pl/vaJ]N/fFaK

_ieSgu[ng]a(‘Z;Dv‘l;* - QS*DV‘IE)
—28uaVie Fplv + 810 Vio Fpla
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~ 1_ _ _

QZ\ippo = _g pwyva]/cwDK(P*

__WVMprDd’ _2gu[ D d’
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+7guv¢ Fpaa

. 1. - _
Q/huippa = ggﬂ[pWVvU]KI/fDK¢

1- [ B - -
__WVMpUWDv‘P —28u1pDv D510

ies _
_Tg,uvprpay

ALK - -
Qu,aﬂ,pa = _1_61/’Vua[prﬁa]

1 - _ 1
+R1/’Vapcerﬁ/A 1680{/1,1//)/@3 pr
1. - _
__ga[pWVKﬂa]wap.
16
les _
= Zulp8ola(@*Dpd — dDpp™)
les_ _

4 —8aB8ulp (¢ _G]¢3_¢;Do]¢_’*)

1
—8aVio Fpp) — Egaﬁv[o

+ga[pVU]F/3M,
Qﬁ o?pcr = Rpa/wz - F;meg - ZF a]a
P T
_Egu[pFa Foye + Eg“[”F“ Fslie
_eégﬂ[pgao]g’*ﬁgv
“Ao - _ o
Qu,gcf - _EDIL(p*FPU - Eg[puDK¢ Fro)

+Dyp¢* Fpuo) + iesguipDo1d*

are = _Lp Gy — LaD°6E,
wpo = 75 1®Fpo 5 8lon O Feo

+D1pp Fuo) — iesguip Dol
~¢*vh 1 - - =
Qaﬂ,pa = EDad)wVﬂpUVf
1 o
_Rga[pDK(pwyﬁa]xw + ga[pDﬁDU](ﬁ’
* 1. - - 1 - - -
Q5o = 38u1p D Fo) + 5 Dadb Fpo
+D[p‘131*:cr]a + iesga[pbcr]d_%
QYe — _iesﬁpg — D[pd_)*Dg](]S,
QP ¢ =0,
@.h 1 - o,
Qalg oo — RDaqj wyﬂpow
1

16

= | |
Qﬁ;;‘(, = Ega[pDK‘»b*Fw] + §Da¢*FPU

got[pDK¢ 1//)’;‘30 1ﬂ‘i'got Dﬂ a]¢

+D[,0(]3*F<7]a - ieSga[pDo](lg*,
Q;’?;}_‘p = 0’
Q}@&(p* = ieSFpU + D[pQS*Da]é- (C.2)

Here it is understood that the antisymmetrization is made
only for the indices p and o and it has the weight 1/2. We
have also used the relations

leSga[p¢ Fﬂa] + ga[p D,B¢ = ga[pDﬁD0]¢ (C3)
[Dy. Do | ¢* =iesFpod™. (C.4)

C.3 Traces of various tensors

In this part we collect internal traces of various tensors, which
we needed in Sect. 4. In particular, they are essential infor-
mation to compute explicitly results in formula (4.2).

We find that the trace of W is

tr (W) = 7R — 10V — 4D,¢*D"¢
~5Fi 2 +4e2|p? + 2V 42|92V
=3V y, D"y + 3D, yy"y — 10mpyryr
—%Sll_fmptlfl/_fy’“"w (C.5)
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